Jump to content

ADAMTS13

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 160.94.104.70 (talk) at 12:43, 8 April 2008 (Intro formatting and copyedits. Wikilinks.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Template:PBB Controls

ADAMTS13
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesADAMTS13, ADAM-TS13, ADAMTS-13, C9orf8, VWFCP, vWF-CP, ADAM metallopeptidase with thrombospondin type 1 motif 13
External IDsOMIM: 604134; MGI: 2685556; HomoloGene: 16372; GeneCards: ADAMTS13; OMA:ADAMTS13 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_139025
NM_139026
NM_139027
NM_139028

NM_001001322
NM_001290463
NM_001290464
NM_001290465

RefSeq (protein)

NP_620594
NP_620595
NP_620596

NP_001001322
NP_001277392
NP_001277393
NP_001277394

Location (UCSC)Chr 9: 133.41 – 133.46 MbChr 2: 26.86 – 26.9 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13)—also known as von Willebrand factor-cleaving protease (VWFCP)—is a zinc-containing metalloprotease enzyme that cleaves von Willebrand factor (vWf), a large protein involved in blood clotting. It is secreted in blood and degrades large vWf multimers, decreasing their activity.[5]

Genetics

The ADAMTS13 gene maps to the ninth chromosome (9q34).[5]

Discovery and function

Since 1982 it had been known that thrombotic thrombocytopenic purpura (TTP), one of the microangiopathic hemolytic anemias (see below), was characterised in its familial form by the presence in plasma of unusually large von Willebrand factor multimers (ULVWF).[5]

In 1994, VWF was shown to be cleaved between a tyrosine at position 1605 and a methionine at 1606 by a plasma metalloprotease when it was exposed to high levels of shear stress. In 1996, two research groups independently further characterized the enzyme that cleaved VWF. In the next two years, the same two groups showed that the congenital deficiency of vWf-cleaving protease was associated with formation of platelet microthrombi in the small blood vessels. In addition, they reported that in majority of patients IgG antibodies, directed against this enzyme, caused TTP in non-familial cases.[5]

Proteomics

Genomically, ADAMTS13 shares many properties with the 19 member ADAMTS family, all of which are characterised by a protease domain (the part that performs the protein hydrolysis), an adjacent disintegrin domain and one or more thrombospondin domains. ADAMTS13 in fact has eight thrombospondin domains. It has no hydrophobic transmembrane domain, and hence it not anchored in the cell membrane.[5]

Role in disease

Deficiency of ADAMTS13 was originally discovered in Upshaw-Shulman syndrome, the recurring familial form of TTP. By that time it was already suspected that TTP occurred in the autoimmune form as well, owing to its response to plasmapheresis and characterisation of IgG inhibitors. Since the discovery of ADAMTS13, specific epitopes on its surface have been shown to be the target of inhibitory antibodies.[5][6][7]

Especially since the link between aortic valve stenosis and angiodysplasia was proven to be due to high shear stress (Heyde's syndrome), it has been accepted that increased exposure of vWf to ADAMTS13 due to various reasons would predispose to bleeding by causing increased degradation of vWf. This phenomenon is characterised by a form of von Willebrand disease (type 2a).[5]

See also

References

  1. ^ a b c ENSG00000281244 GRCh38: Ensembl release 89: ENSG00000160323, ENSG00000281244Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000014852Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b c d e f g Levy GG, Motto DG, Ginsburg D (2005). "ADAMTS13 turns 3". Blood. 106 (1): 11–7. doi:10.1182/blood-2004-10-4097. PMID 15774620.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ Tsai HM (2003). "Advances in the pathogenesis, diagnosis, and treatment of thrombotic thrombocytopenic purpura". J. Am. Soc. Nephrol. 14 (4): 1072–81. PMID 12660343.
  7. ^ Furlan M, Lämmle B (2001). "Aetiology and pathogenesis of thrombotic thrombocytopenic purpura and haemolytic uraemic syndrome: the role of von Willebrand factor-cleaving protease". Best Pract Res Clin Haematol. 14 (2): 437–54. doi:10.1053/beha.2001.0142. PMID 11686108.

Further reading

  • Furlan M, Lammle B. Aetiology and pathogenesis of thrombotic thrombocytopenic purpura and haemolytic uraemic syndrome: the role of von Willebrand factor-cleaving protease. Best Pract Res Clin Haematol 2001;14:437-54. PMID 11686108.
  • Tsai HM. Advances in the pathogenesis, diagnosis, and treatment of thrombotic thrombocytopenic purpura. J Am Soc Nephrol 2003;14:1072-81. PMID 12660343.

Template:PBB Further reading