Jump to content

100,000

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Certes (talk | contribs) at 09:33, 1 December 2022 (Undid revision 1124933581 by 175.100.15.2 (talk): test edit?). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

← 99999 100000 100001 →
Cardinalone hundred thousand
Ordinal100000th
(one hundred thousandth)
Factorization25 × 55
Greek numeral
Roman numeralC
Binary110000110101000002
Ternary120020112013
Senary20505446
Octal3032408
Duodecimal49A5412
Hexadecimal186A016

100,000 (one hundred thousand) is the natural number following 99,999 and preceding 100,001. In scientific notation, it is written as 105.

Terms for 100,000

In India, Pakistan and South Asia, one hundred thousand is called a lakh, and is written as 1,00,000. The Thai, Lao, Khmer and Vietnamese languages also have separate words for this number: แสน, ແສນ, សែន (all saen), and ức respectively. The Malagasy word is hetsy.[1]

In Cyrillic numerals, it is known as the legion (легион): or .

Values of 100,000

In astronomy, 100,000 metres, 100 kilometres, or 100 km (62 miles) is the altitude at which the Fédération Aéronautique Internationale (FAI) defines spaceflight to begin.

In the Irish language, céad míle fáilte (pronounced [ˌceːd̪ˠ ˈmʲiːlʲə ˈfˠaːlʲtʲə]) is a popular greeting meaning "a hundred thousand welcomes".

Selected 6-digit numbers (100,001–999,999)

100,001 to 199,999

100,001 to 109,999

110,000 to 119,999

120,000 to 149,999

150,000 to 199,999

  • 152,381 = unique prime in base 20
  • 156,146 = Keith number[11]
  • 160,000 = 204
  • 161,051 = 115
  • 161,280 = highly totient number[4]
  • 166,320 = highly composite number[8]
  • 167,400 = harmonic divisor number[6]
  • 167,894 = number of ways to partition {1,2,3,4,5,6,7,8} and then partition each cell (block) into subcells.[19]
  • 173,600 = harmonic divisor number[6]
  • 174,680 = Keith number[11]
  • 174,763 = Wagstaff prime[20]
  • 177,147 = 311
  • 177,777 = smallest natural number requiring 19 syllables in American English, 21 in British English
  • 178,478 = Leyland number[16]
  • 181,440 = highly totient number[4]
  • 181,819 = Kaprekar number[18]
  • 183,186 = Keith number[11]
  • 183,231 = number of partially ordered set with 9 unlabeled elements[21]
  • 187,110 = Kaprekar number[18]
  • 194,481 = 214
  • 195,025 = Pell number,[22] Markov number[17]
  • 196,418 = Fibonacci number,[12] Markov number[17]
  • 196,560 = the kissing number in 24 dimensions
  • 196,883 = the dimension of the smallest nontrivial irreducible representation of the Monster group
  • 196,884 = the coefficient of q in the Fourier series expansion of the j-invariant. The adjacency of 196883 and 196884 was important in suggesting monstrous moonshine.

200,000 to 299,999

  • 202,717 = k such that the sum of the squares of the first k primes is divisible by k.[23]
  • 206,098Large Schröder number
  • 206,265 = rounded number of arc seconds in a radian (see also parsec), since 180 × 60 × 60/π = 206,264.806...
  • 207,360 = highly totient number[4]
  • 208,012 = the Catalan number C12[24]
  • 208,335 = the largest number to be both triangular and square pyramidal
  • 208,495 = Kaprekar number[18]
  • 212,159 = smallest unprimeable number ending in 1, 3, 7 or 9[25][26]
  • 221,760 = highly composite number[8]
  • 222,222 = repdigit
  • 227,475 = Riordan number
  • 234,256 = 224
  • 237,510 = harmonic divisor number[6]
  • 238,591 = number of free 13-ominoes
  • 241,920 = highly totient number[4]
  • 242,060 = harmonic divisor number[6]
  • 248,832 = 100,00012, AKA a gross-great-gross (10012 great-grosses);125, the smallest fifth power that can be represented as the sum of only 6 fifth powers: 125 = 45 + 55 + 65 + 75 + 95 + 115
  • 262,144 = 218; exponential factorial of 4;[27] a superperfect number[28]
  • 262,468 = Leyland number[16]
  • 268,705 = Leyland number[16]
  • 274,177 = prime factor of the Fermat number F6
  • 275,807/195,025 ≈ √2
  • 277,200 = highly composite number[8]
  • 279,841 = 234
  • 279,936 = 67
  • 280,859 = a prime number whose square 78881777881 is tridigital
  • 293,547 = Wedderburn–Etherington number[14]
  • 294,001 = smallest weakly prime number in base 10[29]
  • 294,685 = Markov number[17]
  • 298,320 = Keith number[11]

300,000 to 399,999

  • 310,572 = Motzkin number[9]
  • 317,811 = Fibonacci number[12]
  • 318,682 = Kaprekar number[18]
  • 325,878 = Fine number[30]
  • 326,981 = alternating factorial[31]
  • 329,967 = Kaprekar number[18]
  • 331,776 = 244
  • 332,640 = highly composite number;[8] harmonic divisor number[6]
  • 333,333 = repdigit
  • 333,667 = sexy prime and unique prime[32]
  • 333,673 = sexy prime with 333,679
  • 333,679 = sexy prime with 333,673
  • 337,500 = 22 × 33 × 55
  • 351,351 = only known odd abundant number that is not the sum of some of its proper, nontrivial (i.e. >1) divisors (sequence A122036 in the OEIS).
  • 351,352 = Kaprekar number[18]
  • 355,419 = Keith number[11]
  • 356,643 = Kaprekar number[18]
  • 360,360 = harmonic divisor number;[6] the smallest number divisible by all of the numbers 1 through 15
  • 362,880 = 9!, highly totient number[4]
  • 370,261 = first prime followed by a prime gap of over 100
  • 371,293 = 135, palindromic in base 12 (15AA5112)
  • 389,305 = self-descriptive number in base 7
  • 390,313 = Kaprekar number[18]
  • 390,625 = 58
  • 397,585 = Leyland number[16]

400,000 to 499,999

  • 409,113 = sum of the first nine factorials
  • 422,481 = smallest number whose fourth power is the sum of three smaller fourth powers
  • 423,393 = Leyland number[16]
  • 426,389 = Markov number[17]
  • 426,569 = cyclic number in base 12
  • 437,760 to 440,319 = any of these numbers will cause the Apple II+ and Apple IIe computers to crash to a monitor prompt when entered at the BASIC prompt, due to a short-cut in the Applesoft code programming of the overflow test when evaluating 16-bit numbers.[33] Entering 440000 at the prompt has been used to hack games that are protected against entering commands at the prompt after the game is loaded.
  • 444,444 = repdigit
  • 456,976 = 264
  • 461,539 = Kaprekar number[18]
  • 466,830 = Kaprekar number[18]
  • 470,832 = Pell number[22]
  • 483,840 = highly totient number[4]
  • 498,960 = highly composite number[8]
  • 499,393 = Markov number[17]
  • 499,500 = Kaprekar number[18]

500,000 to 599,999

  • 500,500 = Kaprekar number,[18] sum of first 1,000 integers
  • 509,203 = Riesel number[34]
  • 510,510 = the product of the first seven prime numbers, thus the seventh primorial.[35] It is also the product of four consecutive Fibonacci numbers—13, 21, 34, 55, the highest such sequence of any length to be also a primorial. And it is a double triangular number, the sum of all even numbers from 0 to 1428.
  • 514,229 = Fibonacci prime,[36] Markov prime[17]
  • 518,859 = little Schroeder number
  • 524,287 = Mersenne prime[15]
  • 524,288 = 219
  • 524,649 = Leyland number[16]
  • 525,600 = minutes in a non-leap year
  • 527,040 = minutes in a leap year
  • 531,441 = 312
  • 533,169 = Leyland number[16]
  • 533,170 = Kaprekar number[18]
  • 537,824 = 145
  • 539,400 = harmonic divisor number[6]
  • 548,834 = equal to the sum of the sixth powers of its digits
  • 554,400 = highly composite number[8]
  • 555,555 = repdigit

600,000 to 699,999

  • 604,800 = number of seconds in a week
  • 614,656 = 284
  • 625,992 = Riordan number
  • 646,018 = Markov number[17]
  • 664,579 = the amount of primes under 10,000,000 there are
  • 665,280 = highly composite number[8]
  • 665,857/470,832 ≈ √2
  • 666,666 = repdigit
  • 676,157 = Wedderburn–Etherington number[14]
  • 678,570 = Bell number[10]
  • 694,280 = Keith number[11]
  • 695,520 = harmonic divisor number[6]

700,000 to 799,999

  • 707,281 = 294
  • 720,720 = superior highly composite number;[37] colossally abundant number;[38] the smallest number divisible by all the numbers 1 through 16
  • 725,760 = highly totient number[4]
  • 726,180 = harmonic divisor number[6]
  • 729,000 = 903
  • 739,397 = largest prime that is both right- and left-truncatable.
  • 742,900 = Catalan number[24]
  • 753,480 = harmonic divisor number[6]
  • 759,375 = 155
  • 765,623 = emirp, Friedman prime 56 × 72 − 6 ÷ 3
  • 777,777 = repdigit, smallest natural number requiring 20 syllables in American English, 22 in British English, largest number in English not containing the letter 'i' in its name

800,000 to 899,999

  • 810,000 = 304
  • 823,543 = 77
  • 825,265 = smallest Carmichael number with 5 prime factors
  • 832,040 = Fibonacci number[12]
  • 853,467 = Motzkin number[9]
  • 857,375 = 953
  • 873,612 = 11 + 22 + 33 + 44 + 55 + 66 + 77
  • 888,888 = repdigit
  • 890,625 = 1-automorphic number[7]

900,000 to 999,999

References

  1. ^ "Malagasy Dictionary and Madagascar Encyclopedia : hetsy". malagasyword.org. 26 October 2017. Retrieved 2019-12-31.
  2. ^ Sloane, N. J. A. (ed.). "Sequence A003617 (Smallest n-digit prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 7 September 2017.
  3. ^ "Problem of the Month (August 2000)". Archived from the original on 2012-12-18. Retrieved 2013-01-13.
  4. ^ a b c d e f g h i j Sloane, N. J. A. (ed.). "Sequence A097942 (Highly totient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  5. ^ Sloane, N. J. A. (ed.). "Sequence A006785 (Number of triangle-free graphs on n vertices)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. ^ a b c d e f g h i j k l m Sloane, N. J. A. (ed.). "Sequence A001599 (Harmonic or Ore numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  7. ^ a b Sloane, N. J. A. (ed.). "Sequence A003226 (Automorphic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2019-04-06.
  8. ^ a b c d e f g h Sloane, N. J. A. (ed.). "Sequence A002182 (Highly composite numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  9. ^ a b c Sloane, N. J. A. (ed.). "Sequence A001006 (Motzkin numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  10. ^ a b Sloane, N. J. A. (ed.). "Sequence A000110 (Bell or exponential numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  11. ^ a b c d e f g h i j Sloane, N. J. A. (ed.). "Sequence A007629 (Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers)access-date=2016-06-17)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  12. ^ a b c d Sloane, N. J. A. (ed.). "Sequence A000045 (Fibonacci numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  13. ^ Sloane, N. J. A. (ed.). "Sequence A002104 (Logarithmic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  14. ^ a b c Sloane, N. J. A. (ed.). "Sequence A001190 (Wedderburn-Etherington numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  15. ^ a b Sloane, N. J. A. (ed.). "Sequence A000668 (Mersenne primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  16. ^ a b c d e f g h Sloane, N. J. A. (ed.). "Sequence A076980 (Leyland numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  17. ^ a b c d e f g h i Sloane, N. J. A. (ed.). "Sequence A002559 (Markoff (or Markov) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  18. ^ a b c d e f g h i j k l m n Sloane, N. J. A. (ed.). "Sequence A006886 (Kaprekar numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  19. ^ Sloane, N. J. A. (ed.). "Sequence A000258 (Expansion of e.g.f. exp(exp(exp(x)-1)-1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  20. ^ Sloane, N. J. A. (ed.). "Sequence A000979 (Wagstaff primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  21. ^ Sloane, N. J. A. (ed.). "Sequence A000112 (Number of partially ordered sets (posets) with n unlabeled elements)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  22. ^ a b Sloane, N. J. A. (ed.). "Sequence A000129 (Pell numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  23. ^ Sloane, N. J. A. (ed.). "Sequence A111441 (Numbers k such that the sum of the squares of the first k primes is divisible by k)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
  24. ^ a b Sloane, N. J. A. (ed.). "Sequence A000108 (Catalan numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  25. ^ Collins, Julia (2019). Numbers in Minutes. United Kingdom: Quercus. p. 140. ISBN 978-1635061772.
  26. ^ Sloane, N. J. A. (ed.). "Sequence A143641 (Odd prime-proof numbers not ending in 5)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  27. ^ "Sloane's A049384 : a(0)=1, a(n+1) = (n+1)^a(n)access-date=2016-06-17". Archived from the original on 2016-05-26.
  28. ^ Sloane, N. J. A. (ed.). "Sequence A019279 (Superperfect numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  29. ^ Weißstein, Eric W. (25 December 2020). "Weakly Prime". Wolfram MathWorld.
  30. ^ Sloane, N. J. A. (ed.). "Sequence A000957". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-01.
  31. ^ Sloane, N. J. A. (ed.). "Sequence A005165 (Alternating factorials)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  32. ^ Sloane, N. J. A. (ed.). "Sequence A040017 (Unique period primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  33. ^ "Applesoft Disassembly -- S.d912". Archived from the original on 2016-04-15. Retrieved 2016-04-04. Disassembled ROM. See comments at $DA1E.
  34. ^ Sloane, N. J. A. (ed.). "Sequence A101036 (Riesel numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  35. ^ Sloane, N. J. A. (ed.). "Sequence A002110 (Primorial numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  36. ^ Sloane, N. J. A. (ed.). "Sequence A005478 (Prime Fibonacci numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  37. ^ Sloane, N. J. A. (ed.). "Sequence A002201 (Superior highly composite numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  38. ^ Sloane, N. J. A. (ed.). "Sequence A004490 (Colossally abundant numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  39. ^ "Dividing one by 998001 produces list of three digit numbers". 23 January 2012.