Solar eclipse of July 22, 2028
Solar eclipse of July 22, 2028 | |
---|---|
Type of eclipse | |
Nature | Total |
Gamma | −0.6056 |
Magnitude | 1.056 |
Maximum eclipse | |
Duration | 310 s (5 min 10 s) |
Coordinates | 15°36′S 126°42′E / 15.6°S 126.7°E |
Max. width of band | 230 km (140 mi) |
Times (UTC) | |
Greatest eclipse | 2:56:40 |
References | |
Saros | 146 (28 of 76) |
Catalog # (SE5000) | 9570 |
A total solar eclipse will occur on Saturday, July 22, 2028. The central line of the path of the eclipse will cross the Australian continent from the Kimberley region in the north west and continue in a south-easterly direction through Western Australia, the Northern Territory, south-west Queensland and New South Wales, close to the towns of Wyndham, Kununurra, Tennant Creek, Birdsville, Bourke and Dubbo, and continuing on through the centre of Sydney, where the eclipse will have a duration of over three minutes. It will also cross Dunedin, New Zealand. Totality will also be viewable from two of Australia's external territories: Christmas Island and Cocos (Keeling) Island.
Related eclipses
Solar eclipses of 2026–2029
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]
The partial solar eclipses on June 12, 2029 and December 5, 2029 occur in the next lunar year eclipse set.
Solar eclipse series sets from 2026 to 2029 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
121 | February 17, 2026 Annular |
−0.97427 | 126 | August 12, 2026 Total |
0.89774 | |
131 | February 6, 2027 Annular |
−0.29515 | 136 | August 2, 2027 Total |
0.14209 | |
141 | January 26, 2028 Annular |
0.39014 | 146 | July 22, 2028 Total |
−0.60557 | |
151 | January 14, 2029 Partial |
1.05532 | 156 | July 11, 2029 Partial |
−1.41908 |
Saros 146
It is a part of Saros cycle 146, repeating every 18 years, 11 days, containing 76 events. The series started with partial solar eclipse on September 19, 1541. It contains total eclipses from May 29, 1938 through October 7, 2154, hybrid eclipses from October 17, 2172 through November 20, 2226, and annular eclipses from December 1, 2244 through August 10, 2659. The series ends at member 76 as a partial eclipse on December 29, 2893. The longest duration of totality was 5 minutes, 21 seconds on June 30, 1992.
Series members 21-37 occur between 1901 and 2200: | ||
---|---|---|
21 | 22 | 23 |
May 7, 1902 |
May 18, 1920 |
May 29, 1938 |
24 | 25 | 26 |
June 8, 1956 |
June 20, 1974 |
June 30, 1992 |
27 | 28 | 29 |
July 11, 2010 |
July 22, 2028 |
August 2, 2046 |
30 | 31 | 32 |
August 12, 2064 |
August 24, 2082 |
September 4, 2100 |
33 | 34 | 35 |
September 15, 2118 |
September 26, 2136 |
October 7, 2154 |
36 | 37 | |
October 17, 2172 |
October 29, 2190 |
Metonic cycle
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.
21 eclipse events between July 22, 1971 and July 22, 2047 | ||||
---|---|---|---|---|
July 22 | May 9–11 | February 26–27 | December 14–15 | October 2–3 |
116 | 118 | 120 | 122 | 124 |
July 22, 1971 |
May 11, 1975 |
February 26, 1979 |
December 15, 1982 |
October 3, 1986 |
126 | 128 | 130 | 132 | 134 |
July 22, 1990 |
May 10, 1994 |
February 26, 1998 |
December 14, 2001 |
October 3, 2005 |
136 | 138 | 140 | 142 | 144 |
July 22, 2009 |
May 10, 2013 |
February 26, 2017 |
December 14, 2020 |
October 2, 2024 |
146 | 148 | 150 | 152 | 154 |
July 22, 2028 |
May 9, 2032 |
February 27, 2036 |
December 15, 2039 |
October 3, 2043 |
156 | ||||
July 22, 2047 |
External links
- Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC
- ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.