Solar eclipse of April 21, 2069
Solar eclipse of April 21, 2069 | |
---|---|
Type of eclipse | |
Nature | Partial |
Gamma | 1.0624 |
Magnitude | 0.8992 |
Maximum eclipse | |
Coordinates | 71°00′N 101°18′W / 71°N 101.3°W |
Times (UTC) | |
Greatest eclipse | 10:11:09 |
References | |
Saros | 120 (64 of 71) |
Catalog # (SE5000) | 9663 |
A partial solar eclipse will occur on April 21, 2069. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
Related eclipses
Solar eclipses 2069–2072
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]
The partial solar eclipse on May 20, 2069 occurs in the previous lunar year eclipse set.
Solar eclipse series sets from 2069 to 2072 | ||||||
---|---|---|---|---|---|---|
Descending node | Ascending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
120 | April 21, 2069 Partial |
1.0624 | 125 | October 15, 2069 Partial |
−1.2524 | |
130 | April 11, 2070 Total |
0.3652 | 135 | October 4, 2070 Annular |
−0.495 | |
140 | March 31, 2071 Annular |
−0.3739 | 145 | September 23, 2071 Total |
0.262 | |
150 | March 19, 2072 Partial |
−1.1405 | 155 | September 12, 2072 Total |
0.9655 |
Saros 120
This eclipse is a part of Saros series 120, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on May 27, 933 AD. It contains annular eclipses from August 11, 1059 through April 26, 1492; hybrid eclipses from May 8, 1510 through June 8, 1564; and total eclipses from June 20, 1582 through March 30, 2033. The series ends at member 71 as a partial eclipse on July 7, 2195. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity was produced by member 11 at 6 minutes, 24 seconds on September 11, 1113, and the longest duration of totality was produced by member 60 at 2 minutes, 50 seconds on March 9, 1997. All eclipses in this series occur at the Moon’s descending node of orbit.[2]
Series members 50–71 occur between 1801 and 2195: | ||
---|---|---|
50 | 51 | 52 |
November 19, 1816 |
November 30, 1834 |
December 11, 1852 |
53 | 54 | 55 |
December 22, 1870 |
January 1, 1889 |
January 14, 1907 |
56 | 57 | 58 |
January 24, 1925 |
February 4, 1943 |
February 15, 1961 |
59 | 60 | 61 |
February 26, 1979 |
March 9, 1997 |
March 20, 2015 |
62 | 63 | 64 |
March 30, 2033 |
April 11, 2051 |
April 21, 2069 |
65 | 66 | 67 |
May 2, 2087 |
May 14, 2105 |
May 25, 2123 |
68 | 69 | 70 |
June 4, 2141 |
June 16, 2159 |
June 26, 2177 |
71 | ||
July 7, 2195 |
References
- ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- ^ "NASA - Catalog of Solar Eclipses of Saros 120". eclipse.gsfc.nasa.gov.
External links
- Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC