Jump to content

mir-24 microRNA precursor family

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by CV9933 (talk | contribs) at 12:00, 29 October 2015 (Cite error - ref name "pmid23071155" defined multiple times.- Fixed.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

mir-24 microRNA precursor family
Identifiers
Symbolmir-24
RfamRF00178
miRBaseMI0000080
miRBase familyMIPF0000041
Other data
RNA typeGene; miRNA
Domain(s)Eukaryota
GOGO:0035195 GO:0035068
SOSO:0001244
PDB structuresPDBe

The miR-24 microRNA precursor is a small non-coding RNA molecule that regulates gene expression. microRNAs are transcribed as ~70 nucleotide precursors and subsequently processed by the Dicer enzyme to give a mature ~22 nucleotide product. In this case the mature sequence comes from the 3' arm of the precursor. The mature products are thought to have regulatory roles through complementarity to mRNA. miR-24 is conserved in various species, and is clustered with miR-23 and miR-27, on human chromosome 9 and 19.[1] Recently, miR-24 has been shown to suppress expression of two crucial cell cycle control genes, E2F2 and Myc in hematopoietic differentiation [2] and also to promote keratinocyte differentiation by repressing actin-cytoskeleton regulators PAK4, Tsk5 and ArhGAP19.[3]

Targets of miR-24

  • Lal et al. suggested that miR-24 suppresses the tumor suppressor p16(INK4a).[1]
  • Lal et al. reported that mi-24 inhibits cell proliferation by targeting E2F2, MYC via binding to "seedless" 3'UTR microRNA recognition elements.[2]
  • Amelio I. et al. suggest that miR-24 regulates keratinocyte differentiation, controlling actin-cytoskeleton dynamics via PAK4, Tsk5 and ArhGAP19 repression.[3]
  • Wang et al.. have shown that miR-24 reduces the mRNA and protein levels of human ALK4 by targeting the 3'-untranslated region of mRNA.[4]
  • Mishra et al. suggest that miR-24 targets the DHFR gene.[5]

References

  1. ^ a b Lal A, Kim HH, Abdelmohsen K, et al. (2008). Preiss T (ed.). "p16(INK4a) translation suppressed by miR-24". PLoS ONE. 3 (3): e1864. doi:10.1371/journal.pone.0001864. PMC 2274865. PMID 18365017.{{cite journal}}: CS1 maint: unflagged free DOI (link) Open access icon
  2. ^ a b Lal A, Navarro F, Maher CA, Maliszewski LE, Yan N, O'Day E, Chowdhury D, Dykxhoorn DM, Tsai P, Hofmann O, Becker KG, Gorospe M, Hide W, Lieberman J. (2009). Preiss, Thomas (ed.). "miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to "seedless" 3'UTR microRNA recognition elements". Molecular Cell. 11 (3): e1864. doi:10.1016/j.molcel.2009.08.020. PMC 2757794. PMID 19748357.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. ^ a b Amelio I, Lena AM, Viticchiè G, Shalom-Feuerstein R, Terrinoni A, Dinsdale D, Russo G, Fortunato C, Bonanno E, Spagnoli LG, Aberdam D, Knight RA, Candi E, Melino G. (October 2012). "miR-24 triggers epidermal differentiation by controlling actin adhesion and cell migration". The Journal of Cell Biology. 199 (2): 347–63. doi:10.1083/jcb.201203134. PMID 23071155.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. ^ Wang Q, Huang Z, Xue H, et al. (January 2008). "MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4". Blood. 111 (2): 588–95. doi:10.1182/blood-2007-05-092718. PMID 17906079.
  5. ^ Mishra PJ, Humeniuk R, Mishra PJ, Longo-Sorbello GS, Banerjee D, Bertino JR (August 2007). "A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance". Proceedings of the National Academy of Sciences of the United States of America. 104 (33): 13513–8. doi:10.1073/pnas.0706217104. PMC 1948927. PMID 17686970.{{cite journal}}: CS1 maint: multiple names: authors list (link)