GRID2

From Wikipedia, the free encyclopedia
Jump to: navigation, search
This article is about a protein. For a racing video game, see Grid 2.
GRID2
Identifiers
Aliases GRID2, GluD2, SCAR18, glutamate ionotropic receptor delta type subunit 2
External IDs MGI: 95813 HomoloGene: 74399 GeneCards: 2895
Genetically Related Diseases
Disease Name References
obesity
RNA expression pattern
PBB GE GRID2 221364 at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001286838
NM_001510

NM_008167

RefSeq (protein)

NP_001273767.1
NP_001501.2

NP_032193.1

Location (UCSC) Chr 4: 92.3 – 93.77 Mb Chr 6: 63.26 – 64.67 Mb
PubMed search [2] [3]
Wikidata
View/Edit Human View/Edit Mouse

Glutamate receptor, ionotropic, delta 2, also known as GluD2, GluRδ2, or δ2, is a protein that in humans is encoded by the GRID2 gene.[1][2] This protein together with GluD1 belongs to the delta receptor subtype of ionotropic glutamate receptors. They possess 14-24% sequence homology with AMPA, kainate, and NMDA subunits, but, despite their name, do not actually bind glutamate or various other glutamate agonists.[3]

delta iGluRs have long been considered orphan receptors as their endogenous ligand was unknown. They are now believed to bind glycine and D-serine but these do not result in channel opening.[4][5]

Function[edit]

GluD2-containing receptors are selectively/predominantly expressed in Purkinje cells in the cerebellum[3][6] where they play a key role in synaptogenesis, synaptic plasticity, and motor coordination.[7]

GluD2 induces synaptogenesis through interaction of its N-terminal domain with Cbln1, which in turn interacts with presynaptic neurexins, forming a bridge across cerebellar synapses.[7][8]

The main functions of GluD2 in synaptic plasticity are carried out by its intracellular C-terminus.[9] This is regulated by D-serine,[10] which binds to the ligand-binding domain and results in changes in the structure of GluD2 without opening the channel.[5] These changes may signal up to the N-terminal domain or down to the C-terminal domain to alter protein-protein interactions.

Pathology[edit]

A heterozygous deletion in GRID2 in humans causes a complicated spastic paraplegia with ataxia, frontotemporal dementia, and lower motor neuron involvement[11] whereas a homozygous biallelic deletion leads to a syndrome of cerebellar ataxia with marked developmental delay, pyramidal tract involvement[12] and tonic upgaze,[13] that can be classified as an ataxia with oculomotor apraxia (AOA).

A gain of channel function, resulting from a point mutation in mouse GRID2, is associated with the phenotype named 'lurcher', which in the heterozygous state leads to ataxia and motor coordination deficits resulting from selective, cell-autonomous apoptosis of cerebellar Purkinje cells during postnatal development.[14] Mice homozygous for this mutation die shortly after birth from massive loss of mid- and hindbrain neurons during late embryogenesis.

Ligands[edit]

9-Aminoacridine, 9-tetrahydroaminoacridine, N1-dansyl-spermine, N1-dansyl-spermidine, and pentamidine have been shown to act as antagonists of δ2-containing receptors.[15]

Interactions[edit]

GRID2 has been shown to interact with GOPC,[16] GRIK2,[17] PTPN4[18] and GRIA1.[17] A possible correlation between GRID2 and the pre-B lymphocyte protein 3 (VPREB3) has been suggested, due to the apparent importance of B-lymphocytes in the origins of cerebellar Purkinje neurons in humans.[19][20][21][22][23] Morphological studies conducted in GRID2-knockout mice suggest that GRID2 may be present in lymphocytes as well as in the adrenal cortex, however further studies must be conducted to confirm these claims.[22][24]

See also[edit]

References[edit]

  1. ^ "Entrez Gene: GRID2 glutamate receptor, ionotropic, delta 2". 
  2. ^ Hu W, Zuo J, De Jager PL, Heintz N (Jan 1998). "The human glutamate receptor delta 2 gene (GRID2) maps to chromosome 4q22". Genomics 47 (1): 143–5. doi:10.1006/geno.1997.5108. PMID 9465309. 
  3. ^ a b Lomeli H, Sprengel R, Laurie DJ, Köhr G, Herb A, Seeburg PH, Wisden W (Jan 1993). "The rat delta-1 and delta-2 subunits extend the excitatory amino acid receptor family". FEBS Letters 315 (3): 318–22. doi:10.1016/0014-5793(93)81186-4. PMID 8422924. 
  4. ^ Naur P, Hansen KB, Kristensen AS, Dravid SM, Pickering DS, Olsen L, Vestergaard B, Egebjerg J, Gajhede M, Traynelis SF, Kastrup JS (August 2007). "Ionotropic glutamate-like receptor delta2 binds D-serine and glycine". Proc. Natl. Acad. Sci. USA 104 (35): 14116–14121. doi:10.1073/pnas.0703718104. PMID 21460832. 
  5. ^ a b Hansen KB, Naur P, Kurtkaya NL, Kristensen AS, Gajhede M, Kastrup JS, Traynelis SF (Jan 2009). "Modulation of the dimer interface at ionotropic glutamate-like receptor delta2 by D-serine and extracellular calcium". The Journal of Neuroscience 29 (4): 907–17. doi:10.1523/JNEUROSCI.4081-08.2009. PMID 19176800. 
  6. ^ Araki K, Meguro H, Kushiya E, Takayama C, Inoue Y, Mishina M (Dec 1993). "Selective expression of the glutamate receptor channel delta 2 subunit in cerebellar Purkinje cells". Biochemical and Biophysical Research Communications 197 (3): 1267–76. doi:10.1006/bbrc.1993.2614. PMID 7506541. 
  7. ^ a b Yuzaki M (Nov 2013). "Cerebellar LTD vs. motor learning-lessons learned from studying GluD2". Neural Networks 47: 36–41. doi:10.1016/j.neunet.2012.07.001. PMID 22840919. 
  8. ^ Matsuda K, Yuzaki M (Mar 2012). "Cbln1 and the δ2 glutamate receptor--an orphan ligand and an orphan receptor find their partners". Cerebellum 11 (1): 78–84. doi:10.1016/j.conb.2011.01.010. PMID 20535596. 
  9. ^ Kakegawa W, Miyazaki T, Emi K, Matsuda K, Kohda K, Motohashi J, Mishina M, Kawahara S, Watanabe M, Yuzaki M (February 2008). "Differential regulation of synaptic plasticity and cerebellar motor learning by the C-terminal PDZ-binding motif of GluRdelta2". J. Neurosci. 28 (6): 1460–1468. doi:10.1523/JNEUROSCI.2553-07.2008. PMID 18256267. 
  10. ^ Kakegawa W, Miyoshi Y, Hamase K, Matsuda S, Matsuda K, Kohda K, Emi K, Motohashi J, Konno R, Zaitsu K, Yuzaki M (May 2011). "D-serine regulates cerebellar LTD and motor coordination through the δ2 glutamate receptor". Nat. Neurosci. 14 (5): 603–611. doi:10.1038/nn.2791. PMID 21460832. 
  11. ^ Maier A, Klopocki E, Horn D, Tzschach A, Holm T, Meyer R, Meyer T (Feb 2014). "De novo partial deletion in GRID2 presenting with complicated spastic paraplegia". Muscle & Nerve 49 (2): 289–92. doi:10.1002/mus.24096. PMID 24122788. 
  12. ^ Utine GE, Haliloğlu G, Salanci B, Çetinkaya A, Kiper P, Alanay Y, Aktas D, Boduroğlu K, Alikaşifoğlu M (Jul 2013). "A homozygous deletion in GRID2 causes a human phenotype with cerebellar ataxia and atrophy". Journal of Child Neurology 28 (7): 926–32. doi:10.1177/0883073813484967. PMID 23611888. 
  13. ^ Hills LB, Masri A, Konno K, Kakegawa W, Lam AT, Lim-Melia E, Chandy N, Hill RS, Partlow JN, Al-Saffar M, Nasir R, Stoler JM, Barkovich AJ, Watanabe M, Yuzaki M, Mochida GH (Oct 2013). "Deletions in GRID2 lead to a recessive syndrome of cerebellar ataxia and tonic upgaze in humans". Neurology 81 (16): 1378–86. doi:10.1212/WNL.0b013e3182a841a3. PMID 24078737. 
  14. ^ Lalonde R, Botez MI, Joyal CC, Caumartin M (Mar 1992). "Motor abnormalities in lurcher mutant mice". Physiology & Behavior 51 (3): 523–5. doi:10.1016/0031-9384(92)90174-Z. PMID 1523229. 
  15. ^ Williams K, Dattilo M, Sabado TN, Kashiwagi K, Igarashi K (May 2003). "Pharmacology of delta2 glutamate receptors: effects of pentamidine and protons". The Journal of Pharmacology and Experimental Therapeutics 305 (2): 740–8. doi:10.1124/jpet.102.045799. PMID 12606689. 
  16. ^ Yue Z, Horton A, Bravin M, DeJager PL, Selimi F, Heintz N (Aug 2002). "A novel protein complex linking the delta 2 glutamate receptor and autophagy: implications for neurodegeneration in lurcher mice". Neuron 35 (5): 921–33. doi:10.1016/S0896-6273(02)00861-9. PMID 12372286. 
  17. ^ a b Kohda K, Kamiya Y, Matsuda S, Kato K, Umemori H, Yuzaki M (Jan 2003). "Heteromer formation of delta2 glutamate receptors with AMPA or kainate receptors". Brain Research. Molecular Brain Research 110 (1): 27–37. doi:10.1016/S0169-328X(02)00561-2. PMID 12573530. 
  18. ^ Hironaka K, Umemori H, Tezuka T, Mishina M, Yamamoto T (May 2000). "The protein-tyrosine phosphatase PTPMEG interacts with glutamate receptor delta 2 and epsilon subunits". The Journal of Biological Chemistry 275 (21): 16167–73. doi:10.1074/jbc.M909302199. PMID 10748123. 
  19. ^ Hess DC, Hill WD, Carroll JE, Borlongan CV (Apr 2004). "Do bone marrow cells generate neurons?". Archives of Neurology 61 (4): 483–5. doi:10.1001/archneur.61.4.483. PMID 15096394. 
  20. ^ Weimann JM, Johansson CB, Trejo A, Blau HM (Nov 2003). "Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant". Nature Cell Biology 5 (11): 959–66. doi:10.1038/ncb1053. PMID 14562057. 
  21. ^ Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K, Lois C, Morrison SJ, Alvarez-Buylla A (Oct 2003). "Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes". Nature 425 (6961): 968–73. doi:10.1038/nature02069. PMID 14555960. 
  22. ^ a b Felizola SJ, Katsu K, Ise K, Nakamura Y, Arai Y, Satoh F, Sasano H (May 2015). "Pre-B Lymphocyte Protein 3 (VPREB3) Expression in the Adrenal Cortex: Precedent for non-Immunological Roles in Normal and Neoplastic Human Tissues". Endocrine Pathology 26 (2): 119–28. doi:10.1007/s12022-015-9366-7. PMID 25861052. 
  23. ^ Kemp K, Wilkins A, Scolding N (Nov 2014). "Cell fusion in the brain: two cells forward, one cell back". Acta Neuropathologica 128 (5): 629–38. doi:10.1007/s00401-014-1303-1. PMID 24899142. 
  24. ^ Berenova M, Mandakova P, Sima P, Slipka J, Vozeh F, Kocova J, Cervinkova M, Sykora J (2002). "Morphology of Adrenal Gland and Lymph Organs is Impaired in Neurodeficient Lurcher Mutant Mice.". Acta Vet. Brno 71: 23–28. doi:10.2754/avb200271010023. 

Further reading[edit]

  • Araki K, Meguro H, Kushiya E, Takayama C, Inoue Y, Mishina M (Dec 1993). "Selective expression of the glutamate receptor channel delta 2 subunit in cerebellar Purkinje cells". Biochemical and Biophysical Research Communications 197 (3): 1267–76. doi:10.1006/bbrc.1993.2614. PMID 7506541. 
  • Hu W, Zuo J, De Jager PL, Heintz N (Jan 1998). "The human glutamate receptor delta 2 gene (GRID2) maps to chromosome 4q22". Genomics 47 (1): 143–5. doi:10.1006/geno.1997.5108. PMID 9465309. 
  • "Toward a complete human genome sequence". Genome Research 8 (11): 1097–108. Nov 1998. doi:10.1101/gr.8.11.1097. PMID 9847074. 
  • Roche KW, Ly CD, Petralia RS, Wang YX, McGee AW, Bredt DS, Wenthold RJ (May 1999). "Postsynaptic density-93 interacts with the delta2 glutamate receptor subunit at parallel fiber synapses". The Journal of Neuroscience 19 (10): 3926–34. PMID 10234023. 
  • Hironaka K, Umemori H, Tezuka T, Mishina M, Yamamoto T (May 2000). "The protein-tyrosine phosphatase PTPMEG interacts with glutamate receptor delta 2 and epsilon subunits". The Journal of Biological Chemistry 275 (21): 16167–73. doi:10.1074/jbc.M909302199. PMID 10748123. 
  • Miyagi Y, Yamashita T, Fukaya M, Sonoda T, Okuno T, Yamada K, Watanabe M, Nagashima Y, Aoki I, Okuda K, Mishina M, Kawamoto S (Feb 2002). "Delphilin: a novel PDZ and formin homology domain-containing protein that synaptically colocalizes and interacts with glutamate receptor delta 2 subunit". The Journal of Neuroscience 22 (3): 803–14. PMID 11826110. 
  • Ly CD, Roche KW, Lee HK, Wenthold RJ (Feb 2002). "Identification of rat EMAP, a delta-glutamate receptor binding protein". Biochemical and Biophysical Research Communications 291 (1): 85–90. doi:10.1006/bbrc.2002.6413. PMID 11829466. 
  • Yue Z, Horton A, Bravin M, DeJager PL, Selimi F, Heintz N (Aug 2002). "A novel protein complex linking the delta 2 glutamate receptor and autophagy: implications for neurodegeneration in lurcher mice". Neuron 35 (5): 921–33. doi:10.1016/S0896-6273(02)00861-9. PMID 12372286. 
  • Kohda K, Kamiya Y, Matsuda S, Kato K, Umemori H, Yuzaki M (Jan 2003). "Heteromer formation of delta2 glutamate receptors with AMPA or kainate receptors". Brain Research. Molecular Brain Research 110 (1): 27–37. doi:10.1016/S0169-328X(02)00561-2. PMID 12573530. 
  • Yap CC, Muto Y, Kishida H, Hashikawa T, Yano R (Feb 2003). "PKC regulates the delta2 glutamate receptor interaction with S-SCAM/MAGI-2 protein". Biochemical and Biophysical Research Communications 301 (4): 1122–8. doi:10.1016/S0006-291X(03)00070-6. PMID 12589829. 
  • Sonoda T, Mochizuki C, Yamashita T, Watanabe-Kaneko K, Miyagi Y, Shigeri Y, Yazama F, Okuda K, Kawamoto S (Nov 2006). "Binding of glutamate receptor delta2 to its scaffold protein, Delphilin, is regulated by PKA". Biochemical and Biophysical Research Communications 350 (3): 748–52. doi:10.1016/j.bbrc.2006.09.109. PMID 17027646.