Jump to content

Solar eclipse of December 5, 2029

From Wikipedia, the free encyclopedia
Solar eclipse of December 5, 2029
Map
Type of eclipse
NaturePartial
Gamma−1.0609
Magnitude0.8911
Maximum eclipse
Coordinates67°30′S 135°42′E / 67.5°S 135.7°E / -67.5; 135.7
Times (UTC)
Greatest eclipse15:03:58
References
Saros123 (54 of 70)
Catalog # (SE5000)9574

A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, December 5, 2029, with a magnitude of 0.8911. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

This will be the last of four partial solar eclipses in 2029, with the others occurring on January 14, June 12, and July 11.

It also follows a total lunar eclipse occurring on June 26 and precedes a total lunar eclipse occurring on December 20.

Images

[edit]


Animated path

[edit]

Eclipses in 2029

[edit]

Metonic

[edit]

Tzolkinex

[edit]

Half-Saros

[edit]

Tritos

[edit]

Solar Saros 123

[edit]

Inex

[edit]

Triad

[edit]

Solar eclipses of 2029–2032

[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

The partial solar eclipses on January 14, 2029 and July 11, 2029 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 2029 to 2032
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
118 June 12, 2029

Partial
1.29431 123 December 5, 2029

Partial
−1.06090
128 June 1, 2030

Annular
0.56265 133 November 25, 2030

Total
−0.38669
138 May 21, 2031

Annular
−0.19699 143 November 14, 2031

Hybrid
0.30776
148 May 9, 2032

Annular
−0.93748 153 November 3, 2032

Partial
1.06431

Saros 123

[edit]

This eclipse is a part of Saros series 123, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on April 29, 1074. It contains annular eclipses from July 2, 1182 through April 19, 1651; hybrid eclipses from April 30, 1669 through May 22, 1705; and total eclipses from June 3, 1723 through October 23, 1957. The series ends at member 70 as a partial eclipse on May 31, 2318. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 19 at 8 minutes, 7 seconds on November 9, 1398, and the longest duration of totality was produced by member 42 at 3 minutes, 27 seconds on July 27, 1813. All eclipses in this series occur at the Moon’s ascending node of orbit.[2]

Series members 42–63 occur between 1801 and 2200:
42 43 44

July 27, 1813

August 7, 1831

August 18, 1849
45 46 47

August 29, 1867

September 8, 1885

September 21, 1903
48 49 50

October 1, 1921

October 12, 1939

October 23, 1957
51 52 53

November 3, 1975

November 13, 1993

November 25, 2011
54 55 56

December 5, 2029

December 16, 2047

December 27, 2065
57 58 59

January 7, 2084

January 19, 2102

January 30, 2120
60 61 62

February 9, 2138

February 21, 2156

March 3, 2174
63

March 13, 2192

Tritos series

[edit]

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1866 and 2200

March 16, 1866
(Saros 108)

December 13, 1898
(Saros 111)

September 12, 1931
(Saros 114)

August 12, 1942
(Saros 115)

July 11, 1953
(Saros 116)

June 10, 1964
(Saros 117)

May 11, 1975
(Saros 118)

April 9, 1986
(Saros 119)

March 9, 1997
(Saros 120)

February 7, 2008
(Saros 121)

January 6, 2019
(Saros 122)

December 5, 2029
(Saros 123)

November 4, 2040
(Saros 124)

October 4, 2051
(Saros 125)

September 3, 2062
(Saros 126)

August 3, 2073
(Saros 127)

July 3, 2084
(Saros 128)

June 2, 2095
(Saros 129)

May 3, 2106
(Saros 130)

April 2, 2117
(Saros 131)

March 1, 2128
(Saros 132)

January 30, 2139
(Saros 133)

December 30, 2149
(Saros 134)

November 27, 2160
(Saros 135)

October 29, 2171
(Saros 136)

September 27, 2182
(Saros 137)

August 26, 2193
(Saros 138)

Metonic series

[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events between July 13, 2018 and July 12, 2094
July 12–13 April 30–May 1 February 16–17 December 5–6 September 22–23
117 119 121 123 125

July 13, 2018

April 30, 2022

February 17, 2026

December 5, 2029

September 23, 2033
127 129 131 133 135

July 13, 2037

April 30, 2041

February 16, 2045

December 5, 2048

September 22, 2052
137 139 141 143 145

July 12, 2056

April 30, 2060

February 17, 2064

December 6, 2067

September 23, 2071
147 149 151 153 155

July 13, 2075

May 1, 2079

February 16, 2083

December 6, 2086

September 23, 2090
157

July 12, 2094

References

[edit]
  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. ^ "NASA - Catalog of Solar Eclipses of Saros 123". eclipse.gsfc.nasa.gov.
[edit]