Jump to content

Portal:Climate change

From Wikipedia, the free encyclopedia
(Redirected from P:GW)

The Climate Change Portal

Surface air temperature change over the past 50 years.[1]

In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its wider effects on Earth's climate. Climate change in a broader sense also includes previous long-term changes to Earth's climate. The current rise in global average temperature is mainly driven by human activities, especially fossil fuel burning since the Industrial Revolution. Fossil fuel use, deforestation, and some agricultural and industrial practices release greenhouse gases. These gases absorb some of the heat that the Earth radiates after it warms from sunlight, warming the lower atmosphere. Carbon dioxide, the primary greenhouse gas driving global warming, has grown by about 50% and is at levels unseen for millions of years.

Climate change has an increasingly large impact on the environment. Deserts are expanding, while heat waves and wildfires are becoming more common. Amplified warming in the Arctic has contributed to thawing permafrost, retreat of glaciers and sea ice decline. Higher temperatures are also causing more intense storms, droughts, and other weather extremes. Rapid environmental change in mountains, coral reefs, and the Arctic is forcing many species to relocate or become extinct. Even if efforts to minimize future warming are successful, some effects will continue for centuries. These include ocean heating, ocean acidification and sea level rise.

Climate change threatens people with increased flooding, extreme heat, increased food and water scarcity, more disease, and economic loss. Human migration and conflict can also be a result. The World Health Organization calls climate change one of the biggest threats to global health in the 21st century. Societies and ecosystems will experience more severe risks without action to limit warming. Adapting to climate change through efforts like flood control measures or drought-resistant crops partially reduces climate change risks, although some limits to adaptation have already been reached. Poorer communities are responsible for a small share of global emissions, yet have the least ability to adapt and are most vulnerable to climate change.

Many climate change impacts have been felt in recent years, with 2023 the warmest on record at +1.48 °C (2.66 °F) since regular tracking began in 1850. Additional warming will increase these impacts and can trigger tipping points, such as melting all of the Greenland ice sheet. Under the 2015 Paris Agreement, nations collectively agreed to keep warming "well under 2 °C". However, with pledges made under the Agreement, global warming would still reach about 2.8 °C (5.0 °F) by the end of the century. Limiting warming to 1.5 °C would require halving emissions by 2030 and achieving net-zero emissions by 2050.

Fossil fuel use can be phased out by conserving energy and switching to energy sources that do not produce significant carbon pollution. These energy sources include wind, solar, hydro, and nuclear power. Cleanly generated electricity can replace fossil fuels for powering transportation, heating buildings, and running industrial processes. Carbon can also be removed from the atmosphere, for instance by increasing forest cover and farming with methods that capture carbon in soil. (Full article...)

Map showing global and regional tipping elements: if the global temperature increases past a certain point (color-coded for temperature thresholds), this particular element would be tipped. The result would be a transition to a different state.

In climate science, a tipping point is a critical threshold that, when crossed, leads to large, accelerating and often irreversible changes in the climate system. If tipping points are crossed, they are likely to have severe impacts on human society and may accelerate global warming. Tipping behavior is found across the climate system, for example in ice sheets, mountain glaciers, circulation patterns in the ocean, in ecosystems, and the atmosphere. Examples of tipping points include thawing permafrost, which will release methane, a powerful greenhouse gas, or melting ice sheets and glaciers reducing Earth's albedo, which would warm the planet faster. Thawing permafrost is a threat multiplier because it holds roughly twice as much carbon as the amount currently circulating in the atmosphere.

Tipping points are often, but not necessarily, abrupt. For example, with average global warming somewhere between 0.8 °C (1.4 °F) and 3 °C (5.4 °F), the Greenland ice sheet passes a tipping point and is doomed, but its melt would take place over millennia. Tipping points are possible at today's global warming of just over 1 °C (1.8 °F) above preindustrial times, and highly probable above 2 °C (3.6 °F) of global warming. It is possible that some tipping points are close to being crossed or have already been crossed, like those of the West Antarctic and Greenland ice sheets, the Amazon rainforest and warm-water coral reefs.

A danger is that if the tipping point in one system is crossed, this could cause a cascade of other tipping points, leading to severe, potentially catastrophic, impacts. Crossing a threshold in one part of the climate system may trigger another tipping element to tip into a new state. For example, ice loss in West Antarctica and Greenland will significantly alter ocean circulation. Sustained warming of the northern high latitudes as a result of this process could activate tipping elements in that region, such as permafrost degradation, and boreal forest dieback. (Full article...)

List of selected articles

Selected picture – show another

The basic function of a space sunshade to mitigate global warming. A 1000 kilometre diameter lens is sufficient, and much smaller than what is shown in this simplified image. As a Fresnel lens it would be only a few millimeters thick.

WikiProjects

In the news

Selected biography – show another

Varun Sivaram in 2018

Varun Srinivasan Sivaram (born 1989) is an American physicist, clean energy executive, and former U.S. diplomat. He is Group Senior Vice President, member of the Group Executive Team, and Head of Strategy, Innovation, Portfolio, and Partnerships and M&A at Ørsted, a clean energy company with the world's largest offshore wind energy portfolio. He has previously served in the U.S. State Department as managing director for clean energy and senior advisor to U.S. Special Presidential Envoy for Climate John Kerry, as the chief technology officer (CTO) of ReNew Power, India's largest renewable energy company, on the faculty of Columbia University, as the director of the energy and climate program at the Council on Foreign Relations (CFR), and as a senior energy advisor to the mayor of Los Angeles and governor of New York. (Full article...)

General images

The following are images from various climate-related articles on Wikipedia.

Did you know – show another

... that Mars' south polar ice cap may be melting due to global warming?

(Pictured left: Photo of Mars' south polar ice taken by Mars Global Surveyor.)

Other "Did you know" facts...

Selected panorama – show another

The Global Historical Climatology Network (GHCN) is one of the primary reference compilations of temperature data used for climatology, and is the foundation of the GISTEMP Temperature Record. This map shows the 7,280 fixed temperature stations in the GHCN catalog color coded by the length of the available record. Sites that are actively updated in the database (2,277) are marked as "active" and shown in large symbols, other sites are marked as "historical" and shown in small symbols. In some cases, the "historical" sites are still collecting data but due to reporting and data processing delays (of more than a decade in some cases) they do not contribute to current temperature estimates. As is evident from this plot, the most densely instrumented portion of the globe is in the United States, while Antarctica is the most sparsely instrumented land area. Parts of the Pacific and other oceans are more isolated from fixed temperature stations, but this is supplemented by volunteer observing ships that record temperature information during their normal travels. This image shows 3,832 records longer than 50 years, 1,656 records longer than 100 years, and 226 records longer than 150 years. The longest record in the collection began in Berlin in 1701 and is still collected in the present day.

Topics


Categories

Web resources


Things to do

Wikimedia

References

  1. ^ "GISS Surface Temperature Analysis (v4)". NASA. Retrieved 12 January 2024.
  2. ^ Bhargav, Vishal (2021-10-11). "Climate Change Is Making India's Monsoon More Erratic". www.indiaspend.com. Retrieved 2021-10-11.
  3. ^ Tiwari, Dr Pushp Raj; Conversation, The. "Nobel prize: Why climate modellers deserved the physics award – they've been proved right again and again". phys.org. Retrieved 2021-10-11.
Discover Wikipedia using portals

Purge server cache