Jump to content

Thrust-specific fuel consumption

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Andy Dingley (talk | contribs) at 20:51, 13 February 2017 (Undid revision 765330907 by 141.218.147.79 (talk)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Thrust specific fuel consumption (TSFC) is an engineering term that is used to describe the fuel efficiency of an engine design with respect to thrust output. TSFC may also be thought of as fuel consumption (grams/second) per unit of thrust (kilonewtons, or kN). It is thus thrust-specific, meaning that the fuel consumption is divided by the thrust.

TSFC or SFC for thrust engines (e.g. turbojets, turbofans, ramjets, rocket engines, etc.) is the mass of fuel needed to provide the net thrust for a given period e.g. lb/(h·lbf) (pounds of fuel per hour-pound of thrust) or g/(s·kN) (grams of fuel per second-kilonewton). Mass of fuel is used rather than volume (gallons or litres) for the fuel measure since it is independent of temperature.[1]

Specific fuel consumption of air-breathing jet engines at their maximum efficiency varies more or less inversely with speed, which means that the fuel consumption per mile or per km can be a more appropriate comparison for aircraft that travel at very different speeds.

This figure is inversely proportional to specific impulse.

Significance of SFC

SFC is dependent on engine design, but differences in the SFC between different engines using the same underlying technology tend to be quite small. Increasing overall pressure ratio on jet engines tends to decrease SFC.

In practical applications, other factors are usually highly significant in determining the fuel efficiency of a particular engine design in that particular application. For instance, in aircraft, turbine (jet and turboprop) engines are typically much smaller and lighter than equivalently powerful piston engine designs, both properties reducing the levels of drag on the plane and reducing the amount of power needed to move the aircraft. Therefore, turbines are more efficient for aircraft propulsion than might be indicated by a simplistic look at the table below.

SFC varies with throttle setting, altitude and climate. For jet engines, flight speed also has a significant effect upon SFC; SFC is roughly proportional to air speed (actually exhaust velocity), but speed along the ground is also proportional to air speed. Since work done is force times distance, mechanical power is force times speed. Thus, although the nominal SFC is a useful measure of fuel efficiency, it should be divided by speed to get a way to compare engines that fly at different speeds.

For example, Concorde cruised at Mach 2.05 with its engines giving an SFC of 1.195 lb/(lbf·h) (see below); this is equivalent to an SFC of 0.51 lb/(lbf·h) for an aircraft flying at Mach 0.85, which would be better than even modern engines; the Olympus 593 was the world's most efficient jet engine.[2][3] However, Concorde ultimately has a heavier airframe and, due to being supersonic, is less aerodynamically efficient, i.e., the lift to drag ratio is far lower. In general the total fuel burn of a complete aircraft is of far more importance to the customer.

Units

Specific Impulse (by weight)
Specific Impulse (by mass)
Effective exhaust velocity
Specific Fuel Consumption
SI =X seconds =9.8066 X N·s/kg =9.8066 X m/s =101,972 (1/X) g/(kN·s) / {g/(kN·s)=s/m}
Imperial units =X seconds =X lbf·s/lb =32.16 X ft/s =3,600 (1/X) lb/(lbf·h)

Typical values of SFC for thrust engines

Rocket engines in vacuum
Model Type First
run
Application TSFC Isp (by weight) Isp (by mass)
lb/lbf·h g/kN·s s m/s
Avio P80 solid fuel 2006 Vega stage 1 13 360 280 2700
Avio Zefiro 23 solid fuel 2006 Vega stage 2 12.52 354.7 287.5 2819
Avio Zefiro 9A solid fuel 2008 Vega stage 3 12.20 345.4 295.2 2895
Merlin 1D liquid fuel 2013 Falcon 9 12 330 310 3000
RD-843 liquid fuel Vega upper stage 11.41 323.2 315.5 3094
Kuznetsov NK-33 liquid fuel 1970s N-1F, Soyuz-2-1v stage 1 10.9 308 331[4] 3250
NPO Energomash RD-171M liquid fuel Zenit-2M, -3SL, -3SLB, -3F stage 1 10.7 303 337 3300
LE-7A cryogenic H-IIA, H-IIB stage 1 8.22 233 438 4300
Snecma HM-7B cryogenic Ariane 2, 3, 4, 5 ECA upper stage 8.097 229.4 444.6 4360
LE-5B-2 cryogenic H-IIA, H-IIB upper stage 8.05 228 447 4380
Aerojet Rocketdyne RS-25 cryogenic 1981 Space Shuttle, SLS stage 1 7.95 225 453[5] 4440
Aerojet Rocketdyne RL-10B-2 cryogenic Delta III, Delta IV, SLS upper stage 7.734 219.1 465.5 4565
NERVA NRX A6 nuclear 1967 869
Jet engines with Reheat, static, sea level
Model Type First
run
Application TSFC Isp (by weight) Isp (by mass)
lb/lbf·h g/kN·s s m/s
Turbo-Union RB.199 turbofan Tornado 2.5[6] 70.8 1440 14120
GE F101-GE-102 turbofan 1970s B-1B 2.46 70 1460 14400
Tumansky R-25-300 turbojet MIG-21bis 2.206[6] 62.5 1632 16000
GE J85-GE-21 turbojet F-5E/F 2.13[6] 60.3 1690 16570
GE F110-GE-132 turbofan F-16E/F 2.09[6] 59.2 1722 16890
Honeywell/ITEC F125 turbofan F-CK-1 2.06[6] 58.4 1748 17140
Snecma M53-P2 turbofan Mirage 2000C/D/N 2.05[6] 58.1 1756 17220
Snecma Atar 09C turbojet Mirage III 2.03[6] 57.5 1770 17400
Snecma Atar 09K-50 turbojet Mirage IV, 50, F1 1.991[6] 56.4 1808 17730
GE J79-GE-15 turbojet F-4E/EJ/F/G, RF-4E 1.965 55.7 1832 17970
Saturn AL-31F turbofan Su-27/P/K 1.96[7] 55.5 1837 18010
GE F110-GE-129 turbofan F-16C/D, F-15EX 1.9[6] 53.8 1895 18580
Soloviev D-30F6 turbofan MiG-31, S-37/Su-47 1.863[6] 52.8 1932 18950
Lyulka AL-21F-3 turbojet Su-17, Su-22 1.86[6] 52.7 1935 18980
Klimov RD-33 turbofan 1974 MiG-29 1.85 52.4 1946 19080
Saturn AL-41F-1S turbofan Su-35S/T-10BM 1.819 51.5 1979 19410
Volvo RM12 turbofan 1978 Gripen A/B/C/D 1.78[6] 50.4 2022 19830
GE F404-GE-402 turbofan F/A-18C/D 1.74[6] 49 2070 20300
Kuznetsov NK-32 turbofan 1980 Tu-144LL, Tu-160 1.7 48 2100 21000
Snecma M88-2 turbofan 1989 Rafale 1.663 47.11 2165 21230
Eurojet EJ200 turbofan 1991 Eurofighter 1.66–1.73 47–49[8] 2080–2170 20400–21300
Dry jet engines, static, sea level
Model Type First
run
Application TSFC Isp (by weight) Isp (by mass)
lb/lbf·h g/kN·s s m/s
GE J85-GE-21 turbojet F-5E/F 1.24[6] 35.1 2900 28500
Snecma Atar 09C turbojet Mirage III 1.01[6] 28.6 3560 35000
Snecma Atar 09K-50 turbojet Mirage IV, 50, F1 0.981[6] 27.8 3670 36000
Snecma Atar 08K-50 turbojet Super Étendard 0.971[6] 27.5 3710 36400
Tumansky R-25-300 turbojet MIG-21bis 0.961[6] 27.2 3750 36700
Lyulka AL-21F-3 turbojet Su-17, Su-22 0.86 24.4 4190 41100
GE J79-GE-15 turbojet F-4E/EJ/F/G, RF-4E 0.85 24.1 4240 41500
Snecma M53-P2 turbofan Mirage 2000C/D/N 0.85[6] 24.1 4240 41500
Volvo RM12 turbofan 1978 Gripen A/B/C/D 0.824[6] 23.3 4370 42800
RR Turbomeca Adour turbofan 1999 Jaguar retrofit 0.81 23 4400 44000
Honeywell/ITEC F124 turbofan 1979 L-159, X-45 0.81[6] 22.9 4440 43600
Honeywell/ITEC F125 turbofan F-CK-1 0.8[6] 22.7 4500 44100
PW J52-P-408 turbojet A-4M/N, TA-4KU, EA-6B 0.79 22.4 4560 44700
Saturn AL-41F-1S turbofan Su-35S/T-10BM 0.79 22.4 4560 44700
Snecma M88-2 turbofan 1989 Rafale 0.782 22.14 4600 45100
Klimov RD-33 turbofan 1974 MiG-29 0.77 21.8 4680 45800
RR Pegasus 11-61 turbofan AV-8B+ 0.76 21.5 4740 46500
Eurojet EJ200 turbofan 1991 Eurofighter 0.74–0.81 21–23[8] 4400–4900 44000–48000
GE F414-GE-400 turbofan 1993 F/A-18E/F 0.724[9] 20.5 4970 48800
Kuznetsov NK-32 turbofan 1980 Tu-144LL, Tu-160 0.72-0.73 20–21 4900–5000 48000–49000
Soloviev D-30F6 turbofan MiG-31, S-37/Su-47 0.716[6] 20.3 5030 49300
Snecma Larzac turbofan 1972 Alpha Jet 0.716 20.3 5030 49300
IHI F3 turbofan 1981 Kawasaki T-4 0.7 19.8 5140 50400
Saturn AL-31F turbofan Su-27 /P/K 0.666-0.78[7][9] 18.9–22.1 4620–5410 45300–53000
RR Spey RB.168 turbofan AMX 0.66[6] 18.7 5450 53500
GE F110-GE-129 turbofan F-16C/D, F-15 0.64[9] 18 5600 55000
GE F110-GE-132 turbofan F-16E/F 0.64[9] 18 5600 55000
Turbo-Union RB.199 turbofan Tornado ECR 0.637[6] 18.0 5650 55400
PW F119-PW-100 turbofan 1992 F-22 0.61[9] 17.3 5900 57900
Turbo-Union RB.199 turbofan Tornado 0.598[6] 16.9 6020 59000
GE F101-GE-102 turbofan 1970s B-1B 0.562 15.9 6410 62800
PW TF33-P-3 turbofan B-52H, NB-52H 0.52[6] 14.7 6920 67900
RR AE 3007H turbofan RQ-4, MQ-4C 0.39[6] 11.0 9200 91000
GE F118-GE-100 turbofan 1980s B-2 0.375[6] 10.6 9600 94000
GE F118-GE-101 turbofan 1980s U-2S 0.375[6] 10.6 9600 94000
General Electric CF6-50C2 turbofan A300, DC-10-30 0.371[6] 10.5 9700 95000
GE TF34-GE-100 turbofan A-10 0.37[6] 10.5 9700 95000
CFM CFM56-2B1 turbofan C-135, RC-135 0.36[10] 10 10000 98000
Progress D-18T turbofan 1980 An-124, An-225 0.345 9.8 10400 102000
PW F117-PW-100 turbofan C-17 0.34[11] 9.6 10600 104000
PW PW2040 turbofan Boeing 757 0.33[11] 9.3 10900 107000
CFM CFM56-3C1 turbofan 737 Classic 0.33 9.3 11000 110000
GE CF6-80C2 turbofan 744, 767, MD-11, A300/310, C-5M 0.307-0.344 8.7–9.7 10500–11700 103000–115000
EA GP7270 turbofan A380-861 0.299[9] 8.5 12000 118000
GE GE90-85B turbofan 777-200/200ER/300 0.298[9] 8.44 12080 118500
GE GE90-94B turbofan 777-200/200ER/300 0.2974[9] 8.42 12100 118700
RR Trent 970-84 turbofan 2003 A380-841 0.295[9] 8.36 12200 119700
GE GEnx-1B70 turbofan 787-8 0.2845[9] 8.06 12650 124100
RR Trent 1000C turbofan 2006 787-9 0.273[9] 7.7 13200 129000
Jet engines, cruise
Model Type First
run
Application TSFC Isp (by weight) Isp (by mass)
lb/lbf·h g/kN·s s m/s
Ramjet Mach 1 4.5 130 800 7800
J-58 turbojet 1958 SR-71 at Mach 3.2 (Reheat) 1.9[6] 53.8 1895 18580
RR/Snecma Olympus turbojet 1966 Concorde at Mach 2 1.195[12] 33.8 3010 29500
PW JT8D-9 turbofan 737 Original 0.8[13] 22.7 4500 44100
Honeywell ALF502R-5 GTF BAe 146 0.72[11] 20.4 5000 49000
Soloviev D-30KP-2 turbofan Il-76, Il-78 0.715 20.3 5030 49400
Soloviev D-30KU-154 turbofan Tu-154M 0.705 20.0 5110 50100
RR Tay RB.183 turbofan 1984 Fokker 70, Fokker 100 0.69 19.5 5220 51200
GE CF34-3 turbofan 1982 Challenger, CRJ100/200 0.69 19.5 5220 51200
GE CF34-8E turbofan E170/175 0.68 19.3 5290 51900
Honeywell TFE731-60 GTF Falcon 900 0.679[14] 19.2 5300 52000
CFM CFM56-2C1 turbofan DC-8 Super 70 0.671[11] 19.0 5370 52600
GE CF34-8C turbofan CRJ700/900/1000 0.67-0.68 19–19 5300–5400 52000–53000
CFM CFM56-3C1 turbofan 737 Classic 0.667 18.9 5400 52900
CFM CFM56-2A2 turbofan 1974 E-3, E-6 0.66[10] 18.7 5450 53500
RR BR725 turbofan 2008 G650/ER 0.657 18.6 5480 53700
CFM CFM56-2B1 turbofan C-135, RC-135 0.65[10] 18.4 5540 54300
GE CF34-10A turbofan ARJ21 0.65 18.4 5540 54300
CFE CFE738-1-1B turbofan 1990 Falcon 2000 0.645[11] 18.3 5580 54700
RR BR710 turbofan 1995 G. V/G550, Global Express 0.64 18 5600 55000
GE CF34-10E turbofan E190/195 0.64 18 5600 55000
General Electric CF6-50C2 turbofan A300B2/B4/C4/F4, DC-10-30 0.63[11] 17.8 5710 56000
PowerJet SaM146 turbofan Superjet LR 0.629 17.8 5720 56100
CFM CFM56-7B24 turbofan 737 NG 0.627[11] 17.8 5740 56300
RR BR715 turbofan 1997 717 0.62 17.6 5810 56900
GE CF6-80C2-B1F turbofan 747-400 0.605[12] 17.1 5950 58400
CFM CFM56-5A1 turbofan A320 0.596 16.9 6040 59200
Aviadvigatel PS-90A1 turbofan Il-96-400 0.595 16.9 6050 59300
PW PW2040 turbofan 757-200 0.582[11] 16.5 6190 60700
PW PW4098 turbofan 777-300 0.581[11] 16.5 6200 60800
GE CF6-80C2-B2 turbofan 767 0.576[11] 16.3 6250 61300
IAE V2525-D5 turbofan MD-90 0.574[15] 16.3 6270 61500
IAE V2533-A5 turbofan A321-231 0.574[15] 16.3 6270 61500
RR Trent 700 turbofan 1992 A330 0.562[16] 15.9 6410 62800
RR Trent 800 turbofan 1993 777-200/200ER/300 0.560[16] 15.9 6430 63000
Progress D-18T turbofan 1980 An-124, An-225 0.546 15.5 6590 64700
CFM CFM56-5B4 turbofan A320-214 0.545 15.4 6610 64800
CFM CFM56-5C2 turbofan A340-211 0.545 15.4 6610 64800
RR Trent 500 turbofan 1999 A340-500/600 0.542[16] 15.4 6640 65100
CFM LEAP-1B turbofan 2014 737 MAX 0.53-0.56 15–16 6400–6800 63000–67000
Aviadvigatel PD-14 turbofan 2014 MC-21-310 0.526 14.9 6840 67100
RR Trent 900 turbofan 2003 A380 0.522[16] 14.8 6900 67600
GE GE90-85B turbofan 777-200/200ER 0.52[11][17] 14.7 6920 67900
GE GEnx-1B76 turbofan 2006 787-10 0.512[13] 14.5 7030 69000
PW PW1400G GTF MC-21 0.51[18] 14.4 7100 69000
CFM LEAP-1C turbofan 2013 C919 0.51 14.4 7100 69000
CFM LEAP-1A turbofan 2013 A320neo family 0.51[18] 14.4 7100 69000
RR Trent 7000 turbofan 2015 A330neo 0.506[a] 14.3 7110 69800
RR Trent 1000 turbofan 2006 787 0.506[b] 14.3 7110 69800
RR Trent XWB-97 turbofan 2014 A350-1000 0.478[c] 13.5 7530 73900
PW 1127G GTF 2012 A320neo 0.463[13] 13.1 7780 76300
typical subsonic cruise, 80% throttle, min SFC[19]
Turbofan efficiency
GE90 36.1%
PW4000 34.8%
PW2037 35.1% (M.87 40K)
PW2037 33.5% (M.80 35K)
CFM56-2 30.5%
TFE731-2 23.4%

See also

References

  1. ^ Specific Fuel Consumption
  2. ^ Supersonic Dream
  3. ^ "The turbofan engine", page 5. SRM University, Department of aerospace engineering
  4. ^ "NK33". Encyclopedia Astronautica.
  5. ^ "SSME". Encyclopedia Astronautica.
  6. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag Nathan Meier (21 Mar 2005). "Military Turbojet/Turbofan Specifications". Archived from the original on 11 February 2021.
  7. ^ a b "Flanker". AIR International Magazine. 23 March 2017.
  8. ^ a b "EJ200 turbofan engine" (PDF). MTU Aero Engines. April 2016.
  9. ^ a b c d e f g h i j k Kottas, Angelos T.; Bozoudis, Michail N.; Madas, Michael A. "Turbofan Aero-Engine Efficiency Evaluation: An Integrated Approach Using VSBM Two-Stage Network DEA" (PDF). doi:10.1016/j.omega.2019.102167.
  10. ^ a b c Élodie Roux (2007). "Turbofan and Turbojet Engines: Database Handbook" (PDF). p. 126. ISBN 9782952938013.
  11. ^ a b c d e f g h i j k Nathan Meier (3 Apr 2005). "Civil Turbojet/Turbofan Specifications". Archived from the original on 17 August 2021.
  12. ^ a b Ilan Kroo. "Data on Large Turbofan Engines". Aircraft Design: Synthesis and Analysis. Stanford University. Archived from the original on 11 January 2017.
  13. ^ a b c David Kalwar (2015). "Integration of turbofan engines into the preliminary design of a high-capacity short-and medium-haul passenger aircraft and fuel efficiency analysis with a further developed parametric aircraft design software" (PDF).
  14. ^ "Purdue School of Aeronautics and Astronautics Propulsion Web Page - TFE731".
  15. ^ a b Lloyd R. Jenkinson & al. (30 Jul 1999). "Civil Jet Aircraft Design: Engine Data File". Elsevier/Butterworth-Heinemann.
  16. ^ a b c d "Gas Turbine Engines" (PDF). Aviation Week. 28 January 2008. pp. 137–138.
  17. ^ Élodie Roux (2007). "Turbofan and Turbojet Engines: Database Handbook". ISBN 9782952938013.
  18. ^ a b Vladimir Karnozov (August 19, 2019). "Aviadvigatel Mulls Higher-thrust PD-14s To Replace PS-90A". AIN Online.
  19. ^ Ilan Kroo. "Specific Fuel Consumption and Overall Efficiency". Aircraft Design: Synthesis and Analysis. Stanford University.


Cite error: There are <ref group=lower-alpha> tags or {{efn}} templates on this page, but the references will not show without a {{reflist|group=lower-alpha}} template or {{notelist}} template (see the help page).