Geraniol

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Ntmamgtw (talk | contribs) at 20:17, 3 March 2021 (Copy edit with most changes having no visible output to article. Visible changes include uppercase A→lowercase a in short description and changing of piped wikilink monoterpenoid to unpiped monoterpenoid, despite monoterpenoid redirecting to Monoterpene.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Geraniol[1]
Geraniol
Names
IUPAC name
(2E)-3,7-Dimethyl-2,6-octadien-1-ol
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.003.071 Edit this at Wikidata
EC Number
  • 203-377-1
KEGG
UNII
  • InChI=1S/C10H18O/c1-9(2)5-4-6-10(3)7-8-11/h5,7,11H,4,6,8H2,1-3H3/b10-7+ checkY
    Key: GLZPCOQZEFWAFX-JXMROGBWSA-N checkY
  • InChI=1/C10H18O/c1-9(2)5-4-6-10(3)7-8-11/h5,7,11H,4,6,8H2,1-3H3/b10-7+
    Key: GLZPCOQZEFWAFX-JXMROGBWBZ
  • CC(=CCC/C(=C/CO)/C)C
Properties
C10H18O
Molar mass 154.253 g·mol−1
Density 0.889 g/cm3
Melting point −15 °C (5 °F; 258 K)[2]
Boiling point 230 °C (446 °F; 503 K)[2]
686 mg/L (20 °C)[2]
log P 3.28[3]
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 0: Exposure under fire conditions would offer no hazard beyond that of ordinary combustible material. E.g. sodium chlorideFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
0
1
0
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Geraniol is a monoterpenoid and an alcohol. It is the primary component of rose oil, palmarosa oil, and citronella oil. It is a colorless oil, although commercial samples can appear yellow. It has low solubility in water, but it is soluble in common organic solvents. The functional group derived from geraniol (in essence, geraniol lacking the terminal −OH) is called geranyl.

Uses and occurrence

In addition to rose oil, palmarosa oil, and citronella oil, it also occurs in small quantities in geranium, lemon, and many other essential oils. With a rose-like scent, it is commonly used in perfumes. It is used in flavors such as peach, raspberry, grapefruit, red apple, plum, lime, orange, lemon, watermelon, pineapple, and blueberry.

Geraniol is produced by the scent glands of honeybees to mark nectar-bearing flowers and locate the entrances to their hives.[4] It is also commonly used as an insect repellent, especially for mosquitoes.[5]

It is a byproduct of the metabolism of sorbate and, thus, is a very unpleasant contaminant of wine if bacteria are allowed to grow in it.[further explanation needed]

Biochemistry

Geraniol is important in biosynthesis of other terpenes. For example, myrcene and ocimene are formed by dehydration and isomerization of geraniol.[6]

Reactions

In acidic solutions, geraniol is converted to the cyclic terpene α-terpineol. The alcohol group undergoes expected reactions. It can be converted to the tosylate, which is a precursor to the chloride. Geranyl chloride also arises by the Appel reaction by treating geraniol with triphenylphosphine and carbon tetrachloride.[7][8] It can be hydrogenated.[9] It can be oxidized to the aldehyde geranial.[10]

Health and safety

Geraniol is classified as D2B (Toxic materials causing other effects) using the Workplace Hazardous Materials Information System (WHMIS).[11]

Related compounds

See also

References

  1. ^ "Geraniol". The Merck Index (12th ed.).
  2. ^ a b c Record in the GESTIS Substance Database of the Institute for Occupational Safety and Health
  3. ^ "Geraniol_msds".
  4. ^ Danka, R. G.; Williams, J. L.; Rinderer, T. E. (1990). "A bait station for survey and detection of honey bees" (PDF). Apidologie. 21 (4): 287–292. doi:10.1051/apido:19900403.
  5. ^ Müller, Günter C.; Junnila, Amy; Kravchenko, Vasiliy D.; Revay, Edita E.; Butler, Jerry; Orlova, Olga B.; Weiss, Robert W.; Schlein, Yosef (March 2008). "Ability of essential oil candles to repel biting insects in high and low biting pressure environments". Journal of the American Mosquito Control Association. 24 (1): 154–160. doi:10.2987/8756-971X(2008)24[154:AOEOCT]2.0.CO;2. ISSN 8756-971X. PMID 18437832.
  6. ^ Eggersdorfer, M. "Terpenes". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a26_205. ISBN 978-3527306732.
  7. ^ Stork, Gilbert; Grieco, Paul A.; Gregson, Michael (1974). "Allylic Chlorides from Allylic Alcohols: Geranyl Chloride". Organic Syntheses. 54: 68. doi:10.15227/orgsyn.054.0068.
  8. ^ Jose G. Calzada and John Hooz (1974). "Geranyl chloride". Organic Syntheses. 54: 63. doi:10.15227/orgsyn.054.0063.
  9. ^ Takaya, Hidemasa; Ohta, Tetsuo; Inoue, Shin-ichi; Tokunaga, Makoto; Kitamura, Masato; Noyori, Ryoji (1995). "Asymmetric Hydrogenation of Allylic Alcohols Using Binap-Ruthenium Complexes: (S)-(−)-citronellol". Organic Syntheses. 72: 74. doi:10.15227/orgsyn.072.0074; Collected Volumes, vol. 9, p. 169.
  10. ^ Piancatelli, Giovanni; Leonelli, Francesca (2006). "Oxidation Of Nerol To Neral With Iodosobenzene and TEMPO". Organic Syntheses. 83: 18. doi:10.15227/orgsyn.083.0018.
  11. ^ "MSDS – Geraniol". Sigma-Aldrich. Retrieved June 24, 2014.

External links