Glossary of artificial intelligence: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
→‎D: added definition from intro paragraph of Wikipedia article Default logic
→‎D: added definition from intro paragraph of Wikipedia article Description logic
Line 207: Line 207:
*'''[[Deep learning]]''' –
*'''[[Deep learning]]''' –
*'''[[Default logic]]''' – is a [[non-monotonic logic]] proposed by [[Raymond Reiter]] to formalize reasoning with default assumptions.
*'''[[Default logic]]''' – is a [[non-monotonic logic]] proposed by [[Raymond Reiter]] to formalize reasoning with default assumptions.
*'''[[Description logic]]''' – '''Description logics''' ('''DL''') are a family of formal [[knowledge representation]] languages. Many DLs are more expressive than [[propositional logic]] but less expressive than [[first-order logic]]. In contrast to the latter, the core reasoning problems for DLs are (usually) [[Decision problem|decidable]], and efficient decision procedures have been designed and implemented for these problems. There are general, spatial, temporal, spatiotemporal, and fuzzy descriptions logics, and each description logic features a different balance between DL expressivity and [[Knowledge_representation_and_reasoning|reasoning]] [[Complexity_class|complexity]] by supporting different sets of mathematical constructors.<ref>{{cite book |last=Sikos |first=Leslie F. |date=2017 |title=Description Logics in Multimedia Reasoning |url=https://www.springer.com/us/book/9783319540658 |location=Cham |publisher=Springer International Publishing |isbn=978-3-319-54066-5 |doi=10.1007/978-3-319-54066-5 }}</ref>
*'''[[Description logic]]''' –
*'''[[Developmental robotics]]''' –
*'''[[Developmental robotics]]''' –
*'''[[Diagnosis (artificial intelligence)|Diagnosis]]''' –
*'''[[Diagnosis (artificial intelligence)|Diagnosis]]''' –

Revision as of 14:47, 19 February 2019


Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.

This glossary of artificial intelligence terms is about artificial intelligence, its sub-disciplines, and related fields.



A


B


C


D


E

F


G

H

  • Heuristic – is a technique designed for solving a problem more quickly when classic methods are too slow, or for finding an approximate solution when classic methods fail to find any exact solution. This is achieved by trading optimality, completeness, accuracy, or precision for speed. In a way, it can be considered a shortcut. A heuristic function, also called simply a heuristic, is a function that ranks alternatives in search algorithms at each branching step based on available information to decide which branch to follow. For example, it may approximate the exact solution.[146]
  • Hidden layer – an internal layer of neurons in an artificial neural network, not dedicated to input or output
  • Hidden unit – an neuron in a hidden layer in an artificial neural network
  • Hyper-heuristic – is a heuristic search method that seeks to automate, often by the incorporation of machine learning techniques, the process of selecting, combining, generating or adapting several simpler heuristics (or components of such heuristics) to efficiently solve computational search problems. One of the motivations for studying hyper-heuristics is to build systems which can handle classes of problems rather than solving just one problem.[147][148][149]

I


J

K

L

M


N

O

P


Q

R

S


T

U

V

W

X

Y

Z

See also

References and notes

  1. ^ a b For example: Josephson, John R.; Josephson, Susan G., eds. (1994). Abductive Inference: Computation, Philosophy, Technology. Cambridge, UK; New York: Cambridge University Press. doi:10.1017/CBO9780511530128. ISBN 978-0521434614. OCLC 28149683.
  2. ^ "Retroduction | Dictionary | Commens". Commens – Digital Companion to C. S. Peirce. Mats Bergman, Sami Paavola & João Queiroz. Retrieved 24 August 2014.
  3. ^ Colburn, Timothy; Shute, Gary (5 June 2007). "Abstraction in Computer Science". Minds and Machines. 17 (2): 169–184. doi:10.1007/s11023-007-9061-7. ISSN 0924-6495.
  4. ^ Kramer, Jeff (1 April 2007). "Is abstraction the key to computing?". Communications of the ACM. 50 (4): 36–42. CiteSeerX 10.1.1.120.6776. doi:10.1145/1232743.1232745. ISSN 0001-0782.
  5. ^ Michael Gelfond, Vladimir Lifschitz (1998) "Action Languages", Linköping Electronic Articles in Computer and Information Science, vol 3, nr 16.
  6. ^ "What is an Activation Function?". deepai.org. {{cite web}}: Cite has empty unknown parameter: |dead-url= (help)
  7. ^ Jang, Jyh-Shing R (1991). Fuzzy Modeling Using Generalized Neural Networks and Kalman Filter Algorithm (PDF). Proceedings of the 9th National Conference on Artificial Intelligence, Anaheim, CA, USA, July 14–19. Vol. 2. pp. 762–767.
  8. ^ Jang, J.-S.R. (1993). "ANFIS: adaptive-network-based fuzzy inference system". IEEE Transactions on Systems, Man and Cybernetics. 23 (3): 665–685. doi:10.1109/21.256541.
  9. ^ Abraham, A. (2005), "Adaptation of Fuzzy Inference System Using Neural Learning", in Nedjah, Nadia; de Macedo Mourelle, Luiza (eds.), Fuzzy Systems Engineering: Theory and Practice, Studies in Fuzziness and Soft Computing, vol. 181, Germany: Springer Verlag, pp. 53–83, CiteSeerX 10.1.1.161.6135, doi:10.1007/11339366_3, ISBN 978-3-540-25322-8
  10. ^ Jang, Sun, Mizutani (1997) – Neuro-Fuzzy and Soft Computing – Prentice Hall, pp 335–368, ISBN 0-13-261066-3
  11. ^ Tahmasebi, P. (2012). "A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation" (PDF). Computers & Geosciences. 42: 18–27. doi:10.1016/j.cageo.2012.02.004. PMC 4268588. PMID 25540468.
  12. ^ Tahmasebi, P. (2010). "Comparison of optimized neural network with fuzzy logic for ore grade estimation". Australian Journal of Basic and Applied Sciences. 4: 764–772.
  13. ^ Russell, S.J.; Norvig, P. (2002). Artificial Intelligence: A Modern Approach. Prentice Hall. ISBN 978-0-13-790395-5.
  14. ^ Template:Cite article
  15. ^ Tao, Jianhua; Tieniu Tan (2005). "Affective Computing: A Review". Affective Computing and Intelligent Interaction. Vol. LNCS 3784. Springer. pp. 981–995. doi:10.1007/11573548. {{cite conference}}: Unknown parameter |booktitle= ignored (|book-title= suggested) (help)
  16. ^ Comparison of Agent Architectures Archived August 27, 2008, at the Wayback Machine
  17. ^ "Intel unveils Movidius Compute Stick USB AI Accelerator". 21 July 2017.
  18. ^ "Inspurs unveils GX4 AI Accelerator". 21 June 2017.
  19. ^ Shapiro, Stuart C. (1992). Artificial Intelligence In Stuart C. Shapiro (Ed.), Encyclopedia of Artificial Intelligence (Second Edition, pp. 54–57). New York: John Wiley. (Section 4 is on "AI-Complete Tasks".)
  20. ^ Solomonoff, R., "A Preliminary Report on a General Theory of Inductive Inference", Report V-131, Zator Co., Cambridge, Ma. (Nov. 1960 revision of the Feb. 4, 1960 report).
  21. ^ "Artificial intelligence: Google's AlphaGo beats Go master Lee Se-dol". BBC News. 12 March 2016. Retrieved 17 March 2016.
  22. ^ "AlphaGo | DeepMind". DeepMind.
  23. ^ "Research Blog: AlphaGo: Mastering the ancient game of Go with Machine Learning". Google Research Blog. 27 January 2016.
  24. ^ "Google achieves AI 'breakthrough' by beating Go champion". BBC News. 27 January 2016.
  25. ^ See Dung (1995)
  26. ^ See Besnard and Hunter (2001)
  27. ^ see Bench-Capon (2002)
  28. ^ Definition of AI as the study of intelligent agents:
    • Poole, Mackworth & Goebel 1998, p. 1, which provides the version that is used in this article. Note that they use the term "computational intelligence" as a synonym for artificial intelligence.
    • Russell & Norvig (2003) (who prefer the term "rational agent") and write "The whole-agent view is now widely accepted in the field" (Russell & Norvig 2003, p. 55).
    • Nilsson 1998
    • Legg & Hutter 2007.
  29. ^ Russell & Norvig 2009, p. 2.
  30. ^ "Artificial Neural Networks as Models of Neural Information Processing | Frontiers Research Topic". Retrieved 20 February 2018.
  31. ^ "Build with AI | DeepAI". DeepAI. Retrieved 6 October 2018.
  32. ^ "AAAI Corporate Bylaws".
  33. ^ "The Lengthy History of Augmented Reality". Huffington Post. 15 May 2016.
  34. ^ Schueffel, Patrick (2017). The Concise Fintech Compendium. Fribourg: School of Management Fribourg/Switzerland.
  35. ^ Ghallab, Malik; Nau, Dana S.; Traverso, Paolo (2004), Automated Planning: Theory and Practice, Morgan Kaufmann, ISBN 978-1-55860-856-6
  36. ^ Kephart, J.O.; Chess, D.M. (2003), "The vision of autonomic computing", Computer, 36: 41–52, CiteSeerX 10.1.1.70.613, doi:10.1109/MC.2003.1160055
  37. ^ [1]
  38. ^ Thrun, Sebastian (2010). "Toward Robotic Cars". Communications of the ACM. 53 (4): 99–106. doi:10.1145/1721654.1721679.
  39. ^ Gehrig, Stefan K.; Stein, Fridtjof J. (1999). Dead reckoning and cartography using stereo vision for an automated car. IEEE/RSJ International Conference on Intelligent Robots and Systems. Vol. 3. Kyongju. pp. 1507–1512. doi:10.1109/IROS.1999.811692. ISBN 0-7803-5184-3.
  40. ^ "Information Engineering Main/Home Page". www.robots.ox.ac.uk. Retrieved 3 October 2018.
  41. ^ Goodfellow, Ian; Bengio, Yoshua; Courville, Aaaron (2016) Deep Learning. MIT Press. p. 196. ISBN 9780262035613
  42. ^ "What is Backpropagation?". deepai.org. {{cite web}}: Cite has empty unknown parameter: |dead-url= (help)
  43. ^ Nielsen, Michael A. (2015). "Chapter 6". Neural Networks and Deep Learning.
  44. ^ "Deep Networks: Overview - Ufldl". ufldl.stanford.edu. Retrieved 4 August 2017.
  45. ^ Mozer, M. C. (1995). "A Focused Backpropagation Algorithm for Temporal Pattern Recognition". In Chauvin, Y.; Rumelhart, D. (eds.). Backpropagation: Theory, architectures, and applications. Hillsdale, NJ: Lawrence Erlbaum Associates. pp. 137–169. Retrieved 21 August 2017. {{cite book}}: |website= ignored (help)
  46. ^ Robinson, A. J.; Fallside, F. (1987). The utility driven dynamic error propagation network (Technical report). Cambridge University, Engineering Department. CUED/F-INFENG/TR.1. {{cite tech report}}: Unknown parameter |lastauthoramp= ignored (|name-list-style= suggested) (help)
  47. ^ Werbos, Paul J. (1988). "Generalization of backpropagation with application to a recurrent gas market model". Neural Networks. 1 (4): 339–356. doi:10.1016/0893-6080(88)90007-x.
  48. ^ Feigenbaum, Edward (1988). The Rise of the Expert Company. Times Books. p. 317. ISBN 978-0-8129-1731-4.
  49. ^ Sivic, Josef (April 2009). "Efficient visual search of videos cast as text retrieval" (PDF). IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 4. IEEE. pp. 591–605. {{cite conference}}: Unknown parameter |booktitle= ignored (|book-title= suggested) (help)
  50. ^ McTear et al 2016, p. 167.
  51. ^ "Understanding the backward pass through Batch Normalization Layer". kratzert.github.io. Retrieved 24 April 2018.
  52. ^ Ioffe, Sergey; Szegedy, Christian (2015). "Batch Normalization: Accelerating Deep Network Training b y Reducing Internal Covariate Shift". arXiv:1502.03167. {{cite journal}}: Cite journal requires |journal= (help)
  53. ^ "Glossary of Deep Learning: Batch Normalisation". medium.com. 27 June 2017. Retrieved 24 April 2018.
  54. ^ "Batch normalization in Neural Networks". towardsdatascience.com. 20 October 2017. Retrieved 24 April 2018.
  55. ^ "Bayesian versus Frequentist Probability". deepai.org. {{cite web}}: Cite has empty unknown parameter: |dead-url= (help)
  56. ^ Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S and Zaidi M. The Bees Algorithm. Technical Note, Manufacturing Engineering Centre, Cardiff University, UK, 2005.
  57. ^ Pham, D.T., Castellani, M. (2009), The Bees Algorithm – Modelling Foraging Behaviour to Solve Continuous Optimisation Problems. Proc. ImechE, Part C, 223(12), 2919-2938.
  58. ^ Pham, D. T.; Castellani, M. (2014). "Benchmarking and comparison of nature-inspired population-based continuous optimisation algorithms". Soft Computing. 18 (5): 871–903. doi:10.1007/s00500-013-1104-9.
  59. ^ Pham, Duc Truong; Castellani, Marco (2015). "A comparative study of the Bees Algorithm as a tool for function optimisation". Cogent Engineering. 2. doi:10.1080/23311916.2015.1091540.
  60. ^ Nasrinpour, H. R., Massah Bavani, A., Teshnehlab, M., (2017), Grouped Bees Algorithm: A Grouped Version of the Bees Algorithm, Computers 2017, 6(1), 5; (doi: 10.3390/computers6010005)
  61. ^ Cao, Longbing (2010). "In-depth Behavior Understanding and Use: the Behavior Informatics Approach". Information Science. 180 (17): 3067–3085. doi:10.1016/j.ins.2010.03.025.
  62. ^ Colledanchise Michele, and Ögren Petter 2016. How Behavior Trees Modularize Hybrid Control Systems and Generalize Sequential Behavior Compositions, the Subsumption Architecture, and Decision Trees. In IEEE Transactions on Robotics vol.PP, no.99, pp.1-18 (2016)
  63. ^ Colledanchise Michele, and Ögren Petter 2017. Behavior Trees in Robotics and AI: An Introduction.
  64. ^ Breur, Tom (July 2016). "Statistical Power Analysis and the contemporary "crisis" in social sciences". Journal of Marketing Analytics. 4 (2–3): 61–65. doi:10.1057/s41270-016-0001-3. ISSN 2050-3318.
  65. ^ Bachmann, Paul (1894). Analytische Zahlentheorie [Analytic Number Theory] (in German). Vol. 2. Leipzig: Teubner.
  66. ^ Landau, Edmund (1909). Handbuch der Lehre von der Verteilung der Primzahlen [Handbook on the theory of the distribution of the primes] (in German). Leipzig: B. G. Teubner. p. 883.
  67. ^ Rowan Garnier; John Taylor (2009). Discrete Mathematics: Proofs, Structures and Applications, Third Edition. CRC Press. p. 620. ISBN 978-1-4398-1280-8.
  68. ^ Steven S Skiena (2009). The Algorithm Design Manual. Springer Science & Business Media. p. 77. ISBN 978-1-84800-070-4.
  69. ^ Erman, L. D.; Hayes-Roth, F.; Lesser, V. R.; Reddy, D. R. (1980). "The Hearsay-II Speech-Understanding System: Integrating Knowledge to Resolve Uncertainty". ACM Computing Surveys. 12 (2): 213. doi:10.1145/356810.356816.
  70. ^ Corkill, Daniel D. (September 1991). "Blackboard Systems" (PDF). AI Expert. 6 (9): 40–47.
  71. ^ * Nii, H. Yenny (1986). Blackboard Systems (PDF) (Technical report). Department of Computer Science, Stanford University. STAN-CS-86-1123. Retrieved 12 April 2013.
  72. ^ Hayes-Roth, B. (1985). "A blackboard architecture for control". Artificial Intelligence. 26 (3): 251–321. doi:10.1016/0004-3702(85)90063-3.
  73. ^ NZZ- Die Zangengeburt eines möglichen Stammvaters. Website Neue Zürcher Zeitung. Seen 16. August 2013.
  74. ^ Official Homepage Roboy Archived 2013-08-03 at the Wayback Machine. Website Roboy. Seen 16. August 2013.
  75. ^ Official Homepage Starmind. Website Starmind. Seen 16. August 2013.
  76. ^ Sabour, Sara; Frosst, Nicholas; Hinton, Geoffrey E. (26 October 2017). "Dynamic Routing Between Capsules". arXiv:1710.09829 [cs.CV].
  77. ^ "What is a chatbot?". techtarget.com. Retrieved 30 January 2017.
  78. ^ "Cloud Robotics and Automation A special issue of the IEEE Transactions on Automation Science and Engineering". IEEE. Retrieved 7 December 2014.
  79. ^ "RoboEarth".
  80. ^ Goldberg, Ken. "Cloud Robotics and Automation".
  81. ^ Li, R. "Cloud Robotics-Enable cloud computing for robots". Retrieved 7 December 2014.
  82. ^ Fisher, Douglas (1987). "Knowledge acquisition via incremental conceptual clustering" (PDF). Machine Learning. 2 (2): 139–172. doi:10.1007/BF00114265.
  83. ^ Fisher, Douglas H. (July 1987). "Improving inference through conceptual clustering". Proceedings of the 1987 AAAI Conferences. AAAI Conference. Seattle Washington. pp. 461–465. {{cite conference}}: Unknown parameter |booktitle= ignored (|book-title= suggested) (help)
  84. ^ William Iba and Pat Langley (27 January 2011). "Cobweb models of categorization and probabilistic concept formation". In Emmanuel M. Pothos and Andy J. Wills (ed.). Formal approaches in categorization. Cambridge: Cambridge University Press. pp. 253–273. ISBN 9780521190480.
  85. ^ Refer to the ICT website: http://cogarch.ict.usc.edu/
  86. ^ "Hewlett Packard Labs".
  87. ^ Terdiman, Daniel (2014) .IBM's TrueNorth processor mimics the human brain.http://www.cnet.com/news/ibms-truenorth-processor-mimics-the-human-brain/
  88. ^ Knight, Shawn (2011). IBM unveils cognitive computing chips that mimic human brain TechSpot: August 18, 2011, 12:00 PM
  89. ^ Hamill, Jasper (2013). Cognitive computing: IBM unveils software for its brain-like SyNAPSE chips The Register: August 8, 2013
  90. ^ Denning. P.J. (2014). "Surfing Toward the Future". Communications of the ACM. 57 (3): 26–29. doi:10.1145/2566967.
  91. ^ Dr. Lars Ludwig (2013). "Extended Artificial Memory. Toward an integral cognitive theory of memory and technology" (pdf). Technical University of Kaiserslautern. Retrieved 7 February 2017. {{cite journal}}: Cite journal requires |journal= (help)
  92. ^ "Research at HP Labs".
  93. ^ "Automate Complex Workflows Using Tactical Cognitive Computing: Coseer". thesiliconreview.com. Retrieved 31 July 2017.
  94. ^ Cognitive science is an interdisciplinary field of researchers from Linguistics, psychology, neuroscience, philosophy, computer science, and anthropology that seek to understand the mind. How We Learn: Ask the Cognitive Scientist
  95. ^ Schrijver, Alexander (February 1, 2006). A Course in Combinatorial Optimization (PDF), page 1.
  96. ^ HAYKIN, S. Neural Networks - A Comprehensive Foundation. Second edition. Pearson Prentice Hall: 1999.
  97. ^ "PROGRAMS WITH COMMON SENSE". www-formal.stanford.edu. Retrieved 11 April 2018.
  98. ^ Ernest Davis; Gary Marcus (2015). "Commonsense reasoning". Communications of the ACM. Vol. 58, no. 9. pp. 92–103. doi:10.1145/2701413.
  99. ^ Hulstijn, J, and Nijholt, A. (eds.). Proceedings of the International Workshop on Computational Humor. Number 12 in Twente Workshops on Language Technology, Enschede, Netherlands. University of Twente, 1996.
  100. ^ "ACL - Association for Computational Learning".
  101. ^ Trappenberg, Thomas P. (2002). Fundamentals of Computational Neuroscience. United States: Oxford University Press Inc. p. 1. ISBN 978-0-19-851582-1.
  102. ^ What is computational neuroscience? Patricia S. Churchland, Christof Koch, Terrence J. Sejnowski. in Computational Neuroscience pp.46-55. Edited by Eric L. Schwartz. 1993. MIT Press "Archived copy". Archived from the original on 4 June 2011. Retrieved 11 June 2009. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)CS1 maint: archived copy as title (link)
  103. ^ Press, The MIT. "Theoretical Neuroscience". The MIT Press. Retrieved 24 May 2018.
  104. ^ Gerstner, W.; Kistler, W.; Naud, R.; Paninski, L. (2014). Neuronal Dynamics. Cambridge, UK: Cambridge University Press. ISBN 9781107447615.
  105. ^ "WordNet Search—3.1". Wordnetweb.princeton.edu. Retrieved 14 May 2012.
  106. ^ Dana H. Ballard; Christopher M. Brown (1982). Computer Vision. Prentice Hall. ISBN 0-13-165316-4.
  107. ^ Huang, T. (1996-11-19). Vandoni, Carlo, E, ed. Computer Vision : Evolution And Promise (PDF). 19th CERN School of Computing. Geneva: CERN. pp. 21–25. doi:10.5170/CERN-1996-008.21. ISBN 978-9290830955.
  108. ^ Milan Sonka; Vaclav Hlavac; Roger Boyle (2008). Image Processing, Analysis, and Machine Vision. Thomson. ISBN 0-495-08252-X.
  109. ^ Garson, James (27 November 2018). Zalta, Edward N. (ed.). The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University – via Stanford Encyclopedia of Philosophy.
  110. ^ "Ishtar for Belgium to Belgrade". European Broadcasting Union. Retrieved 19 May 2013.
  111. ^ LeCun, Yann. "LeNet-5, convolutional neural networks". Retrieved 16 November 2013.
  112. ^ Zhang, Wei (1988). "Shift-invariant pattern recognition neural network and its optical architecture". Proceedings of annual conference of the Japan Society of Applied Physics.
  113. ^ Zhang, Wei (1990). "Parallel distributed processing model with local space-invariant interconnections and its optical architecture". Applied Optics. 29 (32): 4790–7. Bibcode:1990ApOpt..29.4790Z. doi:10.1364/AO.29.004790. PMID 20577468.,
  114. ^ Tian, Yuandong; Zhu, Yan (2015). "Better Computer Go Player with Neural Network and Long-term Prediction". arXiv:1511.06410v1 [cs.LG].
  115. ^ "How Facebook's AI Researchers Built a Game-Changing Go Engine". MIT Technology Review. 4 December 2015. Retrieved 3 February 2016.
  116. ^ "Facebook AI Go Player Gets Smarter With Neural Network And Long-Term Prediction To Master World's Hardest Game". Tech Times. 28 January 2016. Retrieved 24 April 2016.
  117. ^ "Facebook's artificially intelligent Go player is getting smarter". VentureBeat. 27 January 2016. Retrieved 24 April 2016.
  118. ^ Solomonoff, R.J.The Time Scale of Artificial Intelligence; Reflections on Social Effects, Human Systems Management, Vol 5 1985, Pp 149-153
  119. ^ Moor, J., The Dartmouth College Artificial Intelligence Conference: The Next Fifty years, AI Magazine, Vol 27, No., 4, Pp. 87-9, 2006
  120. ^ Kline, Ronald R., Cybernetics, Automata Studies and the Dartmouth Conference on Artificial Intelligence, IEEE Annals of the History of Computing, October–December, 2011, IEEE Computer Society
  121. ^ Haghighat, Mohammad; Abdel-Mottaleb, Mohamed; Alhalabi, Wadee (2016). "Discriminant Correlation Analysis: Real-Time Feature Level Fusion for Multimodal Biometric Recognition". IEEE Transactions on Information Forensics and Security. 11 (9): 1984–1996. doi:10.1109/TIFS.2016.2569061.
  122. ^ Maurizio Lenzerini (2002). "Data Integration: A Theoretical Perspective" (PDF). PODS 2002. pp. 233–246. {{cite conference}}: Unknown parameter |booktitle= ignored (|book-title= suggested) (help)
  123. ^ Big Data Integration
  124. ^ Frederick Lane (2006). "IDC: World Created 161 Billion Gigs of Data in 2006".
  125. ^ Dhar, V. (2013). "Data science and prediction". Communications of the ACM. 56 (12): 64–73. doi:10.1145/2500499.
  126. ^ Jeff Leek (12 December 2013). "The key word in "Data Science" is not Data, it is Science". Simply Statistics.
  127. ^ Hayashi, Chikio (1 January 1998). "What is Data Science? Fundamental Concepts and a Heuristic Example". In Hayashi, Chikio; Yajima, Keiji; Bock, Hans-Hermann; Ohsumi, Noboru; Tanaka, Yutaka; Baba, Yasumasa (eds.). Data Science, Classification, and Related Methods. Studies in Classification, Data Analysis, and Knowledge Organization. Springer Japan. pp. 40–51. doi:10.1007/978-4-431-65950-1_3. ISBN 9784431702085.
  128. ^ Dedić, Nedim; Stanier, Clare (2016). Hammoudi, Slimane; Maciaszek, Leszek; Missikoff, Michele M. Missikoff; Camp, Olivier; Cordeiro, José (eds.). An Evaluation of the Challenges of Multilingualism in Data Warehouse Development. International Conference on Enterprise Information Systems, 25–28 April 2016, Rome, Italy. Proceedings of the 18th International Conference on Enterprise Information Systems (ICEIS 2016). Vol. 1. SciTePress. pp. 196–206. doi:10.5220/0005858401960206. ISBN 978-989-758-187-8. {{cite conference}}: External link in |conferenceurl= (help); Unknown parameter |conferenceurl= ignored (|conference-url= suggested) (help)
  129. ^ "9 Reasons Data Warehouse Projects Fail". blog.rjmetrics.com. Retrieved 30 April 2017.
  130. ^ Huang, Green, and Loo, "Datalog and Emerging applications", SIGMOD 2011 (PDF), UC Davis{{citation}}: CS1 maint: multiple names: authors list (link).
  131. ^ Steele, Katie and Stefánsson, H. Orri, "Decision Theory", The Stanford Encyclopedia of Philosophy (Winter 2015 Edition), Edward N. Zalta (ed.), URL = [2]
  132. ^ Lloyd, J.W., Practical Advantages of Declarative Programming
  133. ^ "What is a Deductive Classifier?". deepai.org. {{cite web}}: Cite has empty unknown parameter: |dead-url= (help)
  134. ^ Sikos, Leslie F. (2017). Description Logics in Multimedia Reasoning. Cham: Springer International Publishing. doi:10.1007/978-3-319-54066-5. ISBN 978-3-319-54066-5.
  135. ^ Hendrickx, Iris; Van den Bosch, Antal (October 2005). "Hybrid algorithms with Instance-Based Classification". Machine Learning: ECML2005. Springer. pp. 158–169. {{cite conference}}: Unknown parameter |booktitle= ignored (|book-title= suggested) (help)
  136. ^ a b Adam Ostrow (5 March 2011). "Roger Ebert's Inspiring Digital Transformation". Mashable Entertainment. Retrieved 12 September 2011. With the help of his wife, two colleagues and the Alex-equipped MacBook that he uses to generate his computerized voice, famed film critic Roger Ebert delivered the final talk at the TED conference on Friday in Long Beach, California.... {{cite news}}: Italic or bold markup not allowed in: |publisher= (help)
  137. ^ JENNIFER 8. LEE (7 March 2011). "Roger Ebert Tests His Vocal Cords, and Comedic Delivery". The New York Times. Retrieved 12 September 2011. Now perhaps, there is the Ebert Test, a way to see if a synthesized voice can deliver humor with the timing to make an audience laugh.... He proposed the Ebert Test as a way to gauge the humanness of a synthesized voice. {{cite news}}: Italic or bold markup not allowed in: |publisher= (help)CS1 maint: numeric names: authors list (link)
  138. ^ "Roger Ebert's Inspiring Digital Transformation". Tech News. 5 March 2011. Retrieved 12 September 2011. Meanwhile, the technology that enables Ebert to "speak" continues to see improvements – for example, adding more realistic inflection for question marks and exclamation points. In a test of that, which Ebert called the "Ebert test" for computerized voices, {{cite news}}: Italic or bold markup not allowed in: |publisher= (help)
  139. ^ Alex_Pasternack (18 April 2011). "A MacBook May Have Given Roger Ebert His Voice, But An iPod Saved His Life (Video)". Motherboard. Retrieved 12 September 2011. He calls it the "Ebert Test," after Turing's AI standard... {{cite news}}: Italic or bold markup not allowed in: |publisher= (help)
  140. ^ Herbert Jaeger and Harald Haas. Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication. Science 2 April 2004: Vol. 304. no. 5667, pp. 78 – 80 doi:10.1126/science.1091277 PDF
  141. ^ Herbert Jaeger (2007) Echo State Network. Scholarpedia.
  142. ^ Martignon, Laura; Vitouch, Oliver; Takezawa, Masanori; Forster, Malcolm. "Naive and Yet Enlightened: From Natural Frequencies to Fast and Frugal Decision Trees", published in Thinking : Psychological perspectives on reasoning, judgement and decision making (David Hardman and Laura Macchi; editors), Chichester: John Wiley & Sons, 2003.
  143. ^ Hodgson, Dr. J. P. E., "First Order Logic", Saint Joseph's University, Philadelphia, 1995.
  144. ^ Hughes, G. E., & Cresswell, M. J., A New Introduction to Modal Logic (London: Routledge, 1996), p.161.
  145. ^ Feigenbaum, Edward (1988). The Rise of the Expert Company. Times Books. p. 318. ISBN 978-0-8129-1731-4.
  146. ^ Pearl, Judea (1984). Heuristics: intelligent search strategies for computer problem solving. United States: Addison-Wesley Pub. Co., Inc., Reading, MA. p. 3. Retrieved 13 June 2017.
  147. ^ E. K. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, and S. Schulenburg, Hyper-heuristics: An emerging direction in modern search technology, Handbook of Metaheuristics (F. Glover and G. Kochenberger, eds.), Kluwer, 2003, pp. 457–474.
  148. ^ P. Ross, Hyper-heuristics, Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques (E. K. Burke and G. Kendall, eds.), Springer, 2005, pp. 529-556.
  149. ^ E. Ozcan, B. Bilgin, E. E. Korkmaz, A Comprehensive Analysis of Hyper-heuristics, Intelligent Data Analysis, 12:1, pp. 3-23, 2008.
  150. ^ Paskin, Mark. "A Short Course on Graphical Models" (PDF). Standford. {{cite web}}: Cite has empty unknown parameter: |dead-url= (help)