CYP4F2: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
added links to coumarin
m Expanded the reference
Line 9: Line 9:
The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids, fatty acids, and other lipids. This protein localizes to the endoplasmic reticulum. The enzyme starts the process of inactivating and degrading [[leukotriene B4]], a potent mediator of inflammation. This gene is part of a cluster of cytochrome P450 genes on chromosome 19. Another member of this family, CYP4F11, is approximately 16 kb away.<ref name="entrez"/>
The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids, fatty acids, and other lipids. This protein localizes to the endoplasmic reticulum. The enzyme starts the process of inactivating and degrading [[leukotriene B4]], a potent mediator of inflammation. This gene is part of a cluster of cytochrome P450 genes on chromosome 19. Another member of this family, CYP4F11, is approximately 16 kb away.<ref name="entrez"/>


The enzyme CYP4F2 regulates the bioavailability of [[Vitamin E]] and [[Vitamin K]], a co-factor that is critical to blood clotting. Variations in the ''CYP4F2'' gene that affect the bioavailability of Vitamin K also affect the dosing of Vitamin K antagonists such as [[warfarin]], [[coumarin]] or [[acenocoumarol]].<ref name="PharmKGB">{{cite web |url=https://www.pharmgkb.org/vip/PA166169424 |title=Very Important Pharmacogene: CYP4F2}}</ref><ref name="coumarin">{{cite web |url=https://pubmed.ncbi.nlm.nih.gov/30506689/}}</ref> The enzyme also regulates bioactivation of various drugs, e.g. the anti-malarial drug pafuramidine.
The enzyme CYP4F2 regulates the bioavailability of [[Vitamin E]] and [[Vitamin K]], a co-factor that is critical to blood clotting. Variations in the ''CYP4F2'' gene that affect the bioavailability of Vitamin K also affect the dosing of Vitamin K antagonists such as [[warfarin]], [[coumarin]] or [[acenocoumarol]].<ref name="PharmKGB">{{cite web |url=https://www.pharmgkb.org/vip/PA166169424 |title=Very Important Pharmacogene: CYP4F2}}</ref><ref name="coumarin">{{cite journal |pmid = 30506689|year = 2019|last1 = Danese|first1 = E.|last2 = Raimondi|first2 = S.|last3 = Montagnana|first3 = M.|last4 = Tagetti|first4 = A.|last5 = Langaee|first5 = T.|last6 = Borgiani|first6 = P.|last7 = Ciccacci|first7 = C.|last8 = Carcas|first8 = A. J.|last9 = Borobia|first9 = A. M.|last10 = Tong|first10 = H. Y.|last11 = Dávila-Fajardo|first11 = C.|last12 = Rodrigues Botton|first12 = M.|last13 = Bourgeois|first13 = S.|last14 = Deloukas|first14 = P.|last15 = Caldwell|first15 = M. D.|last16 = Burmester|first16 = J. K.|last17 = Berg|first17 = R. L.|last18 = Cavallari|first18 = L. H.|last19 = Drozda|first19 = K.|last20 = Huang|first20 = M.|last21 = Zhao|first21 = L. Z.|last22 = Cen|first22 = H. J.|last23 = Gonzalez-Conejero|first23 = R.|last24 = Roldan|first24 = V.|last25 = Nakamura|first25 = Y.|last26 = Mushiroda|first26 = T.|last27 = Gong|first27 = I. Y.|last28 = Kim|first28 = R. B.|last29 = Hirai|first29 = K.|last30 = Itoh|first30 = K.|title = Effect of CYP4F2, VKORC1, and CYP2C9 in Influencing Coumarin Dose: A Single-Patient Data Meta-Analysis in More Than 15,000 Individuals|journal = Clinical Pharmacology and Therapeutics|volume = 105|issue = 6|pages = 1477–1491|doi = 10.1002/cpt.1323|pmc = 6542461|displayauthors = 29}}</ref> The enzyme also regulates bioactivation of various drugs, e.g. the anti-malarial drug pafuramidine.


=== Eicosanoids ===
=== Eicosanoids ===

Revision as of 20:26, 3 July 2020

CYP4F2
Identifiers
AliasesCYP4F2, CPF2, cytochrome P450 family 4 subfamily F member 2
External IDsOMIM: 604426 MGI: 1919304 HomoloGene: 128623 GeneCards: CYP4F2
EC number1.14.14.94
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001082

NM_024444

RefSeq (protein)

NP_001073

NP_077764

Location (UCSC)Chr 19: 15.88 – 15.9 MbChr 8: 72.74 – 72.76 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Leukotriene-B(4) omega-hydroxylase 1 is an enzyme that in humans is encoded by the CYP4F2 gene.[5][6][7]

Function

Introduction

This gene encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids, fatty acids, and other lipids. This protein localizes to the endoplasmic reticulum. The enzyme starts the process of inactivating and degrading leukotriene B4, a potent mediator of inflammation. This gene is part of a cluster of cytochrome P450 genes on chromosome 19. Another member of this family, CYP4F11, is approximately 16 kb away.[7]

The enzyme CYP4F2 regulates the bioavailability of Vitamin E and Vitamin K, a co-factor that is critical to blood clotting. Variations in the CYP4F2 gene that affect the bioavailability of Vitamin K also affect the dosing of Vitamin K antagonists such as warfarin, coumarin or acenocoumarol.[8][9] The enzyme also regulates bioactivation of various drugs, e.g. the anti-malarial drug pafuramidine.

Eicosanoids

Arachidonic Acid is a precursor of the eicosanoids, which are signaling molecules that mediate the inflammation and immune response. Acute inflammation at the site of injury or infection protects the body from pathogens but prolonged inflammation damages healthy cells and tissue; thus inflammation must be tightly controlled. Leukotriene B 4 is a pro-inflammatory eicosanoid that induces activation of polymorphonuclear leukocytes, monocytes, and fibroblasts, generation of superoxide, and the release of cytokines to attract neutrophils.[10][11][12][13][14]

Metabolism of Arachidonic Acid to 20-Hydroxyeicosatetraenoic acid

CYP4F2 along with CYP4A22, CYP4A11, and CYP4F3 and CYP2U1 also metabolize arachidonic acid to 20-Hydroxyeicosatetraenoic acid (20-HETE) by an ω-oxidation reaction with the predominant 20-HETE-synthesizing enzymes in humans being CYP4F2 followed by CYP4A11. 20-HETE regulates blood flow, vascularization, blood pressure, and kidney tubule absorption of ions in rodents and possibly humans.[15] Gene polymorphism variants of CYP4F2 are associated with the development of hypertension, cerebral infarction (i.e. ischemic stroke), and myocardial infarction.[16][17][18][18][19][17][18][20][20][21][22][23][24] The G1347A variant of CYP4F2 produces an enzyme with methionine in place of valium at position 433 (Val433Met; single nucleotide variant rs2108622); the variant enzyme has reduce capacity to metabolize arachidonic acid to 20-HETE but increased urinary excretion of 20-HETE.[25][26][27]

Metabolism of Other Fatty Acids

Members of the CYP4A and CYP4F sub-families may also ω-hydroxylate and thereby reduce the activity of various fatty acid metabolites of arachidonic acid including LTB4, 5-HETE, 5-oxo-eicosatetraenoic acid, 12-HETE, and several prostaglandins that are involved in regulating various inflammatory, vascular, and other responses in animals and humans.[28][29] This hydroxylation-induced inactivation may underlie the proposed roles of the cytochromes in dampening inflammatory responses and the reported associations of certain CYP4F2 single nucleotide variants (SNPs) with human Crohn's disease (rs2108622)[30] and Coeliac disease (rs3093156 and rs3093156).[31][32][33][34][35]

Genetic variants

The T allele at rs2108622 (Val433Met) has a role in eicosanoid metabolism. It also has a role in affecting doses of warfarin[36] or coumarin.[9] It is also associated with increased blood pressure [37][38] and decreased Vitamin E metabolism.[39][40] It also affects the bioavailability of Vitamin K.


References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000186115Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000003484Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Chen L, Hardwick JP (Jan 1993). "Identification of a new P450 subfamily, CYP4F1, expressed in rat hepatic tumors". Archives of Biochemistry and Biophysics. 300 (1): 18–23. doi:10.1006/abbi.1993.1003. PMID 8424651.
  6. ^ Kikuta Y, Kusunose E, Kondo T, Yamamoto S, Kinoshita H, Kusunose M (Jul 1994). "Cloning and expression of a novel form of leukotriene B4 omega-hydroxylase from human liver". FEBS Letters. 348 (1): 70–4. doi:10.1016/0014-5793(94)00587-7. PMID 8026587.
  7. ^ a b "Entrez Gene: CYP4F2 cytochrome P450, family 4, subfamily F, polypeptide 2".
  8. ^ "Very Important Pharmacogene: CYP4F2".
  9. ^ a b Danese, E.; Raimondi, S.; Montagnana, M.; Tagetti, A.; Langaee, T.; Borgiani, P.; Ciccacci, C.; Carcas, A. J.; Borobia, A. M.; Tong, H. Y.; Dávila-Fajardo, C.; Rodrigues Botton, M.; Bourgeois, S.; Deloukas, P.; Caldwell, M. D.; Burmester, J. K.; Berg, R. L.; Cavallari, L. H.; Drozda, K.; Huang, M.; Zhao, L. Z.; Cen, H. J.; Gonzalez-Conejero, R.; Roldan, V.; Nakamura, Y.; Mushiroda, T.; Gong, I. Y.; Kim, R. B.; Hirai, K.; Itoh, K. (2019). "Effect of CYP4F2, VKORC1, and CYP2C9 in Influencing Coumarin Dose: A Single-Patient Data Meta-Analysis in More Than 15,000 Individuals". Clinical Pharmacology and Therapeutics. 105 (6): 1477–1491. doi:10.1002/cpt.1323. PMC 6542461. PMID 30506689. {{cite journal}}: Unknown parameter |displayauthors= ignored (|display-authors= suggested) (help)
  10. ^ Jin, R.; Koop, D. R.; Raucy, J. L.; Lasker, J. M. (1998). "Role of human CYP4F2 in hepatic catabolism of the proinflammatory agent leukotriene B4". Archives of Biochemistry and Biophysics. 359 (1): 89–98. doi:10.1006/abbi.1998.0880. PMID 9799565.
  11. ^ Yokomizo, T.; Izumi, T.; Shimizu, T. (2001). "Leukotriene B4: Metabolism and signal transduction". Archives of Biochemistry and Biophysics. 385 (2): 231–41. doi:10.1006/abbi.2000.2168. PMID 11368003.
  12. ^ Kalsotra, A.; Strobel, H. W. (2006). "Cytochrome P450 4F subfamily: At the crossroads of eicosanoid and drug metabolism". Pharmacology & Therapeutics. 112 (3): 589–611. doi:10.1016/j.pharmthera.2006.03.008. PMID 16926051.
  13. ^ Stec, D. E.; Roman, R. J.; Flasch, A.; Rieder, M. J. (2007). "Functional polymorphism in human CYP4F2 decreases 20-HETE production". Physiological Genomics. 30 (1): 74–81. doi:10.1152/physiolgenomics.00003.2007. PMID 17341693.
  14. ^ Hardwick, J. P. (2008). "Cytochrome P450 omega hydroxylase (CYP4) function in fatty acid metabolism and metabolic diseases". Biochemical Pharmacology. 75 (12): 2263–75. doi:10.1016/j.bcp.2008.03.004. PMID 18433732.
  15. ^ Hoopes SL, Garcia V, Edin ML, Schwartzman ML, Zeldin DC (Jul 2015). "Vascular actions of 20-HETE". Prostaglandins & Other Lipid Mediators. 120: 9–16. doi:10.1016/j.prostaglandins.2015.03.002. PMC 4575602. PMID 25813407.
  16. ^ Ward, N. C.; Tsai, I. J.; Barden, A; Van Bockxmeer, F. M.; Puddey, I. B.; Hodgson, J. M.; Croft, K. D. (2008). "A single nucleotide polymorphism in the CYP4F2 but not CYP4A11 gene is associated with increased 20-HETE excretion and blood pressure". Hypertension. 51 (5): 1393–8. doi:10.1161/HYPERTENSIONAHA.107.104463. PMID 18391101.
  17. ^ a b Fava, C; Montagnana, M; Almgren, P; Rosberg, L; Lippi, G; Hedblad, B; Engström, G; Berglund, G; Minuz, P; Melander, O (2008). "The V433M variant of the CYP4F2 is associated with ischemic stroke in male Swedes beyond its effect on blood pressure". Hypertension. 52 (2): 373–80. CiteSeerX 10.1.1.541.9456. doi:10.1161/HYPERTENSIONAHA.108.114199. PMID 18574070.
  18. ^ a b c Munshi, A; Sharma, V; Kaul, S; Al-Hazzani, A; Alshatwi, A. A.; Shafi, G; Koppula, R; Mallemoggala, S. B.; Jyothy, A (2012). "Association of 1347 G/A cytochrome P450 4F2 (CYP4F2) gene variant with hypertension and stroke". Molecular Biology Reports. 39 (2): 1677–82. doi:10.1007/s11033-011-0907-y. PMID 21625857. S2CID 14217802.
  19. ^ Fu, Z; Nakayama, T; Sato, N; Izumi, Y; Kasamaki, Y; Shindo, A; Ohta, M; Soma, M; Aoi, N; Sato, M; Matsumoto, K; Ozawa, Y; Ma, Y (2008). "Haplotype-based case-control study of the human CYP4F2 gene and essential hypertension in Japanese subjects". Hypertension Research. 31 (9): 1719–26. doi:10.1291/hypres.31.1719. PMID 18971550.
  20. ^ a b Fu, Z; Nakayama, T; Sato, N; Izumi, Y; Kasamaki, Y; Shindo, A; Ohta, M; Soma, M; Aoi, N; Sato, M; Matsumoto, K; Ozawa, Y; Ma, Y (2008). "A haplotype of the CYP4F2 gene is associated with cerebral infarction in Japanese men". American Journal of Hypertension. 21 (11): 1216–23. doi:10.1038/ajh.2008.276. PMID 18787519.
  21. ^ Ward, N. C.; Croft, K. D.; Puddey, I. B.; Phillips, M; Van Bockxmeer, F; Beilin, L. J.; Barden, A. E. (2014). "The effect of a single nucleotide polymorphism of the CYP4F2 gene on blood pressure and 20-hydroxyeicosatetraenoic acid excretion after weight loss" (PDF). Journal of Hypertension. 32 (7): 1495–502, discussion 1502. doi:10.1097/HJH.0000000000000208. PMID 24984178. S2CID 6754178.
  22. ^ Ding, H; Cui, G; Zhang, L; Xu, Y; Bao, X; Tu, Y; Wu, B; Wang, Q; Hui, R; Wang, W; Dackor, R. T.; Kissling, G. E.; Zeldin, D. C.; Wang, D. W. (2010). "Association of common variants of CYP4A11 and CYP4F2 with stroke in the Han Chinese population". Pharmacogenetics and Genomics. 20 (3): 187–94. doi:10.1097/FPC.0b013e328336eefe. PMC 3932492. PMID 20130494.
  23. ^ Fu, Z; Nakayama, T; Sato, N; Izumi, Y; Kasamaki, Y; Shindo, A; Ohta, M; Soma, M; Aoi, N; Sato, M; Ozawa, Y; Ma, Y; Matsumoto, K; Doba, N; Hinohara, S (2009). "A haplotype of the CYP4F2 gene associated with myocardial infarction in Japanese men". Molecular Genetics and Metabolism. 96 (3): 145–7. doi:10.1016/j.ymgme.2008.11.161. PMID 19097922.
  24. ^ Stec, D. E.; Roman, R. J.; Flasch, A; Rieder, M. J. (2007). "Functional polymorphism in human CYP4F2 decreases 20-HETE production". Physiological Genomics. 30 (1): 74–81. doi:10.1152/physiolgenomics.00003.2007. PMID 17341693.
  25. ^ Stec, D. E.; Roman, R. J.; Flasch, A; Rieder, M. J. (2007). "Functional polymorphism in human CYP4F2 decreases 20-HETE production". Physiological Genomics. 30 (1): 74–81. doi:10.1152/physiolgenomics.00003.2007. PMID 17341693.
  26. ^ Fava, C; Ricci, M; Melander, O; Minuz, P (2012). "Hypertension, cardiovascular risk and polymorphisms in genes controlling the cytochrome P450 pathway of arachidonic acid: A sex-specific relation?". Prostaglandins & Other Lipid Mediators (Submitted manuscript). 98 (3–4): 75–85. doi:10.1016/j.prostaglandins.2011.11.007. PMID 22173545.
  27. ^ Wang, T.; Xu, L. (2019). "Circulating Vitamin e Levels and Risk of Coronary Artery Disease and Myocardial Infarction: A Mendelian Randomization Study". Nutrients. 11 (9): 2153. doi:10.3390/nu11092153. PMC 6770080. PMID 31505768.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  28. ^ Kikuta, Y; Kusunose, E; Sumimoto, H; Mizukami, Y; Takeshige, K; Sakaki, T; Yabusaki, Y; Kusunose, M (1998). "Purification and characterization of recombinant human neutrophil leukotriene B4 omega-hydroxylase (cytochrome P450 4F3)". Archives of Biochemistry and Biophysics. 355 (2): 201–5. doi:10.1006/abbi.1998.0724. PMID 9675028.
  29. ^ Hardwick, J. P. (2008). "Cytochrome P450 omega hydroxylase (CYP4) function in fatty acid metabolism and metabolic diseases". Biochemical Pharmacology. 75 (12): 2263–75. doi:10.1016/j.bcp.2008.03.004. PMID 18433732.
  30. ^ http://www.snpedia.com/index.php/Rs2108622
  31. ^ Curley, C. R.; Monsuur, A. J.; Wapenaar, M. C.; Rioux, J. D.; Wijmenga, C (2006). "A functional candidate screen for coeliac disease genes". European Journal of Human Genetics. 14 (11): 1215–22. doi:10.1038/sj.ejhg.5201687. PMID 16835590.
  32. ^ Corcos, L; Lucas, D; Le Jossic-Corcos, C; Dréano, Y; Simon, B; Plée-Gautier, E; Amet, Y; Salaün, J. P. (2012). "Human cytochrome P450 4F3: Structure, functions, and prospects". Drug Metabolism and Drug Interactions. 27 (2): 63–71. doi:10.1515/dmdi-2011-0037. PMID 22706230. S2CID 5258044.
  33. ^ Costea, I; Mack, D. R.; Lemaitre, R. N.; Israel, D; Marcil, V; Ahmad, A; Amre, D. K. (2014). "Interactions between the dietary polyunsaturated fatty acid ratio and genetic factors determine susceptibility to pediatric Crohn's disease". Gastroenterology. 146 (4): 929–31. doi:10.1053/j.gastro.2013.12.034. PMID 24406470.
  34. ^ Costea, I; Mack, D. R.; Israel, D; Morgan, K; Krupoves, A; Seidman, E; Deslandres, C; Lambrette, P; Grimard, G; Levy, E; Amre, D. K. (2010). "Genes involved in the metabolism of poly-unsaturated fatty-acids (PUFA) and risk for Crohn's disease in children & young adults". PLOS ONE. 5 (12): e15672. Bibcode:2010PLoSO...515672C. doi:10.1371/journal.pone.0015672. PMC 3004960. PMID 21187935.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  35. ^ Hardwick, J. P. (2008). "Cytochrome P450 omega hydroxylase (CYP4) function in fatty acid metabolism and metabolic diseases". Biochemical Pharmacology. 75 (12): 2263–75. doi:10.1016/j.bcp.2008.03.004. PMID 18433732.
  36. ^ Zhang, J. E.; Klein, K.; Jorgensen, A. L.; Francis, B.; Alfirevic, A.; Bourgeois, S.; Deloukas, P.; Zanger, U. M.; Pirmohamed, M. (2017). "Effect of Genetic Variability in the CYP4F2, CYP4F11, and CYP4F12 Genes on Liver mRNA Levels and Warfarin Response". Frontiers in Pharmacology. 8: 323. doi:10.3389/fphar.2017.00323. PMC 5449482. PMID 28620303.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  37. ^ Ward, N. C.; Tsai, I. J.; Barden, A.; Van Bockxmeer, F. M.; Puddey, I. B.; Hodgson, J. M.; Croft, K. D. (2008). "A single nucleotide polymorphism in the CYP4F2 but not CYP4A11 gene is associated with increased 20-HETE excretion and blood pressure". Hypertension (Dallas, Tex. : 1979). 51 (5): 1393–8. doi:10.1161/HYPERTENSIONAHA.107.104463. PMID 18391101.
  38. ^ Ward, N. C.; Croft, K. D.; Puddey, I. B.; Phillips, M.; Van Bockxmeer, F.; Beilin, L. J.; Barden, A. E. (2014). "The effect of a single nucleotide polymorphism of the CYP4F2 gene on blood pressure and 20-hydroxyeicosatetraenoic acid excretion after weight loss" (PDF). Journal of Hypertension. 32 (7): 1495–502, discussion 1502. doi:10.1097/HJH.0000000000000208. PMID 24984178. S2CID 6754178.
  39. ^ Bardowell, S. A.; Stec, D. E.; Parker, R. S. (2010). "Common variants of cytochrome P450 4F2 exhibit altered vitamin E-{omega}-hydroxylase specific activity". The Journal of Nutrition. 140 (11): 1901–6. doi:10.3945/jn.110.128579. PMC 2955872. PMID 20861217.
  40. ^ Major, J. M.; Yu, K.; Wheeler, W.; Zhang, H.; Cornelis, M. C.; Wright, M. E.; Yeager, M.; Snyder, K.; Weinstein, S. J.; Mondul, A.; Eliassen, H.; Purdue, M.; Hazra, A.; McCarty, C. A.; Hendrickson, S.; Virtamo, J.; Hunter, D.; Chanock, S.; Kraft, P.; Albanes, D. (2011). "Genome-wide association study identifies common variants associated with circulating vitamin e levels". Human Molecular Genetics. 20 (19): 3876–83. doi:10.1093/hmg/ddr296. PMC 3168288. PMID 21729881.

Further reading