Jump to content

Arrestin

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 193.175.73.201 (talk) at 10:14, 2 April 2013 (→‎Mechanism). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

S-antigen; retina and pineal gland (arrestin)
Crystallographic structure of the bovine arrestin-S.[1]
Identifiers
SymbolSAG
Alt. symbolsarrestin-1
NCBI gene6295
HGNC10521
OMIM181031
RefSeqNM_000541
UniProtP10523
Other data
LocusChr. 2 q37.1
Search for
StructuresSwiss-model
DomainsInterPro
arrestin beta 1
Identifiers
SymbolARRB1
Alt. symbolsARR1, arrestin-2
NCBI gene408
HGNC711
OMIM107940
RefSeqNM_004041
UniProtP49407
Other data
LocusChr. 11 q13
Search for
StructuresSwiss-model
DomainsInterPro
arrestin beta 2
Identifiers
SymbolARRB2
Alt. symbolsARR2, arrestin-3
NCBI gene409
HGNC712
OMIM107941
RefSeqNM_004313
UniProtP32121
Other data
LocusChr. 17 p13
Search for
StructuresSwiss-model
DomainsInterPro
arrestin 3, retinal (X-arrestin)
Identifiers
SymbolARR3
Alt. symbolsARRX, arrestin-4
NCBI gene407
HGNC710
OMIM301770
RefSeqNM_004312
UniProtP36575
Other data
LocusChr. X q
Search for
StructuresSwiss-model
DomainsInterPro

Arrestins are a small family of proteins important for regulating signal transduction.[2][3]

Function

Arrestins were first discovered as a part of a conserved two-step mechanism for regulating the activity of G protein-coupled receptors (GPCRs) in the visual rhodopsin system by Hermann Kühn and co-workers[4] and in the β-adrenergic system by Martin J. Lohse and co-workers.[5][6] In response to a stimulus, GPCRs activate heterotrimeric G proteins. In order to turn off this response, or adapt to a persistent stimulus, active receptors need to be sensitized. The first step is phosphorylation by a class of serine/threonine kinases called G protein coupled receptor kinases (GRKs). GRK phosphorylation specifically prepares the activated receptor for arrestin binding. Arrestin binding to the receptor blocks further G protein-mediated signaling and targets receptors for internalization, and redirects signaling to alternative G protein-independent pathways, such as β-arrestin signaling. In addition to GPCRs, arrestins bind to other classes of cell surface receptors and a variety of other signaling proteins.[7]

Subtypes

Mammals express four arrestin subtypes and each arrestin subtype is known by multiple aliases. The systematic arrestin name (1-4) plus the most widely used aliases for each arrestin subtype are listed in bold below:

  • Arrestin-1 was originally identified as the S-antigen (SAG) causing uveitis (autoimmune eye disease), then independently described as a 48 kDa protein that binds light-activated phosphorylated rhodopsin before it became clear that both are one and the same. It was later renamed visual arrestin, but when another cone-specific visual subtype was cloned the term rod arrestin was coined. This also turned out to be a misnomer: arrestin-1 expresses at comparable very high levels in both rod and cone photoreceptor cells.
  • Arrestin-3. The second non-visual arrestin cloned was first termed β-arrestin-2 (retroactively changing the name of β-arrestin into β-arrestin-1), even though by that time it was clear that non-visual arrestins interact with hundreds of different GPCRs, not just with β2-adrenergic receptor. Systematic names, arrestin-2 and arrestin-3, respectively, were proposed soon after that.
  • Arrestin-4 was cloned by two groups and termed cone arrestin, after photoreceptor type that expresses it, and X-arrestin, after the chromosome where its gene resides. In the HUGO database its gene is called arrestin-3.

Fish and other vertebrates appear to have only three arrestins: no equivalent of arrestin-2, which is the most abundant non-visual subtype in mammals, was cloned so far. The proto-chordate C. intestinalis (sea squirt) has only one arrestin, which serves as visual in its mobile larva with highly developed eyes, and becomes generic non-visual in the blind sessile adult. Conserved positions of multiple introns in its gene and those of our arrestin subtypes suggest that they all evolved from this ancestral arrestin.[8] Lower invertebrates, such as roundworm C. elegans, also have only one arrestin. Insects have arr1 and arr2, originally termed “visual arrestins” because they are expressed in photoreceptors, and one non-visual subtype (kurtz in Drosophila). Later arr1 and arr2 were found to play an important role in olfactory neurons and renamed “sensory”. Fungi have distant arrestin relatives involved in pH sensing.

Tissue distribution

One or more arrestin is expressed in virtually every eukaryotic cell. In mammals, arrestin-1 and arrestin-4 are largely confined to photoreceptors, whereas arrestin-2 and arrestin-3 are ubiquitous. Neurons have the highest expression level of both non-visual subtypes. In neuronal precursors both are expressed at comparable levels, whereas in mature neurons arrestin-2 is present at 10-20 fold higher levels than arrestin-3.

Mechanism

Arrestins block GPCR coupling to G proteins via two mechanisms. First, arrestin binding to the cytoplasmic tip of the receptor occludes the binding site for the heterotrimeric G-protein, preventing its activation (desensitization). Second, arrestins link the receptor to elements of the internalization machinery, clathrin and clathrin adaptor AP2, which promotes receptor internalization via coated pits and subsequent transport to internal compartments, called endosomes. Subsequently, the receptor could be either directed to degradation compartments (lysosomes) or recycled back to the plasma membrane where it can once more act as a signal. The strength of arrestin-receptor interaction plays a role in this choice: tighter complexes tend to increase the probability of receptor degradation, whereas more transient complexes favor recycling, although this “rule” is far from absolute.

Structure

Arrestins are elongated molecules, in which several intra-molecular interactions hold the relative orientation of the two domains. In unstimulated cell arrestins are localized in the cytoplasm in this basal “inactive” conformation. Active phosphorylated GPCRs recruit arrestin to the plasma membrane. Receptor binding induces a global conformational change that involves the movement of the two arrestin domains and the release of its C-terminal tail that contains clathrin and AP2 binding sites. Increased accessibility of these sites in receptor-bound arrestin targets the arrestin-receptor complex to the coated pit. Arrestins also bind microtubules (part of the cellular “skeleton”), where they assume yet another conformation, different from both free and receptor-bound form. Microtubule-bound arrestins recruit certain proteins to the cytoskeleton, which affects their activity and/or redirects it to microtubule-associated proteins.

Arrestins shuttle between cell nucleus and cytoplasm. Their nuclear functions are not fully understood, but it was shown that all four mammalian arrestin subtypes remove some of their partners, such as protein kinase JNK3 or the ubiquitin ligase Mdm2, from the nucleus. Arrestins also modify gene expression by enhancing transcription of certain genes.

Arrestin (or S-antigen), N-terminal domain
Structure of arrestin from bovine rod outer segments.[1]
Identifiers
SymbolArrestin_N
PfamPF00339
Pfam clanCL0135
InterProIPR011021
PROSITEPDOC00267
SCOP21cf1 / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
PDB1ayr​ , 1cf1 ​ , 1g4m​ , 1g4r​ , 1jsy ​ , 1zsh
Arrestin (or S-antigen), C-terminal domain
Structure of bovine beta-arrestin.[9]
Identifiers
SymbolArrestin_C
PfamPF02752
Pfam clanCL0135
InterProIPR011022
SCOP21cf1 / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
PDB1ayr​ , 1cf1​ , 1g4m​ , 1g4r​ , 1jsy​ , 1suj​ , 1zsh

References

  1. ^ a b PDB: 1CF1​; Hirsch JA, Schubert C, Gurevich VV, Sigler PB (1999). "The 2.8 A crystal structure of visual arrestin: a model for arrestin's regulation". Cell. 97 (2): 257–69. doi:10.1016/S0092-8674(00)80735-7. PMID 10219246. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) Cite error: The named reference "pmid10219246" was defined multiple times with different content (see the help page).
  2. ^ Moore CA, Milano SK, Benovic JL (2007). "Regulation of receptor trafficking by GRKs and arrestins". Annu. Rev. Physiol. 69: 451–82. doi:10.1146/annurev.physiol.69.022405.154712. PMID 17037978.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. ^ Lefkowitz RJ, Shenoy SK (2005). "Transduction of receptor signals by beta-arrestins". Science. 308 (5721): 512–7. doi:10.1126/science.1109237. PMID 15845844. {{cite journal}}: Unknown parameter |month= ignored (help)
  4. ^ Wilden U, Hall SW, Kühn H (1986). "Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments". Proc Natl Acad Sci USA. 83 (5): 1174–1178. doi:10.1073/pnas.83.5.1174. PMC 323037. PMID 3006038. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  5. ^ Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ (1990). "β-Arrestin: a protein that regulates β-adrenergic receptor function". Science. 248 (4962): 1547–1550. doi:10.1126/science.2163110. PMID 2163110. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  6. ^ Gurevich VV, Gurevich EV (2006). "The structural basis of arrestin-mediated regulation of G-protein-coupled receptors". Pharmacol. Ther. 110 (3): 465–502. doi:10.1016/j.pharmthera.2005.09.008. PMC 2562282. PMID 16460808. {{cite journal}}: Unknown parameter |month= ignored (help)
  7. ^ Gurevich VV, Gurevich EV (2004). "The molecular acrobatics of arrestin activation". Trends Pharmacol. Sci. 25 (2): 105–11. doi:10.1016/j.tips.2003.12.008. PMID 15102497. {{cite journal}}: Unknown parameter |month= ignored (help)
  8. ^ Gurevich EV, Gurevich VV (2006). "Arrestins: ubiquitous regulators of cellular signaling pathways". Genome Biol. 7 (9): 236. doi:10.1186/gb-2006-7-9-236. PMC 1794542. PMID 17020596.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  9. ^ Han M, Gurevich VV, Vishnivetskiy SA, Sigler PB, Schubert C (2001). "Crystal structure of beta-arrestin at 1.9 A: possible mechanism of receptor binding and membrane Translocation". Structure. 9 (9): 869–80. doi:10.1016/S0969-2126(01)00644-X. PMID 11566136. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)