# List of unsolved problems in mathematics

(Redirected from Open problem in mathematics)

Since the Renaissance, every century has seen the solution of more mathematical problems than the century before, and yet many mathematical problems, both major and minor, still remain unsolved.[1] Prizes are often awarded for the solution to a long-standing problem, and lists of unsolved problems (such as the list of Millennium Prize Problems) receive considerable attention. Unsolved problems remain in multiple domains, including physics, computer science, algebra, additive and algebraic number theories, analysis, combinatorics, algebraic, discrete and Euclidean geometries, graph, group, model, number, set and Ramsey theories, dynamical systems, partial differential equations, and miscellaneous unsolved problems.

## Lists of unsolved problems in mathematics

Over the course of time, several lists of unsolved mathematical problems have appeared.

List Number of problems Proposed by Proposed in
Hilbert's problems[2] 23 David Hilbert 1900
Landau's problems[3] 4 Edmund Landau 1912
Taniyama's problems[4] 36 Yutaka Taniyama 1955
Thurston's 24 questions[5][6] 24 William Thurston 1982
Smale's problems 18 Stephen Smale 1998
Millennium Prize problems 7 Clay Mathematics Institute 2000
Unsolved Problems on Mathematics for the 21st Century[7] 22 Jair Minoro Abe, Shotaro Tanaka 2001
DARPA's math challenges[8][9] 23 DARPA 2007

### Millennium Prize Problems

Of the original seven Millennium Prize Problems set by the Clay Mathematics Institute in 2000, six have yet to be solved, as of 2017:[10]

The seventh problem, the Poincaré conjecture, has been solved.[11] The smooth four-dimensional Poincaré conjecture—that is, whether a four-dimensional topological sphere can have two or more inequivalent smooth structures—is still unsolved.[12]

## Unsolved problems

### Dynamical systems

• Lyapunov's second method for stability – For what classes of ODEs, describing dynamical systems, does the Lyapunov’s second method formulated in the classical and canonically generalized forms define the necessary and sufficient conditions for the (asymptotical) stability of motion?
• Furstenberg conjecture – Is every invariant and ergodic measure for the ${\displaystyle \times 2,\times 3}$ action on the circle either Lebesgue or atomic?
• Margulis conjecture — Measure classification for diagonalizable actions in higher-rank groups
• MLC conjecture – Is the Mandelbrot set locally connected?
• Weinstein conjecture – Does a regular compact contact type level set of a Hamiltonian on a symplectic manifold carry at least one periodic orbit of the Hamiltonian flow?
• Is every reversible cellular automaton in three or more dimensions locally reversible?[23]
• Many problems concerning an outer billiard, for example show that outer billiards relative to almost every convex polygon has unbounded orbits.

### Model theory

• Vaught's conjecture
• The Cherlin–Zilber conjecture: A simple group whose first-order theory is stable in ${\displaystyle \aleph _{0}}$ is a simple algebraic group over an algebraically closed field.
• The Main Gap conjecture, e.g. for uncountable first order theories, for AECs, and for ${\displaystyle \aleph _{1}}$-saturated models of a countable theory.[51]
• Determine the structure of Keisler's order[52][53]
• The stable field conjecture: every infinite field with a stable first-order theory is separably closed.
• Is the theory of the field of Laurent series over ${\displaystyle \mathbb {Z} _{p}}$ decidable? of the field of polynomials over ${\displaystyle \mathbb {C} }$?
• (BMTO) Is the Borel monadic theory of the real order decidable? (MTWO) Is the monadic theory of well-ordering consistently decidable?[54]
• The Stable Forking Conjecture for simple theories[55]
• For which number fields does Hilbert's tenth problem hold?
• Assume K is the class of models of a countable first order theory omitting countably many types. If K has a model of cardinality ${\displaystyle \aleph _{\omega _{1}}}$ does it have a model of cardinality continuum?[56]
• Shelah's eventual Categority conjecture: For every cardinal ${\displaystyle \lambda }$ there exists a cardinal ${\displaystyle \mu (\lambda )}$ such that If an AEC K with LS(K)<= ${\displaystyle \lambda }$ is categorical in a cardinal above ${\displaystyle \mu (\lambda )}$ then it is categorical in all cardinals above ${\displaystyle \mu (\lambda )}$.[51][57]
• Shelah's categoricity conjecture for ${\displaystyle L_{\omega _{1},\omega }}$: If a sentence is categorical above the Hanf number then it is categorical in all cardinals above the Hanf number.[51]
• Is there a logic L which satisfies both the Beth property and Δ-interpolation, is compact but does not satisfy the interpolation property?[58]
• If the class of atomic models of a complete first order theory is categorical in the ${\displaystyle \aleph _{n}}$, is it categorical in every cardinal?[59][60]
• Is every infinite, minimal field of characteristic zero algebraically closed? (minimal = no proper elementary substructure)
• Kueker's conjecture[61]
• Does there exist an o-minimal first order theory with a trans-exponential (rapid growth) function?
• Lachlan's decision problem
• Does a finitely presented homogeneous structure for a finite relational language have finitely many reducts?
• Do the Henson graphs have the finite model property? (e.g. triangle-free graphs)
• The universality problem for C-free graphs: For which finite sets C of graphs does the class of C-free countable graphs have a universal member under strong embeddings?[62]
• The universality spectrum problem: Is there a first-order theory whose universality spectrum is minimum?[63]

### Number theory

#### Combinatorial number theory

• Singmaster's conjecture: Is there a finite upper bound on the number of times that a number other than 1 can appear in Pascal's triangle?

## References

1. ^ Eves, An Introduction to the History of Mathematics 6th Edition, Thomson, 1990, ISBN 978-0-03-029558-4.
2. ^ Thiele, Rüdiger (2005), "On Hilbert and his twenty-four problems", in Van Brummelen, Glen, Mathematics and the historian's craft. The Kenneth O. May Lectures, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 21, pp. 243–295, ISBN 0-387-25284-3
3. ^ Guy, Richard (1994), Unsolved Problems in Number Theory (2nd ed.), Springer, p. vii, ISBN 9781489935854.
4. ^ Shimura, G. (1989). "Yutaka Taniyama and his time". Bulletin of the London Mathematical Society. 21 (2): 186–196. doi:10.1112/blms/21.2.186.
5. ^ http://www.uni-regensburg.de/Fakultaeten/nat_Fak_I/friedl/papers/dmv_091514.pdf
6. ^ THREE DIMENSIONAL MANIFOLDS, KLEINIAN GROUPS AND HYPERBOLIC GEOMETRY
7. ^ Abe, Jair Minoro; Tanaka, Shotaro (2001). Unsolved Problems on Mathematics for the 21st Century. IOS Press. ISBN 9051994907.
8. ^ "DARPA invests in math". CNN. 2008-10-14. Archived from the original on 2009-03-04. Retrieved 2013-01-14.
9. ^ "Broad Agency Announcement (BAA 07-68) for Defense Sciences Office (DSO)". DARPA. 2007-09-10. Archived from the original on 2012-10-01. Retrieved 2013-06-25.
10. ^
11. ^ "Poincaré Conjecture". Clay Mathematics Institute. Archived from the original on 2013-12-15.
12. ^
13. ^ For background on the numbers that are the focus of this problem, see articles by Eric W. Weisstein, on pi ([1]), e ([2]), Khinchin's Constant ([3]), irrational numbers ([4]), transcendental numbers ([5]), and irrationality measures ([6]) at Wolfram MathWorld, all articles accessed 15 December 2014.
14. ^ Michel Waldschmidt, 2008, "An introduction to irrationality and transcendence methods," at The University of Arizona The Southwest Center for Arithmetic Geometry 2008 Arizona Winter School, March 15–19, 2008 (Special Functions and Transcendence), see [7], accessed 15 December 2014.
15. ^ John Albert, posting date unknown, "Some unsolved problems in number theory" [from Victor Klee & Stan Wagon, "Old and New Unsolved Problems in Plane Geometry and Number Theory"], in University of Oklahoma Math 4513 course materials, see [8], accessed 15 December 2014.
16. ^ Socolar, Joshua E. S.; Taylor, Joan M. (2012), "Forcing nonperiodicity with a single tile", The Mathematical Intelligencer, 34 (1): 18–28, arXiv:, doi:10.1007/s00283-011-9255-y, MR 2902144
17. ^ Matschke, Benjamin (2014), "A survey on the square peg problem", Notices of the American Mathematical Society, 61 (4): 346–253, doi:10.1090/noti1100
18. ^ Norwood, Rick; Poole, George; Laidacker, Michael (1992), "The worm problem of Leo Moser", Discrete and Computational Geometry, 7 (2): 153–162, doi:10.1007/BF02187832, MR 1139077
19. ^ Wagner, Neal R. (1976), "The Sofa Problem" (PDF), The American Mathematical Monthly, 83 (3): 188–189, doi:10.2307/2977022, JSTOR 2977022
20. ^ Demaine, Erik D.; O'Rourke, Joseph (2007), "Chapter 22. Edge Unfolding of Polyhedra", Geometric Folding Algorithms: Linkages, Origami, Polyhedra, Cambridge University Press, pp. 306–338
21. ^ Bellos, Alex (11 August 2015), "Attack on the pentagon results in discovery of new mathematical tile", The Guardian
22. ^ ACW (May 24, 2012), "Convex uniform 5-polytopes", Open Problem Garden, retrieved 2016-10-04.
23. ^ Kari, Jarkko (2009), "Structure of reversible cellular automata", Unconventional Computation: 8th International Conference, UC 2009, Ponta Delgada, Portugal, September 7ÔÇô11, 2009, Proceedings, Lecture Notes in Computer Science, 5715, Springer, p. 6, doi:10.1007/978-3-642-03745-0_5
24. ^ Florek, Jan (2010), "On Barnette's conjecture", Discrete Mathematics, 310 (10–11): 1531–1535, doi:10.1016/j.disc.2010.01.018, MR 2601261.
25. ^ Broersma, Hajo; Patel, Viresh; Pyatkin, Artem (2014), "On toughness and Hamiltonicity of $2K_2$-free graphs", Journal of Graph Theory, 75 (3): 244–255, doi:10.1002/jgt.21734, MR 3153119
26. ^ Jaeger, F. (1985), "A survey of the cycle double cover conjecture", Annals of Discrete Mathematics 27 – Cycles in Graphs, North-Holland Mathematics Studies, 27, pp. 1–12, doi:10.1016/S0304-0208(08)72993-1.
27. ^ Heckman, Christopher Carl; Krakovski, Roi (2013), "Erdös-Gyárfás conjecture for cubic planar graphs", Electronic Journal of Combinatorics, 20 (2), P7.
28. ^ Akiyama, Jin; Exoo, Geoffrey; Harary, Frank (1981), "Covering and packing in graphs. IV. Linear arboricity", Networks, 11 (1): 69–72, doi:10.1002/net.3230110108, MR 608921.
29. ^ L. Babai, Automorphism groups, isomorphism, reconstruction, in Handbook of Combinatorics, Vol. 2, Elsevier, 1996, 1447–1540.
30. ^ Chung, Fan; Graham, Ron (1998), Erdős on Graphs: His Legacy of Unsolved Problems, A K Peters, pp. 97–99.
31. ^ Toft, Bjarne (1996), "A survey of Hadwiger's conjecture", Congressus Numerantium, 115: 249–283, MR 1411244.
32. ^ Croft, Hallard T.; Falconer, Kenneth J.; Guy, Richard K. (1991), Unsolved Problems in Geometry, Springer-Verlag, Problem G10.
33. ^ Sauer, N. (2001), "Hedetniemi's conjecture: a survey", Discrete Mathematics, 229 (1–3): 261–292, doi:10.1016/S0012-365X(00)00213-2, MR 1815610.
34. ^ Hägglund, Jonas; Steffen, Eckhard (2014), "Petersen-colorings and some families of snarks", Ars Mathematica Contemporanea, 7 (1): 161–173, MR 3047618.
35. ^ Jensen, Tommy R.; Toft, Bjarne (1995), "12.20 List-Edge-Chromatic Numbers", Graph Coloring Problems, New York: Wiley-Interscience, pp. 201–202, ISBN 0-471-02865-7.
36. ^ Huang, C.; Kotzig, A.; Rosa, A. (1982), "Further results on tree labellings", Utilitas Mathematica, 21: 31–48, MR 668845.
37. ^ Molloy, Michael; Reed, Bruce (1998), "A bound on the total chromatic number", Combinatorica, 18 (2): 241–280, doi:10.1007/PL00009820, MR 1656544.
38. ^ Barát, János; Tóth, Géza (2010), "Towards the Albertson Conjecture", Electronic Journal of Combinatorics, 17 (1): R73, arXiv:.
39. ^ Wood, David (January 19, 2009), "Book Thickness of Subdivisions", Open Problem Garden, retrieved 2013-02-05.
40. ^ Fulek, R.; Pach, J. (2011), "A computational approach to Conway's thrackle conjecture", Computational Geometry, 44 (6–7): 345–355, doi:10.1007/978-3-642-18469-7_21, MR 2785903.
41. ^ Hartsfield, Nora; Ringel, Gerhard (2013), Pearls in Graph Theory: A Comprehensive Introduction, Dover Books on Mathematics, Courier Dover Publications, p. 247, ISBN 9780486315522, MR 2047103.
42. ^ Hliněný, Petr (2010), "20 years of Negami's planar cover conjecture" (PDF), Graphs and Combinatorics, 26 (4): 525–536, doi:10.1007/s00373-010-0934-9, MR 2669457.
43. ^ Nöllenburg, Martin; Prutkin, Roman; Rutter, Ignaz (2016), "On self-approaching and increasing-chord drawings of 3-connected planar graphs", Journal of Computational Geometry, 7 (1): 47–69, doi:10.20382/jocg.v7i1a3, MR 3463906
44. ^ Pach, János; Sharir, Micha (2009), "5.1 Crossings—the Brick Factory Problem", Combinatorial Geometry and Its Algorithmic Applications: The Alcalá Lectures, Mathematical Surveys and Monographs, 152, American Mathematical Society, pp. 126–127.
45. ^ Demaine, E.; O'Rourke, J. (2002–2012), "Problem 45: Smallest Universal Set of Points for Planar Graphs", The Open Problems Project, retrieved 2013-03-19.
46. ^ Chudnovsky, Maria (2014), "The Erdös–Hajnal conjecture—a survey" (PDF), Journal of Graph Theory, 75 (2): 178–190, arXiv:, doi:10.1002/jgt.21730, MR 3150572, Zbl 1280.05086.
47. ^ Spinrad, Jeremy P. (2003), "2. Implicit graph representation", Efficient Graph Representations, pp. 17–30, ISBN 0-8218-2815-0.
48. ^ "Jorgensen's Conjecture", Open Problem Garden, retrieved 2016-11-13.
49. ^ Kühn, Daniela; Mycroft, Richard; Osthus, Deryk (2011), "A proof of Sumner's universal tournament conjecture for large tournaments", Proceedings of the London Mathematical Society, Third Series, 102 (4): 731–766, arXiv:, doi:10.1112/plms/pdq035, MR 2793448, Zbl 1218.05034.
50. ^ Brešar, Boštjan; Dorbec, Paul; Goddard, Wayne; Hartnell, Bert L.; Henning, Michael A.; Klavžar, Sandi; Rall, Douglas F. (2012), "Vizing's conjecture: a survey and recent results", Journal of Graph Theory, 69 (1): 46–76, doi:10.1002/jgt.20565, MR 2864622.
51. ^ a b c Shelah S, Classification Theory, North-Holland, 1990
52. ^ Keisler, HJ, "Ultraproducts which are not saturated." J. Symb Logic 32 (1967) 23—46.
53. ^ Malliaris M, Shelah S, "A dividing line in simple unstable theories." http://arxiv.org/abs/1208.2140
54. ^ Gurevich, Yuri, "Monadic Second-Order Theories," in J. Barwise, S. Feferman, eds., Model-Theoretic Logics (New York: Springer-Verlag, 1985), 479–506.
55. ^ Peretz, Assaf, "Geometry of forking in simple theories." J. Symbolic Logic Volume 71, Issue 1 (2006), 347–359.
56. ^ Shelah, Saharon (1999). "Borel sets with large squares". Fundamenta Mathematicae. 159 (1): 1–50. arXiv:.
57. ^ Shelah, Saharon (2009). Classification theory for abstract elementary classes. College Publications. ISBN 978-1-904987-71-0.
58. ^ Makowsky J, "Compactness, embeddings and definability," in Model-Theoretic Logics, eds Barwise and Feferman, Springer 1985 pps. 645–715.
59. ^ Baldwin, John T. (July 24, 2009). Categoricity (PDF). American Mathematical Society. ISBN 978-0821848937. Retrieved February 20, 2014.
60. ^ Shelah, Saharon. "Introduction to classification theory for abstract elementary classes".
61. ^ Hrushovski, Ehud (1989). "Kueker's conjecture for stable theories". Journal of Symbolic Logic. 54 (1): 207–220. doi:10.2307/2275025.
62. ^ Cherlin, G.; Shelah, S. (May 2007). "Universal graphs with a forbidden subtree". Journal of Combinatorial Theory, Series B. 97 (3): 293–333. arXiv:. doi:10.1016/j.jctb.2006.05.008.
63. ^ Džamonja, Mirna, "Club guessing and the universal models." On PCF, ed. M. Foreman, (Banff, Alberta, 2004).
64. ^
65. ^ http://arxiv.org/pdf/1604.07746v1.pdf
66. ^ Ribenboim, P. (2006). Die Welt der Primzahlen (in German) (2nd ed.). Springer. pp. 242–243. doi:10.1007/978-3-642-18079-8. ISBN 978-3-642-18078-1.
67. ^ Dobson, J. B. (June 2012) [2011], On Lerch's formula for the Fermat quotient, p. 15, arXiv:
68. ^ Barros, Manuel (1997), "General Helices and a Theorem of Lancret", American Mathematical Society, 125: 1503–1509, JSTOR 2162098
69. ^ http://arxiv.org/pdf/1605.00723v1.pdf
70. ^ Abdollahi A., Zallaghi M. (2015). "Character sums for Cayley graphs". Communications in Algebra. 43 (12): 5159–5167. doi:10.1080/00927872.2014.967398.
71. ^ Bourgain, Jean; Ciprian, Demeter; Larry, Guth (2015). "Proof of the main conjecture in Vinogradov's Mean Value Theorem for degrees higher than three". Annals of Mathematics.
72. ^ http://arxiv.org/pdf/1509.05363v5.pdf
73. ^ Proof of the umbral moonshine conjecture – Springer
74. ^ http://arxiv.org/pdf/1406.6534v10.pdf
75. ^ Helfgott, Harald A. (2013). "Major arcs for Goldbach's theorem". arXiv: [math.NT].
76. ^ Helfgott, Harald A. (2012). "Minor arcs for Goldbach's problem". arXiv: [math.NT].
77. ^ Helfgott, Harald A. (2013). "The ternary Goldbach conjecture is true". arXiv: [math.NT].
78. ^ Casazza, Peter G.; Fickus, Matthew; Tremain, Janet C.; Weber, Eric (2006). Han, Deguang; Jorgensen, Palle E. T.; Larson, David Royal, eds. "The Kadison-Singer problem in mathematics and engineering: A detailed account". Contemporary Mathematics. Large Deviations for Additive Functionals of Markov Chains: The 25th Great Plains Operator Theory Symposium, June 7–12, 2005, University of Central Florida, Florida. American Mathematical Society. 414: 299–355. doi:10.1090/conm/414/07820. ISBN 978-0-8218-3923-2. Retrieved 24 April 2015.
79. ^ Mackenzie, Dana. "Kadison–Singer Problem Solved" (PDF). SIAM News (January/February 2014). Society for Industrial and Applied Mathematics. Retrieved 24 April 2015.
80. ^ http://arxiv.org/pdf/1204.2810v1.pdf
81. ^ http://www.math.jhu.edu/~js/Math646/brendle.lawson.pdf
82. ^ Marques, Fernando C.; Neves, André (2013). "Min-max theory and the Willmore conjecture". Annals of Mathematics. 179: 683–782. arXiv:. doi:10.4007/annals.2014.179.2.6.
83. ^ http://arxiv.org/pdf/1101.1330v4.pdf
84. ^ http://www.math.uiuc.edu/~mineyev/math/art/submult-shnc.pdf
86. ^ https://www.uni-due.de/~bm0032/publ/BlochKato.pdf
87. ^ page 359
88. ^
89. ^ http://arxiv.org/pdf/1011.4105v3.pdf
91. ^ Santos, Franciscos (2012). "A counterexample to the Hirsch conjecture". Annals of Mathematics. Princeton University and Institute for Advanced Study. 176 (1): 383–412. doi:10.4007/annals.2012.176.1.7.
92. ^ Ziegler, Günter M. (2012). "Who solved the Hirsch conjecture?". Documenta Mathematica. Extra Volume "Optimization Stories": 75–85.
93. ^ "Generalized Sidon sets". Advances in Mathematics. 225: 2786–2807. doi:10.1016/j.aim.2010.05.010.
94. ^ http://arxiv.org/pdf/0909.2360v3.pdf
95. ^ http://arxiv.org/pdf/0906.1612v2.pdf
96. ^ http://arxiv.org/pdf/0910.5501v5.pdf
97. ^ http://www.csie.ntu.edu.tw/~hil/bib/ChalopinG09.pdf
98. ^ http://arxiv.org/pdf/0809.4040.pdf
99. ^ a b "Prize for Resolution of the Poincaré Conjecture Awarded to Dr. Grigoriy Perelman" (PDF) (Press release). Clay Mathematics Institute. March 18, 2010. Retrieved November 13, 2015. The Clay Mathematics Institute hereby awards the Millennium Prize for resolution of the Poincaré conjecture to Grigoriy Perelman.
100. ^ Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009), "Serre's modularity conjecture (I)", Inventiones Mathematicae, 178 (3): 485–504, doi:10.1007/s00222-009-0205-7
101. ^ Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009), "Serre's modularity conjecture (II)", Inventiones Mathematicae, 178 (3): 505–586, doi:10.1007/s00222-009-0206-6
102. ^ "2011 Cole Prize in Number Theory" (PDF). Notices of the AMS. Providence, Rhode Island, United States: American Mathematical Society. 58 (4): 610–611. ISSN 1088-9477. OCLC 34550461.
103. ^ http://www.ww.amc12.org/sites/default/files/pdf/pubs/SquaringThePlane.pdf
104. ^ http://arxiv.org/pdf/math/0509397.pdf
105. ^ Seigel-Itzkovich, Judy (2008-02-08). "Russian immigrant solves math puzzle". The Jerusalem Post. Retrieved 2015-11-12.
106. ^ http://homepages.warwick.ac.uk/~masgak/papers/bhb-angel.pdf
108. ^ http://homepages.warwick.ac.uk/~masibe/angel-mathe.pdf
109. ^ http://www.cs.bu.edu/~gacs/papers/angel.pdf
110. ^ http://www.ams.org/journals/proc/2005-133-09/S0002-9939-05-07752-X/S0002-9939-05-07752-X.pdf
111. ^ "Fields Medal – Ngô Bảo Châu". International Congress of Mathematicians 2010. ICM. 19 August 2010. Retrieved 2015-11-12. Ngô Bảo Châu is being awarded the 2010 Fields Medal for his proof of the Fundamental Lemma in the theory of automorphic forms through the introduction of new algebro-geometric methods.
112. ^ http://arxiv.org/pdf/math/0405568v1.pdf
113. ^
114. ^ Chung, Fan; Greene, Curtis; Hutchinson, Joan (April 2015). "Herbert S. Wilf (1931–2012)" (PDF). Notices of the AMS. Providence, Rhode Island, United States: American Mathematical Society. 62 (4): 358. ISSN 1088-9477. OCLC 34550461. The conjecture was finally given an exceptionally elegant proof by A. Marcus and G. Tardos in 2004.
115. ^ "Bombieri and Tao Receive King Faisal Prize" (PDF). Notices of the AMS. Providence, Rhode Island, United States: American Mathematical Society. 57 (5): 642–643. May 2010. ISSN 1088-9477. OCLC 34550461. Working with Ben Green, he proved there are arbitrarily long arithmetic progressions of prime numbers—a result now known as the Green–Tao theorem.
116. ^ http://arxiv.org/pdf/math/0412006v2.pdf
117. ^ Connelly, Robert; Demaine, Erik D.; Rote, Günter (2003), "Straightening polygonal arcs and convexifying polygonal cycles" (PDF), Discrete and Computational Geometry, 30 (2): 205–239, doi:10.1007/s00454-003-0006-7, MR 1931840
118. ^ Green, Ben (2004), "The Cameron–Erdős conjecture", The Bulletin of the London Mathematical Society, 36 (6): 769–778, arXiv:, doi:10.1112/S0024609304003650, MR 2083752
119. ^ "News from 2007". American Mathematical Society. AMS. 31 December 2007. Retrieved 2015-11-13. The 2007 prize also recognizes Green for "his many outstanding results including his resolution of the Cameron-Erdős conjecture..."
120. ^ http://archive.numdam.org/ARCHIVE/PMIHES/PMIHES_2003__98_/PMIHES_2003__98__1_0/PMIHES_2003__98__1_0.pdf
121. ^ "Kemnitz' conjecture revisited". Discrete Mathematics. 297: 196–201. doi:10.1016/j.disc.2005.02.018.
122. ^ http://www.ams.org/journals/jams/2004-17-01/S0894-0347-03-00440-5/S0894-0347-03-00440-5.pdf
124. ^
125. ^ http://www.emis.de/journals/BAG/vol.43/no.1/b43h1haa.pdf
126. ^ Knight, R. W. (2002), The Vaught Conjecture: A Counterexample, manuscript
127. ^ http://www.ugr.es/~ritore/preprints/0406017.pdf
128. ^ Metsänkylä, Tauno (5 September 2003). "Catalan's conjecture: another old diophantine problem solved" (PDF). Bulletin of the American Mathematical Society. American Mathematical Society. 41 (1): 43–57. doi:10.1090/s0273-0979-03-00993-5. ISSN 0273-0979. The conjecture, which dates back to 1844, was recently proven by the Swiss mathematician Preda Mihăilescu.
129. ^ http://www.ams.org/journals/jams/2001-14-04/S0894-0347-01-00373-3/S0894-0347-01-00373-3.pdf
130. ^ http://junon.u-3mrs.fr/monniaux/AHLMT02.pdf
131. ^ http://arxiv.org/pdf/math/0102150v4.pdf
132. ^ Breuil, Christophe; Conrad, Brian; Diamond, Fred; Taylor, Richard (2001), "On the modularity of elliptic curves over Q: wild 3-adic exercises", Journal of the American Mathematical Society, 14 (4): 843–939, doi:10.1090/S0894-0347-01-00370-8, ISSN 0894-0347, MR 1839918
133. ^ http://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01178-9/S0025-5718-00-01178-9.pdf
134. ^ http://intlpress.com/site/pub/files/_fulltext/journals/sdg/2002/0007/0001/SDG-2002-0007-0001-a001.pdf
135. ^ Croot, Ernest S., III (2000), Unit Fractions, Ph.D. thesis, University of Georgia, Athens. Croot, Ernest S., III (2003), "On a coloring conjecture about unit fractions", Annals of Mathematics, 157 (2): 545–556, arXiv:, doi:10.4007/annals.2003.157.545
136. ^ http://arxiv.org/pdf/math/9906042v2.pdf
137. ^ http://arxiv.org/pdf/math/9906212v2.pdf
138. ^ Ullmo, E (1998). "Positivité et Discrétion des Points Algébriques des Courbes". Annals of Mathematics. 147 (1): 167–179. doi:10.2307/120987. Zbl 0934.14013.
139. ^ Zhang, S.-W. (1998). "Equidistribution of small points on abelian varieties". Annals of Mathematics. 147 (1): 159–165. doi:10.2307/120986.
140. ^ Lafforgue, Laurent (1998), "Chtoucas de Drinfeld et applications" [Drinfelʹd shtukas and applications], Documenta Mathematica (in French), II: 563–570, ISSN 1431-0635, MR 1648105
141. ^ http://arxiv.org/pdf/1501.02155.pdf
142. ^ http://arxiv.org/pdf/math/9811079v3.pdf
143. ^ Norio Iwase (1 November 1998). "Ganea's Conjecture on Lusternik-Schnirelmann Category". ResearchGate.
144. ^ Merel, Loïc (1996). "Bornes pour la torsion des courbes elliptiques sur les corps de nombres" [Bounds for the torsion of elliptic curves over number fields]. Inventiones Mathematicae (in French) 124 (1): 437–449. doi:10.1007/s002220050059. MR 1369424
146. ^ Wiles, Andrew (1995). "Modular elliptic curves and Fermat's Last Theorem" (PDF). Annals of Mathematics. Annals of Mathematics. 141 (3): 443–551. doi:10.2307/2118559. JSTOR 2118559. OCLC 37032255.
147. ^ Taylor R, Wiles A (1995). "Ring theoretic properties of certain Hecke algebras". Annals of Mathematics. Annals of Mathematics. 141 (3): 553–572. doi:10.2307/2118560. JSTOR 2118560. OCLC 37032255.

### Books discussing unsolved problems

• Fan Chung; Graham, Ron (1999). Erdos on Graphs: His Legacy of Unsolved Problems. AK Peters. ISBN 1-56881-111-X.
• Croft, Hallard T.; Falconer, Kenneth J.; Guy, Richard K. (1994). Unsolved Problems in Geometry. Springer. ISBN 0-387-97506-3.
• Guy, Richard K. (2004). Unsolved Problems in Number Theory. Springer. ISBN 0-387-20860-7.
• Klee, Victor; Wagon, Stan (1996). Old and New Unsolved Problems in Plane Geometry and Number Theory. The Mathematical Association of America. ISBN 0-88385-315-9.
• Du Sautoy, Marcus (2003). The Music of the Primes: Searching to Solve the Greatest Mystery in Mathematics. Harper Collins. ISBN 0-06-093558-8.
• Derbyshire, John (2003). Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Joseph Henry Press. ISBN 0-309-08549-7.
• Devlin, Keith (2006). The Millennium Problems – The Seven Greatest Unsolved* Mathematical Puzzles Of Our Time. Barnes & Noble. ISBN 978-0-7607-8659-8.
• Blondel, Vincent D.; Megrestski, Alexandre (2004). Unsolved problems in mathematical systems and control theory. Princeton University Press. ISBN 0-691-11748-9.
• Lizhen Ji, [various]; Yat-Sun Poon, Shing-Tung Yau (2013). Open Problems and Surveys of Contemporary Mathematics (volume 6 in the Surveys in Modern Mathematics series) (Surveys of Modern Mathematics). International Press of Boston. ISBN 1-571-46278-3.
• Waldschmidt, Michel (2004). "Open Diophantine Problems" (PDF). Moscow Mathematical Journal. 4 (1): 245–305. ISSN 1609-3321. Zbl 1066.11030.
• Mazurov, V. D.; Khukhro, E. I. (1 Jun 2015). "Unsolved Problems in Group Theory. The Kourovka Notebook. No. 18 (English version)". arXiv:.
• Derbyshire, John (2003). Prime Obsession. The Joseph Henry Press. ISBN 0-309-08549-7.