Carvacrol

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Carvacrol[1]
Carvacrol
Names
Preferred IUPAC name
2-Methyl-5-(propan-2-yl)phenol
Other names
5-Isopropyl-2-methylphenol
2-Methyl-5-(1-methylethyl)phenol
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.007.173
KEGG
UNII
Properties
C10H14O
Molar mass 150.217 g/mol
Density 0.9772 g/cm3 at 20 °C
Melting point 1 °C (34 °F; 274 K)
Boiling point 237.7 °C (459.9 °F; 510.8 K)
insoluble
Solubility soluble in ethanol, diethyl ether, carbon tetrachloride, acetone[2]
-109.1·10−6 cm3/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Carvacrol, or cymophenol, C6H3CH3(OH)(C3H7), is a monoterpenoid phenol. It has a characteristic pungent, warm odor of oregano.[3]

Natural occurrence[edit]

Carvacrol is present in the essential oil of Origanum vulgare (oregano), oil of thyme, oil obtained from pepperwort, and wild bergamot. The essential oil of thyme subspecies contains between 5 and 75% of carvacrol, while Satureja (savory) subspecies have a content between 1 and 45%.[4] Origanum majorana (marjoram) and Dittany of Crete are rich in carvacrol, 50% and 60-80% respectively.[5]

It is also found in tequila[6] and Lippia graveolens (Mexican oregano) in the verbena family.

Biological properties and use[edit]

Carvacrol inhibits the growth of several bacteria strains, e.g. Escherichia coli[7] and Bacillus cereus. Its low toxicity together with its pleasant taste and smell suggests its use as a food additive to prevent bacterial contamination.[8] In Pseudomonas aeruginosa it causes damages to the cell membrane of these bacteria and, unlike other terpenes, inhibits their proliferation.[9] The cause of the antimicrobial properties is believed to be disruption of the bacteria membrane.[10][11]

It is a potent activator of the human ion channels transient receptor potential V3 (TRPV3) and A1 (TRPA1).[12] Application of carvacrol on the human tongue, as well as activation of TRPV3, causes a sensation of warmth. In addition, carvacrol also activates, but then rapidly desensitizes, the pain receptor TRPA1; this explains its pungency.[12]

It activates PPAR and suppresses COX-2 inflammation.[13]

In rats, carvacrol is quickly metabolized and excreted. The main metabolic route is esterification of the phenolic group with sulfuric acid and glucuronic acid. A minor pathway is oxidation of the terminal methyl groups to primary alcohols. After 24 hours, only very small amounts of carvacrol or its metabolites could be found in urine, indicating an almost complete excretion within one day.[14]

A study led by Supriya Bavadekar in 2012 reported carvacrol stimulates apoptosis in prostate cancer cells.[15] In 2015, another study using rats with carcinogenic DMH injections showed carvacrol at 40 mg/kg bt.w reversed carcinogenic effects on colon cells, however, the therapeutic effects were substantially increased when combined X-radiation treatment.[16] A follow up study by the same lead researcher in 2016 provided additional evidence for this effect.[17] These studies are preliminary and further research is required. Both pro and anti-apoptotic effect of this compound have been proposed in various cellular systems, but conclusive evidence to support a direct effect is lacking.[18][19][20][21]

Synthesis and derivatives[edit]

Carvacrol may be synthetically prepared by the fusion of cymol sulfonic acid with caustic potash; by the action of nitrous acid on 1-methyl-2-amino-4-propyl benzene; by prolonged heating of five parts of camphor with one part of iodine; or by heating carvol with glacial phosphoric acid or by performing a dehydrogenation of carvone with a Pd/C catalyst. It is extracted from Origanum oil by means of a 50% potash solution. It is a thick oil that sets at 20 °C to a mass of crystals of melting point 0 °C, and boiling point 236–237 °C. Oxidation with ferric chloride converts it into dicarvacrol, whilst phosphorus pentachloride transforms it into chlorcymol.

List of the plants that contain the chemical[edit]

Toxicology[edit]

Carvacrol does not have many long-term genotoxic risks. The cytotoxic effect of carvacrol can make it an effective antiseptic and antimicrobial agent. Carvacrol has been found to show antioxidant activity.[32]

Antimicrobial activity:

Compendial status[edit]

See also[edit]

Notes and references[edit]

  1. ^ "Carvacrol data sheet from Sigma-Aldrich". 
  2. ^ Lide, David R. (1998). Handbook of Chemistry and Physics (87 ed.). Boca Raton, FL: CRC Press. pp. 3–346. ISBN 0-8493-0594-2. 
  3. ^ Ultee, A; Slump, R. A.; Steging, G; Smid, E. J. (2000). "Antimicrobial activity of carvacrol toward Bacillus cereus on rice". Journal of food protection. 63 (5): 620–4. PMID 10826719. 
  4. ^ Vladić, Jelena; Zeković, Zoran; Jokić, Stela; Svilović, Sandra; Kovačević, Strahinja; Vidović, Senka (November 2016). "Winter savory: Supercritical carbon dioxide extraction and mathematical modeling of extraction process". The Journal of Supercritical Fluids. 117: 89–97. doi:10.1016/j.supflu.2016.05.027. Retrieved 28 September 2017. 
  5. ^ De Vincenzi, M.; Stammati, A.; De Vincenzi, A.; Silano, M. (2004). "Constituents of aromatic plants: Carvacrol". Fitoterapia. 75 (7–8): 801–4. doi:10.1016/j.fitote.2004.05.002. PMID 15567271. 
  6. ^ De León-Rodríguez, Antonio; Escalante-Minakata, Pilar; Jiménez-García, María I.; Ordoñez-Acevedo, Leandro G.; Flores, José L. Flores; de la Rosa, Ana P. Barba (2008). "Characterization of volatile compounds from ethnic Agave alcoholic beverages by gas chromatography-mass spectrometry". Food Technology and Biotechnology. 46 (4): 448–55. 
  7. ^ Du, Wen-Xian; Olsen, Carl W.; Avena-Bustillos, Roberto J.; McHugh, Tara H.; Levin, Carol E.; Friedman, Mendel (2008). "Storage Stability and Antibacterial Activity against Escherichia coli O157:H7 of Carvacrol in Edible Apple Films Made by Two Different Casting Methods". Journal of Agricultural and Food Chemistry. 56 (9): 3082–8. doi:10.1021/jf703629s. PMID 18366181. 
  8. ^ Ultee, A; Smid, E.J (2001). "Influence of carvacrol on growth and toxin production by Bacillus cereus". International Journal of Food Microbiology. 64 (3): 373–8. doi:10.1016/S0168-1605(00)00480-3. PMID 11294360. 
  9. ^ Cox, S.D.; Markham, J.L. (2007). "Susceptibility and intrinsic tolerance of Pseudomonas aeruginosato selected plant volatile compounds". Journal of Applied Microbiology. 103 (4): 930–6. doi:10.1111/j.1365-2672.2007.03353.x. PMID 17897196. 
  10. ^ Di Pasqua, Rosangela; Betts, Gail; Hoskins, Nikki; Edwards, Mike; Ercolini, Danilo; Mauriello, Gianluigi (2007). "Membrane Toxicity of Antimicrobial Compounds from Essential Oils". Journal of Agricultural and Food Chemistry. 55 (12): 4863–70. doi:10.1021/jf0636465. PMID 17497876. 
  11. ^ Cristani, Mariateresa; d'Arrigo, Manuela; Mandalari, Giuseppina; Castelli, Francesco; Sarpietro, Maria Grazia; Micieli, Dorotea; Venuti, Vincenza; Bisignano, Giuseppe; Saija, Antonella; Trombetta, Domenico (2007). "Interaction of Four Monoterpenes Contained in Essential Oils with Model Membranes: Implications for Their Antibacterial Activity". Journal of Agricultural and Food Chemistry. 55 (15): 6300–8. doi:10.1021/jf070094x. PMID 17602646. 
  12. ^ a b Xu, Haoxing; Delling, Markus; Jun, Janice C; Clapham, David E (2006). "Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels". Nature Neuroscience. 9 (5): 628–35. doi:10.1038/nn1692. PMID 16617338. 
  13. ^ Hotta, Mariko; Nakata, Rieko; Katsukawa, Michiko; Hori, Kazuyuki; Takahashi, Saori; Inoue, Hiroyasu (2010). "Carvacrol, a component of thyme oil, activates PPARα and γ and suppresses COX-2 expression". Journal of Lipid Research. 51 (1): 132–9. doi:10.1194/jlr.M900255-JLR200. PMC 2789773Freely accessible. PMID 19578162. 
  14. ^ Austgulen, Liv-Torill; Solheim, Einar; Scheline, Ronald R. (1987). "Metabolism in Rats ofp-Cymene Derivatives: Carvacrol and Thymol". Pharmacology & Toxicology. 61 (2): 98–102. doi:10.1111/j.1600-0773.1987.tb01783.x. PMID 2959918. 
  15. ^ http://www.fasebj.org/content/26/1_Supplement/1037.5.short
  16. ^ https://link.springer.com/article/10.1007%2Fs11010-015-2536-6
  17. ^ http://www.cancerjournal.net/article.asp?issn=0973-1482;year=2016;volume=12;issue=2;spage=755;epage=762;aulast=Sivaranjani
  18. ^ Bhakkiyalakshmi, E; Suganya, N; Sireesh, D; Krishnamurthi, K; Saravana Devi, S; Rajaguru, P; Ramkumar, K. M. (2016). "Carvacrol induces mitochondria-mediated apoptosis in HL-60 promyelocytic and Jurkat T lymphoma cells". European Journal of Pharmacology. 772: 92–8. doi:10.1016/j.ejphar.2015.12.046. PMID 26724845. 
  19. ^ Zhang, Q; Fan, K; Wang, P; Yu, J; Liu, R; Qi, H; Sun, H; Cao, Y (2016). "Carvacrol induces the apoptosis of pulmonary artery smooth muscle cells under hypoxia". European Journal of Pharmacology. 770: 134–46. doi:10.1016/j.ejphar.2015.11.037. PMID 26607464. 
  20. ^ Cui, Z. W.; Xie, Z. X.; Wang, B. F.; Zhong, Z. H.; Chen, X. Y.; Sun, Y. H.; Sun, Q. F.; Yang, G. Y.; Bian, L. G. (2015). "Carvacrol protects neuroblastoma SH-SY5Y cells against Fe(2+)-induced apoptosis by suppressing activation of MAPK/JNK-NF-κB signaling pathway". Acta Pharmacologica Sinica. 36 (12): 1426–36. doi:10.1038/aps.2015.90. PMC 4816236Freely accessible. PMID 26592517. 
  21. ^ El-Sayed, El-Sayed M.; Mansour, A. M.; Abdul-Hameed, M. S. (2016). "Thymol and Carvacrol Prevent Doxorubicin-Induced Cardiotoxicity by Abrogation of Oxidative Stress, Inflammation, and Apoptosis in Rats". Journal of Biochemical and Molecular Toxicology. 30 (1): 37–44. doi:10.1002/jbt.21740. PMID 26387986. 
  22. ^ https://hort.purdue.edu/newcrop/proceedings1993/V2-628.html[full citation needed]
  23. ^ http://www.herbapolonica.pl/magazines-files/2733672-art.3.pdf[full citation needed]
  24. ^ a b Bouchra, Chebli; Achouri, Mohamed; Idrissi Hassani, L.M; Hmamouchi, Mohamed (2003). "Chemical composition and antifungal activity of essential oils of seven Moroccan Labiatae against Botrytis cinerea Pers: Fr". Journal of Ethnopharmacology. 89 (1): 165–9. doi:10.1016/S0378-8741(03)00275-7. PMID 14522450. 
  25. ^ Liolios, C.C.; Gortzi, O.; Lalas, S.; Tsaknis, J.; Chinou, I. (2009). "Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity". Food Chemistry. 112 (1): 77–83. doi:10.1016/j.foodchem.2008.05.060. 
  26. ^ a b Aligiannis, N.; Kalpoutzakis, E.; Mitaku, Sofia; Chinou, Ioanna B. (2001). "Composition and Antimicrobial Activity of the Essential Oils of Two Origanum Species". Journal of Agricultural and Food Chemistry. 49 (9): 4168–70. doi:10.1021/jf001494m. PMID 11559104. 
  27. ^ Coskun, Sevki; Girisgin, Oya; Kürkcüoglu, Mine; Malyer, Hulusi; Girisgin, Ahmet Onur; Kırımer, Nese; Baser, Kemal Hüsnü (2008). "Acaricidal efficacy of Origanum onites L. Essential oil against Rhipicephalus turanicus (Ixodidae)". Parasitology Research. 103 (2): 259–61. doi:10.1007/s00436-008-0956-x. PMID 18438729. 
  28. ^ Ruberto, Giuseppe; Biondi, Daniela; Meli, Rosa; Piattelli, Mario (1993). "Volatile flavour components of Sicilian Origanum onites L". Flavour and Fragrance Journal. 8 (4): 197–200. doi:10.1002/ffj.2730080406. 
  29. ^ https://www.researchgate.net/profile/Abdollah_Ghasemi_Pirbalouti/publication/235329752_Variation_in_antibacterial_activity_thymol_and_carvacrol_contents_of_wild_populations_of_Thymus_daenensis_subsp_daenensis_Celak/links/0fcfd510dedb8868ac000000.pdf[full citation needed]
  30. ^ Kanias, G. D.; Souleles, C.; Loukis, A.; Philotheou-Panou, E. (1998). "Trace elements and essential oil composition in chemotypes of the aromatic plant Origanum vulgare". Journal of Radioanalytical and Nuclear Chemistry. 227 (1–2): 23–31. doi:10.1007/BF02386426. 
  31. ^ Figiel, Adam; Szumny, Antoni; Gutiérrez-Ortíz, Antonio; Carbonell-Barrachina, Ángel A. (2010). "Composition of oregano essential oil (Origanum vulgare) as affected by drying method". Journal of Food Engineering. 98 (2): 240–7. doi:10.1016/j.jfoodeng.2010.01.002. 
  32. ^ Özkan, Aysun; Erdoğan, Ayşe (2011). "A comparative evaluation of antioxidant and anticancer activity of essential oil from Origanum onites (Lamiaceae) and its two major phenolic components". Tübitak. 35 (6): 735–42. doi:10.3906/biy-1011-170 (inactive 2017-07-04). 
  33. ^ a b c d Andersen, A (2006). "Final Report on the Safety Assessment of Sodium p-Chloro-m-Cresol, p-Chloro-m-Cresol, Chlorothymol, Mixed Cresols, m-Cresol, o-Cresol, p-Cresol, Isopropyl Cresols, Thymol, o-Cymen-5-ol, and Carvacrol". International Journal of Toxicology. 25: 29–127. doi:10.1080/10915810600716653. PMID 16835130. 
  34. ^ The British Pharmacopoeia Secretariat (2009). "Index, BP 2009" (PDF). Archived from the original (PDF) on 11 April 2009. Retrieved 29 March 2010.