Jump to content

P21: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
removed no longer needed PBB controls and templates; consistent citation formatting
m Function: typo
Line 9: Line 9:
The expression of this gene is tightly controlled by the tumor suppressor protein [[p53]], through which this protein mediates the p53-dependent cell cycle G<sub>1</sub> phase arrest in response to a variety of stress stimuli.<ref name="pmid16280359">{{vcite2 journal | vauthors = Rodriguez R, Meuth M | title = Chk1 and p21 cooperate to prevent apoptosis during DNA replication fork stress | journal = Mol. Biol. Cell | volume = 17 | issue = 1 | pages = 402-12 | year = 2006 | date = January 2006 | pmid = 16280359 | pmc = 1345677 | doi = 10.1091/mbc.E05-07-0594 }}</ref> This was a major discovery in the early 1990s that revealed how cells stop dividing after being exposed to damaging agents such as radiation.
The expression of this gene is tightly controlled by the tumor suppressor protein [[p53]], through which this protein mediates the p53-dependent cell cycle G<sub>1</sub> phase arrest in response to a variety of stress stimuli.<ref name="pmid16280359">{{vcite2 journal | vauthors = Rodriguez R, Meuth M | title = Chk1 and p21 cooperate to prevent apoptosis during DNA replication fork stress | journal = Mol. Biol. Cell | volume = 17 | issue = 1 | pages = 402-12 | year = 2006 | date = January 2006 | pmid = 16280359 | pmc = 1345677 | doi = 10.1091/mbc.E05-07-0594 }}</ref> This was a major discovery in the early 1990s that revealed how cells stop dividing after being exposed to damaging agents such as radiation.


Studies of human embryonic stem cells (hESCs) commonly report the nonfunctional p53-p21 axis of the G1/S checkpoint pathway, and its relevance for cell cycle regulation and the DNA damage response (DDR). p21 mRNA is clearly present and upregulated after the DDR in hESCs, but p21 protein is not detectable. In this cell type, p53 activates numerous microRNAs (like miR-302a, miR-302b, miR-302c, and miR-302d) that directly inhibit the p21 expression in hESCs.<ref>{{vvcite2 journal | vauthors = Dolezalova D, Mraz M, Barta T, Plevova K, Vinarsky V, Holubcova Z, Jaros J, Dvorak P, Pospisilova S, Hampl A. | title = MicroRNAs regulate p21(Waf1/Cip1) protein expression and the DNA damage response in human embryonic stem cells. | journal = Stem Cells | volume = 7 | pages = 1362-72.| year = 2012 | doi = 10.1002/stem.1108.| pmid = 22511267 |}}</ref>
Studies of human embryonic stem cells (hESCs) commonly report the nonfunctional p53-p21 axis of the G1/S checkpoint pathway, and its relevance for cell cycle regulation and the DNA damage response (DDR). p21 mRNA is clearly present and upregulated after the DDR in hESCs, but p21 protein is not detectable. In this cell type, p53 activates numerous microRNAs (like miR-302a, miR-302b, miR-302c, and miR-302d) that directly inhibit the p21 expression in hESCs.<ref>{{vcite2 journal | vauthors = Dolezalova D, Mraz M, Barta T, Plevova K, Vinarsky V, Holubcova Z, Jaros J, Dvorak P, Pospisilova S, Hampl A. | title = MicroRNAs regulate p21(Waf1/Cip1) protein expression and the DNA damage response in human embryonic stem cells. | journal = Stem Cells | volume = 7 | pages = 1362-72.| year = 2012 | doi = 10.1002/stem.1108.| pmid = 22511267 |}}</ref>


p21 can also interact with proliferating cell nuclear antigen ([[PCNA]]), a DNA polymerase accessory factor, and plays a regulatory role in S phase DNA replication and DNA damage repair. <ref name="pmid1358458">[http://www.ncbi.nlm.nih.gov/pubmed/1358458], Xiong Y, Zhang H, Beach D. (1992) D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell Oct 30;71(3):505-14.</ref> This protein was reported to be specifically cleaved by [[CASP3]]-like [[caspase]]s, which thus leads to a dramatic activation of CDK2, and may be instrumental in the execution of [[apoptosis]] following [[caspase]] activation. However p21 may inhibit apoptosis and does not induce cell death on its own.<ref name="pmid11960320">{{vcite2 journal | vauthors = Almond JB, Cohen GM | title = The proteasome: a novel target for cancer chemotherapy | journal = Leukemia | volume = 16 | issue = 4 | pages = 433-43 | year = 2002 | date = April 2002 | pmid = 11960320 | doi = 10.1038/sj.leu.2402417 }}</ref> Two alternatively spliced variants, which encode an identical protein, have been reported.
p21 can also interact with proliferating cell nuclear antigen ([[PCNA]]), a DNA polymerase accessory factor, and plays a regulatory role in S phase DNA replication and DNA damage repair. <ref name="pmid1358458">[http://www.ncbi.nlm.nih.gov/pubmed/1358458], Xiong Y, Zhang H, Beach D. (1992) D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell Oct 30;71(3):505-14.</ref> This protein was reported to be specifically cleaved by [[CASP3]]-like [[caspase]]s, which thus leads to a dramatic activation of CDK2, and may be instrumental in the execution of [[apoptosis]] following [[caspase]] activation. However p21 may inhibit apoptosis and does not induce cell death on its own.<ref name="pmid11960320">{{vcite2 journal | vauthors = Almond JB, Cohen GM | title = The proteasome: a novel target for cancer chemotherapy | journal = Leukemia | volume = 16 | issue = 4 | pages = 433-43 | year = 2002 | date = April 2002 | pmid = 11960320 | doi = 10.1038/sj.leu.2402417 }}</ref> Two alternatively spliced variants, which encode an identical protein, have been reported.

Revision as of 19:30, 24 January 2015

Template:PBB p21 / WAF1 / CIP1 also known as cyclin-dependent kinase inhibitor 1 or CDK-interacting protein 1 is a protein that in humans is encoded by the CDKN1A gene located on chromosome 6 (6p21.2).[1][2][3][4]

Function

p21 is a potent cyclin-dependent kinase inhibitor (CKI). The p21 (CIP1/WAF1) protein binds to and inhibits the activity of cyclin-CDK2, -CDK1, and -CDK4/6 complexes, and thus functions as a regulator of cell cycle progression at G1 and S phase.[5] In addition to growth arrest, p21 can mediate cellular senescence. One of the ways it was discovered was as a senescent cell-derived inhibitor.

The expression of this gene is tightly controlled by the tumor suppressor protein p53, through which this protein mediates the p53-dependent cell cycle G1 phase arrest in response to a variety of stress stimuli.[6] This was a major discovery in the early 1990s that revealed how cells stop dividing after being exposed to damaging agents such as radiation.

Studies of human embryonic stem cells (hESCs) commonly report the nonfunctional p53-p21 axis of the G1/S checkpoint pathway, and its relevance for cell cycle regulation and the DNA damage response (DDR). p21 mRNA is clearly present and upregulated after the DDR in hESCs, but p21 protein is not detectable. In this cell type, p53 activates numerous microRNAs (like miR-302a, miR-302b, miR-302c, and miR-302d) that directly inhibit the p21 expression in hESCs.[7]

p21 can also interact with proliferating cell nuclear antigen (PCNA), a DNA polymerase accessory factor, and plays a regulatory role in S phase DNA replication and DNA damage repair. [8] This protein was reported to be specifically cleaved by CASP3-like caspases, which thus leads to a dramatic activation of CDK2, and may be instrumental in the execution of apoptosis following caspase activation. However p21 may inhibit apoptosis and does not induce cell death on its own.[9] Two alternatively spliced variants, which encode an identical protein, have been reported.

Sometimes p21 is expressed without being induced by p53. This kind of induction plays a big role in p53 independent differentiation which is promoted by p21. Expression of p21 is mainly dependent on two factors 1) stimulus provided 2) type of the cell. Growth arrest by p21 can promote cellular differentiation. p21 therefore prevents cell proliferation.

Despite regulation by tumor suppressor gene p53, loss-of-function mutations in p21 (unlike p53) do not accumulate in cancer nor do they predispose to cancer incidence. Mice genetically engineered to lack p21 develop normally and are not susceptible to cancer at a higher rate than wild-type mice (unlike p53 knockout mice).

Mice that lack the p21 gene gain the ability to regenerate lost appendages.[10]

Clinical significance

p21 mediates the resistance of hematopoietic cells to an infection with HIV[11] by complexing with the HIV integrase and thereby aborting chromosomal integration of the provirus. HIV infected individuals who naturally suppress viral replication have elevated levels of p21 and its associated mRNA. p21 expression affects at least two stages in the HIV life cycle inside CD4 T cells, significantly limiting production of new viruses.[12]

Metastatic canine mammary tumors display increased levels of p21 in the primary tumors but also in their metastases, despite increased cell proliferation.[13][14]

Interactions

References

  1. ^ "Entrez Gene: CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1)".
  2. ^ a b Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (November 1993). "The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases". Cell. 75 (4): 805–16. doi:10.1016/0092-8674(93)90499-G. PMID 8242751.{{cite journal}}: CS1 maint: date and year (link)
  3. ^ el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (November 1993). "WAF1, a potential mediator of p53 tumor suppression". Cell. 75 (4): 817–25. doi:10.1016/0092-8674(93)90500-P. PMID 8242752.{{cite journal}}: CS1 maint: date and year (link)
  4. ^ [1], Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D. (1993) p21 is a universal inhibitor of cyclin kinases. Nature 16;366(6456):701-4.
  5. ^ Gartel AL, Radhakrishnan SK (May 2005). "Lost in transcription: p21 repression, mechanisms, and consequences". Cancer Res. 65 (10): 3980–5. doi:10.1158/0008-5472.CAN-04-3995. PMID 15899785.{{cite journal}}: CS1 maint: date and year (link)
  6. ^ Rodriguez R, Meuth M (January 2006). "Chk1 and p21 cooperate to prevent apoptosis during DNA replication fork stress". Mol. Biol. Cell. 17 (1): 402–12. doi:10.1091/mbc.E05-07-0594. PMC 1345677. PMID 16280359.{{cite journal}}: CS1 maint: date and year (link)
  7. ^ Dolezalova D, Mraz M, Barta T, Plevova K, Vinarsky V, Holubcova Z, Jaros J, Dvorak P, Pospisilova S, Hampl A. (2012). "MicroRNAs regulate p21(Waf1/Cip1) protein expression and the DNA damage response in human embryonic stem cells". Stem Cells. 7: 1362-72. doi:10.1002/stem.1108.. PMID 22511267. {{cite journal}}: Check |doi= value (help); Cite has empty unknown parameter: |1= (help); Vancouver style error: punctuation in name 10 (help)
  8. ^ [2], Xiong Y, Zhang H, Beach D. (1992) D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell Oct 30;71(3):505-14.
  9. ^ Almond JB, Cohen GM (April 2002). "The proteasome: a novel target for cancer chemotherapy". Leukemia. 16 (4): 433–43. doi:10.1038/sj.leu.2402417. PMID 11960320.{{cite journal}}: CS1 maint: date and year (link)
  10. ^ Bedelbaeva K, Snyder A, Gourevitch D, Clark L, Zhang XM, Leferovich J, Cheverud JM, Lieberman P, Heber-Katz E (March 2010). "Lack of p21 expression links cell cycle control and appendage regeneration in mice". Proc. Natl. Acad. Sci. U.S.A. 107 (13): 5845–50. doi:10.1073/pnas.1000830107. PMC 2851923. PMID 20231440. {{cite journal}}: Unknown parameter |laysource= ignored (help); Unknown parameter |laysummary= ignored (help)CS1 maint: date and year (link)
  11. ^ Zhang J, Scadden DT, Crumpacker CS (February 2007). "Primitive hematopoietic cells resist HIV-1 infection via p21". J. Clin. Invest. 117 (2): 473–81. doi:10.1172/JCI28971. PMC 1783820. PMID 17273559.{{cite journal}}: CS1 maint: date and year (link)
  12. ^ Chen H, Li C, Huang J, Cung T, Seiss K, Beamon J, Carrington MF, Porter LC, Burke PS, Yang Y, Ryan BJ, Liu R, Weiss RH, Pereyra F, Cress WD, Brass AL, Rosenberg ES, Walker BD, Yu XG, Lichterfeld M (April 2011). "CD4+ T cells from elite controllers resist HIV-1 infection by selective upregulation of p21". J. Clin. Invest. 121 (4): 1549–60. doi:10.1172/JCI44539. PMID 21403397. {{cite journal}}: Unknown parameter |laysource= ignored (help); Unknown parameter |laysummary= ignored (help)CS1 maint: date and year (link)
  13. ^ Klopfleisch R, Gruber AD (August 2009). "Differential expression of cell cycle regulators p21, p27 and p53 in metastasizing canine mammary adenocarcinomas versus normal mammary glands". Res. Vet. Sci. 87 (1): 91–6. doi:10.1016/j.rvsc.2008.12.010. PMID 19185891.{{cite journal}}: CS1 maint: date and year (link)
  14. ^ Klopfleisch R, von Euler H, Sarli G, Pinho SS, Gärtner F, Gruber AD (2011). "Molecular carcinogenesis of canine mammary tumors: news from an old disease". Vet. Pathol. 48 (1): 98–116. doi:10.1177/0300985810390826. PMID 21149845.
  15. ^ Chen W, Sun Z, Wang XJ, Jiang T, Huang Z, Fang D, Zhang DD (June 2009). "Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response". Mol. Cell. 34 (6): 663–73. doi:10.1016/j.molcel.2009.04.029. PMC 2714804. PMID 19560419.{{cite journal}}: CS1 maint: date and year (link)
  16. ^ a b Ono T, Kitaura H, Ugai H, Murata T, Yokoyama KK, Iguchi-Ariga SM, Ariga H (October 2000). "TOK-1, a novel p21Cip1-binding protein that cooperatively enhances p21-dependent inhibitory activity toward CDK2 kinase". J. Biol. Chem. 275 (40): 31145–54. doi:10.1074/jbc.M003031200. PMID 10878006.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: unflagged free DOI (link)
  17. ^ Mitsui K, Matsumoto A, Ohtsuka S, Ohtsubo M, Yoshimura A (October 1999). "Cloning and characterization of a novel p21(Cip1/Waf1)-interacting zinc finger protein, ciz1". Biochem. Biophys. Res. Commun. 264 (2): 457–64. doi:10.1006/bbrc.1999.1516. PMID 10529385.{{cite journal}}: CS1 maint: date and year (link)
  18. ^ a b c Abbas T, Sivaprasad U, Terai K, Amador V, Pagano M, Dutta A (September 2008). "PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4Cdt2 ubiquitin ligase complex". Genes Dev. 22 (18): 2496–506. doi:10.1101/gad.1676108. PMC 2546691. PMID 18794347.{{cite journal}}: CS1 maint: date and year (link)
  19. ^ a b McKenzie PP, Danks MK, Kriwacki RW, Harris LC (July 2003). "P21Waf1/Cip1 dysfunction in neuroblastoma: a novel mechanism of attenuating G0-G1 cell cycle arrest". Cancer Res. 63 (13): 3840–4. PMID 12839982.{{cite journal}}: CS1 maint: date and year (link)
  20. ^ Law BK, Chytil A, Dumont N, Hamilton EG, Waltner-Law ME, Aakre ME, Covington C, Moses HL (December 2002). "Rapamycin potentiates transforming growth factor beta-induced growth arrest in nontransformed, oncogene-transformed, and human cancer cells". Mol. Cell. Biol. 22 (23): 8184–98. doi:10.1128/MCB.22.23.8184-8198.2002. PMC 134072. PMID 12417722.{{cite journal}}: CS1 maint: date and year (link)
  21. ^ Yam CH, Ng RW, Siu WY, Lau AW, Poon RY (January 1999). "Regulation of cyclin A-Cdk2 by SCF component Skp1 and F-box protein Skp2". Mol. Cell. Biol. 19 (1): 635–45. PMC 83921. PMID 9858587.{{cite journal}}: CS1 maint: date and year (link)
  22. ^ Zhao H, Jin S, Antinore MJ, Lung FD, Fan F, Blanck P, Roller P, Fornace AJ, Zhan Q (July 2000). "The central region of Gadd45 is required for its interaction with p21/WAF1". Exp. Cell Res. 258 (1): 92–100. doi:10.1006/excr.2000.4906. PMID 10912791.{{cite journal}}: CS1 maint: date and year (link)
  23. ^ Yang Q, Manicone A, Coursen JD, Linke SP, Nagashima M, Forgues M, Wang XW (November 2000). "Identification of a functional domain in a GADD45-mediated G2/M checkpoint". J. Biol. Chem. 275 (47): 36892–8. doi:10.1074/jbc.M005319200. PMID 10973963.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: unflagged free DOI (link)
  24. ^ Azam N, Vairapandi M, Zhang W, Hoffman B, Liebermann DA (January 2001). "Interaction of CR6 (GADD45gamma ) with proliferating cell nuclear antigen impedes negative growth control". J. Biol. Chem. 276 (4): 2766–74. doi:10.1074/jbc.M005626200. PMID 11022036.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: unflagged free DOI (link)
  25. ^ Nakayama K, Hara T, Hibi M, Hirano T, Miyajima A (August 1999). "A novel oncostatin M-inducible gene OIG37 forms a gene family with MyD118 and GADD45 and negatively regulates cell growth". J. Biol. Chem. 274 (35): 24766–72. doi:10.1074/jbc.274.35.24766. PMID 10455148.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: unflagged free DOI (link)
  26. ^ Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (October 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. doi:10.1038/nature04209. PMID 16189514.{{cite journal}}: CS1 maint: date and year (link)
  27. ^ Frouin I, Maga G, Denegri M, Riva F, Savio M, Spadari S, Prosperi E, Scovassi AI (October 2003). "Human proliferating cell nuclear antigen, poly(ADP-ribose) polymerase-1, and p21waf1/cip1. A dynamic exchange of partners". J. Biol. Chem. 278 (41): 39265–8. doi:10.1074/jbc.C300098200. PMID 12930846.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: unflagged free DOI (link)
  28. ^ Watanabe H, Pan ZQ, Schreiber-Agus N, DePinho RA, Hurwitz J, Xiong Y (February 1998). "Suppression of cell transformation by the cyclin-dependent kinase inhibitor p57KIP2 requires binding to proliferating cell nuclear antigen". Proc. Natl. Acad. Sci. U.S.A. 95 (4): 1392–7. doi:10.1073/pnas.95.4.1392. PMC 19016. PMID 9465025.{{cite journal}}: CS1 maint: date and year (link)
  29. ^ Fotedar R, Mossi R, Fitzgerald P, Rousselle T, Maga G, Brickner H, Messier H, Kasibhatla S, Hübscher U, Fotedar A (August 1996). "A conserved domain of the large subunit of replication factor C binds PCNA and acts like a dominant negative inhibitor of DNA replication in mammalian cells". EMBO J. 15 (16): 4423–33. PMC 452166. PMID 8861969.{{cite journal}}: CS1 maint: date and year (link)
  30. ^ Jónsson ZO, Hindges R, Hübscher U (April 1998). "Regulation of DNA replication and repair proteins through interaction with the front side of proliferating cell nuclear antigen". EMBO J. 17 (8): 2412–25. doi:10.1093/emboj/17.8.2412. PMC 1170584. PMID 9545252.{{cite journal}}: CS1 maint: date and year (link)
  31. ^ Gulbis JM, Kelman Z, Hurwitz J, O'Donnell M, Kuriyan J (October 1996). "Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA". Cell. 87 (2): 297–306. doi:10.1016/S0092-8674(00)81347-1. PMID 8861913.{{cite journal}}: CS1 maint: date and year (link)
  32. ^ Touitou R, Richardson J, Bose S, Nakanishi M, Rivett J, Allday MJ (May 2001). "A degradation signal located in the C-terminus of p21WAF1/CIP1 is a binding site for the C8 alpha-subunit of the 20S proteasome". EMBO J. 20 (10): 2367–75. doi:10.1093/emboj/20.10.2367. PMC 125454. PMID 11350925.{{cite journal}}: CS1 maint: date and year (link)
  33. ^ Yu P, Huang B, Shen M, Lau C, Chan E, Michel J, Xiong Y, Payan DG, Luo Y (January 2001). "p15(PAF), a novel PCNA associated factor with increased expression in tumor tissues". Oncogene. 20 (4): 484–9. doi:10.1038/sj.onc.1204113. PMID 11313979.{{cite journal}}: CS1 maint: date and year (link)
  34. ^ Wang Z, Bhattacharya N, Mixter PF, Wei W, Sedivy J, Magnuson NS (December 2002). "Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase". Biochim. Biophys. Acta. 1593 (1): 45–55. doi:10.1016/S0167-4889(02)00347-6. PMID 12431783.{{cite journal}}: CS1 maint: date and year (link)
  35. ^ Huang DY, Chang ZF (June 2001). "Interaction of human thymidine kinase 1 with p21(Waf1)". Biochem. J. 356 (Pt 3): 829–34. doi:10.1042/0264-6021:3560829. PMC 1221910. PMID 11389691.{{cite journal}}: CS1 maint: date and year (link)
  36. ^ Oh H, Mammucari C, Nenci A, Cabodi S, Cohen SN, Dotto GP (April 2002). "Negative regulation of cell growth and differentiation by TSG101 through association with p21(Cip1/WAF1)". Proc. Natl. Acad. Sci. U.S.A. 99 (8): 5430–5. doi:10.1073/pnas.082123999. PMC 122786. PMID 11943869.{{cite journal}}: CS1 maint: date and year (link)

Further reading

  • Marone M, Bonanno G, Rutella S, Leone G, Scambia G, Pierelli L (2002). "Survival and cell cycle control in early hematopoiesis: role of bcl-2, and the cyclin dependent kinase inhibitors P27 and P21". Leuk. Lymphoma. 43 (1): 51–7. doi:10.1080/10428190210195. PMID 11908736.
  • Fang JY, Lu YY (2002). "Effects of histone acetylation and DNA methylation on p21( WAF1) regulation". World J. Gastroenterol. 8 (3): 400–5. PMID 12046058.
  • Tokumoto M, Tsuruya K, Fukuda K, Kanai H, Kuroki S, Hirakata H, Iida M (2003). "Parathyroid cell growth in patients with advanced secondary hyperparathyroidism: vitamin D receptor and cyclin-dependent kinase inhibitors, p21 and p27". Nephrol. Dial. Transplant. 18 Suppl 3: iii9-12. PMID 12771291.
  • Amini S, Khalili K, Sawaya BE (2004). "Effect of HIV-1 Vpr on cell cycle regulators". DNA Cell Biol. 23 (4): 249–60. doi:10.1089/104454904773819833. PMID 15142382.
  • Zhang Z, Wang H, Li M, Rayburn E, Agrawal S, Zhang R (2005). "Novel MDM2 p53-independent functions identified through RNA silencing technologies". Ann. N. Y. Acad. Sci. 1058: 205–14. doi:10.1196/annals.1359.030. PMID 16394138.