Jump to content

mir-885 microRNA precursor family

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Procyonidae (talk | contribs) at 02:19, 1 April 2021 (External links: add cat biomarkers). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

mir-885
Identifiers
Symbolmir-885
RfamRF01015
miRBase familyMIPF0000532
Other data
RNA typemicroRNA
Domain(s)Eukaryota;
PDB structuresPDBe

In molecular biology mir-885 microRNA is a short RNA molecule. MicroRNAs function to regulate the expression levels of other genes by several mechanisms.

miR-885-5p in neuroblastoma

The miR-885-5p form of this microRNA acts as a tumour suppressor in neuroblastoma, through interference with cell cycle progression and cell survival. It is found at 3p25.3, a chromosome region frequently deleted in primary neuroblastoma,[1] and expression results in p53 protein accumulation and pathway activation. Altered expression of multiple genes is observed with miR-885-5p, including the CDK2 and MCM5 genes encoding cyclin-dependent kinase 2 and mini-chromosome maintenance protein MCM5, and also with several p53 target genes.[1]

Biological Implication

Clinical Biomarker

Circulating miRNAs (microRNAs) are emerging as promising biomarkers for several pathological conditions. similarly, miR-885-5p found as a potential marker for liver disease condition. It is significantly elevated in the patients sera with liver pathologies, and researcher suggested that serum miRNAs could serve as novel complementary biomarkers for the detection and assessment of liver pathologies.[2] These unique miRNAs may be clinically applicable to predict prognosis and distant metastasis in colorectal cancer (CRC). The direct comparison of expression patterns of metastasis-specific microRNAs (miRNAs) in primary CRCs (pCRCs) and matched liver metastases (LMs) provides a feasibility of their clinical application as metastasis-specific biomarkers.[3] In a clinical study it has been found that miR-885-5p is increased in plasma from pre-eclampsia compared with healthy pregnant women, and it is released into circulation mainly inside exosomes.[4]

Cancer

In search of an effective therapeutic strategy for improving colon cancer treatment, a novel role of miR-885-3p has been observed in tumor angiogenesis by targeting BMPR1A, which regulates a proangiogenic factor, and provide new evidence that targeting miRNAs might be an effective therapeutic strategy.[5]

See also

References

  1. ^ a b Afanasyeva EA, Mestdagh P, Kumps C, Vandesompele J, Ehemann V, Theissen J, et al. (2011). "MicroRNA miR-885-5p targets CDK2 and MCM5, activates p53 and inhibits proliferation and survival". Cell Death Differ. 18 (6): 974–84. doi:10.1038/cdd.2010.164. PMC 3131937. PMID 21233845.
  2. ^ Gui, Junhao; Tian, Yaping; Wen, Xinyu; Zhang, Wenhui; Zhang, Pengjun; Gao, Jing; Run, Wei; Tian, Liyuan; Jia, Xingwang (2011-03-01). "Serum microRNA characterization identifies miR-885-5p as a potential marker for detecting liver pathologies". Clinical Science. 120 (5): 183–193. doi:10.1042/CS20100297. ISSN 1470-8736. PMC 2990200. PMID 20815808.
  3. ^ Hur, Keun; Toiyama, Yuji; Schetter, Aaron J.; Okugawa, Yoshinaga; Harris, Curtis C.; Boland, C. Richard; Goel, Ajay (March 2015). "Identification of a metastasis-specific MicroRNA signature in human colorectal cancer". Journal of the National Cancer Institute. 107 (3). doi:10.1093/jnci/dju492. ISSN 1460-2105. PMC 4334826. PMID 25663689.
  4. ^ Sandrim, V. C.; Luizon, M. R.; Palei, A. C.; Tanus-Santos, J. E.; Cavalli, R. C. (December 2016). "Circulating microRNA expression profiles in pre-eclampsia: evidence of increased miR-885-5p levels". BJOG: An International Journal of Obstetrics and Gynaecology. 123 (13): 2120–2128. doi:10.1111/1471-0528.13903. ISSN 1471-0528. PMID 26853698.
  5. ^ Xiao, F.; Qiu, H.; Cui, H.; Ni, X.; Li, J.; Liao, W.; Lu, L.; Ding, K. (2015-04-09). "MicroRNA-885-3p inhibits the growth of HT-29 colon cancer cell xenografts by disrupting angiogenesis via targeting BMPR1A and blocking BMP/Smad/Id1 signaling". Oncogene. 34 (15): 1968–1978. doi:10.1038/onc.2014.134. ISSN 1476-5594. PMID 24882581.

Further reading