Jump to content

Gamma-ray burst

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by NedTown5000 (talk | contribs) at 06:37, 3 February 2021 (GRB candidates in the Milky Way). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Artist's illustration showing the life of a massive star as nuclear fusion converts lighter elements into heavier ones. When fusion no longer generates enough pressure to counteract gravity, the star rapidly collapses to form a black hole. Theoretically, energy may be released during the collapse along the axis of rotation to form a gamma-ray burst.

In gamma-ray astronomy, gamma-ray bursts (GRBs) are extremely energetic explosions that have been observed in distant galaxies. They are the brightest and most energetic electromagnetic events known to occur in the universe.[1] Bursts can last from ten milliseconds to several hours.[2][3][4] After an initial flash of gamma rays, a longer-lived "afterglow" is usually emitted at longer wavelengths (X-ray, ultraviolet, optical, infrared, microwave and radio).[5]

The intense radiation of most observed GRBs is thought to be released during a supernova or superluminous supernova as a high-mass star implodes to form a neutron star or a black hole.

A subclass of GRBs (the "short" bursts) appear to originate from the merger of binary neutron stars. The cause of the precursor burst observed in some of these short events may be the development of a resonance between the crust and core of such stars as a result of the massive tidal forces experienced in the seconds leading up to their collision, causing the entire crust of the star to shatter.[6]

The sources of most GRBs are billions of light years away from Earth, implying that the explosions are both extremely energetic (a typical burst releases as much energy in a few seconds as the Sun will in its entire 10-billion-year lifetime)[7] and extremely rare (a few per galaxy per million years[8]). All observed GRBs have originated from outside the Milky Way galaxy, although a related class of phenomena, soft gamma repeater flares, are associated with magnetars within the Milky Way. It has been hypothesized that a gamma-ray burst in the Milky Way, pointing directly towards the Earth, could cause a mass extinction event.[9]

GRBs were first detected in 1967 by the Vela satellites, which had been designed to detect covert nuclear weapons tests; this was declassified and published in 1973.[10] Following their discovery, hundreds of theoretical models were proposed to explain these bursts, such as collisions between comets and neutron stars.[11] Little information was available to verify these models until the 1997 detection of the first X-ray and optical afterglows and direct measurement of their redshifts using optical spectroscopy, and thus their distances and energy outputs. These discoveries, and subsequent studies of the galaxies and supernovae associated with the bursts, clarified the distance and luminosity of GRBs, definitively placing them in distant galaxies.

History

Positions on the sky of all gamma-ray bursts detected during the BATSE mission. The distribution is isotropic, with no concentration towards the plane of the Milky Way, which runs horizontally through the center of the image.

Gamma-ray bursts were first observed in the late 1960s by the U.S. Vela satellites, which were built to detect gamma radiation pulses emitted by nuclear weapons tested in space. The United States suspected that the Soviet Union might attempt to conduct secret nuclear tests after signing the Nuclear Test Ban Treaty in 1963. On July 2, 1967, at 14:19 UTC, the Vela 4 and Vela 3 satellites detected a flash of gamma radiation unlike any known nuclear weapons signature.[12] Uncertain what had happened but not considering the matter particularly urgent, the team at the Los Alamos National Laboratory, led by Ray Klebesadel, filed the data away for investigation. As additional Vela satellites were launched with better instruments, the Los Alamos team continued to find inexplicable gamma-ray bursts in their data. By analyzing the different arrival times of the bursts as detected by different satellites, the team was able to determine rough estimates for the sky positions of sixteen bursts[12] and definitively rule out a terrestrial or solar origin. The discovery was declassified and published in 1973.[10]

Most early theories of gamma-ray bursts posited nearby sources within the Milky Way Galaxy. From 1991, the Compton Gamma Ray Observatory (CGRO) and its Burst and Transient Source Explorer (BATSE) instrument, an extremely sensitive gamma-ray detector, provided data that showed the distribution of GRBs is isotropic – not biased towards any particular direction in space.[13] If the sources were from within our own galaxy they would be strongly concentrated in or near the galactic plane. The absence of any such pattern in the case of GRBs provided strong evidence that gamma-ray bursts must come from beyond the Milky Way.[14][15][16][17] However, some Milky Way models are still consistent with an isotropic distribution.[14][18]

In October 2018, astronomers reported that GRB 150101B and GW170817, a gravitational wave event detected in 2017, may have been produced by the same mechanism – the merger of two neutron stars. The similarities between the two events, in terms of gamma ray, optical and x-ray emissions, as well as to the nature of the associated host galaxies, are "striking", suggesting the two separate events may both be the result of the merger of neutron stars, and both may be a kilonova, which may be more common in the universe than previously understood, according to the researchers.[19][20][21][22]

In November 2019, astronomers reported a notable gamma ray burst explosion, named GRB 190114C, initially detected in January 2019, which, so far, produced gamma-rays with the highest energy – about 1 Tera electron volts (Tev) – ever observed for such a cosmic event.[23][24]

Counterpart objects as candidate sources

For decades after the discovery of GRBs, astronomers searched for a counterpart at other wavelengths: i.e., any astronomical object in positional coincidence with a recently observed burst. Astronomers considered many distinct classes of objects, including white dwarfs, pulsars, supernovae, globular clusters, quasars, Seyfert galaxies, and BL Lac objects.[25] All such searches were unsuccessful,[nb 1] and in a few cases particularly well-localized bursts (those whose positions were determined with what was then a high degree of accuracy) could be clearly shown to have no bright objects of any nature consistent with the position derived from the detecting satellites. This suggested an origin of either very faint stars or extremely distant galaxies.[26][27] Even the most accurate positions contained numerous faint stars and galaxies, and it was widely agreed that final resolution of the origins of cosmic gamma-ray bursts would require both new satellites and faster communication.[28]

Afterglow

The Italian–Dutch satellite BeppoSAX, launched in April 1996, provided the first accurate positions of gamma-ray bursts, allowing follow-up observations and identification of the sources.

Several models for the origin of gamma-ray bursts postulated that the initial burst of gamma rays should be followed by slowly fading emission at longer wavelengths created by collisions between the burst ejecta and interstellar gas.[29] This fading emission would be called the "afterglow". Early searches for this afterglow were unsuccessful, largely because it is difficult to observe a burst's position at longer wavelengths immediately after the initial burst. The breakthrough came in February 1997 when the satellite BeppoSAX detected a gamma-ray burst (GRB 970228[nb 2] and when the X-ray camera was pointed towards the direction from which the burst had originated, it detected fading X-ray emission. The William Herschel Telescope identified a fading optical counterpart 20 hours after the burst.[30] Once the GRB faded, deep imaging was able to identify a faint, distant host galaxy at the location of the GRB as pinpointed by the optical afterglow.[31][32]

Because of the very faint luminosity of this galaxy, its exact distance was not measured for several years. Well after then, another major breakthrough occurred with the next event registered by BeppoSAX, GRB 970508. This event was localized within four hours of its discovery, allowing research teams to begin making observations much sooner than any previous burst. The spectrum of the object revealed a redshift of z = 0.835, placing the burst at a distance of roughly 6 billion light years from Earth.[33] This was the first accurate determination of the distance to a GRB, and together with the discovery of the host galaxy of 970228 proved that GRBs occur in extremely distant galaxies.[31][34] Within a few months, the controversy about the distance scale ended: GRBs were extragalactic events originating within faint galaxies at enormous distances. The following year, GRB 980425 was followed within a day by a bright supernova (SN 1998bw), coincident in location, indicating a clear connection between GRBs and the deaths of very massive stars. This burst provided the first strong clue about the nature of the systems that produce GRBs.[35]

NASA's Swift Spacecraft launched in November 2004

BeppoSAX functioned until 2002 and CGRO (with BATSE) was deorbited in 2000. However, the revolution in the study of gamma-ray bursts motivated the development of a number of additional instruments designed specifically to explore the nature of GRBs, especially in the earliest moments following the explosion. The first such mission, HETE-2,[36] was launched in 2000 and functioned until 2006, providing most of the major discoveries during this period. One of the most successful space missions to date, Swift, was launched in 2004 and as of 2018 is still operational.[37][38] Swift is equipped with a very sensitive gamma ray detector as well as on-board X-ray and optical telescopes, which can be rapidly and automatically slewed to observe afterglow emission following a burst. More recently, the Fermi mission was launched carrying the Gamma-Ray Burst Monitor, which detects bursts at a rate of several hundred per year, some of which are bright enough to be observed at extremely high energies with Fermi's Large Area Telescope. Meanwhile, on the ground, numerous optical telescopes have been built or modified to incorporate robotic control software that responds immediately to signals sent through the Gamma-ray Burst Coordinates Network. This allows the telescopes to rapidly repoint towards a GRB, often within seconds of receiving the signal and while the gamma-ray emission itself is still ongoing.[39][40]

New developments since the 2000s include the recognition of short gamma-ray bursts as a separate class (likely from merging neutron stars and not associated with supernovae), the discovery of extended, erratic flaring activity at X-ray wavelengths lasting for many minutes after most GRBs, and the discovery of the most luminous (GRB 080319B) and the former most distant (GRB 090423) objects in the universe.[41][42] The most distant known GRB, GRB 090429B, is now the most distant known object in the universe.

Classification

Gamma-ray burst light curves

The light curves of gamma-ray bursts are extremely diverse and complex.[43] No two gamma-ray burst light curves are identical,[44] with large variation observed in almost every property: the duration of observable emission can vary from milliseconds to tens of minutes, there can be a single peak or several individual subpulses, and individual peaks can be symmetric or with fast brightening and very slow fading. Some bursts are preceded by a "precursor" event, a weak burst that is then followed (after seconds to minutes of no emission at all) by the much more intense "true" bursting episode.[45] The light curves of some events have extremely chaotic and complicated profiles with almost no discernible patterns.[28]

Although some light curves can be roughly reproduced using certain simplified models,[46] little progress has been made in understanding the full diversity observed. Many classification schemes have been proposed, but these are often based solely on differences in the appearance of light curves and may not always reflect a true physical difference in the progenitors of the explosions. However, plots of the distribution of the observed duration[nb 3] for a large number of gamma-ray bursts show a clear bimodality, suggesting the existence of two separate populations: a "short" population with an average duration of about 0.3 seconds and a "long" population with an average duration of about 30 seconds.[47] Both distributions are very broad with a significant overlap region in which the identity of a given event is not clear from duration alone. Additional classes beyond this two-tiered system have been proposed on both observational and theoretical grounds.[48][49][50][51]

Short gamma-ray bursts

Hubble Space Telescope captures infrared glow of a kilonova blast.[52]

Events with a duration of less than about two seconds are classified as short gamma-ray bursts. These account for about 30% of gamma-ray bursts, but until 2005, no afterglow had been successfully detected from any short event and little was known about their origins.[53] Since then, several dozen short gamma-ray burst afterglows have been detected and localized, several of which are associated with regions of little or no star formation, such as large elliptical galaxies and the central regions of large galaxy clusters.[54][55][56][57] This rules out a link to massive stars, confirming that short events are physically distinct from long events. In addition, there has been no association with supernovae.[58]

The true nature of these objects was initially unknown, and the leading hypothesis was that they originated from the mergers of binary neutron stars[59] or a neutron star with a black hole. Such mergers were theorized to produce kilonovae,[60] and evidence for a kilonova associated with GRB 130603B was seen.[61][62][63] The mean duration of these events of 0.2 seconds suggests (because of causality) a source of very small physical diameter in stellar terms; less than 0.2 light-seconds (about 60,000 km or 37,000 miles – four times the Earth's diameter). The observation of minutes to hours of X-ray flashes after a short gamma-ray burst is consistent with small particles of a primary object like a neutron star initially swallowed by a black hole in less than two seconds, followed by some hours of lesser energy events, as remaining fragments of tidally disrupted neutron star material (no longer neutronium) remain in orbit to spiral into the black hole, over a longer period of time.[53] A small fraction of short gamma-ray bursts are probably produced by giant flares from soft gamma repeaters in nearby galaxies.[64][65]

The origin of short GRBs in kilonovae was confirmed when short GRB 170817A was detected only 1.7 s after the detection of gravitational wave GW170817, which was a signal from the merger of two neutron stars.[66][59]

Long gamma-ray bursts

Most observed events (70%) have a duration of greater than two seconds and are classified as long gamma-ray bursts. Because these events constitute the majority of the population and because they tend to have the brightest afterglows, they have been observed in much greater detail than their short counterparts. Almost every well-studied long gamma-ray burst has been linked to a galaxy with rapid star formation, and in many cases to a core-collapse supernova as well, unambiguously associating long GRBs with the deaths of massive stars.[67] Long GRB afterglow observations, at high redshift, are also consistent with the GRB having originated in star-forming regions.[68]

Ultra-long gamma-ray bursts

These events are at the tail end of the long GRB duration distribution, lasting more than 10,000 seconds. They have been proposed to form a separate class, caused by the collapse of a blue supergiant star,[69] a tidal disruption event[70][71] or a new-born magnetar.[70][72] Only a small number have been identified to date, their primary characteristic being their gamma ray emission duration. The most studied ultra-long events include GRB 101225A and GRB 111209A.[71][73][74] The low detection rate may be a result of low sensitivity of current detectors to long-duration events, rather than a reflection of their true frequency.[71] A 2013 study,[75] on the other hand, shows that the existing evidence for a separate ultra-long GRB population with a new type of progenitor is inconclusive, and further multi-wavelength observations are needed to draw a firmer conclusion.

Energetics and beaming

Artist's illustration of a bright gamma-ray burst occurring in a star-forming region. Energy from the explosion is beamed into two narrow, oppositely directed jets.

Gamma-ray bursts are very bright as observed from Earth despite their typically immense distances. An average long GRB has a bolometric flux comparable to a bright star of our galaxy despite a distance of billions of light years (compared to a few tens of light years for most visible stars). Most of this energy is released in gamma rays, although some GRBs have extremely luminous optical counterparts as well. GRB 080319B, for example, was accompanied by an optical counterpart that peaked at a visible magnitude of 5.8,[76] comparable to that of the dimmest naked-eye stars despite the burst's distance of 7.5 billion light years. This combination of brightness and distance implies an extremely energetic source. Assuming the gamma-ray explosion to be spherical, the energy output of GRB 080319B would be within a factor of two of the rest-mass energy of the Sun (the energy which would be released were the Sun to be converted entirely into radiation).[41]

Gamma-ray bursts are thought to be highly focused explosions, with most of the explosion energy collimated into a narrow jet.[77][78] The approximate angular width of the jet (that is, the degree of spread of the beam) can be estimated directly by observing the achromatic "jet breaks" in afterglow light curves: a time after which the slowly decaying afterglow begins to fade rapidly as the jet slows and can no longer beam its radiation as effectively.[79][80] Observations suggest significant variation in the jet angle from between 2 and 20 degrees.[81]

Because their energy is strongly focused, the gamma rays emitted by most bursts are expected to miss the Earth and never be detected. When a gamma-ray burst is pointed towards Earth, the focusing of its energy along a relatively narrow beam causes the burst to appear much brighter than it would have been were its energy emitted spherically. When this effect is taken into account, typical gamma-ray bursts are observed to have a true energy release of about 1044 J, or about 1/2000 of a Solar mass (M) energy equivalent[81] – which is still many times the mass-energy equivalent of the Earth (about 5.5 × 1041 J). This is comparable to the energy released in a bright type Ib/c supernova and within the range of theoretical models. Very bright supernovae have been observed to accompany several of the nearest GRBs.[35] Additional support for focusing of the output of GRBs has come from observations of strong asymmetries in the spectra of nearby type Ic supernova[82] and from radio observations taken long after bursts when their jets are no longer relativistic.[83]

Short (time duration) GRBs appear to come from a lower-redshift (i.e. less distant) population and are less luminous than long GRBs.[84] The degree of beaming in short bursts has not been accurately measured, but as a population they are likely less collimated than long GRBs[85] or possibly not collimated at all in some cases.[86]

Progenitors

Hubble Space Telescope image of Wolf–Rayet star WR 124 and its surrounding nebula. Wolf–Rayet stars are candidates for being progenitors of long-duration GRBs.

Because of the immense distances of most gamma-ray burst sources from Earth, identification of the progenitors, the systems that produce these explosions, is challenging. The association of some long GRBs with supernovae and the fact that their host galaxies are rapidly star-forming offer very strong evidence that long gamma-ray bursts are associated with massive stars. The most widely accepted mechanism for the origin of long-duration GRBs is the collapsar model,[87] in which the core of an extremely massive, low-metallicity, rapidly rotating star collapses into a black hole in the final stages of its evolution. Matter near the star's core rains down towards the center and swirls into a high-density accretion disk. The infall of this material into a black hole drives a pair of relativistic jets out along the rotational axis, which pummel through the stellar envelope and eventually break through the stellar surface and radiate as gamma rays. Some alternative models replace the black hole with a newly formed magnetar,[88][89] although most other aspects of the model (the collapse of the core of a massive star and the formation of relativistic jets) are the same.

The closest analogs within the Milky Way galaxy of the stars producing long gamma-ray bursts are likely the Wolf–Rayet stars, extremely hot and massive stars, which have shed most or all of their hydrogen by radiation pressure. Eta Carinae, Apep, and WR 104 have been cited as possible future gamma-ray burst progenitors.[90] It is unclear if any star in the Milky Way has the appropriate characteristics to produce a gamma-ray burst.[91]

The massive-star model probably does not explain all types of gamma-ray burst. There is strong evidence that some short-duration gamma-ray bursts occur in systems with no star formation and no massive stars, such as elliptical galaxies and galaxy halos.[84] The favored theory for the origin of most short gamma-ray bursts is the merger of a binary system consisting of two neutron stars. According to this model, the two stars in a binary slowly spiral towards each other because gravitational radiation releases energy[92][93] until tidal forces suddenly rip the neutron stars apart and they collapse into a single black hole. The infall of matter into the new black hole produces an accretion disk and releases a burst of energy, analogous to the collapsar model. Numerous other models have also been proposed to explain short gamma-ray bursts, including the merger of a neutron star and a black hole, the accretion-induced collapse of a neutron star, or the evaporation of primordial black holes.[94][95][96][97]

An alternative explanation proposed by Friedwardt Winterberg is that in the course of a gravitational collapse and in reaching the event horizon of a black hole, all matter disintegrates into a burst of gamma radiation.[98]

Tidal disruption events

This new class of GRB-like events was first discovered through the detection of GRB 110328A by the Swift Gamma-Ray Burst Mission on 28 March 2011. This event had a gamma-ray duration of about 2 days, much longer than even ultra-long GRBs, and was detected in X-rays for many months. It occurred at the center of a small elliptical galaxy at redshift z = 0.3534. There is an ongoing debate as to whether the explosion was the result of stellar collapse or a tidal disruption event accompanied by a relativistic jet, although the latter explanation has become widely favoured.

A tidal disruption event of this sort is when a star interacts with a supermassive black hole, shredding the star, and in some cases creating a relativistic jet which produces bright emission of gamma ray radiation. The event GRB 110328A (also denoted Swift J1644+57) was initially argued to be produced by the disruption of a main sequence star by a black hole of several million times the mass of the Sun,[99][100][101] although it has subsequently been argued that the disruption of a white dwarf by a black hole of mass about 10 thousand times the Sun may be more likely.[102]

Emission mechanisms

Gamma-ray-burst Mechanism

The means by which gamma-ray bursts convert energy into radiation remains poorly understood, and as of 2010 there was still no generally accepted model for how this process occurs.[103] Any successful model of GRB emission must explain the physical process for generating gamma-ray emission that matches the observed diversity of light curves, spectra, and other characteristics.[104] Particularly challenging is the need to explain the very high efficiencies that are inferred from some explosions: some gamma-ray bursts may convert as much as half (or more) of the explosion energy into gamma-rays.[105] Early observations of the bright optical counterparts to GRB 990123 and to GRB 080319B, whose optical light curves were extrapolations of the gamma-ray light spectra,[76][106] have suggested that inverse Compton may be the dominant process in some events. In this model, pre-existing low-energy photons are scattered by relativistic electrons within the explosion, augmenting their energy by a large factor and transforming them into gamma-rays.[107]

The nature of the longer-wavelength afterglow emission (ranging from X-ray through radio) that follows gamma-ray bursts is better understood. Any energy released by the explosion not radiated away in the burst itself takes the form of matter or energy moving outward at nearly the speed of light. As this matter collides with the surrounding interstellar gas, it creates a relativistic shock wave that then propagates forward into interstellar space. A second shock wave, the reverse shock, may propagate back into the ejected matter. Extremely energetic electrons within the shock wave are accelerated by strong local magnetic fields and radiate as synchrotron emission across most of the electromagnetic spectrum.[108][109] This model has generally been successful in modeling the behavior of many observed afterglows at late times (generally, hours to days after the explosion), although there are difficulties explaining all features of the afterglow very shortly after the gamma-ray burst has occurred.[110]

Rate of occurrence and potential effects on life

On 27 October 2015, at 22:40 GMT, the NASA/ASI/UKSA Swift satellite discovered its 1000th gamma-ray burst (GRB).[111]

Gamma ray bursts can have harmful or destructive effects on life. Considering the universe as a whole, the safest environments for life similar to that on Earth are the lowest density regions in the outskirts of large galaxies. Our knowledge of galaxy types and their distribution suggests that life as we know it can only exist in about 10% of all galaxies. Furthermore, galaxies with a redshift, z, higher than 0.5 are unsuitable for life as we know it, because of their higher rate of GRBs and their stellar compactness.[112][113]

All GRBs observed to date have occurred well outside the Milky Way galaxy and have been harmless to Earth. However, if a GRB were to occur within the Milky Way within 5,000 to 8,000 light-years[114] and its emission were beamed straight towards Earth, the effects could be harmful and potentially devastating for its ecosystems. Currently, orbiting satellites detect on average approximately one GRB per day. The closest observed GRB as of March 2014 was GRB 980425, located 40 megaparsecs (130,000,000 ly)[115] away (z=0.0085) in an SBc-type dwarf galaxy.[116] GRB 980425 was far less energetic than the average GRB and was associated with the Type Ib supernova SN 1998bw.[117]

Estimating the exact rate at which GRBs occur is difficult; for a galaxy of approximately the same size as the Milky Way, estimates of the expected rate (for long-duration GRBs) can range from one burst every 10,000 years, to one burst every 1,000,000 years.[118] Only a small percentage of these would be beamed towards Earth. Estimates of rate of occurrence of short-duration GRBs are even more uncertain because of the unknown degree of collimation, but are probably comparable.[119]

Since GRBs are thought to involve beamed emission along two jets in opposing directions, only planets in the path of these jets would be subjected to the high energy gamma radiation.[120]

Although nearby GRBs hitting Earth with a destructive shower of gamma rays are only hypothetical events, high energy processes across the galaxy have been observed to affect the Earth's atmosphere.[121]

Effects on Earth

Earth's atmosphere is very effective at absorbing high energy electromagnetic radiation such as x-rays and gamma rays, so these types of radiation would not reach any dangerous levels at the surface during the burst event itself. The immediate effect on life on Earth from a GRB within a few kiloparsecs would only be a short increase in ultraviolet radiation at ground level, lasting from less than a second to tens of seconds. This ultraviolet radiation could potentially reach dangerous levels depending on the exact nature and distance of the burst, but it seems unlikely to be able to cause a global catastrophe for life on Earth.[122][123]

The long-term effects from a nearby burst are more dangerous. Gamma rays cause chemical reactions in the atmosphere involving oxygen and nitrogen molecules, creating first nitrogen oxide then nitrogen dioxide gas. The nitrogen oxides cause dangerous effects on three levels. First, they deplete ozone, with models showing a possible global reduction of 25–35%, with as much as 75% in certain locations, an effect that would last for years. This reduction is enough to cause a dangerously elevated UV index at the surface. Secondly, the nitrogen oxides cause photochemical smog, which darkens the sky and blocks out parts of the sunlight spectrum. This would affect photosynthesis, but models show only about a 1% reduction of the total sunlight spectrum, lasting a few years. However, the smog could potentially cause a cooling effect on Earth's climate, producing a "cosmic winter" (similar to an impact winter, but without an impact), but only if it occurs simultaneously with a global climate instability. Thirdly, the elevated nitrogen dioxide levels in the atmosphere would wash out and produce acid rain. Nitric acid is toxic to a variety of organisms, including amphibian life, but models predict that it would not reach levels that would cause a serious global effect. The nitrates might in fact be of benefit to some plants.[122][123]

All in all, a GRB within a few kiloparsecs, with its energy directed towards Earth, will mostly damage life by raising the UV levels during the burst itself and for a few years thereafter. Models show that the destructive effects of this increase can cause up to 16 times the normal levels of DNA damage. It has proved difficult to assess a reliable evaluation of the consequences of this on the terrestrial ecosystem, because of the uncertainty in biological field and laboratory data.[122][123]

Hypothetical effects on Earth in the past

GRBs close enough to affect life in some way might occur once every five million years or so – around a thousand times since life on Earth began.[124]

The major Ordovician–Silurian extinction events 450 million years ago may have been caused by a GRB. The late Ordovician species of trilobites that spent portions of their lives in the plankton layer near the ocean surface were much harder hit than deep-water dwellers, which tended to remain within quite restricted areas. This is in contrast to the usual pattern of extinction events, wherein species with more widely spread populations typically fare better. A possible explanation is that trilobites remaining in deep water would be more shielded from the increased UV radiation associated with a GRB. Also supportive of this hypothesis is the fact that during the late Ordovician, burrowing bivalve species were less likely to go extinct than bivalves that lived on the surface.[9]

A case has been made that the 774–775 carbon-14 spike was the result of a short GRB,[125][126] though a very strong solar flare is another possibility.[127]

GRB candidates in the Milky Way

No gamma-ray bursts from within our own galaxy, the Milky Way, have been observed,[128] and the question of whether one has ever occurred remains unresolved. In light of evolving understanding of gamma-ray bursts and their progenitors, the scientific literature records a growing number of local, past, and future GRB candidates. Long duration GRBs are related to superluminous supernovae, or hypernovae, and most luminous blue variables (LBVs), and rapidly spinning Wolf–Rayet stars are thought to end their life cycles in core-collapse supernovae with an associated long-duration GRB. Knowledge of GRBs, however, is from metal-poor galaxies of former epochs of the universe's evolution, and it is impossible to directly extrapolate to encompass more evolved galaxies and stellar environments with a higher metallicity, such as the Milky Way.[129][130][131]

See also

Template:Wikipedia books

Notes

  1. ^ A notable exception is the 5 March event of 1979, an extremely bright burst that was successfully localized to supernova remnant N49 in the Large Magellanic Cloud. This event is now interpreted as a magnetar giant flare, more related to SGR flares than "true" gamma-ray bursts.
  2. ^ GRBs are named after the date on which they are discovered: the first two digits being the year, followed by the two-digit month and two-digit day and a letter with the order they were detected during that day. The letter 'A' is appended to the name for the first burst identified, 'B' for the second, and so on. For bursts before the year 2010 this letter was only appended if more than one burst occurred that day.
  3. ^ The duration of a burst is typically measured by T90, the duration of the period which 90 percent of the burst's energy is emitted. Recently some otherwise "short" GRBs have been shown to be followed by a second, much longer emission episode that when included in the burst light curve results in T90 durations of up to several minutes: these events are only short in the literal sense when this component is excluded.

Citations

  1. ^ "Gamma Rays". NASA. Archived from the original on 2012-05-02.
  2. ^ Atkinson, Nancy (2013-04-17). "New Kind of Gamma Ray Burst is Ultra Long-Lasting". Universetoday.com. Retrieved 2015-05-15.
  3. ^ Gendre, B.; Stratta, G.; Atteia, J. L.; Basa, S.; Boër, M.; Coward, D. M.; Cutini, S.; d'Elia, V.; Howell, E. J; Klotz, A.; Piro, L. (2013). "The Ultra-Long Gamma-Ray Burst 111209A: The Collapse of a Blue Supergiant?". The Astrophysical Journal. 766 (1): 30. arXiv:1212.2392. Bibcode:2013ApJ...766...30G. doi:10.1088/0004-637X/766/1/30. S2CID 118618287.
  4. ^ Graham, J. F.; Fruchter, A. S. (2013). "The Metal Aversion of LGRBs". The Astrophysical Journal. 774 (2): 119. arXiv:1211.7068. Bibcode:2013ApJ...774..119G. doi:10.1088/0004-637X/774/2/119.
  5. ^ Vedrenne & Atteia 2009
  6. ^ Tsang, David; Read, Jocelyn S.; Hinderer, Tanja; Piro, Anthony L.; Bondarescu, Ruxandra (2012). "Resonant Shattering of Neutron Star Crust". Physical Review Letters. Vol. 108. p. 5. arXiv:1110.0467. Bibcode:2012PhRvL.108a1102T. doi:10.1103/PhysRevLett.108.011102.
  7. ^ "Massive star's dying blast caught by rapid-response telescopes". PhysOrg. 26 July 2017. Retrieved 27 July 2017.
  8. ^ Podsiadlowski 2004
  9. ^ a b Melott 2004
  10. ^ a b Klebesadel R.W.; Strong I.B.; Olson R.A. (1973). "Observations of Gamma-Ray Bursts of Cosmic Origin". Astrophysical Journal Letters. 182: L85. Bibcode:1973ApJ...182L..85K. doi:10.1086/181225.
  11. ^ Hurley 2003
  12. ^ a b Schilling 2002, pp. 12–16
  13. ^ Meegan 1992
  14. ^ a b Vedrenne & Atteia 2009, pp. 16–40
  15. ^ Schilling 2002, pp. 36–37
  16. ^ Paczyński 1999, p. 6
  17. ^ Piran 1992
  18. ^ Lamb 1995
  19. ^ University of Maryland (16 October 2018). "All in the family: Kin of gravitational wave source discovered – New observations suggest that kilonovae – immense cosmic explosions that produce silver, gold and platinum – may be more common than thought". EurekAlert! (Press release). Retrieved 17 October 2018.
  20. ^ Troja, E.; et al. (16 October 2018). "A luminous blue kilonova and an off-axis jet from a compact binary merger at z = 0.1341". Nature Communications. 9 (4089 (2018)): 4089. arXiv:1806.10624. Bibcode:2018NatCo...9.4089T. doi:10.1038/s41467-018-06558-7. PMC 6191439. PMID 30327476.
  21. ^ Mohon, Lee (16 October 2018). "GRB 150101B: A Distant Cousin to GW170817". NASA. Retrieved 17 October 2018.
  22. ^ Wall, Mike (17 October 2018). "Powerful Cosmic Flash Is Likely Another Neutron-Star Merger". Space.com. Retrieved 17 October 2018.
  23. ^ ESA/Hubble Information Centre (20 November 2019). "Hubble studies gamma-ray burst with the highest energy ever seen". EurekAlert! (Press release). Retrieved 20 November 2019.
  24. ^ Veres, P; et al. (20 November 2019). "Observation of inverse Compton emission from a long γ-ray burst". Nature. 575 (7783): 459–463. arXiv:2006.07251. Bibcode:2019Natur.575..459M. doi:10.1038/s41586-019-1754-6. PMID 31748725. S2CID 208191199.
  25. ^ Hurley 1986, p. 33
  26. ^ Pedersen 1987
  27. ^ Hurley 1992
  28. ^ a b Fishman & Meegan 1995
  29. ^ Paczynski 1993
  30. ^ van Paradijs 1997
  31. ^ a b Vedrenne & Atteia 2009, pp. 90–93
  32. ^ Schilling 2002, p. 102
  33. ^ Reichart 1995
  34. ^ Schilling 2002, pp. 118–123
  35. ^ a b Galama 1998
  36. ^ Ricker 2003
  37. ^ McCray 2008
  38. ^ Gehrels 2004
  39. ^ Akerlof 2003
  40. ^ Akerlof 1999
  41. ^ a b Bloom 2009
  42. ^ Reddy 2009
  43. ^ Katz 2002, p. 37
  44. ^ Marani 1997
  45. ^ Lazatti 2005
  46. ^ Simić 2005
  47. ^ Kouveliotou 1994
  48. ^ Horvath 1998
  49. ^ Hakkila 2003
  50. ^ Chattopadhyay 2007
  51. ^ Virgili 2009
  52. ^ "Hubble captures infrared glow of a kilonova blast". Image Gallery. ESA/Hubble. Retrieved 14 August 2013.
  53. ^ a b In a Flash NASA Helps Solve 35-year-old Cosmic Mystery. NASA (2005-10-05) The 30% figure is given here, as well as afterglow discussion.
  54. ^ Bloom 2006
  55. ^ Hjorth 2005
  56. ^ Berger 2007
  57. ^ Gehrels 2005
  58. ^ Zhang 2009
  59. ^ a b Nakar 2007
  60. ^ Metzger, B. D.; Martínez-Pinedo, G.; Darbha, S.; Quataert, E.; et al. (August 2010). "Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei". Monthly Notices of the Royal Astronomical Society. 406 (4): 2650. arXiv:1001.5029. Bibcode:2010MNRAS.406.2650M. doi:10.1111/j.1365-2966.2010.16864.x. S2CID 118863104.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  61. ^ Tanvir, N. R.; Levan, A. J.; Fruchter, A. S.; Hjorth, J.; Hounsell, R. A.; Wiersema, K.; Tunnicliffe, R. L. (2013). "A 'kilonova' associated with the short-duration γ-ray burst GRB 130603B". Nature. 500 (7464): 547–549. arXiv:1306.4971. Bibcode:2013Natur.500..547T. doi:10.1038/nature12505. PMID 23912055. S2CID 205235329.
  62. ^ Berger, E.; Fong, W.; Chornock, R. (2013). "An r-Process Kilonova Associated with the Short-Hard GRB 130603B". The Astrophysical Journal. 774 (2): L23. arXiv:1306.3960. Bibcode:2013ApJ...774L..23B. doi:10.1088/2041-8205/774/2/L23. S2CID 669927.
  63. ^ Nicole Gugliucci (7 August 2013). "Kilonova Alert! Hubble Solves Gamma Ray Burst Mystery". news.discovery.com. Discovery Communications. Retrieved 22 January 2015.
  64. ^ Frederiks 2008
  65. ^ Hurley 2005
  66. ^ Abbott, B. P.; et al. (LIGO Scientific Collaboration & Virgo Collaboration) (16 October 2017). "GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral". Physical Review Letters. 119 (16): 161101. arXiv:1710.05832. Bibcode:2017PhRvL.119p1101A. doi:10.1103/PhysRevLett.119.161101. PMID 29099225.
  67. ^ Woosley & Bloom 2006
  68. ^ Pontzen et al. 2010
  69. ^ Gendre, B.; Stratta, G.; Atteia, J. L.; Basa, S.; Boër, M.; Coward, D. M.; Cutini, S.; d'Elia, V.; Howell, E. J; Klotz, A.; Piro, L. (2013). "The Ultra-Long Gamma-Ray Burst 111209A: The Collapse of a Blue Supergiant?". The Astrophysical Journal. 766 (1): 30. arXiv:1212.2392. Bibcode:2013ApJ...766...30G. doi:10.1088/0004-637X/766/1/30. S2CID 118618287.
  70. ^ a b Greiner, Jochen; Mazzali, Paolo A.; Kann, D. Alexander; Krühler, Thomas; Pian, Elena; Prentice, Simon; Olivares E., Felipe; Rossi, Andrea; Klose, Sylvio; Taubenberger, Stefan; Knust, Fabian; Afonso, Paulo M. J.; Ashall, Chris; Bolmer, Jan; Delvaux, Corentin; Diehl, Roland; Elliott, Jonathan; Filgas, Robert; Fynbo, Johan P. U.; Graham, John F.; Guelbenzu, Ana Nicuesa; Kobayashi, Shiho; Leloudas, Giorgos; Savaglio, Sandra; Schady, Patricia; Schmidl, Sebastian; Schweyer, Tassilo; Sudilovsky, Vladimir; Tanga, Mohit; et al. (2015-07-08). "A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst". Nature. 523 (7559): 189–192. arXiv:1509.03279. Bibcode:2015Natur.523..189G. doi:10.1038/nature14579. PMID 26156372. S2CID 4464998.
  71. ^ a b c Levan, A. J.; Tanvir, N. R.; Starling, R. L. C.; Wiersema, K.; Page, K. L.; Perley, D. A.; Schulze, S.; Wynn, G. A.; Chornock, R.; Hjorth, J.; Cenko, S. B.; Fruchter, A. S.; O'Brien, P. T.; Brown, G. C.; Tunnicliffe, R. L.; Malesani, D.; Jakobsson, P.; Watson, D.; Berger, E.; Bersier, D.; Cobb, B. E.; Covino, S.; Cucchiara, A.; de Ugarte Postigo, A.; Fox, D. B.; Gal-Yam, A.; Goldoni, P.; Gorosabel, J.; Kaper, L.; et al. (2014). "A new population of ultra-long duration gamma-ray bursts". The Astrophysical Journal. 781 (1): 13. arXiv:1302.2352. Bibcode:2014ApJ...781...13L. doi:10.1088/0004-637x/781/1/13. S2CID 24657235.
  72. ^ Ioka, Kunihito; Hotokezaka, Kenta; Piran, Tsvi (2016-12-12). "Are Ultra-Long Gamma-Ray Bursts Caused by Blue Supergiant Collapsars, Newborn Magnetars, or White Dwarf Tidal Disruption Events?". The Astrophysical Journal. 833 (1): 110. arXiv:1608.02938. Bibcode:2016ApJ...833..110I. doi:10.3847/1538-4357/833/1/110. S2CID 118629696.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  73. ^ Boer, Michel; Gendre, Bruce; Stratta, Giulia (2013). "Are Ultra-long Gamma-Ray Bursts different?". The Astrophysical Journal. 800 (1): 16. arXiv:1310.4944. Bibcode:2015ApJ...800...16B. doi:10.1088/0004-637X/800/1/16. S2CID 118655406.
  74. ^ Virgili, F. J.; Mundell, C. G.; Pal'Shin, V.; Guidorzi, C.; Margutti, R.; Melandri, A.; Harrison, R.; Kobayashi, S.; Chornock, R.; Henden, A.; Updike, A. C.; Cenko, S. B.; Tanvir, N. R.; Steele, I. A.; Cucchiara, A.; Gomboc, A.; Levan, A.; Cano, Z.; Mottram, C. J.; Clay, N. R.; Bersier, D.; Kopač, D.; Japelj, J.; Filippenko, A. V.; Li, W.; Svinkin, D.; Golenetskii, S.; Hartmann, D. H.; Milne, P. A.; et al. (2013). "Grb 091024A and the Nature of Ultra-Long Gamma-Ray Bursts". The Astrophysical Journal. 778 (1): 54. arXiv:1310.0313. Bibcode:2013ApJ...778...54V. doi:10.1088/0004-637X/778/1/54. S2CID 119023750.
  75. ^ Zhang, Bin-Bin; Zhang, Bing; Murase, Kohta; Connaughton, Valerie; Briggs, Michael S. (2014). "How Long does a Burst Burst?". The Astrophysical Journal. 787 (1): 66. arXiv:1310.2540. Bibcode:2014ApJ...787...66Z. doi:10.1088/0004-637X/787/1/66. S2CID 56273013.
  76. ^ a b Racusin 2008
  77. ^ Rykoff 2009
  78. ^ Abdo 2009
  79. ^ Sari 1999
  80. ^ Burrows 2006
  81. ^ a b Frail 2001
  82. ^ Mazzali 2005
  83. ^ Frail 2000
  84. ^ a b Prochaska 2006
  85. ^ Watson 2006
  86. ^ Grupe 2006
  87. ^ MacFadyen 1999
  88. ^ Zhang, Bing; Mészáros, Peter (2001-05-01). "Gamma-Ray Burst Afterglow with Continuous Energy Injection: Signature of a Highly Magnetized Millisecond Pulsar". The Astrophysical Journal Letters. 552 (1): L35–L38. arXiv:astro-ph/0011133. Bibcode:2001ApJ...552L..35Z. doi:10.1086/320255. S2CID 18660804.
  89. ^ Troja, E.; Cusumano, G.; O'Brien, P. T.; Zhang, B.; Sbarufatti, B.; Mangano, V.; Willingale, R.; Chincarini, G.; Osborne, J. P. (2007-08-01). "Swift Observations of GRB 070110: An Extraordinary X-Ray Afterglow Powered by the Central Engine". The Astrophysical Journal. 665 (1): 599–607. arXiv:astro-ph/0702220. Bibcode:2007ApJ...665..599T. doi:10.1086/519450. S2CID 14317593.
  90. ^ Plait 2008
  91. ^ Stanek 2006
  92. ^ Abbott 2007
  93. ^ Kochanek 1993
  94. ^ Vietri 1998
  95. ^ MacFadyen 2006
  96. ^ Blinnikov 1984
  97. ^ Cline 1996
  98. ^ Winterberg, Friedwardt (2001 Aug 29). "Gamma-Ray Bursters and Lorentzian Relativity". Z. Naturforsch 56a: 889–892.
  99. ^ Science Daily 2011
  100. ^ Levan 2011
  101. ^ Bloom 2011
  102. ^ Krolick & Piran 11
  103. ^ Stern 2007
  104. ^ Fishman, G. 1995
  105. ^ Fan & Piran 2006
  106. ^ Liang et al. July 1, 1999, "GRB 990123: The Case for Saturated Comptonization, The Astrophysical Journal, 519: L21–L24", http://iopscience.iop.org/1538-4357/519/1/L21/fulltext/995164.text.html
  107. ^ Wozniak 2009
  108. ^ Meszaros 1997
  109. ^ Sari 1998
  110. ^ Nousek 2006
  111. ^ "ESO Telescopes Observe Swift Satellite's 1000th Gamma-ray Burst". Retrieved 9 November 2015.
  112. ^ Piran, Tsvi; Jimenez, Raul (5 December 2014). "Possible Role of Gamma Ray Bursts on Life Extinction in the Universe". Physical Review Letters. 113 (23): 231102. arXiv:1409.2506. Bibcode:2014PhRvL.113w1102P. doi:10.1103/PhysRevLett.113.231102. PMID 25526110. S2CID 43491624.
  113. ^ Schirber, Michael (2014-12-08). "Focus: Gamma-Ray Bursts Determine Potential Locations for Life". Physics. 7: 124. doi:10.1103/Physics.7.124.
  114. ^ https://www.universetoday.com/118140/are-gamma-ray-bursts-dangerous/
  115. ^ Soderberg, A. M.; Kulkarni, S. R.; Berger, E.; Fox, D. W.; Sako, M.; Frail, D. A.; Gal-Yam, A.; Moon, D. S.; Cenko, S. B.; Yost, S. A.; Phillips, M. M.; Persson, S. E.; Freedman, W. L.; Wyatt, P.; Jayawardhana, R.; Paulson, D. (2004). "The sub-energetic γ-ray burst GRB 031203 as a cosmic analogue to the nearby GRB 980425". Nature. 430 (7000): 648–650. arXiv:astro-ph/0408096. Bibcode:2004Natur.430..648S. doi:10.1038/nature02757. hdl:2027.42/62961. PMID 15295592. S2CID 4363027.
  116. ^ Le Floc'h, E.; Charmandaris, V.; Gordon, K.; Forrest, W. J.; Brandl, B.; Schaerer, D.; Dessauges-Zavadsky, M.; Armus, L. (2011). "The first Infrared study of the close environment of a long Gamma-Ray Burst". The Astrophysical Journal. 746 (1): 7. arXiv:1111.1234. Bibcode:2012ApJ...746....7L. doi:10.1088/0004-637X/746/1/7. S2CID 51474244.
  117. ^ Kippen, R.M.; Briggs, M. S.; Kommers, J. M.; Kouveliotou, C.; Hurley, K.; Robinson, C. R.; Van Paradijs, J.; Hartmann, D. H.; Galama, T. J.; Vreeswijk, P. M. (October 1998). "On the Association of Gamma-Ray Bursts with Supernovae". The Astrophysical Journal. 506 (1): L27–L30. arXiv:astro-ph/9806364. Bibcode:1998ApJ...506L..27K. doi:10.1086/311634. S2CID 2677824.
  118. ^ "Gamma-ray burst 'hit Earth in 8th Century'". Rebecca Morelle. BBC. 2013-01-21. Retrieved January 21, 2013.
  119. ^ Guetta and Piran 2006
  120. ^ Welsh, Jennifer (2011-07-10). "Can gamma-ray bursts destroy life on Earth?". MSN. Retrieved October 27, 2011.
  121. ^ "Earth does not exist in splendid isolation" – Energy burst from an X-ray star disturbed Earth's environment
  122. ^ a b c Thomas, B.C. (2009). "Gamma-ray bursts as a threat to life on Earth". International Journal of Astrobiology. 8 (3): 183–186. arXiv:0903.4710. Bibcode:2009IJAsB...8..183T. doi:10.1017/S1473550409004509. S2CID 118579150.
  123. ^ a b c Martin, Osmel; Cardenas, Rolando; Guimarais, Mayrene; Peñate, Liuba; Horvath, Jorge; Galante, Douglas (2010). "Effects of gamma ray bursts in Earth's biosphere". Astrophysics and Space Science. 326 (1): 61–67. arXiv:0911.2196. Bibcode:2010Ap&SS.326...61M. doi:10.1007/s10509-009-0211-7. S2CID 15141366.
  124. ^ John Scalo, Craig Wheeler in New Scientist print edition, 15 December 2001, p. 10.
  125. ^ Pavlov, A.K.; Blinov, A.V.; Konstantinov, A.N.; et al. (2013). "AD 775 pulse of cosmogenic radionuclides production as imprint of a Galactic gamma-ray burst". Mon. Not. R. Astron. Soc. 435 (4): 2878–2884. arXiv:1308.1272. Bibcode:2013MNRAS.435.2878P. doi:10.1093/mnras/stt1468. S2CID 118638711.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  126. ^ Hambaryan, V.V.; Neuhauser, R. (2013). "A Galactic short gamma-ray burst as cause for the 14C peak in AD 774/5". Monthly Notices of the Royal Astronomical Society. 430 (1): 32–36. arXiv:1211.2584. Bibcode:2013MNRAS.430...32H. doi:10.1093/mnras/sts378. S2CID 765056.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  127. ^ Mekhaldi; et al. (2015). "Multiradionuclide evidence for the solar origin of the cosmic-ray events of ᴀᴅ 774/5 and 993/4". Nature Communications. 6: 8611. Bibcode:2015NatCo...6.8611M. doi:10.1038/ncomms9611. PMC 4639793. PMID 26497389.
  128. ^ Lauren Fuge (20 November 2018). "Milky Way star set to go supernova". Cosmos. Retrieved 7 April 2019.
  129. ^ Vink JS (2013). "Gamma-ray burst progenitors and the population of rotating Wolf-Rayet stars". Philos Trans Royal Soc A. 371 (1992): 20120237. Bibcode:2013RSPTA.37120237V. doi:10.1098/rsta.2012.0237. PMID 23630373.
  130. ^ Y-H. Chu; C-H. Chen; S-P. Lai (2001). "Superluminous supernova remnants". In Mario Livio; Nino Panagia; Kailash Sahu (eds.). Supernovae and Gamma-Ray Bursts: The Greatest Explosions Since the Big Bang. Cambridge University Press. p. 135. ISBN 978-0-521-79141-0.
  131. ^ Van Den Heuvel, E. P. J.; Yoon, S.-C. (2007). "Long gamma-ray burst progenitors: Boundary conditions and binary models". Astrophysics and Space Science. 311 (1–3): 177–183. arXiv:0704.0659. Bibcode:2007Ap&SS.311..177V. doi:10.1007/s10509-007-9583-8. S2CID 38670919.

References

Further reading

GRB mission sites
GRB follow-up programs