Solar eclipse of July 9, 1945
Solar eclipse of July 9, 1945 | |
---|---|
Type of eclipse | |
Nature | Total |
Gamma | 0.7356 |
Magnitude | 1.018 |
Maximum eclipse | |
Duration | 75 s (1 min 15 s) |
Coordinates | 70°00′N 17°12′W / 70°N 17.2°W |
Max. width of band | 92 km (57 mi) |
Times (UTC) | |
Greatest eclipse | 13:27:46 |
References | |
Saros | 145 (18 of 77) |
Catalog # (SE5000) | 9387 |
A total solar eclipse occurred on July 9, 1945. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The path of totality crossed northern North America, across Greenland and into Scandinavia, the western Soviet Union, and central Asia.
Related eclipses
Solar eclipses 1942–1946
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]
The partial solar eclipses on March 16, 1942 and September 10, 1942 occur in the previous lunar year eclipse set, and the partial solar eclipses on May 30, 1946 and November 23, 1946 occur in the next lunar year eclipse set.
Solar eclipse series sets from 1942 to 1946 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
115 | August 12, 1942 Partial |
−1.5244 | 120 | February 4, 1943 Total |
0.8734 | |
125 | August 1, 1943 Annular |
−0.8041 | 130 | January 25, 1944 Total |
0.2025 | |
135 | July 20, 1944 Annular |
−0.0314 | 140 | January 14, 1945 Annular |
−0.4937 | |
145 | July 9, 1945 Total |
0.7356 | 150 | January 3, 1946 Partial |
−1.2392 | |
155 | June 29, 1946 Partial |
1.4361 |
Saros 145
This eclipse is a part of Saros series 145, repeating every 18 years, 11 days, and containing 77 events. The series started with a partial solar eclipse on January 4, 1639. It contains an annular eclipse on June 6, 1891; a hybrid eclipse on June 17, 1909; and total eclipses from June 29, 1927 through September 9, 2648. The series ends at member 77 as a partial eclipse on April 17, 3009. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity was produced by member 15 at 6 seconds (by default) on June 6, 1891, and the longest duration of totality will be produced by member 50 at 7 minutes, 12 seconds on June 25, 2522. All eclipses in this series occur at the Moon’s ascending node of orbit.[2]
Series members 10–32 occur between 1801 and 2200: | ||
---|---|---|
10 | 11 | 12 |
April 13, 1801 |
April 24, 1819 |
May 4, 1837 |
13 | 14 | 15 |
May 16, 1855 |
May 26, 1873 |
June 6, 1891 |
16 | 17 | 18 |
June 17, 1909 |
June 29, 1927 |
July 9, 1945 |
19 | 20 | 21 |
July 20, 1963 |
July 31, 1981 |
August 11, 1999 |
22 | 23 | 24 |
August 21, 2017 |
September 2, 2035 |
September 12, 2053 |
25 | 26 | 27 |
September 23, 2071 |
October 4, 2089 |
October 16, 2107 |
28 | 29 | 30 |
October 26, 2125 |
November 7, 2143 |
November 17, 2161 |
31 | 32 | |
November 28, 2179 |
December 9, 2197 |
Notes
- ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- ^ "NASA - Catalog of Solar Eclipses of Saros 145". eclipse.gsfc.nasa.gov.
References
- Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC
- Вьюшков П.В. (1945). Солнечное затмение 9 июля 1945 года [Solar eclipse of July 9, 1945] (PDF) (in Russian). Saratov: Saratov State University.