Jump to content

Eye: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
Silje (talk | contribs)
Line 168: Line 168:
==Eye injury/safety==
==Eye injury/safety==


Accidents involving common household products cause 125,000 eye injuries each year in the U.S.<ref name=Prev_Blind>{{cite web|url=http://www.preventblindness.org/safety/homesafe.html | title=Eye Safety Prevent Eye Injuries at Home, at Work and at Play! |accessdate=2007-10-23|publisher=Prevent Blindness America}}</ref>
Accidents involving common household products cause 125,000 eye injuries each year in the U.S.<ref name="Prev_Blind">{{cite web|url=http://www.preventblindness.org/safety/homesafe.html | title=Eye Safety Prevent Eye Injuries at Home, at Work and at Play! |accessdate=2007-10-23|publisher=Prevent Blindness America}}</ref>
More than 40,000 people a year suffer eye injuries while playing sports.<ref name=Prev_Blind/> Sports-related eye injuries occur most frequently in baseball, basketball and racquet sports.<ref name=Prev_Blinb well if i did not know how to prevent accidents from happening so lesson one always look out for bullies so you
More than 40,000 people a year suffer eye injuries while playing sports.<ref name=Prev_Blind/> Sports-related eye injuries occur most frequently in baseball, basketball and racquet sports.<ref name="Prev_Blind"> well if i did not know how to prevent accidents from happening so lesson one always look out for bullies so you


===Occupational eye injury===
===Occupational eye injury===

Revision as of 22:58, 2 November 2007

A human eye

Eyes are organs of vision that detect light. Different kinds of light-sensitive organs are found in a variety of organisms. The simplest eyes do nothing but detect whether the surroundings are light or dark, while more complex eyes can distinguish shapes and colors. The visual fields of some such complex eyes largely overlap, to allow better depth perception (binocular vision), as in humans; and others are placed so as to minimize the overlap, such as in rabbits and chameleons.

The compound eyes of a dragonfly.

Varieties

In most vertebrates grant some mollusks, the eye works by allowing light to enter it and project onto a light-sensitive panel of cells known as the retina at the rear of the eye, where the light is detected and converted into electrical signals. These are then transmitted to the brain via the optic nerve. Such eyes are typically roughly spherical, filled with a transparent gel-like substance called the vitreous humour, with a focusing lens and often an iris which regulates the intensity of the light that enters the eye. The eyes of cephalopods, fish, amphibians and snakes usually have fixed lens shapes, and focusing vision is achieved by telescoping the lens—similar to how a camera focuses.

Compound eyes are found among the arthropods and are composed of many simple facets which give a pixelated image (not multiple images, as is often believed)[citation needed]. Each sensor has its own lens and photosensitive cell(s). Some eyes have up to 28,000 such sensors, which are arranged hexagonally, and which can give a full 360-degree field of vision. Compound eyes are very sensitive to motion. Some arthropods, including many Strepsiptera, have compound eyes composed of a few facets each, with a retina capable of creating an image, which does provide multiple-image vision. With each eye viewing a different angle, a fused image from all the eyes is produced in the brain, providing very wide-angle, high-resolution images.

Compound eye of Antarctic krill

Possessing detailed hyperspectral color vision, the Mantis shrimp has been reported to have the world's most complex color vision system.[1] Trilobites, which are now extinct, had unique compound eyes. They used clear calcite crystals to form the lenses of their eyes. In this, they differ from most other arthropods, which have soft eyes. The number of lenses in such an eye varied, however: some trilobites had only one, and some had thousands of lenses in one eye.

Some of the simplest eyes, called ocelli, can be found in animals like snails, who cannot actually "see" in the normal sense. They do have photosensitive cells, but no lens and no other means of projecting an image onto these cells. They can distinguish between light and dark, but no more. This enables snails to keep out of direct sunlight. Jumping spiders have simple eyes that are so large, supported by an array of other, smaller eyes, that they can get enough visual input to hunt and pounce on their prey. Some insect larvae, like caterpillars, have a different type of simple eye (stemmata) which gives a rough image.

Evolution of eyes

Diagram of major stages in the eye's evolution

The common origin (monophyly) of all animal eyes is established by shared anatomical and genetic features of all eyes; that is, all modern eyes, varied as they are, have their origins in a proto-eye evolved some 540 million years ago.[2][3][4] The majority of the advancements in early eyes are believed to have taken only a few million years to develop, as the first predator to gain true imaging would have touched off an "arms race",[5] or rather, a phylogenetic radiation from the species with that first proto-eye, among the descendents of which, there may well have been an "arms race". Prey animals and competing predators alike would be forced to rapidly match or exceed any such capabilities to survive. Hence multiple eye types and subtypes developed in parallel.

Eyes in various animals show adaptation to their requirements. For example, birds of prey have much greater visual acuity than humans, and some can see ultraviolet light. The different forms of eyes in, for example, vertebrates and mollusks are often cited as examples of parallel evolution, despite their distant common ancestry.

The earliest eyes, called "eyespots", were simple patches of photoreceptor cells, physically similar to the receptor patches for taste and smell. These eyespots could only sense ambient brightness: they could distinguish light and dark, but not the direction of the lightsource.[6] This gradually changed as the eyespot depressed into a shallow "cup" shape, granting the ability to slightly discriminate directional brightness by using the angle at which the light hit certain cells to identify the source. The pit deepened over time, the opening diminished in size, and the number of photoreceptor cells increased, forming an effective pinhole camera that was capable of slightly distinguishing dim shapes.[7]

The thin overgrowth of transparent cells over the eye's aperture, originally formed to prevent damage to the eyespot, allowed the segregated contents of the eye chamber to specialize into a transparent humour that optimized color filtering, blocked harmful radiation, improved the eye's refractive index, and allowed functionality outside of water. The transparent protective cells eventually split into two layers, with circulatory fluid in between that allowed wider viewing angles and greater imaging resolution, and the thickness of the transparent layer gradually increased, in most species with the transparent crystallin protein.[8]

The gap between tissue layers naturally formed a biconvex shape, an ideal structure for a normal refractive index. Independently, a transparent layer and a nontransparent layer split forward from the lens: the cornea and iris. Separation of the forward layer again forms a humour, the aqueous humour. This increases refractive power and again eases circulatory problems. Formation of a nontransparent ring allows more blood vessels, more circulation, and larger eye sizes.[8]

Anatomy of the mammalian eye

1. posterior segment2. ora serrata3. ciliary muscle4. ciliary zonules5. Schlemm's canal6. pupil7. anterior chamber8. cornea9. iris10. lens cortex11. lens nucleus12. ciliary process13. conjunctiva14. inferior oblique muscle15. inferior rectus muscle16. medial rectus muscle17. retinal arteries and veins18. optic disc19. dura mater20. central retinal artery21. central retinal vein22. optic nerve23. vorticose vein24. bulbar sheath25. macula26. fovea27. sclera28. choroid29. superior rectus muscle30. retina
  1. posterior segment
  2. ora serrata
  3. ciliary muscle
  4. ciliary zonules
  5. Schlemm's canal
  6. pupil
  7. anterior chamber
  8. cornea
  9. iris
  10. lens cortex
  11. lens nucleus
  12. ciliary process
  13. conjunctiva
  14. inferior oblique muscle
  15. inferior rectus muscle
  16. medial rectus muscle
  17. retinal arteries and veins
  18. optic disc
  19. dura mater
  20. central retinal artery
  21. central retinal vein
  22. optic nerve
  23. vorticose vein
  24. bulbar sheath
  25. macula
  26. fovea
  27. sclera
  28. choroid
  29. superior rectus muscle
  30. retina

Three layers

The structure of the mammalian eye can be divided into three main layers or tunics whose names reflect their basic functions: the fibrous tunic, the vascular tunic, and the nervous tunic.[9][10][11]

  • The fibrous tunic, also known as the tunica fibrosa oculi, is the outer layer of the eyeball consisting of the cornea and sclera.[12] The sclera gives the eye most of its white color. It consists of dense connective tissue filled with the protein collagen to both protect the inner components of the eye and maintain its shape.[13]
  • The vascular tunic, also known as the tunica vasculosa oculi, is the middle vascularized layer which includes the iris, ciliary body, and choroid.[12][14][15] The choroid contains blood vessels that supply the retinal cells with necessary oxygen and remove the waste products of respiration. The choroid gives the inner eye a dark color, which prevents disruptive reflections within the eye.
  • The nervous tunic, also known as the tunica nervosa oculi, is the inner sensory which includes the retina.[12][15] The retina contains the photosensitive rod and cone cells and associated neurons. To maximise vision and light absorption, the retina is a relatively smooth (but curved) layer. It has two points at which it is different; the fovea and optic disc. The fovea is a dip in the retina directly opposite the lens, which is densely packed with cone cells. It is largely responsible for color vision in humans, and enables high acuity, such as is necessary in reading. The optic disc, sometimes referred to as the anatomical blind spot, is a point on the retina where the optic nerve pierces the retina to connect to the nerve cells on its inside. No photosensitive cells whatsoever exist at this point, it is thus "blind". Squids and Octopi don't have this blind spot, however.

Anterior and posterior segments

The mammalian eye can also be divided into two main segments: the anterior segment and the posterior segment.[16]

Anterior segment

The anterior segment is the front third of the eye that includes the structures in front of the vitreous humour: the cornea, iris, ciliary body, and lens.[14][17] Within the anterior segment are two fluid-filled spaces: the anterior chamber and the posterior chamber. The anterior chamber is the space between the posterior surface of the cornea (i.e. the corneal endothelium) and the iris, whereas the posterior chamber is between the iris and the front face of the vitreous.[14]

The cornea and lens help to converge light rays to focus onto the retina. The lens, behind the iris, is a convex, springy disk which focuses light, through the second humour, onto the retina. It is attached to the ciliary body via a ring of suspensory ligaments known as the Zonule of Zinn. To clearly see an object far away, the ciliary muscle is relaxed, which stretches the fibers connecting it with the lens, flattening the lens. When the ciliary muscle contracts, the tension of the fibers decrease (imagine that the distance between the tip of a triangle to its base, is less than the tip of the triangle to the other two tips.) which lets the lens bounce back a more convex and round shape. Humans gradually lose this flexibility with age, resulting in the inability to focus on nearby objects, which is known as presbyopia. There are other refraction errors arising from the shape of the cornea and lens, and from the length of the eyeball. These include myopia, hyperopia, and astigmatism. The iris, between the lens and the first humour, is a pigmented ring of fibrovascular tissue and muscle fibres. Light must first pass though the centre of the iris, the pupil. The size of the pupil is actively adjusted by the circular and radial muscles to maintain a relatively constant level of light entering the eye. Too much light being let in could damage the retina; too little light makes sight difficult.

All of the individual components through which light travels within the eye before reaching the retina are transparent, minimising dimming of the light. Light enters the eye from an external medium such as air or water, passes through the cornea, and into the first of two humours, the aqueous humour. Most of the light refraction occurs at the cornea which has a fixed curvature. The first humour is a clear mass which connects the cornea with the lens of the eye, helps maintain the convex shape of the cornea (necessary to the convergence of light at the lens) and provides the corneal endothelium with nutrients.

Posterior segment

Diagram of a human eye; note that not all eyes have the same anatomy as a human eye.

The posterior segment is the back two-thirds of the eye that includes the anterior hyaloid membrane and all structures behind it: the vitreous humor, retina, choroid, and optic nerve.[18] On the other side of the lens is the second humour, the vitreous humour, which is bounded on all sides: by the lens, ciliary body, suspensory ligaments and by the retina. It lets light through without refraction, helps maintain the shape of the eye and suspends the delicate lens. In some animals, the retina contains a reflective layer (the tapetum lucidum) which increases the amount of light each photosensitive cell perceives, allowing the animal to see better under low light conditions.

Light from a single point of a distant object and light from a single point of a near object being brought to a focus

Extraocular anatomy

In many species, the eyes are inset in the portion of the skull known as the orbits or eyesockets. This placement of the eyes helps to protect them from injury.

In humans, the eyebrows redirect flowing substances (such as rainwater or sweat) away from the eye. Water in the eye can alter the refractive properties of the eye and blur vision. It can also wash away the tear fluid—along with it the protective lipid layer—and can alter corneal physiology, due to osmotic differences between tear fluid and freshwater. This is made apparent when swimming in freshwater pools, as the osmotic gradient draws "pool water" into the corneal tissue (the pool water is hypotonic), causing edema, and subsequently leaving the swimmer with "cloudy" or "misty" vision for a short period thereafter. It can be reversed by irrigating the eye with hypertonic saline which osmotically draws the excess water out of the eye.

In many animals, including humans, eyelids wipe the eye and prevent dehydration. They spread tears on the eyes, which contains substances which help fight bacterial infection as part of the immune system. Some aquatic animals have a second eyelid in each eye which refracts the light and helps them see clearly both above and below water. Most creatures will automatically react to a threat to its eyes (such as an object moving straight at the eye, or a bright light) by covering the eyes, and/or by turning the eyes away from the threat. Blinking the eyes is, of course, also a reflex.

In many animals, including humans, eyelashes prevent fine particles from entering the eye. Fine particles can be bacteria, but also simple dust which can cause irritation of the eye, and lead to tears and subsequent blurred vision.

Cytology

File:Eye 0012.jpg
This image clearly shows the pupil and iris of the human eye.

The structure of the mammalian eye owes itself completely to the task of focusing light onto the retina. This light causes chemical changes in the photosensitive cells of the retina, the products of which trigger nerve impulses which travel to the brain.

The retina contains two forms of photosensitive cells important to vision—rods and cones. Though structurally and metabolically similar, their function is quite different. Rod cells are highly sensitive to light allowing them to respond in dim light and dark conditions, however, they cannot detect color. These are the cells which allow humans and other animals to see by moonlight, or with very little available light (as in a dark room). This is why the darker conditions become, the less color objects seem to have. Cone cells, conversely, need high light intensities to respond and have high visual acuity. Different cone cells respond to different wavelengths of light, which allows an organism to see color.

The differences are useful; apart from enabling sight in both dim and light conditions, humans have given them further application. The fovea, directly behind the lens, consists of mostly densely-packed cone cells. This gives humans a highly detailed central vision, allowing reading, bird watching, or any other task which primarily requires staring at things. Its requirement for high intensity light does cause problems for astronomers, as they cannot see dim stars, or other objects, using central vision because the light from these is not enough to stimulate cone cells. Because cone cells are all that exist directly in the fovea, astronomers have to look at stars through the "corner of their eyes" (averted vision) where rods also exist, and where the light is sufficient to stimulate cells, allowing the individual to observe distant stars.

Rods and cones are both photosensitive, but respond differently to different frequencies of light. They both contain different pigmented photoreceptor proteins. Rod cells contain the protein rhodopsin and cone cells contain different proteins for each color-range. The process through which these proteins go is quite similar—upon being subjected to electromagnetic radiation of a particular wavelength and intensity, the protein breaks down into two constituent products. Rhodopsin, of rods, breaks down into opsin and retinal; iodopsin of cones breaks down into photopsin and retinal. The opsin in both opens ion channels on the cell membrane which leads to hyperpolarization, this hyperpolarization of the cell leads to a release of transmitter molecules at the synapse.

This is the reason why cones and rods enable organisms to see in dark and light conditions—each of the photoreceptor proteins requires a different light intensity to break down into the constituent products. Further, synaptic convergence means that several rod cells are connected to a single bipolar cell, which then connects to a single ganglion cell by which information is relayed to the visual cortex. This is in direct contrast to the situation with cones, where each cone cell is connected to a single bipolar cell. This results in the high visual acuity, or the high ability to distinguish between detail, of cone cells and not rods. If a ray of light were to reach just one rod cell this may not be enough to hyperpolarize the connected bipolar cell. But because several "converge" onto a bipolar cell, enough transmitter molecules reach the synapse of the bipolar cell to hyperpolarize it.

Furthermore, color is distinguishable due to the different iodopsins of cone cells; there three different kinds, in normal human vision, which is why we need three different primary colors to make a color space.

Acuity

Closeup of a hawk's eye

Visual acuity can be measured with several different metrics.

Cycles per degree (CPD) measures how much an eye can differentiate one object from another in terms of degree angles. It is essentially no different from angular resolution. To measure CPD, first draw a series of black and white lines of equal width on a grid (similar to a bar code). Next, place the observer at a distance such that the sides of the grid appear one degree apart. If the grid is 1 meter away, then the grid should be about 8.7 millimeters wide. Finally, increase the number of lines and decrease the width of each line until the grid appears as a solid grey block. In one degree, a human would not be able to distinguish more than about 12 lines without the lines blurring together. So a human can resolve distances of about 0.93 millimeters at a distance of one meter. A horse can resolve about 17 CPD (0.66 mm at 1 m) and a rat can resolve about 1 CPD (8.7 mm at 1 m).

A diopter is the unit of measure of optical power.

Spectral response

Human eyes respond to light with wavelength in the range of approximately 400 to 700 nm. Other animals have other ranges, with many such as birds including a significant ultraviolet (shorter than 400 nm) response.

Dynamic range

The retina has a static contrast ratio of around 100:1 (about 6 1/2 stops). As soon as the eye moves (saccades) it re-adjusts its exposure both chemically and by adjusting the iris. Initial dark adaptation takes place in approximately four seconds[citation needed] of profound, uninterrupted darkness; full adaptation through adjustments in retinal chemistry (the Purkinje effect) are mostly complete in thirty minutes[citation needed]. Hence, a dynamic contrast ratio of about 1,000,000:1 (about 20 stops) is possible. The process is nonlinear and multifaceted, so an interruption by light nearly starts the adaptation process over again. Full adaptation is dependent on good blood flow; thus dark adaptation may be hampered by poor circulation, and vasoconstrictors like alcohol or tobacco.

Equivalent resolution

The maximum resolution of the human eye in good light is approximately 1.6 minute of arc per line pair, or 1.25 line per minute of arc.[19] Assuming two pixels per line pair (one pixel per line) and a square field of 120 degrees, this would be equivalent to approximately 120×60×1.25 = 9000 pixels in each of the X and Y dimensions, or about 81 megapixels.

However, the human eye itself has only a small spot of sharp vision in the middle of the retina, the fovea centralis, the rest of the field of view being progressively lower resolution as it gets further from the fovea. The angle of the sharp vision being just a few degrees in the middle of the view, the sharp area thus barely achieves even a single megapixel resolution. The experience of wide sharp human vision is in fact based on turning the eyes towards the current point of interest in the field of view, the brain thus perceiving an observation of a wide sharp field of view.

The narrow beam of sharp vision is easy to test by putting a fingertip on a newspaper and trying to read the text while staring at the fingertip — it is very difficult to read text that's just a few centimeters away from the fingertip.

Eye movement

MRI scan of human eye

The visual system in the brain is too slow to process that information if the images are slipping across the retina at more than a few degrees per second (Westheimer and McKee, 1954). Thus, for humans to be able to see while moving, the brain must compensate for the motion of the head by turning the eyes. Another complication for vision in frontal-eyed animals is the development of a small area of the retina with a very high visual acuity. This area is called the fovea, and covers about 2 degrees of visual angle in people. To get a clear view of the world, the brain must turn the eyes so that the image of the object of regard falls on the fovea. Eye movements are thus very important for visual perception, and any failure to make them correctly can lead to serious visual disabilities.

Having two eyes is an added complication, because the brain must point both of them accurately enough that the object of regard falls on corresponding points of the two retinas; otherwise, double vision would occur. The movements of different body parts are controlled by striated muscles acting around joints. The movements of the eye are no exception, but they have special advantages not shared by skeletal muscles and joints, and so are considerably different.

Extraocular muscles

Each eye has six muscles that control its movements: the lateral rectus, the medial rectus, the inferior rectus, the superior rectus, the inferior oblique, and the superior oblique. When the muscles exert different tensions, a torque is exerted on the globe that causes it to turn. This is an almost pure rotation, with only about one millimeter of translation.[20] Thus, the eye can be considered as undergoing rotations about a single point in the center of the eye. Once the human eye sustains damage to the optic nerve, the impulses will not be taken to the brain. Eye transplants can happen but the person receiving the transplant will not be able to see. As for the optic nerve, once it is damaged it cannot be fixed.

Rapid eye movement

Rapid eye movement, or REM for short, typically refers to the stage during sleep during which the most vivid dreams occur. During this stage, the eyes move rapidly. It is not in itself a unique form of eye movement.

Saccades

Saccades are quick, simultaneous movements of both eyes in the same direction controlled by the frontal lobe of the brain.

Microsaccades

Even when looking intently at a single spot, the eyes drift around. This ensures that individual photosensitive cells are continually stimulated in different degrees. Without changing input, these cells would otherwise stop generating output. Microsaccades move the eye no more than a total of 0.2° in adult humans.

Vestibulo-ocular reflex

The vestibulo-ocular reflex is a reflex eye movement that stabilizes images on the retina during head movement by producing an eye movement in the direction opposite to head movement, thus preserving the image on the center of the visual field. For example, when the head moves to the right, the eyes move to the left, and vice versa.

Smooth pursuit movement

The eyes can also follow a moving object around. This is less accurate than the vestibulo-ocular reflex as it requires the brain to process incoming visual information and supply feedback. Following an object moving at constant speed is relatively easy, though the eyes will often make saccadic jerks to keep up. The smooth pursuit movement can move the eye at up to 100°/s in adult humans.

It is more difficult to visually estimate speed in low light conditions or while moving, unless there is another point of reference for determining speed.

Optokinetic reflex

The optokinetic reflex is a combination of a saccade and smooth pursuit movement. When, for example, looking out of the window in a moving train, the eyes can focus on a 'moving' tree for a short moment (through smooth pursuit), until the tree moves out of the field of vision. At this point, the optokinetic reflex kicks in, and moves the eye back to the point where it first saw the tree (through a saccade).

===Vergence movement===

The two eyes converge to point to the same object.

When a creature with binocular vision looks at an object, the eyes must rotate around a vertical axis so that the projection of the image is in the centre of the retina in both eyes. To look at an object closer by, the eyes rotate 'towards each other' (convergence), while for an object farther away they rotate 'away from each other' (divergence). Exaggerated convergence is called cross eyed viewing (focusing on the nose for example) . When looking into the distance, or when 'staring into nothingness', the eyes neither converge nor diverge.

Vergence movements are closely connected to accommodation of the eye. Under normal conditions, changing the focus of the eyes to look at an object at a different distance will automatically cause vergence and accommodation.

Accommodation

To see clearly, the lens will be pulled flatter or allowed to regain its thicker form.

The stye is a common irritating inflammation of the eyelid.

There are many diseases, disorders, and age-related changes that may affect the eyes and surrounding structures.

As the eye ages certain changes occur that can be attributed solely to the aging process. Most of these anatomic and physiologic processes follow a gradual decline. With aging, the quality of vision worsens due to reasons independent of aging eye diseases. While there are many changes of significance in the nondiseased eye, the most functionally important changes seem to be a reduction in pupil size and the loss of accommodation or focusing capability (presbyopia). The area of the pupil governs the amount of light that can reach the retina. The extent to which the pupil dilates also decreases with age. Because of the smaller pupil size, older eyes receive much less light at the retina. In comparison to younger people, it is as though older persons wear medium-density sunglasses in bright light and extremely dark glasses in dim light. Therefore, for any detailed visually guided tasks on which performance varies with illumination, older persons require extra lighting. Certain ocular diseases can come from sexually transmitted diseases such as herpes and genital warts. If contact between eye and area of infection occurs, the STD will be transmitted to the eye.[21]

With aging a prominent white ring develops in the periphery of the cornea- called arcus senilis. Aging causes laxity and downward shift of eyelid tissues and atrophy of the orbital fat. These changes contribute to the etiology of several eyelid disorders such as ectropion, entropion, dermatochalasis, and ptosis. The vitreous gel undergoes liquefaction (posterior vitreous detachment or PVD) and its opacities—visible as floaters—gradually increase in number.

Various eye care professionals, including ophthalmologists, optometrists, and opticians, are involved in the treatment and management of ocular and vision disorders. A Snellen chart is one type of eye chart used to measure visual acuity. At the conclusion of an eye examination, an eye doctor may provide the patient with an eyeglass prescription for corrective lenses

Eye injury/safety

Accidents involving common household products cause 125,000 eye injuries each year in the U.S.[22] More than 40,000 people a year suffer eye injuries while playing sports.[22] Sports-related eye injuries occur most frequently in baseball, basketball and racquet sports.Cite error: A <ref> tag is missing the closing </ref> (see the help page). About one third of the injuries are treated in hospital emergency departments and more than 100 of these injuries result in one or more days of lost work.[23] The majority of these injuries result from small particles or objects striking or abrading the eye. Examples include metal slivers, wood chips, dust, and cement chips that are ejected by tools, wind blown, or fall from above a worker. Some of these objects, such as nails, staples, or slivers of wood or metal penetrate the eyeball and result in a permanent loss of vision. Large objects may also strike the eye/face causing blunt force trauma to the eyeball or eye socket. Chemical burns to one or both eyes from splashes of industrial chemicals or cleaning products are common. Thermal burns to the eye occur as well. Among welders, their assistants, and nearby workers, UV radiation burns (welder’s flash) routinely damage workers’ eyes and surrounding tissue. In addition to common eye injuries, health care workers, laboratory staff, janitorial workers, animal handlers, and other workers may be at risk of acquiring infectious diseases via ocular exposure.[23]

Cuisine

In many countries[citation needed], stuffed cow's eyes are considered a delicacy. They are made by first removing the vitreous humor, lens, cornea, and iris, then are usually boiled. Cow eyes are often stuffed with varieties of coleslaw, beef, and even cream cheese.

Seal eyes are eaten by the Inuit, providing a source of zinc in their diet.[24]

See also

References

  1. ^ http://www.nwf.org/nationalwildlife/article.cfm?issueID=77&articleID=1114
  2. ^ Halder, G., Callaerts, P. and Gehring, W.J. (1995). "New perspectives on eye evolution." Curr. Opin. Genet. Dev. 5 (pp. 602–609).
  3. ^ Halder, G., Callaerts, P. and Gehring, W.J. (1995). "Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila". Science 267 (pp. 1788–1792).
  4. ^ Tomarev, S.I., Callaerts, P., Kos, L., Zinovieva, R., Halder, G., Gehring, W., and Piatigorsky, J. (1997). "Squid Pax-6 and eye development." Proc. Natl. Acad. Sci. USA, 94 (pp. 2421–2426).
  5. ^ Conway-Morris, S. (1998). The Crucible of Creation. Oxford: Oxford University Press.
  6. ^ Land, M.F. and Fernald, Russell D. (1992). "The evolution of eyes." Annu Rev Neurosci 15 (pp. 1–29).
  7. ^ Eye-Evolution?
  8. ^ a b Fernald, Russell D. (2001). The Evolution of Eyes: Where Do Lenses Come From? Karger Gazette 64: "The Eye in Focus".
  9. ^ "The Eye." Accessed October 23, 2006.
  10. ^ "General Anatomy of the Eye." Accessed October 23, 2006.
  11. ^ "Eye Anatomy and Function." Accessed October 23, 2006.
  12. ^ a b c Cline D; Hofstetter HW; Griffin JR. Dictionary of Visual Science. 4th ed. Butterworth-Heinemann, Boston 1997. ISBN 0-7506-9895-0
  13. ^ http://www.bartleby.com/107/225.html
  14. ^ a b c Cassin, B. and Solomon, S. Dictionary of Eye Terminology. Gainsville, Florida: Triad Publishing Company, 1990.
  15. ^ a b "Medline Encyclopedia: Eye." Accessed October 25, 2006.
  16. ^ http://www.e-sunbear.com/anatomy_02.html
  17. ^ "Departments. Anterior segment." Cantabrian Institute of Ophthalmology.
  18. ^ Posterior segment anatomy
  19. ^ Optical System Design. McGraw-Hill Professional. 2000. ISBN 0071349162. {{cite book}}: Text "Steve Chapman (editor)" ignored (help)
  20. ^ Roger H.S. Carpenter (1988); Movements of the Eyes (2nd ed.). Pion Ltd, London. ISBN 0-85086-109-8.
  21. ^ AgingEye Times
  22. ^ a b "Eye Safety Prevent Eye Injuries at Home, at Work and at Play!". Prevent Blindness America. Retrieved 2007-10-23.
  23. ^ a b Cite error: The named reference NIOSH_Eye was invoked but never defined (see the help page).
  24. ^ http://www.inuitdiabetes.ca/reduce-risk-inuit-food.html

Template:Link FA