Jump to content

Portal:Mathematics

Page semi-protected
From Wikipedia, the free encyclopedia
(Redirected from Mathematics portal)


The Mathematics Portal

Mathematics is the study of representing and reasoning about abstract objects (such as numbers, points, spaces, sets, structures, and games). Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered. (Full article...)

  Featured articles are displayed here, which represent some of the best content on English Wikipedia.

Selected image – show another

three double-cones cut by planes in different ways, resulting in the four conic sections
three double-cones cut by planes in different ways, resulting in the four conic sections
The four conic sections arise when a plane cuts through a double cone in different ways. If the plane cuts through parallel to the side of the cone (case 1), a parabola results (to be specific, the parabola is the shape of the planar graph that is formed by the set of points of intersection of the plane and the cone). If the plane is perpendicular to the cone's axis of symmetry (case 2, lower plane), a circle results. If the plane cuts through at some angle between these two cases (case 2, upper plane) — that is, if the angle between the plane and the axis of symmetry is larger than that between the side of the cone and the axis, but smaller than a right angle — an ellipse results. If the plane is parallel to the axis of symmetry (case 3), or makes a smaller positive angle with the axis than the side of the cone does (not shown), a hyperbola results. In all of these cases, if the plane passes through the point at which the two cones meet (the vertex), a degenerate conic results. First studied by the ancient Greeks in the 4th century BCE, conic sections were still considered advanced mathematics by the time Euclid (fl. c. 300 BCE) created his Elements, and so do not appear in that famous work. Euclid did write a work on conics, but it was lost after Apollonius of Perga (d. c. 190 BCE) collected the same information and added many new results in his Conics. Other important results on conics were discovered by the medieval Persian mathematician Omar Khayyám (d. 1131 CE), who used conic sections to solve algebraic equations.

Good articles – load new batch

  These are Good articles, which meet a core set of high editorial standards.

Did you know (auto-generated)load new batch

  • ... that in 1940 Xu Ruiyun became the first Chinese woman to receive a PhD in mathematics?
  • ... that despite a mathematical model deeming the ice cream bar flavour Goody Goody Gum Drops impossible, it was still created?
  • ... that Ewa Ligocka cooked another mathematician's goose?
  • ... that the discovery of Descartes' theorem in geometry came from a too-difficult mathematics problem posed to a princess?
  • ... that The Math Myth advocates for American high schools to stop requiring advanced algebra?
  • ... that the identity of Cleo, who provided online answers to complex mathematics problems without showing any work, was revealed over a decade later in 2025?
  • ... that Leonardo da Vinci invented a device to solve Alhazen's problem, instead of finding a mathematical solution?
  • ... that the British National Hospital Service Reserve trained volunteers to carry out first aid in the aftermath of a nuclear or chemical attack?

More did you know – view different entries

Did you know...
Did you know...
Showing 7 items out of 75

Selected article – show another


A dodecahedron, one of the five Platonic solids
Image credit: User:DTR

A regular polytope is a geometric figure with a high degree of symmetry. Examples in two dimensions include the square, the regular pentagon and hexagon, and so on. In three dimensions the regular polytopes include the cube, the dodecahedron, and all other Platonic solids. Other Platonic solids include the tetrahedron, the octahedron, the icosahedron. Examples exist in higher dimensions also, such as the 5-dimensional hendecatope. Circles and spheres, although highly symmetric, are not considered polytopes because they do not have flat faces. The strong symmetry of the regular polytopes gives them an aesthetic quality that interests both non-mathematicians and mathematicians.

Many regular polytopes, at least in two and three dimensions, exist in nature and have been known since prehistory. The earliest surviving mathematical treatment of these objects comes to us from ancient Greek mathematicians such as Euclid. Indeed, Euclid wrote a systematic study of mathematics, publishing it under the title Elements, which built up a logical theory of geometry and number theory. His work concluded with mathematical descriptions of the five Platonic solids. (Full article...)

View all selected articles

Subcategories


Full category tree. Select [►] to view subcategories.

Topics in mathematics

Index of mathematics articles

ARTICLE INDEX:
MATHEMATICIANS:

WikiProjects

WikiProjects The Mathematics WikiProject is the center for mathematics-related editing on Wikipedia. Join the discussion on the project's talk page.

In other Wikimedia projects

The following Wikimedia Foundation sister projects provide more on this subject:

More portals