Cyclin-dependent kinase 3

From Wikipedia, the free encyclopedia
Jump to: navigation, search
CDK3
Available structures
PDB Human UniProt search: PDBe RCSB
Identifiers
Aliases CDK3, cyclin dependent kinase 3
External IDs HomoloGene: 74387 GeneCards: CDK3
Gene location (Human)
Chromosome 17 (human)
Chr. Chromosome 17 (human)[1]
Chromosome 17 (human)
Genomic location for CDK3
Genomic location for CDK3
Band No data available Start 76,000,906 bp[1]
End 76,005,999 bp[1]
RNA expression pattern
PBB GE CDK3 207188 at fs.png

PBB GE CDK3 gnf1h09546 at fs.png
More reference expression data
Orthologs
Species Human Mouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001258

n/a

RefSeq (protein)

NP_001249

n/a

Location (UCSC) Chr 17: 76 – 76.01 Mb n/a
PubMed search [2] n/a
Wikidata
View/Edit Human

Cell division protein kinase 3 is an enzyme that in humans is encoded by the CDK3 gene.[3][4]

Function[edit]

CDK3 complements cdc28 mutants of Saccharomyces cerevisiae suggesting that it may be involved in cell cycle control. CDK3 can phosphorylate histone H1 and interacts with an unknown type of cyclin.[4]

References[edit]

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000250506 - Ensembl, May 2017
  2. ^ "Human PubMed Reference:". 
  3. ^ Meyerson M, Enders GH, Wu CL, Su LK, Gorka C, Nelson C, Harlow E, Tsai LH (Aug 1992). "A family of human cdc2-related protein kinases". EMBO J. 11 (8): 2909–17. PMC 556772Freely accessible. PMID 1639063. 
  4. ^ a b "Entrez Gene: CDK3 cyclin-dependent kinase 3". 

Further reading[edit]

  • Bullrich F, MacLachlan TK, Sang N, et al. (1995). "Chromosomal mapping of members of the cdc2 family of protein kinases, cdk3, cdk6, PISSLRE, and PITALRE, and a cdk inhibitor, p27Kip1, to regions involved in human cancer.". Cancer Res. 55 (6): 1199–205. PMID 7882308. 
  • Gyuris J, Golemis E, Chertkov H, Brent R (1993). "Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2.". Cell. 75 (4): 791–803. PMID 8242750. doi:10.1016/0092-8674(93)90498-F. 
  • Sasaguri T, Ishida A, Kosaka C, et al. (1996). "Phorbol ester inhibits the phosphorylation of the retinoblastoma protein without suppressing cyclin D-associated kinase in vascular smooth muscle cells.". J. Biol. Chem. 271 (14): 8345–51. PMID 8626531. doi:10.1074/jbc.271.14.8345. 
  • Meikrantz W, Schlegel R (1996). "Suppression of apoptosis by dominant negative mutants of cyclin-dependent protein kinases.". J. Biol. Chem. 271 (17): 10205–9. PMID 8626584. doi:10.1074/jbc.271.17.10205. 
  • Hofmann F, Livingston DM (1996). "Differential effects of cdk2 and cdk3 on the control of pRb and E2F function during G1 exit.". Genes Dev. 10 (7): 851–61. PMID 8846921. doi:10.1101/gad.10.7.851. 
  • Lamphere L, Fiore F, Xu X, et al. (1997). "Interaction between Cdc37 and Cdk4 in human cells.". Oncogene. 14 (16): 1999–2004. PMID 9150368. doi:10.1038/sj.onc.1201036. 
  • Braun K, Hölzl G, Soucek T, et al. (1998). "Investigation of the cell cycle regulation of cdk3-associated kinase activity and the role of cdk3 in proliferation and transformation.". Oncogene. 17 (17): 2259–69. PMID 9811456. doi:10.1038/sj.onc.1202145. 
  • Yamochi T, Semba K, Tsuji K, et al. (2002). "ik3-1/Cables is a substrate for cyclin-dependent kinase 3 (cdk 3).". Eur. J. Biochem. 268 (23): 6076–82. PMID 11733001. doi:10.1046/j.0014-2956.2001.02555.x. 
  • Sato H, Nishimoto I, Matsuoka M (2002). "ik3-2, a relative to ik3-1/cables, is associated with cdk3, cdk5, and c-abl.". Biochim. Biophys. Acta. 1574 (2): 157–63. PMID 11955625. doi:10.1016/S0167-4781(01)00367-0. 
  • Schang LM, Bantly A, Schaffer PA (2002). "Explant-induced reactivation of herpes simplex virus occurs in neurons expressing nuclear cdk2 and cdk4". J. Virol. 76 (15): 7724–35. PMC 136347Freely accessible. PMID 12097586. doi:10.1128/JVI.76.15.7724-7735.2002. 
  • Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. PMID 14702039. doi:10.1038/ng1285. 
  • Ren S, Rollins BJ (2004). "Cyclin C/cdk3 promotes Rb-dependent G0 exit". Cell. 117 (2): 239–51. PMID 15084261. doi:10.1016/S0092-8674(04)00300-9. 
  • Zhang Y, Wolf-Yadlin A, Ross PL, et al. (2005). "Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules". Mol. Cell Proteomics. 4 (9): 1240–50. PMID 15951569. doi:10.1074/mcp.M500089-MCP200. 
  • Beausoleil SA, Villén J, Gerber SA, et al. (2006). "A probability-based approach for high-throughput protein phosphorylation analysis and site localization". Nat. Biotechnol. 24 (10): 1285–92. PMID 16964243. doi:10.1038/nbt1240. 
  • Olsen JV, Blagoev B, Gnad F, et al. (2006). "Global, in vivo, and site-specific phosphorylation dynamics in signaling networks". Cell. 127 (3): 635–48. PMID 17081983. doi:10.1016/j.cell.2006.09.026. 
  • Wissing J, Jänsch L, Nimtz M, et al. (2007). "Proteomics analysis of protein kinases by target class-selective prefractionation and tandem mass spectrometry". Mol. Cell Proteomics. 6 (3): 537–47. PMID 17192257. doi:10.1074/mcp.T600062-MCP200. 

External links[edit]