32 (number): Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
→‎In mathematics: The first 32 rows of Pascal's triangle in binary represent the thirty-two divisors that belong to 4294967295 (the largest constructible polygon
Line 24: Line 24:


On the other hand, a [[Regular polygon|regular]] 32-sided [[icosidodecagon]] contains <math>2^{3} + 3^{2} = 17</math> distinct [[Symmetry (geometry)|symmetries]].<ref>{{Cite book |last1=Conway |first1=John H. |author1-link=John Horton Conway|last2=Burgiel |first2=Heidi |last3=Goodman-Strauss |first3=Chaim |author3-link=Chaim Goodman-Strauss |title=The Symmetries of Things |url=https://www.taylorfrancis.com/books/mono/10.1201/b21368/symmetries-things-chaim-goodman-strauss-john-conway-heidi-burgiel |chapter=Chapter 20: Generalized Schaefli symbols (Types of symmetry of a polygon) |publisher=[[CRC Press]] ([[Taylor & Francis]]) |edition=1st |year=2008 |location=New York |pages=275-277 |doi=10.1201/b21368 |isbn= 978-1-56881-220-5 |oclc=181862605 |zbl=1173.00001 }}</ref>{{efn|content=For comparison, a 16-sided [[hexadecagon]] contains 14 symmetries, an 8-sided [[octagon]] contains 11 symmetries, and a [[square]] contains 8 symmetries.}}
On the other hand, a [[Regular polygon|regular]] 32-sided [[icosidodecagon]] contains <math>2^{3} + 3^{2} = 17</math> distinct [[Symmetry (geometry)|symmetries]].<ref>{{Cite book |last1=Conway |first1=John H. |author1-link=John Horton Conway|last2=Burgiel |first2=Heidi |last3=Goodman-Strauss |first3=Chaim |author3-link=Chaim Goodman-Strauss |title=The Symmetries of Things |url=https://www.taylorfrancis.com/books/mono/10.1201/b21368/symmetries-things-chaim-goodman-strauss-john-conway-heidi-burgiel |chapter=Chapter 20: Generalized Schaefli symbols (Types of symmetry of a polygon) |publisher=[[CRC Press]] ([[Taylor & Francis]]) |edition=1st |year=2008 |location=New York |pages=275-277 |doi=10.1201/b21368 |isbn= 978-1-56881-220-5 |oclc=181862605 |zbl=1173.00001 }}</ref>{{efn|content=For comparison, a 16-sided [[hexadecagon]] contains 14 symmetries, an 8-sided [[octagon]] contains 11 symmetries, and a [[square]] contains 8 symmetries.}}

The product of the five known [[Fermat prime]]s generates the largest [[constructible polygon]], with a total of [[Edge (geometry)|sides]] numbering
:<math>2^{32} - 1 = 3\cdot5\cdot17\cdot257\cdot65537 = 4294967295</math>

The first 32 rows of [[Pascal's triangle]] in [[Binary number|binary]] represent the thirty-two [[divisor]]s that belong to this number.<ref>{{Cite book |last1=Conway |first1=John H. |author1-link= John Horton Conway |last2=Guy |first2=Richard K. |author-link2=Richard K. Guy |title=The Book of Numbers |chapter=The Primacy of Primes |chapter-url=https://link.springer.com/chapter/10.1007/978-1-4612-4072-3_5 |publisher=Copernicus ([[Springer Publishing|Springer]]) |location=New York, NY |pages=137–142 |isbn=978-1-4612-8488-8 |doi=10.1007/978-1-4612-4072-3 |oclc=32854557 |s2cid=115239655 }}</ref>


There are collectively 32 [[List of Euclidean uniform tilings#Uniform colorings|uniform coloring]]s to the 11 [[Euclidean tilings by convex regular polygons#Regular tilings|regular]] and [[Euclidean tilings by convex regular polygons#Archimedean, uniform or semiregular tilings|semiregular]] [[List of Euclidean uniform tilings|tilings]].<ref>{{Cite book |author1=Grünbaum, Branko |author-link=Branko Grünbaum |author2=Shephard, G. C. |author2-link=G.C. Shephard |url-access=registration |url=https://archive.org/details/isbn_0716711931 |title=Tilings and Patterns |chapter=Section 2.9 Archimedean and uniform colorings |publisher=W. H. Freeman and Company |location=New York |year=1987 |pages=102–107 |doi=10.2307/2323457 |isbn=0-7167-1193-1 |oclc=13092426 |jstor=2323457 |s2cid=119730123 }}</ref>
There are collectively 32 [[List of Euclidean uniform tilings#Uniform colorings|uniform coloring]]s to the 11 [[Euclidean tilings by convex regular polygons#Regular tilings|regular]] and [[Euclidean tilings by convex regular polygons#Archimedean, uniform or semiregular tilings|semiregular]] [[List of Euclidean uniform tilings|tilings]].<ref>{{Cite book |author1=Grünbaum, Branko |author-link=Branko Grünbaum |author2=Shephard, G. C. |author2-link=G.C. Shephard |url-access=registration |url=https://archive.org/details/isbn_0716711931 |title=Tilings and Patterns |chapter=Section 2.9 Archimedean and uniform colorings |publisher=W. H. Freeman and Company |location=New York |year=1987 |pages=102–107 |doi=10.2307/2323457 |isbn=0-7167-1193-1 |oclc=13092426 |jstor=2323457 |s2cid=119730123 }}</ref>

Revision as of 20:04, 27 May 2023

← 31 32 33 →
Cardinalthirty-two
Ordinal32nd
(thirty-second)
Factorization25
Divisors1, 2, 4, 8, 16, 32
Greek numeralΛΒ´
Roman numeralXXXII
Binary1000002
Ternary10123
Senary526
Octal408
Duodecimal2812
Hexadecimal2016

32 (thirty-two) is the natural number following 31 and preceding 33.

In mathematics

32 is the fifth power of two (). It is the totient summatory function over the first 10 integers,[1] and the smallest number with exactly 7 solutions for .

The product between neighbor numbers of 23, the dual permutation of the digits of 32 in decimal, is equal to the sum of the first 32 integers: .[2]

32 is the ninth 10-happy number, while 23 is the sixth.[3] Their sum is 55, which is the tenth triangular number,[2] while their difference is .

32 is also a Leyland number expressible in the form , where:

[4]

On the other hand, a regular 32-sided icosidodecagon contains distinct symmetries.[5][a]

The product of the five known Fermat primes generates the largest constructible polygon, with a total of sides numbering

The first 32 rows of Pascal's triangle in binary represent the thirty-two divisors that belong to this number.[6]

There are collectively 32 uniform colorings to the 11 regular and semiregular tilings.[7]

In space groups, there are 32 three-dimensional crystallographic point groups and 32 five-dimensional crystal families.[8][9]

The maximum determinant in a 7 by 7 matrix of only zeroes and ones is 32.[10]

In thirty-two dimensions, there are at least 1,160,000,000 even unimodular lattices (of determinants 1 or −1);[11] which is a marked increase from the twenty-four such Niemeier lattices that exists in twenty-four dimensions, or the single lattice in eight dimensions (these lattices only exist for dimensions ). Furthermore, the 32nd dimension is the first dimension that holds non-critical even unimodular lattices that do not interact with a Gaussian potential function of the form of root and .[12]

In science

Astronomy

In music

In religion

In the Kabbalah, there are 32 Kabbalistic Paths of Wisdom. This is, in turn, derived from the 32 times of the Hebrew names for God, Elohim appears in the first chapter of Genesis.

One of the central texts of the Pāli Canon in the Theravada Buddhist tradition, the Digha Nikaya, describes the appearance of the historical Buddha with a list of 32 physical characteristics.

The Hindu scripture Mudgala Purana also describes Ganesha as taking 32 forms.

In sports

In other fields

Thirty-two could also refer to:

References

  1. ^ For comparison, a 16-sided hexadecagon contains 14 symmetries, an 8-sided octagon contains 11 symmetries, and a square contains 8 symmetries.
  1. ^ Sloane, N. J. A. (ed.). "Sequence A002088 (Sum of totient function)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-05-04.
  2. ^ a b Sloane, N. J. A. (ed.). "Sequence A000217 (Triangular numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-05-04.
  3. ^ "Sloane's A007770 : Happy numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  4. ^ "Sloane's A076980 : Leyland numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  5. ^ Conway, John H.; Burgiel, Heidi; Goodman-Strauss, Chaim (2008). "Chapter 20: Generalized Schaefli symbols (Types of symmetry of a polygon)". The Symmetries of Things (1st ed.). New York: CRC Press (Taylor & Francis). pp. 275–277. doi:10.1201/b21368. ISBN 978-1-56881-220-5. OCLC 181862605. Zbl 1173.00001.
  6. ^ Conway, John H.; Guy, Richard K. "The Primacy of Primes". The Book of Numbers. New York, NY: Copernicus (Springer). pp. 137–142. doi:10.1007/978-1-4612-4072-3. ISBN 978-1-4612-8488-8. OCLC 32854557. S2CID 115239655.
  7. ^ Grünbaum, Branko; Shephard, G. C. (1987). "Section 2.9 Archimedean and uniform colorings". Tilings and Patterns. New York: W. H. Freeman and Company. pp. 102–107. doi:10.2307/2323457. ISBN 0-7167-1193-1. JSTOR 2323457. OCLC 13092426. S2CID 119730123.
  8. ^ Sloane, N. J. A. (ed.). "Sequence A004028 (Number of geometric n-dimensional crystal classes.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-11-08.
  9. ^ Sloane, N. J. A. (ed.). "Sequence A004032 (Number of n-dimensional crystal families.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-11-08.
  10. ^ Sloane, N. J. A. (ed.). "Sequence A003432 (Hadamard maximal determinant problem: largest determinant of a (real) {0,1}-matrix of order n.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-04-04.
  11. ^ Baez, John C. (November 15, 2014). "Integral Octonions (Part 8)". John Baez’s Stuff. U.C. Riverside, Department of Mathematics. Retrieved 2023-05-04.
  12. ^ Heimendahl, Arne; Marafioti, Aurelio; et al. (June 2022). "Critical Even Unimodular Lattices in the Gaussian Core Model". International Mathematics Research Notices. 1 (6). Oxford: Oxford University Press: 5352. arXiv:2105.07868. Bibcode:2021arXiv210507868H. doi:10.1093/imrn/rnac164. S2CID 234742712. Zbl 07672903.{{cite journal}}: CS1 maint: Zbl (link)

External links