Jump to content

ARM Cortex-A15

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Imroy (talk | contribs) at 09:58, 17 August 2014 (→‎Systems on a chip: the HiSilicon article is already linked to, don't use external links to Wikipedia). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

ARM Cortex-A15 MPCore
General information
LaunchedIn production late 2011,[1] to market late 2012[2]
Designed byARM
Performance
Max. CPU clock rate1.0 GHz  to 2.5 GHz 
Cache
L1 cache64 KB (32 KB I-cache, 32 KB D-cache) per core
L2 cacheUp to 4 MB[3] per cluster
L3 cachenone
Architecture and classification
Technology node32 nm/28 nm initially[4] to 22 nm roadmap[4]
Instruction setARMv7
Physical specifications
Cores
  • 1–4 per cluster, 1–2 clusters per physical chip[5]

The ARM Cortex-A15 MPCore is a multicore ARM architecture processor providing an out-of-order superscalar pipeline ARM v7 instruction set running at up to 2.5 GHz.[6]

Overview

ARM has claimed that the Cortex A15 core is 40 percent more powerful than the Cortex-A9 core with the same number of cores at the same speed.[7] The first A15 designs came out in the autumn of 2011, but products based on the chip did not reach the market until 2012.[1]

Key features of the Cortex-A15 core are:

  • 40-bit Large Physical Address Extensions (LPAE) addressing up to 1 TB of RAM.[8][9] As per the x86 Physical Address Extension, virtual address space remains 32 bit.[10]
  • 15 stage integer/17–25 stage floating point pipeline, with out-of-order speculative issue 3-way superscalar execution pipeline[11]
  • 4 cores per cluster, up to 2 clusters per chip with CoreLink 400 (CCI-400, an AMBA-4 coherent interconnect) and 4 clusters per chip with CCN-504.[12] ARM provides specifications but the licencees individually design ARM chips, and AMBA-4 scales beyond 2 clusters. The theoretical limit is 16 clusters, 4 bits are used to code the CLUSTERID number in the CP15 register (bits 8 to 11).[13]
  • DSP and NEON SIMD extensions onboard (per core)
  • VFPv4 Floating Point Unit onboard (per core)
  • Hardware virtualization support
  • Thumb-2 instruction set encoding reduces the size of programs with little impact on performance.
  • TrustZone security extensions
  • Jazelle RCT for JIT compilation
  • Program Trace Macrocell and CoreSight Design Kit for unobtrusive tracing of instruction execution
  • 32 KB data + 32 KB instruction L1 cache per core
  • Integrated low-latency level-2 cache controller, up to 4 MB per cluster

Chips

First implementation came from Samsung in 2012 with the Exynos 5 Dual, which shipped in October 2012 with the Samsung Chromebook Series 3 (ARM version), followed in November by the Google Nexus 10.

Press announcements of current implementations:

Other licensees, such as LG,[21][22] are expected to produce an A15 based design at some point.

Systems on a chip

Model Number Semiconductor technology CPU GPU Memory interface Wireless radio technologies Availability Utilizing devices
HiSilicon K3V3 28 nm HPL big.LITTLE architecture using
1.8 GHz dual-core ARM Cortex-A15
+ dual-core ARM Cortex-A7
Mali-T628 H2 2014
Nvidia Tegra 4 T40 28 nm HPL 1.9 GHz quad-core ARM Cortex-A15[23] + 1 low power core Nvidia GeForce @ 72 core, 672 MHz, 96.8 GFLOPS = 48 PS + 24 VU × 0.672 × 2 (96.8 GFLOPS)[24](support DirectX 11+, OpenGL 4.X, and PhysX) 32-bit dual-channel DDR3L or LPDDR3 up to 933 MHz (1866 MHz data rate)[23] Category 3 (100 Mbit/s) LTE Q2 2013 Nvidia Shield

Tegra Note 7

Nvidia Tegra 4 AP40 28 nm HPL 1.2-1.8 GHz quad-core + low power core Nvidia GPU 60 [23] cores (support DirectX 11+, OpenGL 4.X, and PhysX) 32-bit dual-channel 800 MHz LPDDR3 Category 3 (100 Mbit/s) LTE Q3 2013
Nvidia Tegra K1 28 nm HPm 2.3 GHz quad-core + battery saver core Kepler SMX (192 CUDA cores, 8 TMUs, 4 ROPs) 32-bit dual-channel DDR3L, LPDDR3 or LPDDR2 Q2 2014 Jetson TK1 development board,[25]
Lenovo ThinkVision 28
Xiaomi MiPad
Texas Instruments OMAP5430 28 nm 2.0 GHz dual-core PowerVR SGX544MP2 @ 532 MHz + dedicated 2D graphics accelerator 32-bit dual-channel 532 MHz LPDDR2 Q2 2013
Texas Instruments OMAP5432 28 nm 2.0 GHz dual-core PowerVR SGX544MP2 @ 532 MHz + dedicated 2D graphics accelerator 32-bit dual-channel 532 MHz DDR3 Q2 2013
Exynos 5 Dual[26]
(previously Exynos 5250)[27]
32 nm HKMG 1.7 GHz dual-core ARM Cortex-A15 ARM Mali-T604[28] (quad-core) @ 533 MHz; 68.224 GFLOPS [citation needed] 32-bit dual-channel 800 MHz LPDDR3/DDR3 (12.8 GB/sec) or 533 MHz LPDDR2 (8.5 GB/sec) Q3 2012[27] Samsung Chromebook XE303C12,[29] Google Nexus 10, Arndale Board,[30] Huins ACHRO 5250 Exynos,[31] Freelander PD800 HD,[32] Voyo A15, HP Chromebook 11, Samsung Homesync
Exynos 5 Octa[33][34][35]
(internally Exynos 5410)
28 nm HKMG 1.6 GHz[36] quad-core ARM Cortex-A15 and 1.2 GHz quad-core ARM Cortex-A7 (ARM big.LITTLE)[37] IT PowerVR SGX544MP3 (tri-core) @ 480 MHz 49 GFLOPS (532 MHz in some full-screen apps)[38] 32-bit dual-channel 800 MHz LPDDR3 (12.8 GB/sec) Q2 2013 Samsung Galaxy S4 I9500,[39][40] Hardkernel ODROID-XU,[41] Meizu MX3, ZTE Grand S II TD[42] ODROID-XU
Exynos 5 Octa[43]
(internally Exynos 5420)
28 nm HKMG 1.8-1.9 GHz quad-core ARM Cortex-A15 and 1.3 GHz quad-core ARM Cortex-A7 (ARM big.LITTLE with GTS) ARM Mali-T628 MP6 @ 533 MHz; 109 GFLOPS 32-bit dual-channel 933 MHz LPDDR3e (14.9 GB/sec) Q3 2013 Samsung Chromebook 2 11.6",[44] Samsung Galaxy Note 3,[45] Samsung Galaxy Note 10.1 (2014 Edition), Samsung Galaxy Note Pro 12.2, Samsung Galaxy Tab Pro (12.2 & 10.1), Arndale Octa Board, Galaxy S5 SM-G900H [46]
Exynos 5 Octa[47]
(internally Exynos 5422)
28 nm HKMG 2.1 GHz quad-core ARM Cortex-A15 and 1.5 GHz quad-core ARM Cortex-A7 (ARM big.LITTLE with GTS) ARM Mali-T628 MP6 @ 695 MHz (142 Gflops) 32-bit dual-channel 933 MHz LPDDR3/DDR3 (14.9 GB/sec) Q2 2014 Galaxy S5 SM-G900
Exynos 5 Octa[48]
(internally Exynos 5800)
28 nm HKMG 2.1 GHz quad-core ARM Cortex-A15 and 1.3 GHz quad-core ARM Cortex-A7 (ARM big.LITTLE with GTS) ARM Mali-T628 MP6 @ 695 MHz (142 Gflops) 32-bit dual-channel 933 MHz LPDDR3/DDR3 (14.9 GB/sec) Q2 2014 Samsung Chromebook 2 13,3"[49]
Exynos 5 Hexa[50]
(internally Exynos 5260)
28 nm HKMG 1.7 GHz dual-core ARM Cortex-A15 and 1.3 GHz quad-core ARM Cortex-A7 (ARM big.LITTLE with GTS) ARM Mali-T624 32-bit dual-channel 800 MHz LPDDR3 (12.8 GB/sec) Q2 2014 Galaxy Note 3 Neo (announced January, 31, 2014), Samsung Galaxy K zoom[51]
Allwinner A80 Octa[52] 28 nm HPm Quad-core ARM Cortex-A15 and Quad-core ARM Cortex-A7 (ARM big.LITTLE with GTS) PowerVR G6230 (Rogue) 32-bit dual-channel DDR3/DDR3L/LPDDR3 or LPDDR2[53]

See also

References

  1. ^ a b TI Reveals OMAP 5: The First ARM Cortex A15 SoC
  2. ^ ARM Expects First Cortex-A15 Devices in Late 2012
  3. ^ Cortex-A15 Processor — Product description
  4. ^ a b ARM Unveils Cortex-A15 MPCore Processor to Dramatically Accelerate Capabilities of Mobile, Consumer and Infrastructure Applicationsin the Supporting Technology section
  5. ^ CoreLink Network Interconnect for AMBA AXI
  6. ^ ARM Cortex-A15 - ARM Processor
  7. ^ Exclusive : ARM Cortex-A15 "40 Per Cent" Faster Than Cortex-A9
  8. ^ ARM7 40-bit, virtualization
  9. ^ ARM e-mail to LINUX: Add support for the Large Physical Address Extensions
  10. ^ "Calxeda plots server dominance with ARM SoCs."
  11. ^ Exploring the Design of the Cortex-A15 Processor Travis Lanier
  12. ^ "ARM A15 web page, Specification tab"
  13. ^ "Cortex-A15 MPCore Technical Reference Manual"
  14. ^ Broadcom announces plans for ARM's Cortex-A15 SoC | thinq
  15. ^ Huawei Announces HiSilicon K3V3 Chipset For Smartphones on Tom's Hardware
  16. ^ NVIDIA Announces "Project Denver" to Build Custom CPU Cores Based on ARM Architecture, Targeting Personal Computers to Supercomputers - NVIDIA Newsroom
  17. ^ Samsung Announces Industry First ARM Cortex-A15 Processor Samples for Tablet Computers
  18. ^ Changing the game: ST-Ericsson Unveils NovaThor™ Family of Smartphone Platforms Combining its Most Advanced Application Processors with the Latest Generation of Modems
  19. ^ Desire Athow (14 March 2011). "Exclusive : ARM Cortex-A15 "40 Per Cent" Faster Than Cortex-A9". Retrieved 2011-01-22.
  20. ^ OMAP™ Applications Processors - OMAP™ 5 Platform
  21. ^ LG Electronics Licenses ARM Processor Technology to Drive - ARM
  22. ^ Why LG Getting ARM Cortex A15 License Is A Big Deal | ITProPortal.com
  23. ^ a b c http://www.nvidia.com/object/tegra-4-processor.html
  24. ^ http://www.359gsm.com/forum/viewtopic.php?f=127&t=13134&p=26833#p26833
  25. ^ "Jetson TK1 development board".
  26. ^ "Samsung Exynos 5 Dual". Products. Samsung Electronics Co.Ltd. Retrieved 7 October 2013.
  27. ^ a b "Samsung Announces Industry First ARM Cortex-A15 Processor Samples for Tablet Computers". News. Samsung Electronics Co.Ltd. 30 November 2011. Retrieved 7 October 2013.
  28. ^ "Samsung Exynos 5 Dual (Exynos 5250) RISC Microprocessor User's Manual Revison 1.0" (PDF). Samsung Electronics Co. Ltd. October 2012. Retrieved 7 October 2013.
  29. ^ "Samsung Chromebook". Google. Retrieved 7 October 2013.
  30. ^ "ArndaleBoard.org". www.arndaleboard.org. Retrieved 7 October 2013.
  31. ^ "휴인스". Huins.com. Retrieved 2013-07-10.
  32. ^ "Freelander PD800 HD Dual Core Exynos 5250 Android 4.2 Tablet PC 9.7" Retina Capacitive Touch Screen 2048*1536 2GB/16GB BT White". GeekBuying.com. Retrieved 10 July 2013.
  33. ^ "Samsung Highlights Innovations in Mobile Experiences Driven by Components, in CES Keynote". CES News. SAMSUNG. 9 January 2013. Retrieved 7 October 2013.
  34. ^ "2013 International CES Keynote". Events. SAMSUNG. 9 January 2013. Retrieved 7 October 2013.
  35. ^ Nguyen, Hubert (17 January 2013). "Samsung Exynos 5 Octa Specs & Details". Uberzigmo. Blogzilla LL:. Retrieved 7 October 2013.{{cite web}}: CS1 maint: extra punctuation (link)
  36. ^ "New Samsung Exynos 5 Octa". Products. Samsung Electronics Co.Ltd. Retrieved 7 October 2013.
  37. ^ "Big.LITTLE Processing with ARM Cortex-A15 & Cortex-A7" (PDF). Arm.com. Retrieved 7 October 2013.
  38. ^ "Update on GPU Optimizations in Galaxy S 4". AnandTech. Retrieved 7 October 2013.
  39. ^ "Samsung Galaxy S4 32 GB". CaCell. Retrieved 7 October 2013.
  40. ^ "Your country will get Exynos or Snapdragon variant of the Galaxy S 4, we have the answer!". SamMobile.com. 20 March 2013. Retrieved 17 October 2013.
  41. ^ "Products: Exynos5 Octa". Odroid Platform Developer. Hardkernel Co., Ltd. Retrieved 7 October 2013.
  42. ^ "ZTE Grand S II TD". DeviceSpecifications. Retrieved 10 January 2014.
  43. ^ "New Samsung Exynos 5 Octa". Products. Samsung Electronics Co.Ltd. Retrieved 7 October 2013.
  44. ^ "Samsung Chromebook 2 11.6".
  45. ^ "Samsung Galaxy Note 3 specs and features now official". Androidauthority.com. 4 September 2013. Retrieved 7 October 2013.
  46. ^ https://www.samsungindiaestore.com/products/mobiles/Galaxy_S5_SM-G900HZWA
  47. ^ "Samsung Unveils New Products from its System LSI Business at Mobile World Congress". Samsung Tomorrow. Retrieved 26 February 2013.
  48. ^ "Samsung Exynos". Samsung Tomorrow. Retrieved 28 April 2014.
  49. ^ "Samsung Chromebook 2 13.3".
  50. ^ "Samsung Unveils New Products from its System LSI Business at Mobile World Congress". 26 February 2014. Retrieved 2 May 2014.
  51. ^ "Samsung Galaxy K zoom". DeviceSpecifications. Retrieved 29 April 2014.
  52. ^ "Allwinner UltraOcta A80 processor packs a PowerVR Series6 GPU with 64 cores". Imagination. March 2014.
  53. ^ "A80". Allwinner. May 2014.