Page semi-protected
From Wikipedia, the free encyclopedia
(Redirected from Mathematics portal)

The Mathematics Portal

Mathematics is the study of representing and reasoning about abstract objects (such as numbers, points, spaces, sets, structures, and games). Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered. (Full article...)

Featured articles – load new batch

  Featured articles are displayed here, which represent some of the best content on English Wikipedia.

Selected image – show another

graph in the complex plane showing a looping curve passing several times through the origin
graph in the complex plane showing a looping curve passing several times through the origin
This is a graph of a portion of the complex-valued Riemann zeta function along the critical line (the set of complex numbers having real part equal to 1/2). More specifically, it is a graph of Im ζ(1/2 + it) versus Re ζ(1/2 + it) (the imaginary part vs. the real part) for values of the real variable t running from 0 to 34 (the curve starts at its leftmost point, with real part approximately −1.46 and imaginary part 0). The first five zeros along the critical line are visible in this graph as the five times the curve passes through the origin (which occur at t  14.13, 21.02, 25.01, 30.42, and 32.93 — for a different perspective, see a graph of the real and imaginary parts of this function plotted separately over a wider range of values). In 1914, G. H. Hardy proved that ζ(1/2 + it) has infinitely many zeros. According to the Riemann hypothesis, zeros of this form constitute the only non-trivial zeros of the full zeta function, ζ(s), where s varies over all complex numbers. Riemann's zeta function grew out of Leonhard Euler's study of real-valued infinite series in the early 18th century. In a famous 1859 paper called "On the Number of Primes Less Than a Given Magnitude", Bernhard Riemann extended Euler's results to the complex plane and established a relation between the zeros of his zeta function and the distribution of prime numbers. The paper also contained the previously mentioned Riemann hypothesis, which is considered by many mathematicians to be the most important unsolved problem in pure mathematics. The Riemann zeta function plays a pivotal role in analytic number theory and has applications in physics, probability theory, and applied statistics.

Good articles – load new batch

  These are Good articles, which meet a core set of high editorial standards.

Did you know (auto-generated)load new batch

More did you know – view different entries

Did you know...
Did you know...
Showing 7 items out of 75

Selected article – show another

In this shear transformation of the Mona Lisa, the central vertical axis (red vector) is unchanged, but the diagonal vector (blue) has changed direction. Hence the red vector is said to be an eigenvector of this particular transformation and the blue vector is not.
Image credit: User:Voyajer

In mathematics, an eigenvector of a transformation is a vector, different from the zero vector, which that transformation simply multiplies by a constant factor, called the eigenvalue of that vector. Often, a transformation is completely described by its eigenvalues and eigenvectors. The eigenspace for a factor is the set of eigenvectors with that factor as eigenvalue, together with the zero vector.

In the specific case of linear algebra, the eigenvalue problem is this: given an n by n matrix A, what nonzero vectors x in exist, such that Ax is a scalar multiple of x?

The scalar multiple is denoted by the Greek letter λ and is called an eigenvalue of the matrix A, while x is called the eigenvector of A corresponding to λ. These concepts play a major role in several branches of both pure and applied mathematics — appearing prominently in linear algebra, functional analysis, and to a lesser extent in nonlinear situations.

It is common to prefix any natural name for the vector with eigen instead of saying eigenvector. For example, eigenfunction if the eigenvector is a function, eigenmode if the eigenvector is a harmonic mode, eigenstate if the eigenvector is a quantum state, and so on. Similarly for the eigenvalue, e.g. eigenfrequency if the eigenvalue is (or determines) a frequency. (Full article...)

View all selected articles


Full category tree. Select [►] to view subcategories.

Topics in mathematics

General Foundations Number theory Discrete mathematics

Algebra Analysis Geometry and topology Applied mathematics

Index of mathematics articles


Related portals


In other Wikimedia projects

The following Wikimedia Foundation sister projects provide more on this subject:

More portals

Discover Wikipedia using portals