Jupiter-C
Function | Sounding rocket |
---|---|
Manufacturer | Army Ballistic Missile Agency |
Country of origin | United States |
Size | |
Height | 21.2 m |
Diameter | 1.78 m |
Mass | 28,500 kg |
Stages | 3 |
Capacity | |
Payload to Sub-orbital | 11 kg |
Launch history | |
Status | Retired |
Launch sites | LC-5 and 6, Cape Canaveral |
Total launches | 3 |
Success(es) | 1 |
Failure(s) | 1 |
Partial failure(s) | 1 |
First flight | 20 September 1956 |
Last flight | 8 August 1957 |
First stage - Redstone (stretched) | |
Engines | 1 A-7 |
Thrust | 42,439 kgf |
Specific impulse | 235 sec |
Burn time | 155 seconds |
Propellant | LOX/Hydyne |
Second stage Sergeant cluster | |
Engines | 11 Solid |
Thrust | 7,480 kgf |
Specific impulse | 214 sec |
Burn time | 6 seconds |
Propellant | Solid |
Third stage - Sergeant cluster | |
Engines | 3 Solid |
Thrust | 2,040 kgf |
Specific impulse | 214 sec |
Burn time | 6 seconds |
Propellant | Solid |
The Jupiter-C was a type of sounding rocket used for three sub-orbital spaceflights conducted in 1956 and 1957. It was designed by the Army Ballistic Missile Agency (ABMA), and all three flights were launched from the Cape Canaveral Air Force Station.
Description
Each vehicle consisted of a modified Redstone ballistic missile with two solid-propellant upper stages. The tanks of the Redstone were lengthened by 8 ft (2.4 m) to provide additional propellant. The instrument compartment was also smaller and lighter than the Redstone's. The second and third stages were clustered in a "tub" atop the vehicle. The second stage was an outer ring of eleven scaled-down Sergeant rocket engines; the third stage was a cluster of three scaled-down Sergeant rockets grouped within. These were held in position by bulkheads and rings and surrounded by a cylindrical outer shell. The webbed base plate of the shell rested on a ball bearing shaft mounted on the first-stage instrument section. Two electric motors spun in the tub at a rate varying from 450 to 750 rpm to compensate for thrust imbalance when the clustered motors fired. The rate of spin was varied by a programmer so that it did not couple with the changing resonance frequency of the first stage during flight.
The upper-stage tub was spun-up before launch. During first-stage flight, the vehicle was guided by a gyro-controlled autopilot controlling both air-vanes and jet vanes on the first stage by means of servos. Following a vertical launch from a simple steel table, the vehicle was programmed so that it was travelling at an angle of 40 degrees from the horizontal at burnout of the first stage, which occurred 157 seconds after launch. At first-stage burnout, explosive bolts fired and springs separated the instrument section from the first-stage tankage. The instrument section and the spinning tub were slowly tipped to a horizontal position by means of four air jets located at the base of the instrument section. When the apex of the vertical flight occurred after a coasting flight of about 247 seconds, a radio signal from the ground ignited the eleven-rocket cluster of the second stage, separating the tub from the instrument section. The third stage then fired to raise the apogee.
Through this system, invented by Wernher von Braun in 1956 for his proposed Project Orbiter, the Jupiter-C obviated the need for a guidance system in the upper stages.
The Juno I was a satellite launch vehicle based on the Jupiter-C, but with the addition of a fourth stage, atop the "tub" of the third stage. The name derived from von Braun wishing to make it appear as peaceable as the Vanguard rocket, which was not a weapon, but was developed from a weather study rocket, the Viking. Sometimes the Jupiter-C is incorrectly referred to as the Juno.
The Jupiter-C was used as a testbed for testing re-entry nosecones that were later to be deployed on the more advanced Jupiter IRBM mobile missile.
General characteristics
- Weight as configured for Explorer 1 launch, loaded/empty
- Overall, takeoff: 64,000 lb (29,000 kg)/10,230 lb (4640 kg)
- Stage 1 62,700 lb (28,400 kg)/9,600 lb (4,400 kg)
- Stage 2 1,020 lb (460 kg)/490 lb (220 kg)
- Stage 3 280 lb (130 kg)/140 lb (64 kg)
- Propulsion
- Stage 1: Rocketdyne A-7 engine
- Thrust, 83,000 lbf (370 kN)
- burning time, 155 s
- specific impulse, 235 s (2.30 kN·s/kg)
- propellants, liquid oxygen, as oxidizer, and "Hydyne" (60% unsymmetrical dimethylhydrazine and 40% diethylenetriamine), as fuel
- propellant feed, turbopump type
- turbopump drive, 90% hydrogen peroxide decomposed by catalyst bed to produce steam
- Stage 2: Eleven JPL scaled-down Sergeant rockets
- Thrust, 16,500 lbf (73 kN)
- burning time, 6.5 s
- specific impulse, 220 s (2.16 kN·s/kg)
- propellant, polysulfide-aluminum and ammonium perchlorate (solid propellant)
- Stage 3: Three JPL scaled-down Sergeant rockets
- Thrust, 4,500 lbf (24 kN)
- burning time, 6.5 s
- specific impulse, 235 s (2.30 kN·s/kg)
- propellant, same as for Stage 2
- Stage 1: Rocketdyne A-7 engine
Flight history
20 September 1956: Lifted an 86.5-lb (39.2 kg) payload (including a 30-lb (14 kg) dummy satellite) to an altitude of 680 mi (1,100 km), a speed of 16,000 mph (7 km/s), and a range of 3,300 mi (5,300 km) from Cape Canaveral, Florida.[1]
15 May 1957: Lifted an 300 lb (140 kg) scale Jupiter ablative nose cone to an altitude of 350 mi (560 km) and a range of 710 mi (1,100 km).
8 August 1957: Lifted a 1/3-scale Jupiter nose cone to an altitude of 285 mi (460 km) and a range of 1,330 mi (2,140 km). Juno-I (four-stage configuration).
Source: Data Sheet, Department of Astronautics, National Air and Space Museum, Smithsonian Institution.
References
This article needs additional citations for verification. (October 2007) |
- ^ "Explorer-I and Jupiter-C". NASA.