Jump to content

2019 in paleontology: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
Line 2,847: Line 2,847:
* Evidence of extensive burrowing in laminated claystone from the [[Cambrian]] ([[Drumian]]) Ravens Throat River [[Lagerstätte]] in the [[Rockslide Formation]] ([[Canada]]) is presented by Pratt & Kimmig (2019).<ref>{{Cite journal|author1=Brian R. Pratt |author2=Julien Kimmig |year=2019 |title=Extensive bioturbation in a middle Cambrian Burgess Shale–type fossil Lagerstätte in northwestern Canada |journal=Geology |volume=47 |issue=3 |pages=231–234 |doi=10.1130/G45551.1 }}</ref>
* Evidence of extensive burrowing in laminated claystone from the [[Cambrian]] ([[Drumian]]) Ravens Throat River [[Lagerstätte]] in the [[Rockslide Formation]] ([[Canada]]) is presented by Pratt & Kimmig (2019).<ref>{{Cite journal|author1=Brian R. Pratt |author2=Julien Kimmig |year=2019 |title=Extensive bioturbation in a middle Cambrian Burgess Shale–type fossil Lagerstätte in northwestern Canada |journal=Geology |volume=47 |issue=3 |pages=231–234 |doi=10.1130/G45551.1 }}</ref>
* A study on the chemical composition, [[Morphology (biology)|morphology]] and phylogeny of fossil ([[Cenozoic]], [[Mesozoic]] and [[Paleozoic]]) [[annelid]] tubes and tubes formerly thought to have been made by annelids, recovered from [[hydrothermal vent]] and [[cold seep]] environments, is published by Georgieva ''et al.'' (2019).<ref>{{Cite journal|author1=Magdalena N. Georgieva |author2=Crispin T. S. Little |author3=Jonathan S. Watson |author4=Mark A. Sephton |author5=Alexander D. Ball |author6=Adrian G. Glover |year=2019 |title=Identification of fossil worm tubes from Phanerozoic hydrothermal vents and cold seeps |journal=Journal of Systematic Palaeontology |volume=17 |issue=4 |pages=287–329 |doi=10.1080/14772019.2017.1412362 }}</ref>
* A study on the chemical composition, [[Morphology (biology)|morphology]] and phylogeny of fossil ([[Cenozoic]], [[Mesozoic]] and [[Paleozoic]]) [[annelid]] tubes and tubes formerly thought to have been made by annelids, recovered from [[hydrothermal vent]] and [[cold seep]] environments, is published by Georgieva ''et al.'' (2019).<ref>{{Cite journal|author1=Magdalena N. Georgieva |author2=Crispin T. S. Little |author3=Jonathan S. Watson |author4=Mark A. Sephton |author5=Alexander D. Ball |author6=Adrian G. Glover |year=2019 |title=Identification of fossil worm tubes from Phanerozoic hydrothermal vents and cold seeps |journal=Journal of Systematic Palaeontology |volume=17 |issue=4 |pages=287–329 |doi=10.1080/14772019.2017.1412362 }}</ref>
* A massive deposit composed of fossil [[Serpulidae|serpulid]] worm tubes dating to the late [[Pleistocene]] is reported from the Santa Monica Basin off the coast of southern [[California]] by Georgieva ''et al.'' (2019).<ref>{{Cite journal|author1=Magdalena N. Georgieva |author2=Charles K. Paull |author3=Crispin T. S. Little |author4=Mary McGann |author5=Diana Sahy |author6=Daniel Condon |author7=Lonny Lundsten |author8=Jack Pewsey |author9=David W. Caress |author10=Francis M. Kirera |year=2019 |title=Discovery of an extensive deep-sea fossil serpulid reef associated with a cold seep, Santa Monica Basin, California |journal=Frontiers in Marine Science |volume=6 |pages=Article 115 |doi=10.3389/fmars.2019.00115 }}</ref>
* A study on the microstructure of [[Hyolitha|hyolith]] conchs and [[Operculum (gastropod)|opercula]] from the lower [[Cambrian]] [[Xinji Formation]] of North China, and on its implications for inferring the phylogenetic relationships of Hyolitha, will be published by Li ''et al.'' (2019).<ref>{{Cite journal|author1=Luoyang Li |author2=Xingliang Zhang |author3=Christian B. Skovsted |author4=Hao Yun |author5=Bing Pan |author6=Guoxiang Li |year=2019 |title=Homologous shell microstructures in Cambrian hyoliths and molluscs |journal=Palaeontology |volume=in press |issue= |pages= |doi=10.1111/pala.12406 }}</ref>
* A study on the microstructure of [[Hyolitha|hyolith]] conchs and [[Operculum (gastropod)|opercula]] from the lower [[Cambrian]] [[Xinji Formation]] of North China, and on its implications for inferring the phylogenetic relationships of Hyolitha, will be published by Li ''et al.'' (2019).<ref>{{Cite journal|author1=Luoyang Li |author2=Xingliang Zhang |author3=Christian B. Skovsted |author4=Hao Yun |author5=Bing Pan |author6=Guoxiang Li |year=2019 |title=Homologous shell microstructures in Cambrian hyoliths and molluscs |journal=Palaeontology |volume=in press |issue= |pages= |doi=10.1111/pala.12406 }}</ref>
* A study on changes of conch size in [[Tentaculitoidea|tentaculitoids]] from the [[Silurian]] and [[Devonian]] strata is published by Wei (2019).<ref>{{Cite journal|author=Fan Wei |year=2019 |title=Conch size evolution of Silurian–Devonian tentaculitoids |journal=Lethaia |volume=in press |issue= |pages= |doi=10.1111/let.12324 }}</ref>
* A study on changes of conch size in [[Tentaculitoidea|tentaculitoids]] from the [[Silurian]] and [[Devonian]] strata is published by Wei (2019).<ref>{{Cite journal|author=Fan Wei |year=2019 |title=Conch size evolution of Silurian–Devonian tentaculitoids |journal=Lethaia |volume=in press |issue= |pages= |doi=10.1111/let.12324 }}</ref>
Line 4,342: Line 4,343:
* A study on the impact of changing Eocene paleogeography and climate on the utility of stable isotope paleoaltimetry methods in the studies aiming to reconstruct the elevation history of the Tibetan Plateau is published by Botsyun ''et al.'' (2019).<ref>{{Cite journal|author1=Svetlana Botsyun |author2=Pierre Sepulchre |author3=Yannick Donnadieu |author4=Camille Risi |author5=Alexis Licht |author6=Jeremy K. Caves Rugenstein |year=2019 |title=Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene |journal=Science |volume=363 |issue=6430 |pages=eaaq1436 |doi=10.1126/science.aaq1436 |pmid=30819936 }}</ref>
* A study on the impact of changing Eocene paleogeography and climate on the utility of stable isotope paleoaltimetry methods in the studies aiming to reconstruct the elevation history of the Tibetan Plateau is published by Botsyun ''et al.'' (2019).<ref>{{Cite journal|author1=Svetlana Botsyun |author2=Pierre Sepulchre |author3=Yannick Donnadieu |author4=Camille Risi |author5=Alexis Licht |author6=Jeremy K. Caves Rugenstein |year=2019 |title=Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene |journal=Science |volume=363 |issue=6430 |pages=eaaq1436 |doi=10.1126/science.aaq1436 |pmid=30819936 }}</ref>
* Description of the vertebrate assemblage from the [[Oligocene]] Shine Us locality in the Khaliun Basin ([[Mongolia]]) is published by Daxner-Höck ''et al.'' (2019).<ref>{{Cite journal|author1=Gudrun Daxner-Höck |author2=Margarita A. Erbajeva |author3=Ursula B. Göhlich |author4=Paloma López-Guerrero |author5=Tserendash Narantsetseg |author6=Bastien Mennecart |author7=Adriana Oliver |author8=Davit Vasilyan |author9=Reinhard Ziegler |year=2019 |title=The Oligocene vertebrate assemblage of Shine Us (Khaliun Basin, south western Mongolia) |journal=Annalen des Naturhistorischen Museums in Wien, Serie A |volume=121 |pages=195–256 |url=http://verlag.nhm-wien.ac.at/pdfs/121A_195256_Daxner-Hoeck.pdf |jstor=26595691 }}</ref>
* Description of the vertebrate assemblage from the [[Oligocene]] Shine Us locality in the Khaliun Basin ([[Mongolia]]) is published by Daxner-Höck ''et al.'' (2019).<ref>{{Cite journal|author1=Gudrun Daxner-Höck |author2=Margarita A. Erbajeva |author3=Ursula B. Göhlich |author4=Paloma López-Guerrero |author5=Tserendash Narantsetseg |author6=Bastien Mennecart |author7=Adriana Oliver |author8=Davit Vasilyan |author9=Reinhard Ziegler |year=2019 |title=The Oligocene vertebrate assemblage of Shine Us (Khaliun Basin, south western Mongolia) |journal=Annalen des Naturhistorischen Museums in Wien, Serie A |volume=121 |pages=195–256 |url=http://verlag.nhm-wien.ac.at/pdfs/121A_195256_Daxner-Hoeck.pdf |jstor=26595691 }}</ref>
* A study on the causes of changes of environmental conditions in the [[Paratethys]] Sea of Central Europe during the middle [[Miocene]] is published by Simon ''et al.'' (2019).<ref>{{Cite journal|author1=Dirk Simon |author2=Dan Palcu |author3=Paul Meijer |author4=Wout Krijgsman |year=2019 |title=The sensitivity of middle Miocene paleoenvironments to changing marine gateways in Central Europe |journal=Geology |volume=47 |issue=1 |pages=35–38 |doi=10.1130/G45698.1 }}</ref>
* A study on the climatic and environmental conditions in the [[Loperot]] site ([[Kenya]]) in the early [[Miocene]] is published by Liutkus-Pierce ''et al.'' (2019).<ref>{{Cite journal|author1=Cynthia M. Liutkus-Pierce |author2=Kevin K. Takashita-Bynum |author3=Luke A. Beane |author4=Cole T. Edwards |author5=Oliver E. Burns |author6=Sara Mana |author7=Sidney Hemming |author8=Aryeh Grossman |author9=James D. Wright |author10=Francis M. Kirera |year=2019 |title=Reconstruction of the early Miocene Critical Zone at Loperot, southwestern Turkana, Kenya |journal=Frontiers in Ecology and Evolution |volume=7 |pages=Article 44 |doi=10.3389/fevo.2019.00044 }}</ref>
* A study on the causes of changes of environmental conditions in the [[Paratethys]] Sea of Central Europe during the middle Miocene is published by Simon ''et al.'' (2019).<ref>{{Cite journal|author1=Dirk Simon |author2=Dan Palcu |author3=Paul Meijer |author4=Wout Krijgsman |year=2019 |title=The sensitivity of middle Miocene paleoenvironments to changing marine gateways in Central Europe |journal=Geology |volume=47 |issue=1 |pages=35–38 |doi=10.1130/G45698.1 }}</ref>
* A study on the vertebrate fossils from the early [[Clarendonian]] localities within the [[Goliad Formation]] in [[Bee County, Texas|Bee]] and [[Live Oak County, Texas|Live Oak]] Counties in [[Texas]] (comprising the Lapara Creek Fauna), and on the [[Stratigraphy|stratigraphic]] context of these localities, is published by May (2019).<ref>{{cite journal |author=Steven R. May |year=2019 |title=The Lapara Creek Fauna: Early Clarendonian of south Texas, USA |journal=Palaeontologia Electronica |volume=22 |issue=1 |pages=Article number 22.1.15 |doi=10.26879/929 }}</ref>
* A study on the vertebrate fossils from the early [[Clarendonian]] localities within the [[Goliad Formation]] in [[Bee County, Texas|Bee]] and [[Live Oak County, Texas|Live Oak]] Counties in [[Texas]] (comprising the Lapara Creek Fauna), and on the [[Stratigraphy|stratigraphic]] context of these localities, is published by May (2019).<ref>{{cite journal |author=Steven R. May |year=2019 |title=The Lapara Creek Fauna: Early Clarendonian of south Texas, USA |journal=Palaeontologia Electronica |volume=22 |issue=1 |pages=Article number 22.1.15 |doi=10.26879/929 }}</ref>
* A study on changes in local climate and habitat conditions in central [[Spain]] in a period from 9.1 to 6.3 million years ago, and on the diet and ecology of large mammals from this area in this time period as indicated by [[tooth wear]] patterns, is published by De Miguel, Azanza & Morales (2019).<ref>{{Cite journal|author1=Daniel De Miguel |author2=Beatriz Azanza |author3=Jorge Morales |year=2019 |title=Regional impacts of global climate change: a local humid phase in central Iberia in a late Miocene drying world |journal=Palaeontology |volume=62 |issue=1 |pages=77–92 |doi=10.1111/pala.12382 }}</ref>
* A study on changes in local climate and habitat conditions in central [[Spain]] in a period from 9.1 to 6.3 million years ago, and on the diet and ecology of large mammals from this area in this time period as indicated by [[tooth wear]] patterns, is published by De Miguel, Azanza & Morales (2019).<ref>{{Cite journal|author1=Daniel De Miguel |author2=Beatriz Azanza |author3=Jorge Morales |year=2019 |title=Regional impacts of global climate change: a local humid phase in central Iberia in a late Miocene drying world |journal=Palaeontology |volume=62 |issue=1 |pages=77–92 |doi=10.1111/pala.12382 }}</ref>

Revision as of 18:58, 14 April 2019

List of years in paleontology (table)
In science
2016
2017
2018
2019
2020
2021
2022
+...

Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils.[1] This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2019.

Plants

Cnidarians

Research

  • A study on the growth characteristics of three species of Ordovician corals belonging to the genus Agetolites from the Xiazhen Formation (China), and on their implications for inferring phylogenetic relationships of this genus, is published by Sun, Elias & Lee (2019).[2]
  • A study on the morphology, growth characteristics and phylogenetic relationships of the Silurian tabulate coral Halysites catenularius is published by Liang, Elias & Lee (2019).[3]
  • A study aiming to determine whether ecological selection based on physiology, behavior, habitat, etc. played a role in the long‐term survival of corals during the late Paleocene and early Eocene is published by Weiss & Martindale (2019).[4]
  • A study on a problematic fossil specimen from the Devonian Ponta Grossa Formation (Brazil), assigned by different authors to the species Serpulites sica or Euzebiola clarkei, is published by Van Iten et al. (2019), who interpret this fossil as a medusozoan capable of clonal budding, and transfer it to the genus Sphenothallus.[5]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Actinoseris riyadhensis[6]

Sp. nov

In press

Gameil, El-Sorogy & Al-Kahtany

Late Cretaceous (Campanian)

Aruma Formation

 Saudi Arabia

A solitary coral.

Amygdalophylloides omarai[7]

Sp. nov

Valid

Kora, Herbig & El Desouky

Carboniferous (Moscovian)

Rod El Hamal Formation

 Egypt

A rugose coral.

Antillia coatesi[8]

Sp. nov

In press

Budd & Klaus in Budd et al.

Late Miocene–late Pliocene

Bowden Formation
Gurabo Formation
Mao Formation
Old Bank Formation

 Dominican Republic
 Jamaica
 Panama

A coral belonging to the subfamily Mussinae.

Asteroseris arabica[6]

Sp. nov

In press

Gameil, El-Sorogy & Al-Kahtany

Late Cretaceous (Campanian)

Aruma Formation

 Saudi Arabia

A solitary coral.

Bothrophyllum cylindricum[7]

Sp. nov

Valid

Kora, Herbig & El Desouky

Carboniferous (Moscovian)

Rod El Hamal Formation

 Egypt

A rugose coral.

Bothrophyllum suezensis[7]

Sp. nov

Valid

Kora, Herbig & El Desouky

Carboniferous (Moscovian)

Rod El Hamal Formation

 Egypt

A rugose coral.

Cunnolites (Plesiocunnolites) riyadhensis[6]

Sp. nov

In press

Gameil, El-Sorogy & Al-Kahtany

Late Cretaceous (Campanian)

Aruma Formation

 Saudi Arabia

A solitary coral.

Isophyllia jacksoni[8]

Sp. nov

In press

Budd & Klaus in Budd et al.

Late Miocene–early Pleistocene

Cercado Formation
Gurabo Formation
Los Haitises Formation
Mao Formation
Seroe Domi Formation

 Curaçao
 Dominican Republic

A species of Isophyllia.

Isophyllia maoensis[8]

Sp. nov

In press

Budd & Klaus in Budd et al.

Late Miocene–early Pleistocene

Cercado Formation
Gurabo Formation
Isla Colón Formation
Mao Formation

 Dominican Republic
 Panama

A species of Isophyllia.

Kumpanophyllum columellatum[9]

Sp. nov

In press

Fedorowski

Carboniferous (Bashkirian)

 Ukraine

A rugose coral belonging to the family Kumpanophyllidae.

Kumpanophyllum decessum[9]

Sp. nov

In press

Fedorowski

Carboniferous (Bashkirian)

 Ukraine

A rugose coral belonging to the family Kumpanophyllidae.

Kumpanophyllum levis[9]

Sp. nov

In press

Fedorowski

Carboniferous (Bashkirian)

 Ukraine

A rugose coral belonging to the family Kumpanophyllidae.

Kumpanophyllum praecox[9]

Sp. nov

In press

Fedorowski

Carboniferous (Bashkirian)

 Ukraine

A rugose coral belonging to the family Kumpanophyllidae.

Scolymia meederi[8]

Sp. nov

In press

Budd & Klaus in Budd et al.

Late Pliocene

Tamiami Formation

 United States
( Florida)

A species of Scolymia.

Scolymia tamiamiensis[8]

Sp. nov

In press

Budd & Klaus in Budd et al.

Late Pliocene

Tamiami Formation

 United States
( Florida)

A species of Scolymia.

Trachyphyllia mcneilli[8]

Sp. nov

In press

Budd & Klaus in Budd et al.

Late Miocene–late Pliocene

Cercado Formation
Gurabo Formation
Mao Formation
Old Bank Formation
Seroe Domi Formation

 Curaçao
 Dominican Republic
 Panama

A relative of the open brain coral.

Arthropods

Bryozoans

Name Novelty Status Authors Age Type locality Country Notes Images

Charixa bispinata[10]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

 United States
( Texas)

A member of Cheilostomata.

Charixa emanuelae[10]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

 United States
( Texas)

A member of Cheilostomata.

Charixa sexspinata[10]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

 United States
( Texas)

A member of Cheilostomata.

Homotrypa niagarensis[11]

Sp. nov

Valid

Ernst, Brett & Wilson

Silurian (Aeronian)

Reynales Formation

 United States
( New York)

A trepostome bryozoan.

Hyporosopora keera[12]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

 United States
( Texas)

A member of Cyclostomatida.

Iyarispora[10]

Gen. et 2 sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

 United States
( Texas)

A member of Cheilostomata. Genus includes new species I. ikaanakiteeh and I. chiass.

Leioclema adsuetum[11]

Sp. nov

Valid

Ernst, Brett & Wilson

Silurian (Aeronian)

Reynales Formation

 United States
( New York)

A trepostome bryozoan.

Leptotrypa lipovkiensis[13]

Sp. nov

Valid

Tolokonnikova & Pakhnevich

Devonian (Famennian)

Zadonsk Formation

 Russia

A trepostome bryozoan.

Mesonopora bernardwalteri[12]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

 United States
( Texas)

A member of Cyclostomatida.

Micropora stellata[14]

Sp. nov

Valid

Di Martino, Taylor & Portell

Pliocene (Piacenzian)

Tamiami Formation

 United States
( Florida)

A species of Micropora.

Microporella sarasotaensis[14]

Sp. nov

Valid

Di Martino, Taylor & Portell

Pliocene (Piacenzian)

Tamiami Formation

 United States
( Florida)

A member of Ascophora belonging to the family Microporellidae.

Microporella tamiamiensis[14]

Sp. nov

Valid

Di Martino, Taylor & Portell

Pliocene (Piacenzian)

Tamiami Formation

 United States
( Florida)

A member of Ascophora belonging to the family Microporellidae.

Moyerella parva[11]

Sp. nov

Valid

Ernst, Brett & Wilson

Silurian (Aeronian)

Reynales Formation

 United States
( New York)

A rhabdomesine cryptostome bryozoan.

Oncousoecia khirar[12]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

 United States
( Texas)

A member of Cyclostomatida.

Pourtalesella chiarae[14]

Sp. nov

Valid

Di Martino, Taylor & Portell

Pliocene (Piacenzian)

Tamiami Formation

 United States
( Florida)

A member of Ascophora belonging to the family Celleporidae.

Pseudobathystomella mira[15]

Sp. nov

Valid

Koromyslova, Martha & Pakhnevich

Late Cretaceous (late Maastrichtian)

 Turkmenistan

A cheilostome bryozoan belonging to the superfamily Lepralielloidea.

Ptilotrypa bajpaii[16]

Sp. nov

Valid

Swami et al.

Ordovician (Katian)

Yong Limestone

 India

A member of Cryptostomata.

Reptomultisparsa mclemoreae[12]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

 United States
( Texas)

A member of Cyclostomatida.

Rhammatopora glenrosa[10]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

 United States
( Texas)

A member of Cheilostomata.

Simplicidium jontoddi[10]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

 United States
( Texas)

A member of Ctenostomata.

Spiniflabellum laurae[14]

Sp. nov

Valid

Di Martino, Taylor & Portell

Pliocene (Piacenzian)

Tamiami Formation

 United States
( Florida)

A member of Ascophora belonging to the family Cribrilinidae.

Trypostega composita[14]

Sp. nov

Valid

Di Martino, Taylor & Portell

Pliocene (Piacenzian)

Tamiami Formation

 United States
( Florida)

A member of Ascophora belonging to the family Trypostegidae.

Uzbekipora[15]

Gen. et comb. nov

Valid

Koromyslova, Martha & Pakhnevich

Late Cretaceous (late Campanian)

 Uzbekistan

A cheilostome bryozoan belonging to the superfamily Lepralielloidea. The type species is "Porina" anplievae Favorskaya (1992).

Brachiopods

Research

  • A study on the petrographic and geochemical preservation of Ordovician dalmanelloid shells from the Lexington Formation of Kentucky, Sheguindah Shale of Ontario and the Stony Mountain Formation of Manitoba, aiming to test the hypothesis of paleo-latitudinal zonation of the shelly benthos, is published by Azmy & Jin (2019).[17]
  • A study on the phylogenetic relationships among strophomenoid brachiopods and on the biogeographical changes in the strophomenoids through time (focusing on the impact of the Late Ordovician mass extinction on the evolutionary history of strophomenoids) is published by Congreve, Krug & Patzkowsky (2019).[18]
  • A study on the internal structure of the shell of Semiplanella carinthica is published by Pakhnevich (2019), who names a new tribe Semiplanellini in the subfamily Gigantoproductinae.[19]
  • A study on the relative importance of brachiopods and bivalves in the fossil assemblages from the Carboniferous Pennsylvanian Breathitt Formation of Kentucky is published by Hsieh, Bush & Bennington (2019).[20]
  • A study on the evolution of the body size of brachiopods from the Late Permian to the Middle Triassic, as indicated by brachiopod specimens from South China, is published by Chen et al. (2019).[21]
  • A study on changes in the body size of benthic marine brachiopods and bivalves from the Lusitanian Basin (Portugal) before the Toarcian oceanic anoxic event is published by Piazza et al. (2019).[22]
  • A study on the impact of the early Toarcian extinction event on fossil brachiopods and bivalves known from the Iberian Range (Spain) is published by Danise et al. (2019).[23]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Aegiria apta[24]

Sp. nov

Valid

Huang et al.

Silurian (Rhuddanian)

Zhangwan Formation

 China

Alaskorhynchus[25]

Gen. et sp. nov

Valid

Baranov & Blodgett

Devonian (Pragian)

Soda Creek Limestone

 United States
( Alaska)

A member of Rhynchonellida belonging to the family Eatoniidae. The type species is A. sodacreekensis.

Anidanthus parvimucronata[26]

Nom. nov

Valid

He & Shen in He et al.

Permian (Changhsingian)

Talung Formation

 China

A member of Productida belonging to the family Linoproductidae and the subfamily Anidanthinae; a replacement name for Anidanthus mucronata He & Shen in He et al. (2005).

Anidanthus subquadratus[26]

Sp. nov

Valid

He, Shi & Shen in He et al.

Permian (Changhsingian)

 China

A member of Productida belonging to the family Linoproductidae and the subfamily Anidanthinae.

Arcullina? enokiani[27]

Sp. nov

Valid

Lee & Shi in Lee et al.

Permian (Kungurian)

Kozhim Formation
Kozhim Rudnik Formation

 Russia

A member of Spiriferida belonging to the family Spiriferellidae.

Austriellula iordanae[28]

Sp. nov

Valid

Gaetani in Grădinaru & Gaetani

Triassic

 Romania

A member of Rhynchonellida belonging to the family Norellidae and the subfamily Norellinae.

Bellistrophia[29]

Gen. et comb. nov

Valid

Holmer et al.

Cambrian

Atei Formation
Meagher Formation

 Kazakhstan
 United States
( Montana)

A member of Kutorginida. The type species is "Nisusia" deissei Bell (1941); genus also includes "Nisusia" montanensis Bell (1941).

Bernousia[30]

Gen. et sp. nov

Valid

Gourvennec

Paleozoic

Tindouf Basin

 Algeria

A member of Spiriferida. Genus includes new species B. brevedorsata.

Borellithyris[31]

Gen. et sp. nov

Valid

Dulai

Miocene (Tortonian)

Sant’Agata Fossili Formation

 Italy

A member of Terebratulida belonging to the family Megathyrididae. The type species is B. gaetanii.

Cathaysiorthis xichuanensis[24]

Sp. nov

Valid

Huang et al.

Silurian (Rhuddanian)

Zhangwan Formation

 China

Chonosteges cooperi[32]

Sp. nov

In press

Torres-Martínez et al.

Permian

Paso Hondo Formation

 Mexico

Cyrtina evanescens[30]

Sp. nov

Valid

Gourvennec

Paleozoic

Tindouf Basin

 Algeria

A member of Spiriferinida.

Cyrtospirifer aouinetensis[30]

Sp. nov

Valid

Gourvennec

Paleozoic

Tindouf Basin

 Algeria

Cyrtospirifer (Elasmospirifer)[30]

Subgen. et sp. nov

Valid

Gourvennec

Paleozoic

Tindouf Basin

 Algeria

The subgenus includes new species C. (E.) djebiletensis.

Cyrtospirifer robardeti[30]

Sp. nov

Valid

Gourvennec

Paleozoic

Tindouf Basin

 Algeria

Eleutherokomma djezairensis[30]

Sp. nov

Valid

Gourvennec

Paleozoic

Tindouf Basin

 Algeria

A member of Spiriferida.

Eucalathis giulioi[31]

Sp. nov

Valid

Dulai

Miocene (Tortonian)

Sant’Agata Fossili Formation

 Italy

A member of Terebratulida belonging to the family Chlidonophoridae.

Farewellirhynchia[25]

Gen. et sp. nov

Valid

Baranov & Blodgett

Devonian (Pragian)

Soda Creek Limestone

 United States
( Alaska)

A member of Rhynchonellida belonging to the subfamily Leiorhynchinae. The type species is F. kulkovi.

Felsithyris[33]

Gen. et sp. nov

Valid

Mottequin & Weyer

Carboniferous (Mississippian)

 Germany

A member of Spiriferida. The type species is F. hercynica.

Garciaalcaldia[25]

Gen. et sp. nov

Valid

Baranov & Blodgett

Devonian (Pragian)

Soda Creek Limestone

 United States
( Alaska)

A member of Rhynchonellida belonging to the subfamily Glossinunilinae. The type species is G. alaskensis.

Ghorispirifer[34]

Gen. et comb. nov

Valid

Mottequin & Brice

Devonian (Famennian)

 Afghanistan
 Iran
 Iraq

A Cyrtiopsinae. The type species is "Cyrtiopsis graciosa" chakhaensis Brice (1971) (raised to the rank of a separate species G. chakhaensis),
genus also includes "Cyrtiopsis" lapparenti Brice (1971).

Hedeinopsis africana[30]

Sp. nov

Valid

Gourvennec

Paleozoic

Tindouf Basin

 Algeria

A member of Spiriferida.

Martinia liuqiaoiensis[26]

Sp. nov

Valid

He, Shi & Shen in He et al.

Permian (Changhsingian)

Talung Formation

 China

A member of Spiriferida belonging to the family Martiniidae.

Menarhynchus[25]

Gen. et sp. nov

Valid

Baranov & Blodgett

Devonian (Pragian)

Soda Creek Limestone

 United States
( Alaska)

A member of Rhynchonellida belonging to the subfamily Sphaerirhynchinae. The type species is M. kuskokwimensis.

Multispirifer kropotkini[30]

Sp. nov

Valid

Gourvennec

Paleozoic

Tindouf Basin

 Algeria

A member of Spiriferida.

Neoliothyrina nakremi[35]

Sp. nov

Valid

Bitner in Hryniewicz et al.

Late Paleocene

Basilika Formation

 Norway

A member of Terebratulida belonging to the family Sellithyridae.

Nisusia multicostata[29]

Sp. nov

Valid

Holmer et al.

Cambrian (Drumian)

Mila Formation

 Iran

A member of Kutorginida.

Ortarhynchia[28]

Gen. et sp. nov

Valid

Gaetani in Grădinaru & Gaetani

Triassic

 Romania

A member of Rhynchonellida belonging to the family Norellidae and the subfamily Paranorellininae. The type species is O. petersi.

Permorhipidomella[26]

Gen. et sp. nov

Valid

He, Shi & Shen in He et al.

Permian (Changhsingian)

 China

A member of Orthida belonging to the family Rhipidomellidae. Genus includes new species P. ovatus.

Piarorhynchella kittli[28]

Sp. nov

Valid

Gaetani in Grădinaru & Gaetani

Triassic

 Romania

A member of Rhynchonellida belonging to the family Norellidae and the subfamily Holcorhynchellinae.

Ptychomentzelia dobrogeana[28]

Sp. nov

Valid

Gaetani in Grădinaru & Gaetani

Triassic

 Romania

A member of Spiriferida belonging to the family Mentzeliidae.

Ptychomentzelia simionescui[28]

Sp. nov

Valid

Gaetani in Grădinaru & Gaetani

Triassic

 Romania

A member of Spiriferida belonging to the family Mentzeliidae.

Quiringites bitami[30]

Sp. nov

Valid

Gourvennec

Paleozoic

Tindouf Basin

 Algeria

A member of Spiriferida.

Rhipidomella parvula[26]

Sp. nov

Valid

He, Shi & Shen in He et al.

Permian (Changhsingian)

 China

A member of Orthida belonging to the family Rhipidomellidae.

Roemerithyris[33]

Gen. et comb. nov

Valid

Mottequin & Weyer

Carboniferous (Mississippian)

 Germany

A member of Spiriferida. The type species is "Spirifer" macrogaster Roemer (1852).

Sellithyris elizabetha[36]

Sp. nov

Valid

Rojas & Sandy

Early Cretaceous (Valanginian)

Rosablanca Formation

 Colombia

Spiriferella protodraschei[27]

Sp. nov

Valid

Lee & Shi in Lee et al.

Permian (late Artinskian–early Kungurian)

Kapp Starostin Formation

 Norway

A member of Spiriferida belonging to the family Spiriferellidae.

Tamarirhynchia[25]

Gen. et comb. nov

Valid

Baranov & Blodgett

Devonian (Pragian)

Soda Creek Limestone

 United States
( Alaska)

A member of Rhynchonellida belonging to the subfamily Hebetoechiinae. The type species is "Lancemyonia" varia Tcherkesova (1969).

Tornquistia changhsingia[26]

Sp. nov

Valid

He, Shi & Shen in He et al.

Permian (Changhsingian)

 China

A member of Chonetidina belonging to the family Anopliidae and the subfamily Anopliinae.

Xenocrania[37]

Gen. et comb. nov

Valid

Chen & Rong

Ordovician

 China
 Myanmar
 Poland
 United Kingdom
 Czech Republic?

The type species is "Palaeocyclus" haimei Reed.

Molluscs

Echinoderms

Research

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Binocalix[52]

Gen. et sp. nov

Valid

McDermott & Paul

Late Ordovician

 United Kingdom

An aristocystitid diploporite. Genus includes new species B. dichotomus.

Carstenicrinus[53]

Gen. et comb. nov

Valid

Roux, Eléaume & Améziane

Late Cretaceous (Campanian and Maastrichtian) and Paleocene (Danian)

 Denmark
 Germany
 Turkmenistan

A crinoid. The type species is "Apiocrinus" constrictus von Hagenow in Quenstedt (1876); genus also includes "Bourgueticrinus" baculatus Klikushin (1982) and "Bourgueticrinus" danicus Brünnich Nielsen (1913).

Cholaster whitei[54]

Sp. nov

Valid

Blake & Nestell

Carboniferous (Chesterian)

Bangor Limestone

 United States
( Alabama)

A brittle star.

Conocrinus cahuzaci[53]

Sp. nov

Valid

Roux, Eléaume & Améziane

Eocene (Bartonian)

 France

A crinoid.

Echinosphaerites dianae[55]

Sp. nov

In press

Zamora et al.

Late Ordovician

 Morocco

A rhombiferan blastozoan.

Euptychocrinus? atelis[56]

Sp. nov

In press

Botting

Late Ordovician

 Morocco

A camerate crinoid.

Gamiroaster[57]

Gen. et sp. nov

Valid

Reid et al.

Early Devonian

Voorstehoek Formation

 South Africa

A brittle star belonging to the family Protasteridae. The type species is G. tempestatis.

Heloambocolumnus[58]

Gen. et sp. nov

In press

Donovan & Doyle

Carboniferous (Bashkirian)

Clare Shale Formation

 Ireland

A crinoid. Genus includes new species Heloambocolumnus (col.) harperi.

Homocystites adidiensis[55]

Sp. nov

In press

Zamora et al.

Late Ordovician

 Morocco

A rhombiferan blastozoan.

Hyattechinus anglicus[59]

Sp. nov

Valid

Thompson & Ewin

Devonian (Famennian)

Pilton Mudstone Formation

 United Kingdom

A sea urchin.

Iocrinus ouzammoui[56]

Sp. nov

In press

Botting

Late Ordovician

 Morocco

A crinoid belonging to the group Disparida.

Isthloucrinus[56]

Gen. et sp. nov

In press

Botting

Late Ordovician

 Morocco

A crinoid belonging to the group Cladida. Genus includes new species I. praecursor.

Lebenharticrinus[60]

Gen. et sp. nov

In press

Žítt et al.

Late Cretaceous (Cenomanian)

Bohemian-Saxonian Cretaceous Basin

 Czech Republic
 Germany

A crinoid belonging to the group Roveacrinida. Genus includes new species L. canaliculatus.

Monostychia glenelgensis[61]

Sp. nov

In press

Sadler, Holmes & Gallagher

Miocene

 Australia

A sand dollar.

Monostychia merrimanensis[61]

Sp. nov

In press

Sadler, Holmes & Gallagher

Miocene

 Australia

A sand dollar.

Panidiscus[62]

Gen. et sp. nov

In press

Sumrall & Zamora

Ordovician (Katian)

 Morocco

An isorophinid edrioasteroid. Genus includes new species P. tamiformis.

Paraconocrinus[53]

Gen. et comb. et sp. nov

Valid

Roux, Eléaume & Améziane

Eocene

 Italy
 France
 Spain

A crinoid. The type species is "Eugeniacrinus" pyriformis Münster in Goldfuss (1826); genus also includes "Conocrinus" cazioti Valette (1924), "Conocrinus" handiaensis Roux (1978) and "Conocrinus" romanensis Roux & Plaziat (1978), as well as a new species P. pellati.

Pseudoconocrinus[53]

Gen. et comb. nov

Valid

Roux, Eléaume & Améziane

Paleocene and Eocene

Crimean Peninsula
 Denmark
 France

A crinoid. The type species is "Conocrinus" doncieuxi Roux (1978); genus also includes "Democrinus" maximus Brünnich Nielsen (1915) and "Conocrinus" tauricus Klikushin (1982).

Sollasina cthulhu[63]

Sp. nov

Valid

Rahman et al.

Silurian (Wenlock)

Herefordshire Lagerstätte

 United Kingdom

A member of Ophiocistioidea belonging to the family Sollasinidae.

Spinadiscus[62]

Gen. et sp. nov

In press

Sumrall & Zamora

Ordovician (Katian)

 Morocco

A pyrgocystid edrioasteroid. Genus includes new species S. lefebvrei.

Superlininicrinus[56]

Gen. et sp. nov

In press

Botting

Late Ordovician

 Morocco

A crinoid belonging to the group Cladida. Genus includes new species S. advorsa.

Totiglobus spencensis[64]

Sp. nov

Valid

Wen et al.

Cambrian (Wuliuan)

Spence Shale

 United States
( Idaho)

A member of Edrioasteroidea belonging to the family Totiglobidae­.

Conodonts

Research

  • A study on the variation of conodont element crystal structure throughout their evolutionary history is published by Medici et al. (2019).[65]
  • A study on the impact of early Paleozoic environmental changes on evolution and paleoecology of conodonts from the Canadian part of Laurentia is published by Barnes (2019).[66]
  • A study on the morphology, occurrences and biostratigraphical value of Paroistodus horridus is published by Mestre & Heredia (2019).[67]
  • A study on fossils of members of the genus Alternognathus from the Upper Devonian of the Kowala quarry (central Poland), attempting to calibrate the course of their ontogeny in days and documenting cyclic mortality events, is published by Świś (2019).[68]
  • The apparatus of Vogelgnathus simplicatus is reconstructed from discrete elements from a sample of limited diversity from the Carboniferous strata from Ireland by Sanz-López, Blanco-Ferrera & Miller (2019).[69]
  • Neospathodid conodont elements with partly preserved basal body (one of two main parts of conodont elements, besides the crown) are reported from the Lower Triassic of Oman by Souquet & Goudemand (2019), who interpret their finding as indicating that the absence of basal bodies in post-Devonian conodonts was due to a preservational bias only.[70]
  • Natural assemblages of conodonts, preserving possible impressions of "eyes", are described from the Lower Triassic pelagic black claystones of the North Kitakami Belt (Japan) by Takahashi, Yamakita & Suzuki (2019).[71]
  • A study on the composition of the apparatus of Nicoraella, based on data from clusters from the Middle Triassic Luoping Biota (Yunnan, China), will be published by Huang et al. (2019).[72]
  • A study on Middle Triassic conodont assemblages from Jenzig section of the Jena Formation and Troistedt section of the Meissner Formation (Germany) is published by Chen et al. (2019), who also study the morphology of the apparatuses of Neogondolella haslachensis and Nicoraella germanica, and review and revise the species Neogondolella mombergensis.[73]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Ancyrognathus minjini[74]

Sp. nov

In press

Suttner et al.

Late Devonian

Baruunhuurai Terrane

 Mongolia

Gnathodus lanei[75]

Sp. nov

Valid

Lane et al.

Carboniferous

Bird Spring Formation

 United States
( Nevada)

Misikella kolarae[76]

Sp. nov

In press

Karádi et al.

Late Triassic

 Hungary

Palmatolepis chaemensis[77]

Sp. nov

Valid

Savage

Late Devonian

 Thailand

Palmatolepis thamensis[77]

Sp. nov

Valid

Savage

Late Devonian

 Thailand

Parapetella? guanyinensis[78]

Sp. nov

Valid

Jiang et al.

Late Triassic (Carnian)

 China

Polygnathus sharyuensis[79]

Nom. nov

Valid

Ovnatanova et al.

Devonian (Famennian)

Sortomael’ Formation

 Australia
 Russia

A replacement name Polygnathus mawsonae Ovnatanova et al. (2017).

Polygnathus tenellus surinensis[77]

Subsp. nov

Valid

Savage

Late Devonian

 Thailand

Zieglerodina petrea[80]

Sp. nov

In press

Hušková & Slavík

Silurian/Devonian boundary

Prague Synform

 Czech Republic

Fishes

Amphibians

Research

  • A study on the evolution of hindlimb musculature from the lobe-finned fish to early tetrapods will be published by Molnar et al. (2019).[81]
  • An outline of a new interpretative scenario for the origin of tetrapods, based on data from tetrapod body fossils and from putative tetrapod trace fossils from Poland and Ireland that predate earliest tetrapod body fossils, will be presented by Ahlberg (2019).[82]
  • A historical review of the fossil record of Devonian tetrapods and basal tetrapodomorphs from East Gondwana (Australasia, Antarctica) will be published by Long, Clement & Choo (2019).[83]
  • A study on the macroevolutionary dynamics of shape changes in the humeri of all major grades and clades of early tetrapods and their fish-like forerunners will be published by Ruta et al. (2019).[84]
  • A study on the phylogenetic relationships of early tetrapods is published by Marjanović & Laurin (2019).[85]
  • A study on the anatomy of the palate and neurocranium of Whatcheeria deltae will be published by Bolt & Lombard (2019).[86]
  • A study on the morphology of the postcranial skeleton of Crassigyrinus scoticus will be published by Herbst & Hutchinson (2019).[87]
  • Description of a new specimen of Oestocephalus from Five Points, Ohio, preserving much of the posterior braincase, is published by Pardo, Holmes & Anderson (2019), who also evaluate the implications of this specimen for inferring the phylogenetic placement of aïstopods.[88]
  • A study on patterns of shape and size changes of the orbits and vacuities in the skulls of temnospondyls and other early tetrapods will be published by Witzmann & Ruta (2019).[89]
  • A study evaluating whether the intraspecific integration of morphological traits significantly affected the evolution of the skull roof of temnospondyls over geological time will be published by Pérez-Ben & Gómez (2019).[90]
  • A study on the structure of stapes of Edops craigi is published by Schoch (2019).[91]
  • A fragment of a skull roof of a possible basal dvinosaur is described from the Carboniferous (Viséan) Ortelsdorf Formation (Germany) by Werneburg, Witzmann & Schneider (2019), representing the oldest known tetrapod record in Germany and, together with Balanerpeton, the oldest temnospondyl reported so far.[92]
  • A study on the evolution of the braincase anatomy of dissorophoid temnospondyls, and on its implications for the knowledge of the evolution of the lissamphibian braincase, is published by Atkins, Reisz & Maddin (2019).[93]
  • Complete skull and mandibles of a small-bodied trematopid of uncertain phylogenetic placement, most closely resembling members of the genus Acheloma, is described from the Early Permian karst deposits near Richards Spur (Oklahoma, United States) by Gee, Bevitt & Reisz (2019), who also evaluate the implications of this specimen for the knowledge of trematopid ontogeny and taxonomy.[94]
  • A humerus of a member or a relative of the genus Cyclotosaurus will be described from Rhaetian sediments of Exter Formation (Germany) by Konietzko-Meier et al. (2019), representing the geologically youngest record of a non-brachyopoid temnospondyl reported so far.[95]
  • Redescription of the Angusaurus, based on a new specimen providing new information of the skull anatomy of this taxon, will be published by Fernández-Coll et al. (2019).[96]
  • Morphological description of two new small-bodied metoposaurid specimens from Petrified Forest National Park (Arizona, United States) and a histological analysis of the vertebra of these specimens will be published by Gee & Parker (2019), who argue that their findings support the interpretation of Apachesaurus as a juvenile metoposaurid.[97]
  • A study on the morphology of the mandibular sutures in Metoposaurus krasiejowensis, using histological thin sections, will be published by Gruntmejer et al. (2019).[98]
  • A revision of Triassic temnospondyl fossil material from the Folakara area of Madagascar (Isalo Group, Morondava Basin), including fossils attributed to the species "Metoposaurus" hoffmani, is published by Fortuny et al. (2019).[99]
  • A study on long bone histology of specimens of the cryptobranchid species Eoscapherpeton asiaticum of different age is published by Skutschas et al. (2019).[100]
  • A study on the life history of the cryptobranchid Aviturus exsecratus from the Paleocene of Mongolia will be published by Skutschas et al. (2019).[101]
  • Fossils of members of Salientia, possibly more closely related to crown-group Anura than to Early Triassic taxa Triadobatrachus and Czatkobatrachus, are described from the Upper Triassic Chinle Formation (Arizona, United States) by Stocker et al. (2019), representing both the first Late Triassic and the earliest equatorial record of Salientia.[102]
  • A study on the two‐dimensional morphology of extant and fossil anuran skulls, evaluating whether phylogeny, development or ecology is a greater influence on anuran skull morphology, and quantifying how anuran skull morphology changed through time, will be published by Bardua, Evans & Goswami (2019).[103]
  • Redescription of the Cretaceous frog Wealdenbatrachus jucarensis is published by Báez & Gómez (2019).[104]
  • Fossils of the painted frog Latonia gigantea are described from the Miocene of the Vallès-Penedès Basin (Spain) by Villa et al. (2019), representing the first known record of the species from the Iberian Peninsula.[105]
  • Fossils of Latonia cf. gigantea will be described from the early Miocene of Greece (representing the first record of the species from that country) by Georgalis et al. (2019), along with other amphibian and reptile fossils.[106]
  • A study on the morphological diversification of pipimorph frogs and on the impact of ecological and developmental constraints on the evolution of the sacro-caudo-pelvic complex of pipid frogs, as indicated by data from extant and extinct taxa, is published by Gómez & Pérez-Ben (2019).[107]
  • A redescription of Pelobates praefuscus from the Pliocene of Moldova will be published by Syromyatnikova (2019), who considers this taxon to be a species distinct from Pelobates fuscus.[108]
  • Frog fossils, including the first known fossils of shovelnose frogs, will be described from the early Pliocene of Kanapoi (Kenya) by Delfino (2019).[109]
  • Four new, three-dimensionally preserved specimens of Discosauriscus pulcherrimus, providing new information on the anatomy of the skull of this species, will be described from the Lower Permian lacustrine sediments of the Boskovice Basin (Czech Republic) by Klembara & Mikudíková (2019).[110]
  • A study on the morphology of the skeleton of Keraterpeton is published by Milner (2019).[111]
  • New fossil material of Llistrofus pricei, providing new information on the anatomy of this taxon, is described from Permian (Sakmarian) cave deposits of Richards Spur, Oklahoma by Gee et al. (2019), who interpret their findings as indicating that Hapsidopareion lepton is not synonymous with L. pricei.[112]
  • A study on the anatomy of the postcranial skeleton of Carrolla craddocki is published by Mann, Olori & Maddin (2019).[113]
  • A study aiming to determine plausible gaits of Orobates pabsti is published by Nyakatura et al. (2019).[114]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Cratopipa[115]

Gen. et sp. nov

Valid

Carvalho et al.

Early Cretaceous (Aptian)

Crato Formation

 Brazil

A frog belonging to the group Pipimorpha. Genus includes new species C. novaolindensis.

Mattauschia[116]

Gen. et comb. nov

In press

Milner

Late Carboniferous (Moscovian)

Kladno Formation

 Czech Republic

A trematopid temnospondyl. Genus includes "Limnerpeton" laticeps Fritsch (1881).

Nevobatrachus[117]

Nom. nov

In press

Mahony

Early Cretaceous

 Israel

A frog belonging to the group Pipimorpha; a replacement name for Cordicephalus Nevo (1968).

Panthasaurus[118]

Gen. et comb. nov

In press

Chakravorti & Sengupta

Late Triassic (late Carnian to early Norian)

Maleri Formation
Tiki Formation

 India

A metoposaurid temnospondyl. Genus includes "Metoposaurus" maleriensis Roy Chowdhury (1965).

Rhinella loba[119]

Sp. nov

Valid

Pérez-Ben, Gómez & Báez

Chapadmalalan

Chapadmalal Formation

 Argentina

A true toad, a species of Rhinella.

Trypanognathus[120]

Gen. et sp. nov

In press

Schoch & Voigt

Carboniferous-Permian boundary

 Germany

A dvinosaurian temnospondyl. Genus includes new species T. remigiusbergensis.

Lizards and snakes

Research

  • Description of fossils of amphisbaenians and anguimorph lizards from the late Miocene Solnechnodolsk locality (southern European Russia) will be published by Černanský, Syromyatnikova & Jablonski (2019).[121]
  • A study on the diet, habitat and timing and cause of extinction of Gallotia goliath is published by Crowley et al. (2019).[122]
  • Fossil anguine material is described from the lower Miocene locality Ulm – Westtangente (Germany) for the first time by Klembara, Hain & Čerňanský (2019).[123]
  • A study evaluating the fossil record of mosasaurs in terms of fossil completeness as a measure of fossil quality is published by Driscoll et al. (2019).[124]
  • A study on the morphology of the marginal teeth of Mosasaurus lemonnieri, and on their implications for the distinguishability of this species on the basis of fossil teeth, will be published by Madzia (2019).[125]
  • A study on the anatomy of the inner ear of Platecarpus will be published by Yi & Norell (2019).[126]
  • An isolated tooth of a tylosaurine mosasaur is described from the Turonian of the Apennine Carbonate Platform by Romano et al. (2019), representing the first tylosaurine from Italy and the southernmost occurrence of a tylosaurine in the northern margin of the Mediterranean Tethys.[127]
  • A study on the phylogenetic relationships of tylosaurine mosasaurs is published by Jiménez-Huidobro & Caldwell (2019).[128]
  • A review of the taxonomic history of Clidastes liodontus and "Clidastes moorevillensis" is published by Lively (2019).[129]
  • A juvenile mosasaur specimen affected by infectious arthritis and spondyloarthropathy is described from the upper Maastrichtian of Antarctica by Talevi et al. (2019), representing the first report of a skeletal pathology of a mosasaur from the Southern Hemisphere.[130]
  • A study on the evolution of vertebral intercentrum system of snakes, as indicated by data from specimens of Najash rionegrina and Dinilysia patagonica, is published by Garberoglio et al. (2019).[131]
  • New specimen of Najash rionegrina, consisting of a partial skull and closely associated vertebrae, will be described by Garberoglio et al. (2019).[132]
  • Snake fauna from the Miocene of the Baikadam and Malyi Kalkaman 1 and 2 localities in northeastern Kazakhstan, representing the best-documented Miocene snake assemblage in Central Asia, will be described by Ivanov et al. (2019).[133]
  • Revision of lizard and snake fossils from the Pliocene site of Kanapoi (Kenya) will be published by Head & Müller (2019).[134]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Globidens simplex[135]

Sp. nov

Valid

Leblanc, Mohr & Caldwell

Late Cretaceous (Maastrichtian)

Possibly Oulad Abdoun Basin

 Morocco

Ophisaurus manchenioi[136]

Sp. nov

Valid

Blain & Bailon

Early Pleistocene

 Spain

An anguid lizard, a species of Ophisaurus.

Paradorsetisaurus[137]

Gen. et sp. nov

Valid

Alifanov

Early Cretaceous

 Mongolia

A lizard belonging to the family Dorsetisauridae. Genus includes new species P. postumus.

Xenostius[137]

Gen. et sp. nov

Valid

Alifanov

Early Cretaceous

 Mongolia

A lizard belonging to the family Xenosauridae. Genus includes new species X. futilus.

Ichthyosauromorphs

  • Two new specimens of Eretmorhipis carrolldongi, revealing superficial convergence with the modern platypus, are described from the Lower Triassic Jialingjiang Formation (China) by Cheng et al. (2019).[138]
  • A study on the phylogenetic relationships of ichthyosaurs will be published by Moon (2019).[139]
  • A study on the evolution of ichthyosaur body forms and on its impact on the energy demands of ichthyosaur swimming is published by Gutarra et al. (2019).[140]
  • A study on the flexibility and function of ichthyosaur tails, as indicated by comparisons with shark tails, is published by Crofts, Shehata & Flammang (2019).[141]
  • A study on the effects of methodology, missing data and exceptional preservation of fossil specimens in lagerstätten on known morphological diversity of fossil animals, as indicated by fossil record of ichthyosaurs, is published by Flannery Sutherland et al. (2019).[142]
  • Second specimen of Wahlisaurus massarae is reported from a quarry in Somerset (United Kingdom), from the base of the Blue Lias Formation (TriassicJurassic boundary) by Lomax, Evans & Carpenter (2019), extending known geographic and stratigraphic range of the species.[143]
  • Partial skeleton of a large ichthyosaur from the Lower Jurassic (Sinemurian) of Warwickshire, England is described by Lomax, Porro & Larkin (2019), who assign this specimen to the species Protoichthyosaurus prostaxalis.[144]
  • A neonate specimen of Ichthyosaurus communis will be described by Lomax et al. (2019).[145]
  • A study on the variation of the hindfin morphology in the specimens of Ichthyosaurus and on its taxonomic utility is published by Massare & Lomax (2019).[146]
  • A study on the bone microstructure of the skeleton of a specimen of Stenopterygius quadriscissus from the Lower Jurassic Posidonia Shale (Germany) will be published by Anderson et al. (2019).[147]
  • A study on the anatomy of an ophthalmosaurid rostrum fragment from the Upper Jurassic (Oxfordian) in the Morawica quarry in the Świętokrzyskie Mountains (Poland), and on its implications for reconstructing the internal morphology of the ophthalmosaurid cranial region and inferring the functional adaptations and palaeoecology of these reptiles, will be published by Tyborowski, Skrzycki & Dec (2019).[148]
  • A revision of the type series of all three species of Undorosaurus is published by Zverkov & Efimov (2019).[149]
  • New fossil remains of Platypterygius sachicarum (a new skull and associated postcranial remains of upper Barremian age) are described from Villa de Leyva, Colombia by Maxwell et al. (2019), representing the first documented postcranial remains of this species.[150]

Sauropterygians

Research

  • A study on the taphonomy of sauropterygian specimens from the Middle Triassic fossil deposit of Winterswijk (the Netherlands) is published by Heijne, Klein & Sander (2019).[151]
  • The first adult specimen of Sinocyamodus xinpuensis reported so far is described by Wang, Li & Wu (2019).[152]
  • A study on life history of Nothosaurus, as indicated by growth curves determined from humeral histology, and on its implications for inferring reproduction mode of this animal, is published by Griebeler & Klein (2019).[153]
  • Description of microbodies extracted from a bone of Nothosaurus from the Middle Triassic of Poland, reported as morphologically consistent with bone cells of present-day vertebrates, will be published by Surmik et al. (2019).[154]
  • Pathological fusions of neck vertebrae are reported in four plesiosaur specimens from different geological horizons by Sassoon (2019).[155]
  • A study on the morphology of the teeth and skull of Megacephalosaurus eulerti, and on their implications for assessing the phylogenetic relationships of this species, will be published by Madzia, Sachs & Lindgren (2019).[156]
  • New plesiosaur fossils are described from the Barremian levels of the Arcillas de Morella Formation (Spain) by Quesada et al. (2019), including the first leptocleidid fossil reported from the Iberian Peninsula.[157]
  • A study on the skull morphology of two specimens of Dolichorhynchops bonneri from the Pierre Shale of South Dakota, as well as on the phylogenetic relationships of this species, is published by Morgan & O'Keefe (2019).[158]
  • A study on bone histology and ontogeny of the gravid specimen of Polycotylus latipinnus displayed at the Los Angeles County Museum of Natural History, and on its implications for interpreting a histological growth series in Dolichorhynchops bonneri, is published by O’Keefe et al. (2019).[159]
  • Skull and neck bones of an elasmosaurid plesiosaur are described from the Cenomanian Hegushi Formation (Japan) by Utsunomiya (2019), representing the oldest confirmed elasmosaurid in Japan and in East Asia.[160]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Cyamodus orientalis [161]

Sp. nov

Valid

Wang et al.

Late Triassic (Carnian)

Falang Formation

 China

Leivanectes[162]

Gen. et sp. nov

Valid

Páramo-Fonseca et al.

Early Cretaceous (Aptian)

Paja Formation

 Colombia

A member of the family Elasmosauridae. Genus includes new species L. bernardoi.

Lindwurmia[163]

Gen. et sp. nov

Valid

Vincent & Storrs

Early Jurassic (Hettangian)

 Germany

An early member of Plesiosauria. Genus includes new species L. thiuda.

Microcleidus melusinae [164]

Sp. nov

Valid

Vincent et al.

Early Jurassic (Toarcian)

 Luxembourg

A microcleidid plesiosaur.

Panzhousaurus[165]

Gen. et sp. nov

Valid

Jiang et al.

Middle Triassic (Anisian)

 China

An early member of Eosauropterygia. Genus includes new species P. rotundirostris.

Turtles

Research

  • A study on the phylogenetic relationships of living and fossil turtles is published by Evers & Benson (2019).[166]
  • A study on the evolution and ontogenetic development of the akinetic skull of turtles, based on data from extant and fossil taxa, is published by Werneburg & Maier (2019).[167]
  • A study on the shell composition in proterochersids and other Triassic pantestudinates will be published by Szczygielski & Sulej (2019).[168]
  • Description of new fossil material of Condorchelys antiqua, and a study on the phylogenetic relationships of early turtles, is published by Sterli, de la Fuente & Rougier (2019).[169]
  • Description of new fossil material of Peligrochelys walshae from the Paleocene (Danian) Salamanca Formation (Argentina), and a study on the phylogenetic relationships of this species, is published by Sterli & de la Fuente (2019).[170]
  • Redescription of the holotype specimen of Nanhsiungchelys wuchingensis is published by Tong & Li (2019).[171]
  • A review of the araripemydid fossil record from Africa is published by Pérez-García (2019), who considers Laganemys tenerensis to be a junior synonym of Taquetochelys decorata.[172]
  • A study on the anatomy of the shell of the bothremydid species Taphrosphys congolensis, and on its implications for inferring the taxonomic composition of the genus Taphrosphys, will be published by Pérez García, Mees & Smith (2019).[173]
  • Description of fossils of Ordosemys leios from the Lower Cretaceous Mengyin Formation (China), and a study on their implications for inferring the ecology of this species and the age of the Luohandong Formation of the Ordos Basin, is published by Li et al. (2019).[174]
  • A gravid specimen of Desmatochelys padillai, representing the first indisputable gravid marine fossil turtle reported so far, will be described from the Lower Cretaceous of Colombia by Cadena et al. (2019), who interpret this specimen as indicating that D. padillai produced rigid eggs similar to those associated with some extant and fossil freshwater and terrestrial turtles, and unlike flexible eggs produced by extant marine turtles.[175]
  • Description of turtle fossils from five Paleogene localities in the Crimea is published by Zvonok & Danilov (2019).[176]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Banhxeochelys[177]

Gen. et sp. nov

Valid

Garbin, Böhme & Joyce

Eocene (late Bartonian–late Priabonian)

 Vietnam

A pan-geoemydid. The type species is B. trani.

Kalasinemys[178]

Gen. et sp. nov

In press

Tong et al.

Late Jurassic

Phu Kradung Formation

 Thailand

A member of the family Xinjiangchelyidae. Genus includes new species K. prasarttongosothi.

Wutuchelys[179]

Gen. et sp. nov

Valid

Tong et al.

Early Eocene

Wutu Formation

 China

A stem-testudinoid. Genus includes new species W. eocenica.

Archosauriformes

General research

Archosaurs

Other archosauriforms

Research

  • Redescription of the anatomy of the holotype specimen of Garjainia prima is published by Ezcurra et al. (2019), who consider Vjushkovia triplicostata to be a junior synonym of G. prima.[181]
  • A study on the anatomy and phylogenetic relationships of Guchengosuchus shiguaiensis is published by Butler et al. (2019).[182]
  • A study on the anatomy, ecomorphology and bone microstructure of members of Proterochampsia, and on their implications for inferring the lifestyles of these reptiles, is published by Arcucci, Previtera & Mancuso (2019).[183]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Antarctanax[184]

Gen. et sp. nov

Valid

Peecook, Smith & Sidor

Triassic

Fremouw Formation

Antarctica

An archosauriform archosauromorph reptile. The type species is A. shackletoni.

Other reptiles

Research

  • New information on a specimen of the mesosaur species Stereosternum tumidum affected by congenital scoliosis, first described by Szczygielski et al. (2017),[185] is published by Szczygielski et al. (2019).[186]
  • Description of the anatomy of a new specimen of Kapes bentoni from the Otter Sandstone of Devon (United Kingdom, and a study on the phylogenetic relationships of this species, is published by Zaher, Coram & Benton (2019).[187]
  • A new skull ascribed to Procolophon trigoniceps, so far representing the most complete and best preserved specimen collected at the Lower Triassic Sanga do Cabral Supersequence (Brazil), will be described by Silva-Neves, Modesto & Dias-da-Silva (2019).[188]
  • Redescription of the pareiasaur species "Anthodon" haughtoni from the Permian Usili Formation (Tanzania) is published by Maisch & Matzke (2019).[189]
  • X-ray diffraction study of bone fragments of Deltavjatia vjatkensis from the Kotelnich vertebrate fossil site (Russia) is published by Ryanskaya et al. (2019).[190]
  • A study on the species richness and morphological diversity of parareptiles over the course of their evolutionary history is published by MacDougall, Brocklehurst & Fröbisch (2019).[191]
  • A study testing whether the consistent evolutionary size increase in captorhinids led to major re‐patterning in their long bone structure is published by Romano & Rubidge (2019).[192]
  • A study on the anatomy of the mandible and on the phylogenetic relationships of Moradisaurus grandis, based on data from new fossil material from the upper Permian Moradi Formation of Niger, is published by Modesto et al. (2019).[193]
  • Redescription of the anatomy of Orovenator mayorum and a study on the phylogenetic relationships of this species will be published by Ford & Benson (2019), who recover both Orovenator and varanopids (usually regarded as synapsids) as diapsid reptiles.[194]
  • A study on the early evolution of the diel activity patterns in diapsid lineages, focusing on the common ancestor branch of living birds, is published by Yu & Wang (2019).[195]
  • A study on the morphological diversity and rates of morphological evolution of extinct and extant rhynchocephalians published by Herrera-Flores, Stubbs & Benton (2017)[196] is criticized by Vaux et al. (2019).[197][198]
  • A study on the skull morphology of Clevosaurus hudsoni and Clevosaurus cambrica is published by Chambi-Trowell, Whiteside & Benton (2019).[199]
  • A case study of an osteosarcoma affecting a femur of a specimen of Pappochelys rosinae is published by Haridy et al. (2019).[200]
  • An isolated vertebra of a choristoderan reptile is described from the Cenomanian Essen Greensand Formation (Germany) by Reiss et al. (2019), representing the first identifiable European choristoderan from the KimmeridgianCampanian interval reported so far.[201]
  • Description of new fossil material of Khurendukhosaurus from the Albian Khuren Dukh Formation (Mongolia) and a study on the anatomy and phylogenetic relationships of this reptile is published by Matsumoto et al. (2019).[202]
  • A study on the anatomy of the postcranial skeleton of Teraterpeton hrynewichorum, as well as on the phylogenetic relationships of this species, will be published by Pritchard & Sues (2019).[203]
  • Partial maxilla of a hyperodapedontine rhynchosaur, possessing a morphology that differs from those of other South American rhynchosaur species, will be described from the Upper Triassic Ischigualasto Formation (Argentina) by Gentil & Ezcurra (2019).[204]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Coeruleodraco[205]

Gen. et sp. nov

Valid

Matsumoto et al.

Late Jurassic (Oxfordian)

Tiaojishan Formation

 China

A member of Choristodera. Genus includes new species C. jurassicus.

Patagosphenos[206]

Gen. et sp. nov

Valid

Gentil et al.

Late Cretaceous (Turonian)

Huincul Formation

 Argentina

An eilenodontine rhynchocephalian. Genus includes new species P. watuku.

Synapsids

Non-mammalian synapsids

Research

  • A study on the morphological diversity and morphological changes of the humeri of Paleozoic and Triassic synapsids through time is published by Lungmus & Angielczyk (2019).[207]
  • Fossil material of a large carnivorous synapsid belonging to the family Sphenacodontidae will be described from the Torre del Porticciolo locality (Italy) by Romano et al. (2019), representing the first carnivorous non‐therapsid synapsid from the Permian of Italy reported so far, and one of the few known from Europe.[208]
  • Description of the morphology and histology of a small neural spine from the Early Permian Richards Spur locality (Oklahoma, United States) attributable to Dimetrodon is published by Brink, MacDougall & Reisz (2019), who also report evidence from fossil teeth indicative of presence of a derived species of Dimetrodon (otherwise typical of later, Kungurian localities of Texas and Oklahoma) at the Richards Spur locality.[209]
  • Femur of a specimen of the titanosuchid species Jonkeria parva affected by osteomyelitis will be described from the Permian of Karoo Basin (South Africa) by Shelton, Chinsamy & Rothschild (2019).[210]
  • An almost complete skeleton of Tapinocaninus pamelae, providing new information on the anatomy of the appendicular skeleton of this species (including the first accurate vertebral count for a dinocephalian), will be described from the lowermost Beaufort Group of South Africa by Rubidge, Govender & Romano (2019).[211]
  • A study on the evolution of the sacral vertebrae of dicynodonts is published by Griffin & Angielczyk (2019).[212]
  • A study on the taphonomic history of a monotypic bonebed composed by several individuals attributable to the dicynodont Dinodontosaurus collected in a classic Middle Triassic locality in Brazil, and on its implications for inferring possible gregarious behaviour in Dinodontosaurus, will be published by Ugalde et al. (2019).[213]
  • A study on the age of putative Rhaetian dicynodont from Lipie Śląskie (Poland) will be published by Racki & Lucas (2019), who consider it more likely that this dicynodont was of Norian age.[214]
  • A study aiming to determine patterns of morphological and phylogenetic diversity of therocephalians throughout their evolutionary history is published by Grunert, Brocklehurst & Fröbisch (2019).[215]
  • A study on variation in rates of body size evolution of therocephalians is published by Brocklehurst (2019).[216]
  • A study on the morphology of the manus of a new therocephalian specimen referable to the genus Tetracynodon from the Early Triassic of South Africa, and on the evolution of the manus morpholog of therocephalians, is published by Fontanarrosa et al. (2019).[217]
  • A study on patterns of nonmammalian cynodont species richness and the quality of their fossil record is published by Lukic-Walther et al. (2019).[218]
  • A study on the morphology and bone histology of the postcranial skeleton of Galesaurus planiceps is published by Butler, Abdala & Botha‐Brink (2019).[219]
  • Redescription of the anatomy of the skull of Galesaurus planiceps is published by Pusch, Kammerer & Fröbisch (2019).[220]
  • A study on the bone histology of the traversodontid cynodonts Protuberum cabralense and Exaeretodon riograndesis will be published by Veiga, Botha-Brink & Soares (2019).[221]
  • Digital skull endocast of a specimen of Riograndia guaibensis is reconstructed by Rodrigues et al. (2019).[222]
  • Description of the anatomy of the first postcranial specimens referable to Riograndia guaibensis is published by Guignard, Martinelli & Soares (2019).[223]
  • A study on the origin of the mammalian middle ear ossicles, as indicated by the anatomy of the jaw-otic complex in 43 synapsid taxa, is published by Navarro‐Díaz, Esteve‐Altava & Rasskin‐Gutman (2019).[224]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Arisierpeton[225]

Gen. et sp. nov

Valid

Reisz

Permian (Artinskian)

 United States
( Oklahoma)

A member of the family Caseidae. The type species is A. simplex.

Cabarzia[226]

Gen. et sp. nov

In press

Spindler, Werneburg & Schneider

Permian (Asselian or Sakmarian)

Goldlauter Formation

 Germany

A member of Varanopidae belonging to the subfamily Mesenosaurinae. The type species is C. trostheidei.

Jiufengia[227]

Gen. et sp. nov

Valid

Liu & Abdala

Late Permian

Naobaogou Formation

 China

A therocephalian belonging to the family Akidnognathidae. The Type species is J. jiai.

Lisowicia[228]

Gen. et sp. nov

Sulej & Niedźwiedzki

Late Triassic (late Norian-earliest Rhaetian)

 Poland

A gigantic dicynodont reaching an estimated body mass of 9 tons. The type species is L. bojani.

Polonodon[229]

Gen. et sp. nov

In press

Sulej et al.

Late Triassic (Carnian)

 Poland

A non-mammaliaform eucynodont. Genus includes new species P. woznikiensis.

Thliptosaurus[230]

Gen. et sp. nov

Valid

Kammerer

Late Permian (Changhsingian)

Daptocephalus Assemblage Zone

 South Africa

A late-surviving small dicynodont of the family Kingoriidae. Genus includes the new species T. imperforatus.

Mammals

Other animals

Research

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Acanthochaetetes huauclillensis[250]

Sp. nov

Valid

Sánchez-Beristain, García-Barrera & Moreno-Bedmar

Early Cretaceous (late Hauterivian to early Barremian)

 Mexico

A chaetetid sponge.

Adelochaeta[251]

Gen. et sp. nov

Han, Conway Morris & Shu in Han et al.

Cambrian Stage 3

Chiungchussu Formation

 China

A polychaete. The type species is A. sinensis.

Alfaites[252]

Gen. et sp. nov

Valid

Valent, Fatka & Marek

Cambrian (Drumian)

Buchava Formation

 Czech Republic

A member of Hyolitha. The type species is A. romeo.

Bicingulites nanningensis[253]

Sp. nov

Valid

Wei, Zong & Gong

Early Devonian

Nagaoling Formation

 China

A member of Tentaculitida.

Cambrachelous[254]

Gen. et sp. nov

In press

Geyer, Valent & Meier

Cambrian

Tannenknock Formation

 Germany

A member of Hyolitha. Genus includes new species C. diploprosopus.

Centrosia clavata[255]

Sp. nov

In press

Świerczewska-Gładysz, Jurkowska & Niedźwiedzki

Late Cretaceous (late Turonian)

Opole Basin

 Poland

A hexactinellid sponge belonging to the family Callodictyonidae.

Chancelloria australilonga[256]

Sp. nov

Valid

Yun et al.

Cambrian Stage 4

Emu Bay Shale

 Australia

Cornulites sokiranae[257]

Sp. nov

In press

Vinn, Musabelliu & Zatoń

Late Devonian

Central Devonian Field

 Russia

A member of Cornulitida.

Costulatotheca[258]

Gen. et sp. nov

In press

Earp

Early Devonian

 Australia

A member of Hyolitha. Genus includes new species C. schleigeri.

Crateromorpha opolensis[255]

Sp. nov

In press

Świerczewska-Gładysz, Jurkowska & Niedźwiedzki

Late Cretaceous (late Turonian and early Coniacian)

Opole Basin

 Poland

A hexactinellid sponge belonging to the family Rossellidae.

Cystostroma primordia[259]

Sp. nov

In press

Jeon et al.

Ordovician (Floian to Darriwilian)

Duwibong Formation
Hunghuayuan Formation

 China
 South Korea

A member of Stromatoporoidea.

Daihua[260]

Gen. et sp. nov

Valid

Zhao et al.

Cambrian Stage 3

Chiungchussu Formation

 China

A member of the total group of Ctenophora. The type species is D. sanqiong.

Echinokleptus[261]

Gen. et sp. nov

In press

Muir et al.

Ordovician (Tremadocian)

 United Kingdom

Agglutinated tubes most likely produced by a polychaete. Genus includes new species E. anileis.

Eoghanospongia[262]

Gen. et sp. nov

In press

Botting et al.

Silurian (Telychian)

 United Kingdom

A hexactinellid sponge. Genus includes new species E. carlinslowpensis.

Gothograptus auriculatus[263]

Sp. nov

Valid

Kozłowska et al.

Silurian

 Germany
 Lithuania
 Poland
 Sweden

A graptolite.

Gothograptus diminutus[263]

Sp. nov

Valid

Kozłowska et al.

Silurian

 Poland

A graptolite.

Gothograptus domeyki[263]

Sp. nov

Valid

Kozłowska et al.

Silurian

 Lithuania

A graptolite.

Gothograptus velo[263]

Sp. nov

Valid

Kozłowska et al.

Silurian

 Poland

A graptolite.

Grantitheca? klani[254]

Sp. nov

In press

Geyer, Valent & Meier

Cambrian

Tannenknock Formation

 Germany

A member of Hyolitha.

Hamptonia jianhensis[264]

Sp. nov

Valid

Wang et al.

Cambrian Stage 4

 China

A sponge.

Hexitheca washingtonensis[265]

Sp. nov

In press

Malinky & Geyer

Early Cambrian (Dyeran)

 United States
( New York)

A member of Hyolitha.

Ipoliknus[251]

Gen. et sp. nov

Han, Conway Morris & Shu in Han et al.

Cambrian Stage 3

Chiungchussu Formation

 China

A polychaete. The type species is I. avitus.

Laufeldochitina toilaensis[266]

Sp. nov

Valid

Nõlvak, Liang & Hints

Ordovician (Dapingian)

 Estonia

A chitinozoan.

Lonchidium cylicus[253]

Sp. nov

Valid

Wei, Zong & Gong

Early Devonian

Nagaoling Formation

 China

A member of Tentaculitida.

Normalograptus baridaensis[267]

Sp. nov

In press

Štorch, Roqué Bernal & Gutiérrez-Marco

Ordovician (Hirnantian)

 Spain

A graptolite.

Normalograptus ednae[267]

Sp. nov

In press

Štorch, Roqué Bernal & Gutiérrez-Marco

Silurian (Rhuddanian)

 Spain

A graptolite.

Odessites aurisites[253]

Sp. nov

Valid

Wei, Zong & Gong

Early Devonian

Nagaoling Formation

 China

A member of Tentaculitida.

Odessites nahongensis[253]

Sp. nov

Valid

Wei, Zong & Gong

Early Devonian

Nagaoling Formation

 China

A member of Tentaculitida.

Onuphionella corusca[268]

Sp. nov

In press

Muir et al.

Ordovician (Sandbian)

First Bani Group

 Morocco

Agglutinated tubes produced by unknown animal.

Pachastrella rara[255]

Sp. nov

In press

Świerczewska-Gładysz, Jurkowska & Niedźwiedzki

Late Cretaceous (late Turonian)

Opole Basin

 Poland

A demosponge belonging to the family Pachastrellidae.

Teganiella finksi[269]

Sp. nov

Valid

Mouro et al.

Carboniferous (Pennsylvanian)

Mecca Quarry Shale

 United States
( Indiana)

A sponge.

Tentaculites brevitenui[253]

Sp. nov

Valid

Wei, Zong & Gong

Early Devonian

Nagaoling Formation

 China

A member of Tentaculitida.

Volynites nagaolingensis[253]

Sp. nov

Valid

Wei, Zong & Gong

Early Devonian

Nagaoling Formation

 China

A member of Tentaculitida.

Foraminifera

Research

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Acervoschwagerina gongendaniensis[272]

Sp. nov

Valid

Kobayashi in Kobayashi & Furutani

Permian (late Cisuralian)

 Japan

A member of Fusulinida.

Ammodiscus jordanensis[273]

Sp. nov

Valid

Gennari and Rettori in Powell et al.

Early and Middle Triassic

Ma’in Formation

 China
 Hungary
 Jordan
 Poland
 Romania

A species of Ammodiscus.

Bispiraloconulus[274]

Gen. et sp. nov

Valid

Schlagintweit, Bucur & Sudar

Early Cretaceous (Berriasian)

 Serbia

Genus includes new species B. serbiacus.

Canalispina[275]

Gen. et sp. nov

Valid

Robles-Salcedo et al.

Late Cretaceous (Maastrichtian)

 Italy

A member of the family Siderolitidae. Genus includes new species C. iapygia.

Chusenella tsochenensis[276]

Sp. nov

Valid

Zhang et al.

Middle Permian

Xiala Formation

 China

A member of the family Schwagerinidae.

Cuniculinella omiensis[272]

Sp. nov

Valid

Kobayashi in Kobayashi & Furutani

Permian (late Cisuralian)

 Japan

A member of Fusulinida.

Cyclopsinella roselli[277]

Sp. nov

Valid

Villalonga et al.

Late Cretaceous (Campanian)

Terradets Limestone

 Spain

Globigaetania[278]

Gen. et sp. nov

Valid

Gennari & Rettori

Permian (Wordian to Capitanian)

Gnishik Formation

 Iran
 Japan

A member of the family Globivalvulinidae. Genus includes new species G. angulata.

Pachycolumella[279]

Gen. et 2 sp. nov

Valid

Septfontaine, Schlagintweit & Rashidi

Late Cretaceous (Maastrichtian) and Paleocene (Danian)

Tarbur Formation

 India
 Iran
 Oman
 Pakistan
 Turkey

The type species is P. elongata; genus also includes P. acuta.

Pseudochablaisia[280]

Gen. et sp. nov

Valid

Schlagintweit, Septfontaine & Rashidi

Late Cretaceous (Maastrichtian)

Tarbur Formation

 Iran

A member of the family Pfenderinidae. Genus includes new species P. subglobosa.

Simobaculites saundersi[281]

Sp. nov

Valid

Wilson & Kaminski in Wilson et al.

Cenozoic

Nariva Formation

 Trinidad and Tobago

Tambareauella[282]

Gen. et comb. et sp. nov

Valid

Boukhary & El Naby

Eocene

 Egypt
 France

A member of the family Nummulitidae. The type species is "Operculina (Nummulitoides)" azilensis Tambareau (1966); genus also includes new species T. russeiesensis.

Other organisms

Research

  • Putative traces of life older than 3.95 Ga, reported from northern Labrador (Canada) by Tashiro et al. (2017)[283] are reevaluated by Whitehouse et al. (2019).[284]
  • El Albani et al. (2019) describe 2.1 billion-year-old fossils belonging to the Francevillian biota of Gabon, including pyritized string-shaped structures interpreted as produced by a multicellular or syncytial organism able to migrate laterally and vertically to reach food resources.[285]
  • A study on possible cells and their appendages in fossils of Epiphyton from the Wuliuan of the North China Platform, and on their implications for the classification of this taxon, is published by Zhang et al. (2019).[286]
  • A study on the morphology and colony organization of Rhyniococcus uniformis (a Devonian organism resembling extant cyanobacteria in the genus Merismopedia), based on data from new specimens, is published by Krings & Harper (2019).[287]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Aguirrea[288]

Gen. et sp. nov

In press

Teichert, Woelkerling & Munnecke

Silurian (Wenlock)

Högklint Formation

 Sweden

A coralline alga. Genus includes new species A. fluegelii.

Amsassia yushanensis[289]

Sp. nov

Valid

Lee et al.

Late Ordovician

Xiazhen Formation

 China

A coral-like organism.

Attenborites[290]

Gen. et sp. nov

In press

Droser et al.

Ediacaran

Rawnsley Quartzite

 Australia

An organism of uncertain phylogenetic placement, described on the basis of a well-defined irregular oval to circular fossil. Genus includes new species A. janeae.

Baculiphyca brevistipitata[291]

Sp. nov

Valid

Ye et al.

Ediacaran

 China

A macroalga.

Chaetosphaeria elsikii[292]

Sp. nov

In press

Pound et al.

Miocene

Brassington Formation

 United Kingdom

A fungus, a species of Chaetosphaeria.

Chiastozygus fahudensis[293]

Sp. nov

Valid

Al Rawahi & Dunkley Jones

Late Cretaceous (late Coniacian to late Campanian)

Fiqa Formation

 Oman

A heterococcolith.

Daedalosphaera[294]

Gen. et sp. nov

Valid

Loron et al.

MesoproterozoicNeoproterozoic transition

Grassy Bay Formation

 Canada
( Northwest Territories)

A spheroidal acritarch with inner wall sculpture. Genus includes new species D. digitisigna.

Dichothallus[295]

Gen. et sp. nov

In press

Naugolnykh

Permian (early Kungurian)

Philippovian Formation

 Russia
( Perm Krai)

A brown alga of uncertain phylogenetic placement. Genus includes new species D. divaricatus.

Doushantuophyton? laticladus[291]

Sp. nov

Valid

Ye et al.

Ediacaran

 China

A macroalga.

Enteromorphites magnus[291]

Sp. nov

Valid

Ye et al.

Ediacaran

 China

A macroalga.

Germinosphaera alveolata[296]

Sp. nov

Valid

Miao et al.

Late Paleoproterozoic

Chuanlinggou Formation

 China

An organic-walled microfossil interpreted as a unicellular eukaryote.

Herisphaera[294]

Gen. et 2 sp. nov

Valid

Loron et al.

MesoproterozoicNeoproterozoic transition

Grassy Bay Formation
Nelson Head Formation

 Canada
( Northwest Territories)

A spiny acritarch with regularly distributed processes. Genus includes new species H. arbovela and H. triangula.

Konglingiphyton? laterale[291]

Sp. nov

Valid

Ye et al.

Ediacaran

 China

A macroalga.

Maxiphyton[291]

Gen. et sp. nov

Valid

Ye et al.

Ediacaran

 China

A macroalga. Genus includes new species M. stipitatum.

Moorodinium crispa[297]

Sp. nov

In press

Wainman et al.

Late Jurassic (late Kimmeridgian–early Tithonian)

Surat Basin

 Australia

A dinoflagellate.

Nunatsiaquus[294]

Gen. et sp. nov

Valid

Loron et al.

MesoproterozoicNeoproterozoic transition

Grassy Bay Formation

 Canada
( Northwest Territories)

A spheroidal acritarch with inner wall sculpture. Genus includes new species N. cryptotorus.

Obamus[298]

Gen. et sp. nov

In press

Dzaugis et al.

Ediacaran

Rawnsley Quartzite

 Australia

A torus-shaped organism, similar in gross morphology to some poriferans and benthic cnidarians. Genus includes new species O. coronatus.

Obelix[299]

Gen. et comb. nov

Valid

Morais et al.

Neoproterozoic

Callison Lake Formation
Chuar Group
(Kwagunt Formation)

 Canada
( Yukon)
 United States

A vase-shaped microfossil representing tests of protists. The type species is "Cycliocyrillium" rootsi Cohen, Irvine & Strauss (2017); Morais et al. (2019) corrected the suffix for the specific epithet to rootsii.

Ourasphaira[294]

Gen. et sp. nov

Valid

Loron et al.

MesoproterozoicNeoproterozoic transition

Grassy Bay Formation

 Canada
( Northwest Territories)

A process-bearing multicellular eukaryotic microorganism. Genus includes new species O. giraldae.

Palaeoleptochlamys[300]

Gen. et sp. nov

Valid

Strullu-Derrien et al.

Early Devonian

Rhynie chert

 United Kingdom

A member of Amoebozoa belonging to the group Arcellinida. Genus includes new species P. hassii.

Palaeomycus[301]

Gen. et sp. nov

In press

Poinar

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A fungus described on the basis of pycnidia. Genus includes new species P. epallelus.

Phomites neogenicus[302]

Sp. nov

Valid

Vishnu, Khan & Bera in Vishnu et al.

Neogene

 India

A fungus similar to members of the genus Phoma.

Phomites siwalicus[302]

Sp. nov

Valid

Vishnu, Khan & Bera in Vishnu et al.

Neogene

 India

A fungus similar to members of the genus Phoma.

Priscadvena[303]

Gen. et sp. nov

In press

Poinar & Vega

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A trichomycete fungus belonging to the group Kickxellomycotina and to the new order Priscadvenales. Genus includes new species P. corymbosa.

Rhexoampullifera stogieana[292]

Sp. nov

In press

Pound et al.

Miocene

Brassington Formation

 United Kingdom

A fungus belonging to the group Ascomycota.

Rhexoampullifera sufflata[292]

Sp. nov

In press

Pound et al.

Miocene

Brassington Formation

 United Kingdom

A fungus belonging to the group Ascomycota.

Sinocylindra linearis[291]

Sp. nov

Valid

Ye et al.

Ediacaran

 China

An organism of uncertain phylogenetic placement, possibly an alga or an exceptionally large prokaryote.

Skuadinium fusum[297]

Sp. nov

In press

Wainman et al.

Late Jurassic (late Kimmeridgian–early Tithonian)

Surat Basin

 Australia

A dinoflagellate.

Staurolithites ormae[293]

Sp. nov

Valid

Al Rawahi & Dunkley Jones

Late Cretaceous (late Santonian to late Campanian)

Fiqa Formation

 Oman

A heterococcolith.

Tetraphycus laminiformis[296]

Sp. nov

Valid

Miao et al.

Late Paleoproterozoic

Chuanlinggou Formation

 China

An organic-walled microfossil, a colonial organism of uncertain phylogenetic placement, possibly a cyanobacteria.

Trace fossils

General paleontology

Research related to paleontology that either does not concern any of the groups of the organisms listed above, or concerns multiple groups.

  • A study on the biological oxygen production during the Mesoarchean, as indicated by data from Mesoarchean shales of the Mozaan Group (Pongola Supergroup, South Africa) preserving record of a shallow ocean "oxygen oasis", is published by Ossa Ossa et al. (2019).[304]
  • A study on the extent of the oxygenation of ocean waters over continental shelves before the Great Oxidation Event, as indicated by data from 2.5-billion-year-old Mount McRae Shale (Australia), is published by Ostrander et al. (2019).[305]
  • A study on the rate of biotic oxygen production and the attendant large‐scale biogeochemistry of the mid‐Proterozoic Earth system is published by Ozaki, Reinhard & Tajika (2019).[306]
  • A study on the organic geochemical (biomarker) signatures of the 1.38-billion-years-old black siltstones of the Velkerri Formation (Australia, and on their implications for inferring the microbial diversity and palaeoenvironment of the Proterozoic Roper Seaway, is published by Jarrett et al. (2019).[307]
  • A study on the causes of formation and on global extent of the Great Unconformity is published by Keller et al. (2019), who interpret their findings as indicating that this unconformity may record rapid erosion during Neoproterozoic "Snowball Earth" glaciations, and that environmental and geochemical changes which led to the diversification of multicellular animals may be a direct consequence of Neoproterozoic glaciation.[308]
  • A study suggesting a link between early evolution and diversification of animals and high availability of copper in the late Neoproterozoic is published by Parnell & Boyce (2019).[309]
  • A study on biomarkers recovered from cap dolostones of the Araras Group (Brazil), interpreted as evidence of the transition from a bacterial to eukaryotic dominated ecosystem after the Marinoan deglaciation, likely caused by massive bacterivorous grazing by ciliates, is published by van Maldegem et al. (2019).[310]
  • Biomarkers thought to be diagnostic for demosponges and cited as evidence of rise of animals to ecological importance prior to the Cambrian radiation are reported to be also synthesized by rhizarians by Nettersheim et al. (2019), who place the oldest unambiguous evidence for animals closer to the Cambrian Explosion.[311]
  • A study on the causes of widespread preservation of soft-bodied organisms in sandstones of the Ediacara Member in South Australia is published by Liu et al. (2019).[312]
  • A study on the process of fossilization of Ediacaran organisms, and on its impact on the preservation of the external shape of these organisms, is published by Bobrovskiy et al. (2019).[313]
  • A study on the age of the Ediacaran fossils from the Podolya Basin (southwestern Ukraine) is published by Soldatenko et al. (2019).[314]
  • A study on the duration of the faunal transition from Ediacaran to Cambrian biota, as indicated by data from a composite section in Namibia, is published by Linnemann et al. (2019).[315]
  • A study on occurrences of body and trace fossils in Ediacaran and lower Cambrian (Fortunian) rocks around the world is published by Muscente et al. (2019), who report evidence indicative of existence of a global, cosmopolitan assemblage unique to terminal Ediacaran strata, living between two episodes of biotic turnover which might be the earliest mass extinctions of complex life.[316]
  • A study on the diversification of animals and their behaviour in the Ediacaran–Cambrian interval, as indicated by fossil and environmental proxy records, is published by Wood et al. (2019), who interpret the fossil record as indicating that the rise of early animals was more likely a series of successive, transitional radiation events which extended from the Ediacaran to the early Paleozoic, rather than competitive or biotic replacement of the latest Ediacaran biotas by markedly distinct Cambrian ones.[317]
  • A study comparing the variability of Ediacaran faunal assemblages to that of more recent fossil and modern benthic assemblages is published by Finnegan, Gehling & Droser (2019).[318]
  • A study on the course of the transition from microbial-dominated reef environments to animal-based reefs in the early Cambrian, as indicated by data from strata in the western Basin and Range of California and Nevada, is published by Cordie, Dornbos & Marenco (2019).[319]
  • High‐resolution geochemical, sedimentological and biodiversity data from the Cambrian Sirius Passet Lagerstätte (Greenland is presented by Hammarlund et al. (2019), who aim to assess the chemical conditions in the shelf sea inhabited by the Sirius Passet fauna.[320]
  • A study aiming to explain the occurrence of the variety of trace fossils associated with Tuzoia carapaces from the Cambrian Burgess Shale (British Columbia, Canada) is published by Mángano, Hawkes & Caron (2019).[321]
  • Cambrian Lagerstätte from the Qingjiang locality (Shuijingtou Formation; Hubei, China), preserving fossils of diverse, ~518 million years old biota, is reported by Fu et al. (2019).[322][323]
  • A study aiming to infer whether a marked drop in known diversity of marine life during the period between the Cambrian explosion and the Great Ordovician Biodiversification Event (the Furongian Gap) is apparent, due to sampling failure or lack of rock, or real, is published by Harper et al. (2019).[324]
  • A study on the marine biodiversity changes throughout the first 120 million years of the Phanerozoic is published by Rasmussen et al. (2019).[325]
  • A study on within-habitat, between-habitat, and overall diversity of benthic marine invertebrates (gastropods, bivalves, trilobites, brachiopods and echinoderms) from Phanerozoic geological formations is published by Hofmann, Tietje & Aberhan (2019).[326]
  • A study evaluating whether rapid warming preferentially increased the extinction risk of tropical marine fossil taxa throughout the Phanerozoic is published by Reddin, Kocsis & Kiessling (2019).[327]
  • A study on the paleogeographic position of all major Phanerozoic arc-continent collisions, comparing it with the latitudinal distribution of ice-sheets throughout the Phanerozoic, is published by Macdonald et al. (2019).[328]
  • A study on genus origination and extinction rates in the Ordovician on a global scale, for the paleocontinents Baltica and Laurentia, and for onshore and offshore areas, is published by Franeck & Liow (2019).[329]
  • New Konservat-Lagerstätte containing exceptionally preserved soft-bodied organisms, including the earliest record of Acoelomorpha, Turbellaria, Nemertea and Nematoda reported so far, is described from the Ordovician (Katian) Vauréal Formation (Canada) by Knaust & Desrochers (2019).[330]
  • A study on conodont oxygen isotope compositions in Ordovician samples from Argentine Precordillera and Laurentia, and on their implications for the knowledge of palaeothermometry and drift of the Precordillera in the early Paleozoic, is published by Albanesi et al. (2019).[331]
  • A review of occurrence data of latest Ordovician benthic marine organisms is published by Wang, Zhan & Percival (2019), who evaluate the implications of the studied data for the knowledge of the course of the end-Ordovician mass extinction.[332]
  • Well-preserved fossil cryptic biota is reported from the submarine cavities of the Devonian (Emsian to Givetian) mud mounds in the Hamar Laghdad area (Morocco) by Berkowski et al. (2019).[333]
  • A study on the sedimentary facies, oxygen isotopes and the generic conodont composition in two continuous Devonian (late Frasnian to the end-Famennian) outcrops in the Montagne Noire (Col des Tribes section, France, part of the Armorica microcontinent in the Devonian) and in the Buschteich section (Germany, part of the Saxo-Thuringian microplate in the Devonian), assessing the water depth, approximate position relative to the shore and paleotemperatures in the Late Devonian, and evaluating whether environmental changes affected both areas similarly and at the same pace in the Late Devonian, will be published by Girard et al. (2019).[334]
  • A study on the onset and paleoenvironmental transitions associated with the Hangenberg Crisis within the Cleveland Shale member of the Ohio Shale is published by Martinez et al. (2019).[335]
  • A study on patterns of local richness of terrestrial tetrapods throughout the Phanerozoic is published by Close et al. (2019).[336]
  • Vertebrate fossil fauna from the Tournaisian-age Ballagan Formation exposed on the beach at Burnmouth (Scotland) is described by Otoo et al. (2019).[337]
  • Description of tetrapod and fish fossils from the coastal locality of Burnmouth, Scotland (Ballagan Formation), associated plant material and sedimentological context of these fossils is published by Clack et al. (2019), who interpret these fossils as evidence of the potential richness of the Tournaisian fauna, running counter to the assumption of a depauperate nonmarine fauna following the end-Devonian Hangenberg event.[338]
  • A study on the impact of climate changes during the Carboniferous–Permian transition on the evolution of land-living vertebrates is published by Pardo et al. (2019).[339]
  • A study aiming to test one of the scenarios proposed by Robert L. Carroll in 1970 to explain the origin of the amniotic egg, based on data from Permo‐Carboniferous tetrapods, will be published by Didier, Chabrol & Laurin (2019).[340]
  • Description of Cisuralian charcoal from the Barro Branco coal seam (Siderópolis Member of the Rio Bonito Formation, Brazil), and a study on its implications for reconstruction of palaeo-wildfire occurrences in peat-forming vegetation through the Late Palaeozoic in Gondwana, is published by Benicio et al. (2019).[341]
  • A study on the causes of biotic extinction during the Guadalupian-Lopingian transition is published by Huang et al. (2019).[342]
  • A study aiming to determine which Permian tetrapod assemblage zones are present in the vicinity of Victoria West (Northern Cape, South Africa), and to reassess the biostratigraphic provenance of specimens collected historically in this area (including the holotype of Lycaenops ornatus), is published by Day & Rubidge (2019).[343]
  • A study on carbonate microfacies and foraminifer abundances in three Upper Permian sections from isolated carbonate platforms of the Nanpanjiang Basin (China), indicative of a marine environmental instability up to 60,000 years preceding Permian–Triassic extinction event, is published by Tian et al. (2019).[344]
  • A study on the ocean chemistry during the Permian–Triassic extinction event, as indicated by data from a new stratigraphic section in Utah, and on its implications for the knowledge of the causes of this extinction, is published by Burger, Estrada & Gustin (2019).[345]
  • A study on the U-Pb geochronology, biostratigraphy and chemostratigraphy of a highly expanded section at Penglaitan (Guangxi, China) is published by Shen et al. (2019), who interpret their findings as indicative of a sudden end-Permian mass extinction that occurred at 251.939 ± 0.031 million years ago.[346]
  • A study aiming to determine the stratigraphic position of the end-Permian biotic crisis in the Sydney Basin (Australia) is published by Fielding et al. (2019), who also attempt to determine the climate changes in this region concurrent with the end-Permian extinction.[347]
  • A study on shifts in volcanic activity across the Permian-Triassic boundary, as indicated by measurements of mercury in marine sections across the Northern Hemisphere, is published by Shen et al. (2019).[348]
  • A study on the composition and biotic interactions in terrestrial paleocommunities from the Karoo Basin (South Africa) spanning the Permian-Triassic mass extinction is published by Roopnarine et al. (2019), who propose a new hypothesis to explain the persistence of biotic assemblages and their reorganization or destruction.[349]
  • A study on the functional diversity of middle Permian and Early Triassic marine paleocommunities in the area of present-day western United States, and on its implications for the knowledge of functional re-organization of these communities in the aftermath of the Permian–Triassic extinction event, is published by Dineen, Roopnarine & Fraiser (2019).[350]
  • A study on changes in the structure of phytoplankton communities in South China during the Permian-Triassic transition is published by Lei et al. (2019).[351]
  • A summary of knowledge of the impact of Permian-Triassic mass extinction on reef ecosystems, and on their recovery after this extinction, is presented by Martindale, Foster & Velledits (2019).[352]
  • Description of an Early Triassic marine fauna from the Ad Daffah conglomerate in eastern Oman, and on its implications for inferring the ecology and diversity during the early aftermath of the Permian–Triassic extinction event, is published by Brosse et al. (2019).[353]
  • A study on the oxygen isotope compositions of discrete conodont elements from the Lower Triassic Mianwali Formation (Pakistan), and on their implications for inferring the timing of temperature changes and the interrelationship between climate and biodiversity patterns during the Smithian-Spathian biotic crisis, is published by Goudemand et al. (2019).[354]
  • A study on shark, sizable carnivorous archosaur, big herbivorous tetrapod and probable turtle bromalites (coprolites and possibly some cololites) from a turtle-dominated fossil assemblage from the Upper Triassic Poręba site (Poland) is published by Bajdek et al. (2019), who evaluate the implications of their findings for inferring the diet of the Triassic turtle Proterochersis porebensis.[355]
  • A study on the character and extent of the Triassic Boreal Ocean delta plain across the area of the present-day Barents Sea, interpreted as the largest delta plain reported so far, is published by Klausen, Nyberg & Helland-Hansen (2019).[356]
  • A study on the patterns and processes of recovery of marine fauna after the Toarcian oceanic anoxic event, as indicated by data from the Cleveland Basin (Yorkshire, United Kingdom), is published by Caswell & Dawn (2019).[357]
  • A study on the duration of the Toarcian oceanic anoxic event, as indicated by data from the Talghemt section in the High Atlas (Morocco), is published by Boulila et al. (2019).[358]
  • A study on the Middle Jurassic palaeoenvironment of La Voulte (France), as indicated by data from exceptionally preserved eyes of the polychelidan lobster Voulteryon parvulus and from epibiontic brachiopods associated with V. parvulus, is published by Audo et al. (2019).[359]
  • Evidence of repeated significant oceanic and biotic turnovers in the area of the present-day Gulf of Mexico at the Jurassic-Cretaceous transition is presented by Zell et al. (2019).[360]
  • New marine reptile-bearing localities documenting the TithonianBerriasian transition at the High Andes (Mendoza Province, Argentina) are reported by Fernández et al. (2019).[361]
  • A study on the palaeoenvironmental conditions of the seas at high latitudes (60°) of southern South America during the Early Cretaceous is published by Gómez Dacal et al. (2019).[362]
  • A study on phototropism in extant trees from Beijing and Jilin Provinces and fossil tree trunks from the Jurassic Tiaojishan and Tuchengzi formations in Liaoning and Beijing regions (China), and on its implications for inferring the history of the rotation of the North China Block, is published by Jiang et al. (2019).[363]
  • A study on the age of the Cretaceous Cloverly Formation is published by D'Emic et al. (2019).[364]
  • Evidence from the chronostratigraphy, fossil content, bracketing facies and ages of the Cretaceous Wayan Formation of Idaho and Vaughn Member of the Blackleaf Formation of Montana, indicating that they represent the same depositional system prior to disruption by subsequent tectonic and volcanic events, will be presented by Krumenacker (2019).[365]
  • A study on the geology, age and palaeoenvironment of the main fossil-bearing beds of the Cretaceous Griman Creek Formation (New South Wales, Australia) will be published by Bell et al. (2019).[366]
  • The first high-resolution record of CenomanianTuronian paleotemperatures from the Southern Hemisphere, as indicated by data from the Ocean Drilling Program Site 1138 on the Kerguelen Plateau, is presented by Robinson et al. (2019).[367]
  • Description of mid-Cretaceous invertebrate fauna from Batavia Knoll (eastern Indian Ocean), and a study on its similarities to other Cretaceous faunas from around the Indian Ocean, is published by Wild & Stilwell (2019).[368]
  • A study on the age of the Upper Cretaceous Wadi Milk Formation (Sudan) is published by Owusu Agyemang et al. (2019).[369]
  • New vertebrate assemblage from the upper Turonian Schönleiten Formation of Gams bei Hieflau (Austria) is described by Ősi et al. (2019).[370]
  • Turonian marine vertebrate fossils from the Huehuetla quarry (Puebla, Mexico) are described by Alvarado-Ortega et al. (2019).[371]
  • A study comparing the ecological similarity of Cretaceous cold seep assemblages preserved in the Pierre Shale surrounding the Black Hills and modern cold-seep assemblages is published by Laird & Belanger (2019).[372]
  • A study on the nature of the fluvial systems of Laramidia during the Late Cretaceous, as indicated by data from vertebrate and invertebrate fossils from the Kaiparowits Formation of southern Utah, and on the behavior of dinosaurs over these landscapes, is published by Crystal et al. (2019).[373]
  • A study on variability of carbon, oxygen and nitrogen isotopes in multiple tissues from a wide array of extant vertebrate taxa from the Atchafalaya River Basin in Louisiana (inferred to be an environmental analogue to the Late Cretaceous coastal floodplains of North America), and on its implications for formulating and testing predictions about ancient ecological communities based on stable isotope data from fossil specimens, is published by Cullen et al. (2019).[374]
  • A study on the general distribution and stratigraphy of the lower shale member of the Campanian Aguja Formation (Texas, United States), and a revision of all significant larger vertebrate fossil specimens from these strata, is published by Lehman et al. (2019).[375]
  • An accumulation of fossil eggshells of bird, crocodylomorph and gekkotan eggs is reported from the Late Cretaceous Oarda de Jos locality in the vicinity of the city of Sebeș (Romania) by Fernández et al. (2019).[376]
  • Studies on the timing of the Deccan Traps volcanism close to the Cretaceous-Paleogene boundary are published by Schoene et al. (2019), who interpret their findings as indicative of four high-volume eruptive periods close to the Cretaceous-Paleogene boundary, the first of which occurred tens of thousands of years prior to both the Chicxulub bolide impact and Cretaceous–Paleogene extinction event[377] and by Sprain et al. (2019), who interpret their findings as indicating that a steady eruption of the flood basalts mostly occurred in the earliest Paleogene.[378]
  • A turbulently deposited sediment package directly overlain by the Cretaceous–Paleogene boundary tonstein is reported from the Tanis site (Hell Creek Formation, North Dakota, United States) by DePalma et al. (2019), who interpret their findings as indicating that deposition occurred shortly after a major bolide impact, and might have been caused by the Chicxulub impact.[379]
  • A study on the sources of secondary CO2 inputs after the initial rapid onset of the Paleocene–Eocene Thermal Maximum, contributing to the prolongation of this event, will be published by Lyons et al. (2019).[380]
  • Evidence from the Deep Ivorian Basin offshore West Africa (equatorial Atlantic Ocean), indicating that peak warming during the Middle Eocene Climatic Optimum was associated with upper-ocean stratification, decreased export production, and possibly harmful algal blooms, is presented by Cramwinckel et al. (2019).[381]
  • A study on changes in surface water temperature in the eastern North Sea Basin during the late Priabonian to earliest Rupelian is published by Śliwińska et al. (2019).[382]
  • A synthesis of studies on the evolution of the cold‐water coastal North Pacific biota over the last 36 million years, its origins and its influences on other temperate regions, is presented by Vermeij et al. (2019).[383]
  • New mid-latitude terrestrial climate proxy record for southeastern Australia from the middle Eocene to the middle Miocene, indicative of a widespread cooling in the Gippsland Basin beginning in the middle Eocene, is presented by Korasidis et al. (2019).[384]
  • Su et al. (2019) use radiometrically dated plant fossil assemblages to quantify when southeastern Tibet achieved its present elevation, and what kind of floras existed there at that time.[385]
  • Description of a plant megafossil assemblage from the Kailas Formation in western part of the southern Lhasa terrane, and a study on its implications for inferring the elevation history of the southern Tibetan Plateau, is published by Ai et al. (2019).[386]
  • A study on the timing of the uplift of the Tibetan Plateau, as indicated by the discovery of the Oligocene palm fossils in the Lunpola Basin in Tibet, is published by Su et al. (2019).[387]
  • A review of vertebrate fossils from the Tibetan Plateau, evaluating their implications for inferring the course of the uplift of the Tibetan Plateau, is published by Deng et al. (2019).[388]
  • A study on the impact of changing Eocene paleogeography and climate on the utility of stable isotope paleoaltimetry methods in the studies aiming to reconstruct the elevation history of the Tibetan Plateau is published by Botsyun et al. (2019).[389]
  • Description of the vertebrate assemblage from the Oligocene Shine Us locality in the Khaliun Basin (Mongolia) is published by Daxner-Höck et al. (2019).[390]
  • A study on the climatic and environmental conditions in the Loperot site (Kenya) in the early Miocene is published by Liutkus-Pierce et al. (2019).[391]
  • A study on the causes of changes of environmental conditions in the Paratethys Sea of Central Europe during the middle Miocene is published by Simon et al. (2019).[392]
  • A study on the vertebrate fossils from the early Clarendonian localities within the Goliad Formation in Bee and Live Oak Counties in Texas (comprising the Lapara Creek Fauna), and on the stratigraphic context of these localities, is published by May (2019).[393]
  • A study on changes in local climate and habitat conditions in central Spain in a period from 9.1 to 6.3 million years ago, and on the diet and ecology of large mammals from this area in this time period as indicated by tooth wear patterns, is published by De Miguel, Azanza & Morales (2019).[394]
  • A study on the Pliocene fish fossils from the Kanapoi site (Kenya) and their implications for reconstructing lake and river environments in the Kanapoi Formation will be published by Stewart & Rufolo (2019).[395]
  • A study on the anatomical traits of teeth and inferred diet of bovids, suids and rhinocerotids from Kanapoi, and on their implications for reconstructing the environments of this site, is published by Dumouchel & Bobe (2019).[396]
  • New spatial data on the Plio-Pleistocene Bolt's Farm pits from the Cradle of Humankind site (South Africa) is presented by Edwards et al. (2019), who also attempt to provide key biochronological ages for the Bolt's Farm deposits.[397]
  • Simulations of coevolution of climate, ice sheets and carbon cycle over the past 3 million years are presented by Willeit et al. (2019).[398]
  • A study on the climate in the areas of the Iberian Peninsula inhabited by hominins during the Early Pleistocene, as indicated by data from macroflora and pollen assemblages, will be published by Altolaguirre et al. (2019).[399]
  • Results of stable carbon and oxygen isotope analyses of tooth enamel samples from Pleistocene mammals from the Yugong Cave and Baxian Cave (China) are presented by Sun et al. (2019), who evaluate the implications of their findings for the knowledge of Pleistocene climatic and environmental changes in South China.[400]
  • A revision of Middle Pleistocene faunal record from archeological sites in Africa, and a study on its implications for inferring potential links between hominin subsistence behavior and the Early Stone Age/Middle Stone Age technological turnover, will be published by Smith et al. (2019).[401]
  • A study on Acheulean and Middle Stone Age sites from the Eastern Desert (Sudan), preserving stone artifacts, is published by Masojć et al. (2019), who interpret these sites as evidence of green corridor or corridors across Sahara which made early hominin dispersal possible.[402]
  • A study on the spatial and temporal distribution of ancient peatlands in the past 130,000 years is published by Treat et al. (2019). [403]
  • A study on the possible impact of the end of the millennial‐scale climate fluctuations characteristic of the ice age (and the beginning of the more stable climate regime of the Holocene approximately 11,700 years ago) on the Late Quaternary megafaunal extinctions is published by Mann et al. (2019).[404]
  • A study on the sedimentary sequence from the Pilauco site in Chile, evaluating whether evidence from this site is consistent with the Younger Dryas impact hypothesis, is published by Pino et al. (2019).[405]
  • A study on variations of size of fossil murine rodents from Liang Bua (Flores, Indonesia) through time, and on their implications for reconstructions of paleoclimate and paleoenvironment of Flores, is published by Veatch et al. (2019).[406]
  • Late Quaternary fossils of vertebrates are described from caves in the Manning Karst Region of eastern New South Wales (Australia) by Price et al. (2019).[407]
  • A study on the causes of Holocene extinction of megafauna of Madagascar is published by Godfrey et al. (2019).[408]
  • A study on the possible relationship between speciation and extinction rates of different groups of organisms and the ages of these groups, as indicated by data from extant and fossil species, is published by Diaz et al. (2019).[409]
  • Vertebrate pathogens found associated with fossil hematophagous arthropods in Dominican, Mexican, Baltic, Canadian and Burmese amber are reported by Poinar (2019).[410]
  • A study on the evolution of bite force of amniotes, as indicated by data from extant and fossil taxa, is published by Sakamoto, Ruta & Venditti (2019).[411]
  • A study on Andean plate tectonics since the late Mesozoic is published by Chen, Wu & Suppe (2019).[412]

References

  1. ^ Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN 9780070887398. OCLC 46769716.
  2. ^ Ning Sun; Robert J. Elias; Dong-Jin Lee (2019). "Corallite increase in the Late Ordovician coral Agetolites, and its taxonomic implication". Journal of Paleontology. in press. doi:10.1017/jpa.2019.14.
  3. ^ Kun Liang; Robert J. Elias; Dong-Jin Lee (2019). "Morphometrics, growth characteristics, and phylogenetic implications of Halysites catenularius (Tabulata, Silurian, Estonia)". Journal of Paleontology. 93 (2): 215–231. doi:10.1017/jpa.2018.73.
  4. ^ Anna M. Weiss; Rowan C. Martindale (2019). "Paleobiological traits that determined scleractinian coral survival and proliferation during the late Paleocene and early Eocene hyperthermals". Paleoceanography and Paleoclimatology. 34 (2): 252–274. doi:10.1029/2018PA003398.
  5. ^ Heyo Van Iten; Juliana De Moraes Leme; Marcello G. Simões; Mario Cournoyer (2019). "Clonal colony in the Early Devonian cnidarian Sphenothallus from Brazil". Acta Palaeontologica Polonica. 64. doi:10.4202/app.00576.2018.
  6. ^ a b c Mohamed Gameil; Abdelbaset S. El-Sorogy; Khaled Al-Kahtany (2019). "Solitary corals of the Campanian Hajajah Limestone Member, Aruma Formation, Central Saudi Arabia". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1461217.
  7. ^ a b c Mahmoud Kora; Hans-Georg Herbig; Heba El Desouky (2019). "Late Moscovian (mid-Pennsylvanian) rugose corals from Wadi Araba (Egypt, Eastern Desert): Taxonomy, palaeoecology and palaeobiogeography". Geobios. 52: 1–25. doi:10.1016/j.geobios.2018.11.004.
  8. ^ a b c d e f Ann F. Budd; James D. Woodell; Danwei Huang; James S. Klaus (2019). "Evolution of the Caribbean subfamily Mussinae (Anthozoa: Scleractinia: Faviidae): transitions between solitary and colonial forms". Journal of Systematic Palaeontology. in press. doi:10.1080/14772019.2018.1541932.
  9. ^ a b c d Jerzy Fedorowski (2019). "Bashkirian Rugosa (Anthozoa) from the Donets Basin (Ukraine). Part 8. The Family Kumpanophyllidae Fomichev, 1953". Acta Geologica Polonica. 69. doi:10.24425/agp.2019.126436.
  10. ^ a b c d e f Silviu O. Martha; Paul D. Taylor; William L. Rader (2019). "Early Cretaceous gymnolaemate bryozoans from the early to middle Albian of the Glen Rose and Walnut formations of Texas, USA". Journal of Paleontology. 93 (2): 260–277. doi:10.1017/jpa.2018.80.
  11. ^ a b c Andrej Ernst; Carlton E. Brett; Mark A. Wilson (2019). "Bryozoan fauna from the Reynales Formation (lower Silurian, Aeronian) of New York, USA". Journal of Paleontology. Online edition. doi:10.1017/jpa.2018.101.
  12. ^ a b c d Silviu O. Martha; Paul D. Taylor; William L. Rader (2019). "Early Cretaceous cyclostome bryozoans from the early to middle Albian of the Glen Rose and Walnut formations of Texas, USA". Journal of Paleontology. 93 (2): 244–259. doi:10.1017/jpa.2018.79.
  13. ^ Z.A. Tolokonnikova; A.V. Pakhnevich (2019). "Bryozoans and brachiopods from Famennian (Upper Devonian)of central part of the Russian Plate". Paleontological Journal. 53 (1).
  14. ^ a b c d e f Emanuela Di Martino; Paul D. Taylor; Roger W. Portell (2019). "Anomia-associated bryozoans from the upper Pliocene (Piacenzian) lower Tamiami Formation of Florida, USA". Palaeontologia Electronica. 22 (1): Article number 22.1.11. doi:10.26879/920.
  15. ^ a b Anna V. Koromyslova; Silviu O. Martha; Alexey V. Pakhnevich (2019). "Revision of Porina-like cheilostome Bryozoa from the Campanian and Maastrichtian of Central Asia". Annales de Paléontologie. 105 (1): 1–19. doi:10.1016/j.annpal.2018.10.002.
  16. ^ Narendra K. Swami; Andrej Ernst; Satish C. Tripathi; Prasenjit Barman; S.K. Bharti; Y.P. Rana (2019). "A new cryptostome bryozoan Ptilotrypa from the Upper Ordovician Yong Limestone Formation: Tethyan sequence of Kumaun Higher Himalaya, India". Journal of Paleontology. 93 (3): 585–591. doi:10.1017/jpa.2018.94.
  17. ^ Karem Azmy; Jisuo Jin (2019). "Geochemistry of Late Ordovician dalmanelloid brachiopods from Laurentia: testing the effects of paleolatitudinal gradient". Canadian Journal of Earth Sciences. 56 (3): 235–244. doi:10.1139/cjes-2018-0181.
  18. ^ Curtis R. Congreve; Andrew Z. Krug; Mark E. Patzkowsky (2019). "Evolutionary and biogeographical shifts in response to the Late Ordovician mass extinction". Palaeontology. 62 (2): 267–285. doi:10.1111/pala.12397.
  19. ^ A.V. Pakhnevich (2019). "On a shell internal structure of Semiplanella сarinthica Sarytcheva et Legrand-Blain (Brachiopoda, Productida)". Paleontological Journal. 53 (2).
  20. ^ Shannon Hsieh; Andrew M. Bush; J Bret Bennington (2019). "Were bivalves ecologically dominant over brachiopods in the late Paleozoic? A test using exceptionally preserved fossil assemblages". Paleobiology. in press. doi:10.1017/pab.2019.3.
  21. ^ Jing Chen; Haijun Song; Weihong He; Jinnan Tong; Fengyu Wang; Shunbao Wu (2019). "Size variation of brachiopods from the Late Permian through the Middle Triassic in South China: Evidence for the Lilliput Effect following the Permian-Triassic extinction". Palaeogeography, Palaeoclimatology, Palaeoecology. 519: 248–257. doi:10.1016/j.palaeo.2018.07.013.
  22. ^ Veronica Piazza; Luís V. Duarte; Johan Renaudie; Martin Aberhan (2019). "Reductions in body size of benthic macroinvertebrates as a precursor of the early Toarcian (Early Jurassic) extinction event in the Lusitanian Basin, Portugal". Paleobiology. in press. doi:10.1017/pab.2019.11.
  23. ^ Silvia Danise; Marie-Emilie Clémence; Gregory D. Price; Daniel P. Murphy; Juan J. Gómez; Richard J. Twitchett (2019). "Stratigraphic and environmental control on marine benthic community change through the early Toarcian extinction event (Iberian Range, Spain)". Palaeogeography, Palaeoclimatology, Palaeoecology. 524: 183–200. doi:10.1016/j.palaeo.2019.03.039.
  24. ^ a b Bing Huang; David A. T. Harper; Hang‐Hang Zhou; Ren‐Bin Zhan; Yi Wang; Peng Tang; Jun‐Ye Ma; Guang‐Xu Wang; Di Chen; Yu‐Chen Zhang; Xiao‐Cong Luan; Jia‐Yu Rong (2019). "A new Cathaysiorthis (Brachiopoda) fauna from the lower Llandovery of eastern Qinling, China". Papers in Palaeontology. Online edition. doi:10.1002/spp2.1253.
  25. ^ a b c d e V.V. Baranov; R.B. Blodgett (2019). "New taxa of the rhynchonellids from the lower Pragian beds (Soda Creek Limestone) of the west-central Alaska". Paleontological Journal. 53 (2).
  26. ^ a b c d e f Wei-Hong He; G. R. Shi; Shu-Zhong Shen; Ting-Lu Yang; Yang Zhang; Hui-Ting Wu; Han Wang; Jian-Jun Bu (2019). "Systematic Palaeontology". In Wei-Hong He; G.R. Shi; Ke-Xin Zhang; Ting-Lu Yang; Shu-Zhong Shen; Yang Zhang (eds.). Brachiopods around the Permian-Triassic boundary of South China. Springer. pp. 61–224. doi:10.1007/978-981-13-1041-6_9. ISBN 978-981-13-1040-9.
  27. ^ a b Sangmin Lee; G. R. Shi; Jusun Woo; Tae-Yoon S. Park; Jae-Ryong Oh; Na Kyung Kim; Hans A. Nakrem; Jun-Ichi Tazawa (2019). "Permian spiriferellid brachiopods from northern Pangaea: taxonomy, biostratigraphy, macroevolution and implications for palaeoenvironmental and palaeobiogeographical reconstructions". Journal of Systematic Palaeontology. Online edition. doi:10.1080/14772019.2019.1570569.
  28. ^ a b c d e Eugen Grădinaru; Maurizio Gaetani (2019). "Upper Spathian to Bithynian (Lower to Middle Triassic) brachiopods from North Dobrogea (Romania)". Rivista Italiana di Paleontologia e Stratigrafia. 125 (1): 91–123. doi:10.13130/2039-4942/11182.
  29. ^ a b Lars E. Holmer; Mohammad‐Reza Kebria‐ee Zadeh; Leonid E. Popov; Mansoureh Ghobadi Pour; J. Javier Álvaro; Vachik Hairapetian; Zhifei Zhang (2019). "Cambrian rhynchonelliform nisusioid brachiopods: phylogeny and distribution". Papers in Palaeontology. Online edition. doi:10.1002/spp2.1255.
  30. ^ a b c d e f g h i Rémy Gourvennec (2019). "Silurian-Devonian Spiriferida and Spiriferinida (Brachiopods) from the Tindouf Basin (Algeria)". Palaeontographica Abteilung A. 313 (4–6): 81–149. doi:10.1127/pala/2019/0083.
  31. ^ a b Alfréd Dulai (2019). "New data on the late Miocene brachiopod fauna of Tetti Borelli (Piedmont, N Italy)". Rivista Italiana di Paleontologia e Stratigrafia. 125 (1): 125–145. doi:10.13130/2039-4942/11228.
  32. ^ Miguel A. Torres-Martínez; Daniela P. Heredia-Jiménez; Francisco Sour-Tovar; Blanca E. Buitrón-Sánchez; Ricardo Barragán (2019). "Permian brachiopods from Chiapas, Mexico: new stratigraphical and paleobiogeographical insights". PalZ. in press. doi:10.1007/s12542-018-0436-2.
  33. ^ a b Bernard Mottequin; Dieter Weyer (2019). "On some Mississippian (Carboniferous) brachiopods from neptunian dykes of the Harz Mountains (central Germany)". Palaeobiodiversity and Palaeoenvironments. Online edition. doi:10.1007/s12549-018-0360-1.
  34. ^ Bernard Mottequin; Denise Brice (2019). "Reappraisal of some Upper Devonian (Famennian) spiriferide brachiopods from the Band-e Bayan Domain (Afghanistan)". Geobios. 52: 47–65. doi:10.1016/j.geobios.2018.11.003.
  35. ^ Krzysztof Hryniewicz; Kazutaka Amano; Maria Aleksandra Bitner; Jonas Hagström; Steffen Kiel; Adiël A. Klompmaker; Thomas Mörs; Cristina M. Robins; Andrzej Kaim (2019). "A late Paleocene fauna from shallow-water chemosynthesis-based ecosystems, Spitsbergen, Svalbard". Acta Palaeontologica Polonica. 64 (1): 101–141. doi:10.4202/app.00554.2018.
  36. ^ Alexis Rojas; Michael R. Sandy (2019). "Early Cretaceous (Valanginian) brachiopods from the Rosablanca Formation, Colombia, South America: Biostratigraphic significance and paleogeographic implications". Cretaceous Research. 96: 184–195. doi:10.1016/j.cretres.2018.12.011.
  37. ^ Di Chen; Jiayu Rong (2019). "A new craniid brachiopod genus from the terminal Ordovician Hirnantia fauna of Myanmar and South China". Papers in Palaeontology. Online edition. doi:10.1002/spp2.1250.
  38. ^ Timothy P. Topper; Junfeng Guo; Sébastien Clausen; Christian B. Skovsted; Zhifei Zhang (2019). "A stem group echinoderm from the basal Cambrian of China and the origins of Ambulacraria". Nature Communications. 10: Article number 1366. doi:10.1038/s41467-019-09059-3. PMC 6433856. PMID 30911013.
  39. ^ Bertrand Lefebvre; Thomas E. Guensburg; Emmanuel L.O. Martin; Rich Mooi; Elise Nardin; Martina Nohejlova; Farid Saleh; Khaoula Kouraïss; Khadija El Hariri; Bruno David (2019). "Exceptionally preserved soft parts in fossils from the Lower Ordovician of Morocco clarify stylophoran affinities within basal deuterostomes". Geobios. 52: 27–36. doi:10.1016/j.geobios.2018.11.001.
  40. ^ Martina Nohejlová; Elise Nardin; Oldřich Fatka; Libor Kašička; Michal Szabad (2019). "Morphology, palaeoecology and phylogenetic interpretation of the Cambrian echinoderm Vyscystis (Barrandian area, Czech Republic)". Journal of Systematic Palaeontology. in press. doi:10.1080/14772019.2018.1541485.
  41. ^ Sarah L. Sheffield; Colin D. Sumrall (2019). "The phylogeny of the Diploporita: a polyphyletic assemblage of blastozoan echinoderms". Journal of Paleontology. in press. doi:10.1017/jpa.2019.2.
  42. ^ Sarah L. Sheffield; Colin D. Sumrall (2019). "A re‐interpretation of the ambulacral system of Eumorphocystis (Blastozoa, Echinodermata) and its bearing on the evolution of early crinoids". Palaeontology. 62 (1): 163–173. doi:10.1111/pala.12396.
  43. ^ Samuel Zamora; Colin Sumrall (2019). "Hexedriocystis, an aberrant echinoderm from the Upper Ordovician of Morocco". In A. W. Hunter; J. J. Álvaro; B. Lefebvre; P. van Roy; S. Zamora (eds.). The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco. The Geological Society of London. doi:10.1144/SP485-2017-213.
  44. ^ René A. Shroat-Lewis; Emily N. Greenwood; Colin D. Sumrall (2019). "Paleoecologic analysis of edrioasteroid (Echinodermata) encrusted slabs from the Chesterian (upper Mississippian) Kinkaid Limestone of southern Illinois". Palaios. 34 (3): 146–158. doi:10.2110/palo.2018.061.
  45. ^ Dezhi Wang; Jin Peng; Jorge Esteve; Yang Yuning; Rongqin Wen (2019). "New insight on thecal plate development in early Cambrian eocrinoids: an example from South China". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1499019.
  46. ^ M.E.Peter (2019). "Aberrations in the infrabasal circlet of the cladid crinoid genus Cupulocrinus (Echinodermata) and implications for the origin of flexible crinoids". Palaeogeography, Palaeoclimatology, Palaeoecology. 522: 52–61. doi:10.1016/j.palaeo.2019.03.002.
  47. ^ Selina R. Cole (2019). "Phylogeny and evolutionary history of diplobathrid crinoids (Echinodermata)". Palaeontology. in press. doi:10.1111/pala.12401.
  48. ^ Krzysztof R. Brom (2019). "Body-size trends of cyrtocrinids (Crinoidea, Cyrtocrinida)". Annales de Paléontologie. in press. doi:10.1016/j.annpal.2018.12.002.
  49. ^ Selina R. Cole; David F. Wright; William I. Ausich (2019). "Phylogenetic community paleoecology of one of the earliest complex crinoid faunas (Brechin Lagerstätte, Ordovician)". Palaeogeography, Palaeoclimatology, Palaeoecology. 521: 82–98. doi:10.1016/j.palaeo.2019.02.006.
  50. ^ Jeffrey R. Thompson; David J. Bottjer (2019). "Quantitative analysis of substrate preference in Carboniferous stem group echinoids". Palaeogeography, Palaeoclimatology, Palaeoecology. 513: 35–51. doi:10.1016/j.palaeo.2018.06.018.
  51. ^ Carlie Pietsch; Kathleen A. Ritterbush; Jeffrey R. Thompson; Elizabeth Petsios; David J. Bottjer (2019). "Evolutionary models in the Early Triassic marine realm". Palaeogeography, Palaeoclimatology, Palaeoecology. 513: 65–85. doi:10.1016/j.palaeo.2017.12.016.
  52. ^ Patrick D. McDermott; Christopher R. C. Paul (2019). "A new Upper Ordovician aristocystitid diploporite genus (Echinodermata) from the Llanddowror district, South Wales". Geological Journal. 54 (1): 529–536. doi:10.1002/gj.3203.
  53. ^ a b c d Michel Roux; Marc Eléaume; Nadia Améziane (2019). "A revision of the genus Conocrinus d'Orbigny, 1850 (Echinodermata, Crinoidea, Rhizocrinidae) and its place among extant and fossil crinoids with a xenomorphic stalk". Zootaxa. 4560 (1): 51–84. doi:10.11646/zootaxa.4560.1.3. PMID 30790991.
  54. ^ Daniel B. Blake; Merlynd K. Nestell (2019). "Revision of the unusual Carboniferous ophiuroid Cholaster (Echinodermata) and remarks on skeletal differentiation within the Asterozoa". Journal of Paleontology. Online edition. doi:10.1017/jpa.2018.109.
  55. ^ a b Samuel Zamora; Elise Nardin; Jorge Esteve; Juan Carlos Gutiérrez-Marco (2019). "New rhombiferan blastozoans (Echinodermata) from the Late Ordovician of Morocco". In A. W. Hunter; J. J. Álvaro; B. Lefebvre; P. van Roy; S. Zamora (eds.). The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco. The Geological Society of London. doi:10.1144/SP485.10.
  56. ^ a b c d Joseph P. Botting (2019). "Late Ordovician crinoids from the Anti-Atlas region of Morocco". In A. W. Hunter; J. J. Álvaro; B. Lefebvre; P. van Roy; S. Zamora (eds.). The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco. The Geological Society of London. doi:10.1144/SP485.4.
  57. ^ Mhairi Reid; Aaron W. Hunter; Wendy L. Taylor; Emese M. Bordy (2019). "A new genus of Protasteridae (Ophiuridea) from the Lower Devonian Bokkeveld Group of South Africa". Palaeontologia africana. 53: 66–74. hdl:10539/26244.
  58. ^ Stephen K. Donovan; Eamon N. Doyle (2019). "Utility of crinoid columnals in palaeontology illustrated by a new species: Clare Shale Formation (Carboniferous), Doolin, County Clare, western Ireland". Proceedings of the Geologists' Association. in press. doi:10.1016/j.pgeola.2019.02.004.
  59. ^ Jeffrey R. Thompson; Timothy A. M. Ewin (2019). "A new species of Hyattechinus (Echinoidea) from the type Devonian of the United Kingdom and implications for the distribution of Devonian proterocidarid echinoids". Geological Magazine. 156 (5): 801–810. doi:10.1017/S0016756818000109.
  60. ^ J. Žítt; C. Löser; O. Nekvasilová; L. Hradecká; L. Švábenická (2019). "Předboj and Hoher Stein: Two sites of mass roveacrinid occurrence (Crinoidea, Cenomanian, Bohemian-Saxonian Cretaceous Basin)". Cretaceous Research. 94: 80–107. doi:10.1016/j.cretres.2018.08.015.
  61. ^ a b Tony Sadler; Francis C. Holmes; Stephen J. Gallagher (2019). "Two new species of the echinoid genus Monostychia from the Miocene of Victoria and a redescription of M. etheridgei Tenison-Woods, 1877". Alcheringa: An Australasian Journal of Palaeontology. in press. doi:10.1080/03115518.2018.1528508.
  62. ^ a b Colin D. Sumrall; Samuel Zamora (2019). "New Upper Ordovician edrioasteroids from Morocco". In A. W. Hunter; J. J. Álvaro; B. Lefebvre; P. van Roy; S. Zamora (eds.). The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco. The Geological Society of London. doi:10.1144/SP485.6.
  63. ^ Imran A. Rahman; Jeffrey R. Thompson; Derek E. G. Briggs; David J. Siveter; Derek J. Siveter; Mark D. Sutton (2019). "A new ophiocistioid with soft-tissue preservation from the Silurian Herefordshire Lagerstätte, and the evolution of the holothurian body plan". Proceedings of the Royal Society B: Biological Sciences. 286 (1900): Article ID 20182792. doi:10.1098/rspb.2018.2792. PMID 30966985.
  64. ^ Rongqin Wen; Loren E. Babcock; Jin Peng; Richard A. Robison (2019). "New edrioasteroid (Echinodermata) from the Spence Shale (Cambrian), Idaho, USA: further evidence of attachment in the early evolutionary history of edrioasteroids". Bulletin of Geosciences. 94 (1): 115–124. doi:10.3140/bull.geosci.1730.
  65. ^ Luca Medici; Daniele Malferrari; Martina Savioli; Annalisa Ferretti (2019). "Mineralogy and crystallization patterns in conodont bioapatite from first occurrence (Cambrian) to extinction (end-Triassic)". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2019.02.024.
  66. ^ Christopher R. Barnes (2019). "Impacts of climate-ocean-tectonic changes on early Paleozoic conodont ecology and evolution evidenced by the Canadian part of Laurentia". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2019.02.018.
  67. ^ Ana Mestre; Susana Heredia (2019). "The conodont Paroistodus horridus (Barnes and Poplawski) as a new biostratigraphical tool for the middle Darriwilian (Ordovician)". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2019.03.015.
  68. ^ Przemysław Świś (2019). "Population dynamics of the Late Devonian conodont Alternognathus calibrated in days". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1427088.
  69. ^ Javier Sanz-López; Silvia Blanco-Ferrera; C. Giles Miller (2019). "The apparatus of the Carboniferous conodont Vogelgnathus simplicatus and the early evolution of the genus". Journal of Paleontology. 93 (1): 126–136. doi:10.1017/jpa.2018.66.
  70. ^ Louise Souquet; Nicolas Goudemand (2019). "Exceptional basal-body preservation in some Early Triassic conodont elements from Oman". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2019.01.028.
  71. ^ Satoshi Takahashi; Satoshi Yamakita; Noritoshi Suzuki (2019). "Natural assemblages of the conodont Clarkina in lowermost Triassic deep-sea black claystone from northeastern Japan, with probable soft-tissue impressions". Palaeogeography, Palaeoclimatology, Palaeoecology. 524: 212–229. doi:10.1016/j.palaeo.2019.03.034.
  72. ^ Jin-Yuan Huang; Carlos Martínez-Pérez; Shi-Xue Hu; Philip C.J. Donoghue; Qi-Yue Zhang; Chang-Yong Zhou; Wen Wen; Michael J. Benton; Mao Luo; Hua-Zhou Yao; Ke-Xin Zhang (2019). "Middle Triassic conodont apparatus architecture revealed by synchrotron X-ray microtomography". Palaeoworld. in press. doi:10.1016/j.palwor.2018.08.003.
  73. ^ Yanlong Chen; Frank Scholze; Sylvain Richoz; Zhifei Zhang (2019). "Middle Triassic conodont assemblages from the Germanic Basin: implications for multi-element taxonomy and biogeography". Journal of Systematic Palaeontology. 17 (5): 359–377. doi:10.1080/14772019.2018.1424260.
  74. ^ T.J. Suttner; E. Kido; Ya. Ariunchimeg; G. Sersmaa; J.A. Waters; S.K. Carmichael; C.J. Batchelor; M. Ariuntogos; A. Hušková; L. Slavík; J.I. Valenzuela-Ríos; J.-C. Liao; Y.A. Gatovsky (2019). "Conodonts from Late Devonian island arc settings (Baruunhuurai Terrane, western Mongolia)". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2019.03.001.
  75. ^ H. Richard Lane; Qi Yuping; Wang Zhihao; Tamara I. Nemyrovska; Barry C. Richards; Hu Keyi (2019). "Conodonts from the mid-Carboniferous boundary GSSP at Arrow Canyon, Nevada, USA". Micropaleontology. 65 (2): 77–104.
  76. ^ Viktor Karádi; Andrea Cau; Michele Mazza; Manuel Rigo (2019). "The last phase of conodont evolution during the Late Triassic: Integrating biostratigraphic and phylogenetic approaches". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2019.03.045.
  77. ^ a b c Norman M. Savage (2019). "Frasnian-Famennian transition in western Thailand: conodonts, biofacies, eustatic changes, extinction". Journal of Paleontology. 93 (3): 476–495. doi:10.1017/jpa.2018.96.
  78. ^ Haishui Jiang; Jinling Yuan; Yan Chen; James G. Ogg; Jiaxin Yan (2019). "Synchronous onset of the Mid-Carnian Pluvial Episode in the East and West Tethys: Conodont evidence from Hanwang, Sichuan, South China". Palaeogeography, Palaeoclimatology, Palaeoecology. 520: 173–180. doi:10.1016/j.palaeo.2019.02.004.
  79. ^ N. S. Ovnatanova; L. I. Kononova; L. S. Kolesnik; Yu. A. Gatovsky (2019). "Polygnathus sharyuensis nom. nov., a new replacement name for the Famennian (Upper Devonian) Polygnathus mawsonae Ovnatanova et al., 2017 (Conodonta)". Paleontological Journal. 53 (2).
  80. ^ Aneta Hušková; Ladislav Slavík (2019). "In search of Silurian/Devonian boundary conodont markers in carbonate environments of the Prague Synform (Czech Republic)". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2019.03.027.
  81. ^ Julia L. Molnar; Rui Diogo; John R. Hutchinson; Stephanie E. Pierce (2019). "Evolution of hindlimb muscle anatomy across the tetrapod water‐to‐land transition, including comparisons with forelimb anatomy". The Anatomical Record. in press. doi:10.1002/ar.23997. PMID 30365249.
  82. ^ Per E. Ahlberg (2019). "Follow the footprints and mind the gaps: a new look at the origin of tetrapods". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. in press. doi:10.1017/S1755691018000695.
  83. ^ John A. Long; Alice M. Clement; Brian Choo (2019). "New insights into the origins and radiation of the mid-Palaeozoic Gondwanan stem tetrapods". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. in press. doi:10.1017/S1755691018000750.
  84. ^ Marcello Ruta; Jonathan Krieger; Kenneth D. Angielczyk; Matthew A. Wills (2019). "The evolution of the tetrapod humerus: morphometrics, disparity, and evolutionary rates". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. in press. doi:10.1017/S1755691018000749.
  85. ^ David Marjanović; Michel Laurin (2019). "Phylogeny of Paleozoic limbed vertebrates reassessed through revision and expansion of the largest published relevant data matrix". PeerJ. 6: e5565. doi:10.7717/peerj.5565. PMC 6322490. PMID 30631641.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  86. ^ John R. Bolt; R. Eric Lombard (2019). "Palate and braincase of Whatcheeria deltae Lombard & Bolt, 1995". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. in press. doi:10.1017/S1755691018000774.
  87. ^ Eva C. Herbst; John R. Hutchinson (2019). "New insights into the morphology of the Carboniferous tetrapod Crassigyrinus scoticus from computed tomography". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. in press. doi:10.1017/S1755691018000804.
  88. ^ Jason D. Pardo; Robert Holmes; Jason S. Anderson (2019). "An enigmatic braincase from Five Points, Ohio (Westphalian D) further supports a stem tetrapod position for aïstopods". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. in press. doi:10.1017/S1755691018000567.
  89. ^ Florian Witzmann; Marcello Ruta (2019). "Evolutionary changes in the orbits and palatal openings of early tetrapods, with emphasis on temnospondyls". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. in press. doi:10.1017/S1755691018000919.
  90. ^ Celeste M. Pérez-Ben; Raúl O. Gómez (2019). "Morphological integration and evolution of the skull roof in temnospondyl amphibians". Journal of Iberian Geology. in press. doi:10.1007/s41513-018-0088-9.
  91. ^ Rainer R. Schoch (2019). "The stapes of Edops craigi and ear evolution in the lissamphibian stem group". Acta Zoologica. 100 (2): 126–134. doi:10.1111/azo.12238.
  92. ^ Ralf Werneburg; Florian Witzmann; Joerg W. Schneider (2019). "The oldest known tetrapod (Temnospondyli) from Germany (Early Carboniferous, Viséan)". PalZ. in press. doi:10.1007/s12542-018-00442-x.
  93. ^ Jade B. Atkins; Robert R. Reisz; Hillary C. Maddin (2019). "Braincase simplification and the origin of lissamphibians". PLoS ONE. 14 (3): e0213694. doi:10.1371/journal.pone.0213694. PMC 6430379. PMID 30901341.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  94. ^ Bryan M. Gee; Joseph J. Bevitt; Robert R. Reisz (2019). "A juvenile specimen of the trematopid Acheloma from Richards Spur, Oklahoma and challenges of trematopid ontogeny". Frontiers in Earth Science. 7: Article 38. doi:10.3389/feart.2019.00038.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  95. ^ Dorota Konietzko-Meier; Jennifer D. Werner; Tanja Wintrich; P. Martin Sander (2019). "A large temnospondyl humerus from the Rhaetian (Late Triassic) of Bonenburg (Westphalia, Germany) and its implications for temnospondyl extinction". Journal of Iberian Geology. in press. doi:10.1007/s41513-018-0092-0.
  96. ^ Meritxell Fernández-Coll; Thomas Arbez; Federico Bernardini; Josep Fortuny (2019). "Cranial anatomy of the Early Triassic trematosaurine Angusaurus (Temnospondyli: Stereospondyli): 3D endocranial insights and phylogenetic implications". Journal of Iberian Geology. in press. doi:10.1007/s41513-018-0064-4.
  97. ^ Bryan M. Gee; William G. Parker (2019). "Morphological and histological description of small metoposaurids from Petrified Forest National Park, AZ, USA and the taxonomy of Apachesaurus". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1480616.
  98. ^ Kamil Gruntmejer; Dorota Konietzko-Meier; Adam Bodzioch; Josep Fortuny (2019). "Morphology and preliminary biomechanical interpretation of mandibular sutures in Metoposaurus krasiejowensis (Temnospondyli, Stereospondyli) from the Upper Triassic of Poland". Journal of Iberian Geology. in press. doi:10.1007/s41513-018-0072-4.
  99. ^ Josep Fortuny; Thomas Arbez; Eudald Mujal; J. Sébastien Steyer (2019). "Reappraisal of "Metoposaurus hoffmani" Dutuit, 1978, and description of new temnospondyl specimens from the Middle–Late Triassic of Madagascar (Morondava Basin)". Journal of Vertebrate Paleontology. in press: e1576701. doi:10.1080/02724634.2019.1576701.
  100. ^ Pavel P. Skutschas; Pavel G. Saburov; Elizaveta A. Boitsova; Veniamin V. Kolchanov (2019). "Ontogenetic changes in long-bone histology of the cryptobranchid Eoscapherpeton asiaticum (Amphibia: Caudata) from the Late Cretaceous of Uzbekistan". Comptes Rendus Palevol. in press. doi:10.1016/j.crpv.2019.02.002.
  101. ^ Pavel P. Skutschas; Veniamin V. Kolchanov; Valeriy V. Bulanov; Andrey G. Sennikov; Elizaveta A. Boitsova; Valeriy K. Golubev; Elena V. Syromyatnikova (2019). "Reconstruction of the life history traits in the giant salamander Aviturus exsecratus (Caudata, Cryptobranchidae) from the Paleocene of Mongolia using zygapophyseal skeletochronology". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1523157.
  102. ^ Michelle R. Stocker; Sterling J. Nesbitt; Ben T. Kligman; Daniel J. Paluh; Adam D. Marsh; David C. Blackburn; William G. Parker (2019). "The earliest equatorial record of frogs from the Late Triassic of Arizona". Biology Letters. 15 (2): Article ID 20180922. doi:10.1098/rsbl.2018.0922. PMC 6405462. PMID 30958136.
  103. ^ Carla Bardua; Susan E. Evans; Anjali Goswami (2019). "Phylogeny, ecology and deep time: 2D outline analysis of anuran skulls from the Early Cretaceous to the Recent". Palaeontology. in press. doi:10.1111/pala.12405.
  104. ^ Ana M. Báez; Raúl O. Gómez (2019). "Redescription of the overlooked basal frog Wealdenbatrachus reveals increased diversity among Early Cretaceous anurans". Cretaceous Research. 99: 14–29. doi:10.1016/j.cretres.2019.02.006.
  105. ^ Andrea Villa; Massimo Delfino; Àngel H. Luján; Sergio Almécija; David M. Alba (2019). "First record of Latonia gigantea (Anura, Alytidae) from the Iberian Peninsula". Historical Biology: An International Journal of Paleobiology. 31 (3): 371–382. doi:10.1080/08912963.2017.1371712.
  106. ^ Georgios L. Georgalis; Andrea Villa; Martin Ivanov; Socrates Roussiakis; Panagiotis Skandalos; Massimo Delfino (2019). "Early Miocene herpetofaunas from the Greek localities of Aliveri and Karydia – bridging a gap in the knowledge of amphibians and reptiles from the early Neogene of southeastern Europe". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1417404.
  107. ^ Raúl O. Gómez; Celeste M. Pérez-Ben (2019). "Fossils reveal long-term continuous and parallel innovation in the sacro-caudo-pelvic complex of the highly aquatic pipid frogs". Frontiers in Earth Science. 7: Article 56. doi:10.3389/feart.2019.00056.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  108. ^ Elena V. Syromyatnikova (2019). "Redescription of Pelobates praefuscus Khosatzky, 1985 and new records of Pelobates from the late Miocene–Pleistocene of Eastern Europe". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1402015.
  109. ^ Massimo Delfino (2019). "Early Pliocene anuran fossils from Kanapoi, Kenya, and the first fossil record for the African burrowing frog Hemisus (Neobatrachia: Hemisotidae)". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2017.06.008. PMID 28712471.
  110. ^ Jozef Klembara; Marika Mikudíková (2019). "New cranial material of Discosauriscus pulcherrimus (Seymouriamorpha, Discosauriscidae) from the Lower Permian of the Boskovice Basin (Czech Republic)". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. in press. doi:10.1017/S1755691018000798.
  111. ^ Angela C. Milner (2019). "A morphological revision of Keraterpeton, the earliest horned nectridean from the Pennsylvanian of England and Ireland". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. in press. doi:10.1017/S1755691018000579.
  112. ^ Bryan M. Gee; Joseph J. Bevitt; Ulf Garbe; Robert R. Reisz (2019). "New material of the 'microsaur' Llistrofus from the cave deposits of Richards Spur, Oklahoma and the paleoecology of the Hapsidopareiidae". PeerJ. 7: e6327. doi:10.7717/peerj.6327. PMC 6348957. PMID 30701139.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  113. ^ Arjan Mann; Jennifer C. Olori; Hillary C. Maddin (2019). "Postcranial anatomy of the 'microsaur' Carrolla craddocki from the Lower Permian of Texas". Journal of Vertebrate Paleontology. in press: e1532436. doi:10.1080/02724634.2018.1532436.
  114. ^ John A. Nyakatura; Kamilo Melo; Tomislav Horvat; Kostas Karakasiliotis; Vivian R. Allen; Amir Andikfar; Emanuel Andrada; Patrick Arnold; Jonas Lauströer; John R. Hutchinson; Martin S. Fischer; Auke J. Ijspeert (2019). "Reverse-engineering the locomotion of a stem amniote". Nature. 565 (7739): 351–355. doi:10.1038/s41586-018-0851-2. PMID 30651613.
  115. ^ Ismar de Souza Carvalho; Federico Agnolin; Mauro A. Aranciaga Rolando; Fernando E. Novas; José Xavier-Neto; Francisco Idalécio de Freitas; José Artur Ferreira Gomes de Andrade (2019). "A new genus of pipimorph frog (Anura) from the Early Cretaceous Crato formation (Aptian) and the evolution of South American tongueless frogs". Journal of South American Earth Sciences. 92: 222–233. doi:10.1016/j.jsames.2019.03.005.
  116. ^ Andrew R. Milner (2019). "Two primitive trematopid amphibians (Temnospondyli, Dissorophoidea) from the Upper Carboniferous of the Czech Republic". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. in press. doi:10.1017/S1755691018000725.
  117. ^ Stephen Mahony (2019). "Cordicephalus Nevo, 1968 (Amphibia, Anura, Pipimorpha), is a junior homonym of Cordicephalus Wardle, 1947 (Rhabditophora, Cestoda, Diphyllobothriidae)". Journal of Vertebrate Paleontology. in press: e1593186. doi:10.1080/02724634.2019.1593186.
  118. ^ Sanjukta Chakravorti; Dhurjati Prasad Sengupta (2019). "Taxonomy, morphometry and morphospace of cranial bones of Panthasaurus gen. nov. maleriensis from the Late Triassic of India". Journal of Iberian Geology. in press. doi:10.1007/s41513-018-0083-1.
  119. ^ Celeste M. Pérez-Ben; Raúl O. Gómez; Ana M. Báez (2019). "A new Pliocene true toad (Anura: Bufonidae): first record of an extinct species from South America". Journal of Vertebrate Paleontology. Online edition: e1576183. doi:10.1080/02724634.2019.1576183.
  120. ^ Rainer R. Schoch; Sebastian Voigt (2019). "A dvinosaurian temnospondyl from the Carboniferous-Permian boundary of Germany sheds light on dvinosaurian phylogeny and distribution". Journal of Vertebrate Paleontology. in press: e1577874. doi:10.1080/02724634.2019.1577874.
  121. ^ Andrej Černanský; Elena V. Syromyatnikova; Daniel Jablonski (2019). "The first record of amphisbaenian and anguimorph lizards (Reptilia, Squamata) from the upper Miocene Solnechnodolsk locality in Russia". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1539973.
  122. ^ Brooke Erin Crowley; Yurena Yanes; Stella Grace Mosher; Juan Carlos Rando (2019). "Revisiting the foraging ecology and extinction history of two endemic vertebrates from Tenerife, Canary Islands". Quaternary. 2 (1): Article 10. doi:10.3390/quat2010010.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  123. ^ Jozef Klembara; Miroslav Hain; Andrej Čerňanský (2019). "The first record of anguine lizards (Anguimorpha, Anguidae) from the early Miocene locality Ulm – Westtangente in Germany". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1416469.
  124. ^ Daniel A. Driscoll; Alexander M. Dunhill; Thomas L. Stubbs; Michael J. Benton (2019). "The mosasaur fossil record through the lens of fossil completeness". Palaeontology. 62 (1): 51–75. doi:10.1111/pala.12381.
  125. ^ Daniel Madzia (2019). "Dental variability and distinguishability in Mosasaurus lemonnieri (Mosasauridae) from the Campanian and Maastrichtian of Belgium, and implications for taxonomic assessments of mosasaurid dentitions". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2019.1588892.
  126. ^ Hongyu Yi; Mark Norell (2019). "The bony labyrinth of Platecarpus (Squamata: Mosasauria) and aquatic adaptations in squamate reptiles". Palaeoworld. in press. doi:10.1016/j.palwor.2018.12.001.
  127. ^ Marco Romano; Riccardo Manni; Enrico Venditti; Umberto Nicosia; Angelo Cipriani (2019). "First occurrence of a Tylosaurinae mosasaur from the Turonian of the Central Apennines, Italy". Cretaceous Research. 96: 196–209. doi:10.1016/j.cretres.2019.01.001.
  128. ^ Paulina Jiménez-Huidobro; Michael W. Caldwell (2019). "A new hypothesis of the phylogenetic relationships of the Tylosaurinae (Squamata: Mosasauroidea)". Frontiers in Earth Science. 7: Article 47. doi:10.3389/feart.2019.00047.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  129. ^ Joshua R. Lively (2019). "Taxonomy and historical inertia: Clidastes (Squamata: Mosasauridae) as a case study of problematic paleobiological taxonomy". Alcheringa: An Australasian Journal of Palaeontology. in press. doi:10.1080/03115518.2018.1549685.
  130. ^ Marianella Talevi; Bruce Rothschild; Marta Fernández; Marcelo Reguero; Matías Mitidieri (2019). "A pathological scapula in a mosasaur from the upper Maastrichtian of Antarctica: evidence of infectious arthritis and spondyloarthropathy". Cretaceous Research. 100: 1–4. doi:10.1016/j.cretres.2019.03.024.
  131. ^ Fernando F. Garberoglio; Raúl O. Gómez; Tiago R. Simões; Michael W. Caldwell; Sebastián Apesteguía (2019). "The evolution of the axial skeleton intercentrum system in snakes revealed by new data from the Cretaceous snakes Dinilysia and Najash". Scientific Reports. 9: Article number 1276. doi:10.1038/s41598-018-36979-9. PMC 6362196. PMID 30718525.
  132. ^ Fernando F. Garberoglio; Raúl O. Gómez; Sebastián Apesteguía; Michael W. Caldwell; María L. Sánchez; Gonzalo Veiga (2019). "A new specimen with skull and vertebrae of Najash rionegrina (Lepidosauria: Ophidia) from the early Late Cretaceous of Patagonia". Journal of Systematic Palaeontology. in press. doi:10.1080/14772019.2018.1534288.
  133. ^ Martin Ivanov; Davit Vasilyan; Madelaine Böhme; Vladimir S. Zazhigin (2019). "Miocene snakes from northeastern Kazakhstan: new data on the evolution of snake assemblages in Siberia". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1446086.
  134. ^ Jason J. Head; Johannes Müller (2019). "Squamate reptiles from Kanapoi: Faunal evidence for hominin paleoenvironments". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2018.01.007. PMID 29910043.
  135. ^ Aaron R. H. Leblanc; Sydney R. Mohr; Michael W. Caldwell (2019). "Insights into the anatomy and functional morphology of durophagous mosasaurines (Squamata: Mosasauridae) from a new species of Globidens from Morocco". Zoological Journal of the Linnean Society. Online edition. doi:10.1093/zoolinnean/zlz008.
  136. ^ Hugues-Alexandre Blain; Salvador Bailon (2019). "Extirpation of Ophisaurus (Anguimorpha, Anguidae) in Western Europe coincided with the disappearance of subtropical ecosystems at the Early-Middle Pleistocene transition". Palaeogeography, Palaeoclimatology, Palaeoecology. 520: 96–113. doi:10.1016/j.palaeo.2019.01.023.
  137. ^ a b V.R. Alifanov (2019). "Lizards of the families Dorsetisauridae and Xenosauridae (Anguimorpha) from the Aptian-Albian of Mongolia". Paleontological Journal. 53 (2).
  138. ^ Long Cheng; Ryosuke Motani; Da-yong Jiang; Chun-bo Yan; Andrea Tintori; Olivier Rieppel (2019). "Early Triassic marine reptile representing the oldest record of unusually small eyes in reptiles indicating non-visual prey detection". Scientific Reports. 9: Article number 152. doi:10.1038/s41598-018-37754-6. PMC 6345829. PMID 30679783.
  139. ^ Benjamin C. Moon (2019). "A new phylogeny of ichthyosaurs (Reptilia: Diapsida)". Journal of Systematic Palaeontology. 17 (2): 129–155. doi:10.1080/14772019.2017.1394922.
  140. ^ Susana Gutarra; Benjamin C. Moon; Imran A. Rahman; Colin Palmer; Stephan Lautenschlager; Alison J. Brimacombe; Michael J. Benton (2019). "Effects of body plan evolution on the hydrodynamic drag and energy requirements of swimming in ichthyosaurs". Proceedings of the Royal Society B: Biological Sciences. 286 (1898): Article ID 20182786. doi:10.1098/rspb.2018.2786. PMID 30836867.
  141. ^ S. B. Crofts; R. Shehata; B. Flammang (2019). "Flexibility of heterocercal tails: what can the functional morphology of shark tails tell us about ichthyosaur swimming?". Integrative Organismal Biology. in press. doi:10.1093/iob/obz002.
  142. ^ Joseph T. Flannery Sutherland; Benjamin C. Moon; Thomas L. Stubbs; Michael J. Benton (2019). "Does exceptional preservation distort our view of disparity in the fossil record?". Proceedings of the Royal Society B: Biological Sciences. 286 (1897): Article ID 20190091. doi:10.1098/rspb.2019.0091. PMC 6408902. PMID 30963850.
  143. ^ Dean R. Lomax; Mark Evans; Simon Carpenter (2019). "An ichthyosaur from the UK Triassic–Jurassic boundary: A second specimen of the leptonectid ichthyosaur Wahlisaurus massarae Lomax 2016". Geological Journal. 54 (1): 83–90. doi:10.1002/gj.3155.
  144. ^ Dean R. Lomax; Laura B. Porro; Nigel R. Larkin (2019). "Descriptive anatomy of the largest known specimen of Protoichthyosaurus prostaxalis (Reptilia: Ichthyosauria) including computed tomography and digital reconstruction of a three-dimensional skull". PeerJ. 7: e6112. doi:10.7717/peerj.6112. PMC 6329338. PMID 30643690.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  145. ^ Dean R. Lomax; Nigel R. Larkin; Ian Boomer; Steven Dey; Philip Copestake (2019). "The first known neonate Ichthyosaurus communis skeleton: a rediscovered specimen from the Lower Jurassic, UK". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1382488.
  146. ^ Judy A. Massare; Dean R. Lomax (2019). "Hindfins of Ichthyosaurus: effects of large sample size on 'distinct' morphological characters". Geological Magazine. 156 (4): 725–744. doi:10.1017/S0016756818000146.
  147. ^ Katherine L. Anderson; Patrick S. Druckenmiller; Gregory M. Erickson; Erin E. Maxwell (2019). "Skeletal microstructure of Stenopterygius quadriscissus (Reptilia, Ichthyosauria) from the Posidonienschiefer (Posidonia Shale, Lower Jurassic) of Germany". Palaeontology. in press. doi:10.1111/pala.12408.
  148. ^ Daniel Tyborowski; Piotr Skrzycki; Marek Dec (2019). "Internal structure of ichthyosaur rostrum from the Upper Jurassic of Poland with comments on ecomorphological adaptations of ophthalmosaurid skull". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1559308.
  149. ^ Nikolay G. Zverkov; Vladimir M. Efimov (2019). "Revision of Undorosaurus, a mysterious Late Jurassic ichthyosaur of the Boreal Realm". Journal of Systematic Palaeontology. in press. doi:10.1080/14772019.2018.1515793.
  150. ^ Erin E. Maxwell; Dirley Cortés; Pedro Patarroyo; Mary Luz Parra Ruge (2019). "A new specimen of Platypterygius sachicarum (Reptilia, Ichthyosauria) from the Early Cretaceous of Colombia and its phylogenetic implications". Journal of Vertebrate Paleontology. in press: e1577875. doi:10.1080/02724634.2019.1577875.
  151. ^ Jelle Heijne; Nicole Klein; P. Martin Sander (2019). "The uniquely diverse taphonomy of the marine reptile skeletons (Sauropterygia) from the Lower Muschelkalk (Anisian) of Winterswijk, The Netherlands". PalZ. 93 (1): 69–92. doi:10.1007/s12542-018-0438-0.
  152. ^ Wei Wang; Chun Li; Xiao-Chun Wu (2019). "An adult specimen of Sinocyamodus xinpuensis (Sauropterygia: Placodontia) from Guanling, Guizhou, China". Zoological Journal of the Linnean Society. 185 (3): 910–924. doi:10.1093/zoolinnean/zly080.
  153. ^ Eva M. Griebeler; Nicole Klein (2019). "Life‐history strategies indicate live‐bearing in Nothosaurus (Sauropterygia)". Palaeontology. in press. doi:10.1111/pala.12425. {{cite journal}}: no-break space character in |title= at position 49 (help)
  154. ^ D. Surmik; M. Dulski; B. Kremer; J. Szade; R. Pawlicki (2019). "Iron-mediated deep-time preservation of osteocytes in a Middle Triassic reptile bone". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2019.1599884.
  155. ^ Judyth Sassoon (2019). "Congenital and late onset vertebral fusions in long necked plesiosaurs: The first report of spondylosis deformans in Sauropterygians". Palaeontologia Electronica. 22 (1): Article number 22.1.1. doi:10.26879/913.
  156. ^ Daniel Madzia; Sven Sachs; Johan Lindgren (2019). "Morphological and phylogenetic aspects of the dentition of Megacephalosaurus eulerti, a pliosaurid from the Turonian of Kansas, USA, with remarks on the cranial anatomy of the taxon". Geological Magazine. in press. doi:10.1017/S0016756818000523.
  157. ^ J.M. Quesada; A. Pérez-García; J.M. Gasulla; F. Ortega (2019). "Plesiosauria remains from the Barremian of Morella (Castellón, Spain) and first identification of Leptocleididae in the Iberian record". Cretaceous Research. 94: 8–24. doi:10.1016/j.cretres.2018.10.010.
  158. ^ Donald J. Morgan III; F. Robin O'Keefe (2019). "The cranial osteology of two specimens of Dolichorhynchops bonneri (Plesiosauria, Polycotylidae) from the Campanian of South Dakota, and a cladistic analysis of the Polycotylidae". Cretaceous Research. 96: 149–171. doi:10.1016/j.cretres.2018.11.027.
  159. ^ F. R. O’Keefe; P. M. Sander; T. Wintrich; S. Werning (2019). "Ontogeny of polycotylid long bone microanatomy and histology". Integrative Organismal Biology. 1 (1): oby007. doi:10.1093/iob/oby007.
  160. ^ Satoshi Utsunomiya (2019). "Oldest Elasmosauridae(Plesiosauria) in East Asia from the Upper Cretaceous Goshoura Group, Shishijima Island, southwestern Japan". Bulletin of the Osaka Museum of Natural History. 73: 23–35. doi:10.20643/00001333.
  161. ^ Wei Wang; Chun Li; Torsten M. Scheyer; Lijun Zhao (2019). "A new species of Cyamodus (Placodontia, Sauropterygia) from the early Late Triassic of south-west China". Journal of Systematic Palaeontology. Online edition. doi:10.1080/14772019.2018.1535455.
  162. ^ Maria Eurídice Páramo-Fonseca; José Patricio O'Gorman; Zulma Gasparini; Santiago Padilla; Mary Luz Parra Ruge (2019). "A new late Aptian elasmosaurid from the Paja Formation, Villa de Leiva, Colombia". Cretaceous Research. 99: 30–40. doi:10.1016/j.cretres.2019.02.010.
  163. ^ Peggy Vincent; Glenn W. Storrs (2019). "Lindwurmia, a new genus of Plesiosauria (Reptilia: Sauropterygia) from the earliest Jurassic of Halberstadt, northwest Germany". The Science of Nature. 106 (1–2): Article 5. doi:10.1007/s00114-018-1600-y. PMID 30689058.
  164. ^ Peggy Vincent; Robert Weis; Guy Kronz; Dominique Delsate (2019). "Microcleidus melusinae, a new plesiosaurian (Reptilia, Plesiosauria) from the Toarcian of Luxembourg". Geological Magazine. 156 (1): 99–116. doi:10.1017/S0016756817000814.
  165. ^ Da-Yong Jiang; Wen-Bin Lin; Olivier Rieppel; Ryosuke Motani; Zuo-Yu Sun (2019). "A new Anisian (Middle Triassic) eosauropterygian (Reptilia, Sauropterygia) from Panzhou, Guizhou Province, China". Journal of Vertebrate Paleontology. 38 (4): (1)–(9). doi:10.1080/02724634.2018.1480113.
  166. ^ Serjoscha W. Evers; Roger B. J. Benson (2019). "A new phylogenetic hypothesis of turtles with implications for the timing and number of evolutionary transitions to marine lifestyles in the group". Palaeontology. 62 (1): 93–134. doi:10.1111/pala.12384.
  167. ^ Ingmar Werneburg; Wolfgang Maier (2019). "Diverging development of akinetic skulls in cryptodire and pleurodire turtles: an ontogenetic and phylogenetic study". Vertebrate Zoology. 69 (2): 113–143. doi:10.26049/VZ69-2-2019-01.
  168. ^ Tomasz Szczygielski; Tomasz Sulej (2019). "The early composition and evolution of the turtle shell (Reptilia, Testudinata)". Palaeontology. in press. doi:10.1111/pala.12403.
  169. ^ Juliana Sterli; Marcelo S. de la Fuente; Guillermo W. Rougier (2019). "New remains of Condorchelys antiqua (Testudinata) from the Early-Middle Jurassic of Patagonia: anatomy, phylogeny, and paedomorphosis in the early evolution of turtles". Journal of Vertebrate Paleontology. 38 (4): (1)–(17). doi:10.1080/02724634.2018.1480112.
  170. ^ Juliana Sterli; Marcelo S. de la Fuente (2019). "Cranial and post-cranial remains and phylogenetic relationships of the Gondwanan meiolaniform turtle Peligrochelys walshae from the Paleocene of Chubut, Argentina". Journal of Paleontology. in press. doi:10.1017/jpa.2019.11.
  171. ^ Haiyan Tong; Lu Li (2019). "A revision of the holotype of Nanhsiungchelys wuchingensis, Ye, 1966 (Testudines: Cryptodira: Trionychoidae: Nanhsiungchelyidae)". Cretaceous Research. 95: 151–163. doi:10.1016/j.cretres.2018.11.003.
  172. ^ Adán Pérez-García (2019). "Identification of the Lower Cretaceous pleurodiran turtle Taquetochelys decorata as the only African araripemydid species". Comptes Rendus Palevol. 18 (1): 24–32. doi:10.1016/j.crpv.2018.04.004.
  173. ^ Adán Pérez García; Florias Mees; Thierry Smith (2019). "Shell anatomy of the African Paleocene bothremydid turtle Taphrosphys congolensis and systematic implications within Taphrosphyini". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1497023.
  174. ^ Da-Qing Li; Chang-Fu Zhou; Lan Li; Jing-Tao Yang; Longfeng Li; Márton Rabi (2019). "The sinemydid turtle Ordosemys from the Lower Cretaceous Mengyin Formation of Shandong, China and its implication for the age of the Luohandong Formation of the Ordos Basin". PeerJ. 7: e6229. doi:10.7717/peerj.6229. PMC 6338100. PMID 30671300.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  175. ^ Edwin‐Alberto Cadena; Mary L. Parra‐Ruge; Juan de D. Parra‐Ruge; Santiago Padilla‐Bernal (2019). "A gravid fossil turtle from the Early Cretaceous reveals a different egg development strategy to that of extant marine turtles". Palaeontology. in press. doi:10.1111/pala.12413.
  176. ^ E.A. Zvonok; I.G. Danilov (2019). "Paleogene turtles of the Crimea". Paleontological Journal. 53 (1).
  177. ^ Rafaella C. Garbin; Madelaine Böhme; Walter G. Joyce (2019). "A new testudinoid turtle from the middle to late Eocene of Vietnam". PeerJ. 7: e6280. doi:10.7717/peerj.6280. PMC 6383559. PMID 30805245.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  178. ^ Haiyan Tong; Wilailuck Naksri; Eric Buffetaut; Suravech Suteethorn; Varavudh Suteethorn; Phornphen Chantasit; Julien Claude (2019). "Kalasinemys, a new xinjiangchelyid turtle from the Late Jurassic of NE Thailand". Geological Magazine. in press. doi:10.1017/S0016756818000791.
  179. ^ Haiyan Tong; Julien Claude; Cheng-Sen Li; Jian Yang; Thierry Smith (2019). "Wutuchelys eocenica n. gen. n. sp., an Eocene stem testudinoid turtle from Wutu, Shandong Province, China". Geological Magazine. 156 (1): 133–146. doi:10.1017/S0016756817000905.
  180. ^ Bethany J. Allen; Thomas L. Stubbs; Michael J. Benton; Mark N. Puttick (2019). "Archosauromorph extinction selectivity during the Triassic–Jurassic mass extinction". Palaeontology. 62 (2): 211–224. doi:10.1111/pala.12399.
  181. ^ Martín D. Ezcurra; David J. Gower; Andrey G. Sennikov; Richard J. Butler (2019). "The osteology of the holotype of the early erythrosuchid Garjainia prima (Diapsida: Archosauromorpha) from the upper Lower Triassic of European Russia". Zoological Journal of the Linnean Society. 185 (3): 717–783. doi:10.1093/zoolinnean/zly061.
  182. ^ Richard J. Butler; Martín D. Ezcurra; Jun Liu; Roland B. Sookias; Corwin Sullivan (2019). "The anatomy and phylogenetic position of the erythrosuchid archosauriform Guchengosuchus shiguaiensis from the earliest Middle Triassic of China". PeerJ. 7: e6435. doi:10.7717/peerj.6435. PMC 6385703. PMID 30809443. {{cite journal}}: no-break space character in |title= at position 106 (help)CS1 maint: unflagged free DOI (link)
  183. ^ Andrea Arcucci; Elena Previtera; Adriana C. Mancuso (2019). "Ecomorphology and bone microstructure of Proterochampsia from the Chañares Formation". Acta Palaeontologica Polonica. 64 (1): 157–170. doi:10.4202/app.00536.2018.
  184. ^ Brandon R. Peecook; Roger M. H. Smith; Christian A. Sidor (2019). "A novel archosauromorph from Antarctica and an updated review of a high-latitude vertebrate assemblage in the wake of the end-Permian mass extinction". Journal of Vertebrate Paleontology. Online edition: e1536664. doi:10.1080/02724634.2018.1536664.
  185. ^ Tomasz Szczygielski; Dawid Surmik; Agnieszka Kapuścińska; Bruce M. Rothschild (2017). "The oldest record of aquatic amniote congenital scoliosis". PLoS ONE. 12 (9): e0185338. doi:10.1371/journal.pone.0185338. PMC 5608408. PMID 28934336.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  186. ^ Tomasz Szczygielski; Dawid Dróżdż; Dawid Surmik; Agnieszka Kapuścińska; Bruce M. Rothschild (2019). "New tomographic contribution to characterizing mesosaurid congenital scoliosis". PLoS ONE. 14 (2): e0212416. doi:10.1371/journal.pone.0212416. PMC 6392265. PMID 30811483.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  187. ^ Marta Zaher; Robert A. Coram; Michael J. Benton (2019). "The Middle Triassic procolophonid Kapes bentoni: computed tomography of the skull and skeleton". Papers in Palaeontology. 5 (1): 111–138. doi:10.1002/spp2.1232.
  188. ^ Eduardo Silva-Neves; Sean Patrick Modesto; Sérgio Dias-da-Silva (2019). "A new, nearly complete skull of Procolophon trigoniceps Owen, 1876 from the Sanga do Cabral Supersequence, Lower Triassic of Southern Brazil, with phylogenetic remarks". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1512106.
  189. ^ Michael W. Maisch; Andreas T. Matzke (2019). "Anthodon ? haughtoni (V. HUENE, 1944), a pareiasaurid (Parareptilia: Pareiasauria) from the Late Permian Usili Formation of Kingori, Ruhuhu Basin, Tanzania". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 291 (2): 197–204. doi:10.1127/njgpa/2019/0796.
  190. ^ A. D. Ryanskaya; D. V. Kiseleva; O. P. Shilovsky; E. S. Shagalov (2019). "XRD study of the Permian fossil bone tissue". Powder Diffraction. in press. doi:10.1017/S0885715619000174.
  191. ^ Mark J. MacDougall; Neil Brocklehurst; Jörg Fröbisch (2019). "Species richness and disparity of parareptiles across the end-Permian mass extinction". Proceedings of the Royal Society B: Biological Sciences. 286 (1899): Article ID 20182572. doi:10.1098/rspb.2018.2572. PMID 30890099.
  192. ^ Marco Romano; Bruce Rubidge (2019). "Long bone scaling in Captorhinidae: do limb bones scale according to elastic similarity in sprawling basal amniotes?". Lethaia. in press. doi:10.1111/let.12319.
  193. ^ Sean P. Modesto; Courtney D. Richards; Oumarou Ide; Christian A. Sidor (2019). "The vertebrate fauna of the Upper Permian of Niger—X. The mandible of the captorhinid reptile Moradisaurus grandis". Journal of Vertebrate Paleontology. in press: e1531877. doi:10.1080/02724634.2018.1531877.
  194. ^ David P. Ford; Roger B. J. Benson (2019). "A redescription of Orovenator mayorum (Sauropsida, Diapsida) using high‐resolution μCT, and the consequences for early amniote phylogeny". Papers in Palaeontology. in press. doi:10.1002/spp2.1236.
  195. ^ Yonghua Wu; Haifeng Wang (2019). "Convergent evolution of bird-mammal shared characteristics for adapting to nocturnality". Proceedings of the Royal Society B: Biological Sciences. 286 (1897): Article ID 20182185. doi:10.1098/rspb.2018.2185. PMC 6408890. PMID 30963837.
  196. ^ Jorge A. Herrera-Flores; Thomas L. Stubbs; Michael J. Benton (2017). "Macroevolutionary patterns in Rhynchocephalia: is the tuatara (Sphenodon punctatus) a living fossil?". Palaeontology. 60 (3): 319–328. doi:10.1111/pala.12284.
  197. ^ Felix Vaux; Mary Morgan‐Richards; Elizabeth E. Daly; Steven A. Trewick (2019). "Tuatara and a new morphometric dataset for Rhynchocephalia: Comments on Herrera‐Flores et al.". Palaeontology. 62 (2): 321–334. doi:10.1111/pala.12402.
  198. ^ Jorge A. Herrera-Flores; Thomas L. Stubbs; Michael J. Benton (2019). "Reply to comments on: Macroevolutionary patterns in Rhynchocephalia: is the tuatara (Sphenodon punctatus) a living fossil?". Palaeontology. 62 (2): 335–338. doi:10.1111/pala.12404.
  199. ^ Sofia A.V. Chambi-Trowell; David I. Whiteside; Michael J. Benton (2019). "Diversity in rhynchocephalian Clevosaurus skulls based on CT reconstruction of two Late Triassic species from Great Britain". Acta Palaeontologica Polonica. 64 (1): 41–64. doi:10.4202/app.00569.2018.
  200. ^ Yara Haridy; Florian Witzmann; Patrick Asbach; Rainer R. Schoch; Nadia Fröbisch; Bruce M. Rothschild (2019). "Triassic cancer—osteosarcoma in a 240-million-year-old stem-turtle". JAMA Oncology. 5 (3): 425–426. doi:10.1001/jamaoncol.2018.6766. PMID 30730547.
  201. ^ Stefan Reiss; Udo Scheer; Sven Sachs; Benjamin P. Kear (2019). "Filling the biostratigraphical gap: first choristoderan from the Lower–mid-Cretaceous interval of Europe". Cretaceous Research. 96: 135–141. doi:10.1016/j.cretres.2018.12.009.
  202. ^ Ryoko Matsumoto; Khishigjav Tsogtbaatar; Shinobu Ishigaki; Chinzorig Tsogtbaatar; Zorig Enkhtaivan; Susan E. Evans (2019). "Revealing body proportions of the enigmatic choristodere reptile Khurendukhosaurus from Mongolia". Acta Palaeontologica Polonica. in press. doi:10.4202/app.00561.2018.
  203. ^ Adam C. Pritchard; Hans-Dieter Sues (2019). "Postcranial remains of Teraterpeton hrynewichorum (Reptilia: Archosauromorpha) and the mosaic evolution of the saurian postcranial skeleton". Journal of Systematic Palaeontology. in press. doi:10.1080/14772019.2018.1551249.
  204. ^ Adriel R. Gentil; Martín D. Ezcurra (2019). "A new rhynchosaur maxillary tooth plate morphotype expands the disparity of the group in the Ischigualasto Formation (Late Triassic) of Northwestern Argentina". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1438425.
  205. ^ Ryoko Matsumoto; Liping Dong; Yuan Wang; Susan E. Evans (2019). "The first record of a nearly complete choristodere (Reptilia: Diapsida) from the Upper Jurassic of Hebei Province, People's Republic of China". Journal of Systematic Palaeontology. Online edition. doi:10.1080/14772019.2018.1494220.
  206. ^ Adriel R. Gentil; Federico L. Agnolin; Jordi A. Garcia marsà; Matias J. Motta; Fernando E. Novas (2019). "Bridging the gap: sphenodont remains from the Turonian (Upper Cretaceous) of Patagonia. Palaeobiological inferences". Cretaceous Research. 98: 72–83. doi:10.1016/j.cretres.2019.01.016.
  207. ^ Jacqueline K. Lungmus; Kenneth D. Angielczyk (2019). "Antiquity of forelimb ecomorphological diversity in the mammalian stem lineage (Synapsida)". Proceedings of the National Academy of Sciences of the United States of America. 116 (14): 6903–6907. doi:10.1073/pnas.1802543116. PMC 6452662. PMID 30886085.
  208. ^ Marco Romano; Paolo Citton; Simone Maganuco; Eva Sacchi; Martina Caratelli; Ausonio Ronchi; Umberto Nicosia (2019). "New basal synapsid discovery at the Permian outcrop of Torre del Porticciolo (Alghero, Italy)". Geological Journal. in press. doi:10.1002/gj.3250.
  209. ^ Kirstin S. Brink; Mark J. MacDougall; Robert R. Reisz (2019). "Dimetrodon (Synapsida: Sphenacodontidae) from the cave system at Richards Spur, OK, USA, and a comparison of Early Permian–aged vertebrate paleoassemblages". The Science of Nature. 106 (1–2): Article 2. doi:10.1007/s00114-018-1598-1. PMID 30610457.
  210. ^ Christen D. Shelton; Anusuya Chinsamy; Bruce M. Rothschild (2019). "Osteomyelitis in a 265-million-year-old titanosuchid (Dinocephalia, Therapsida)". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1419348.
  211. ^ Bruce S. Rubidge; Romala Govender; Marco Romano (2019). "The postcranial skeleton of the basal tapinocephalid dinocephalian Tapinocaninus pamelae (Synapsida: Therapsida) from the South African Karoo Supergroup". Journal of Systematic Palaeontology. in press. doi:10.1080/14772019.2018.1559244.
  212. ^ Christopher T. Griffin; Kenneth D. Angielczyk (2019). "The evolution of the dicynodont sacrum: constraint and innovation in the synapsid axial column". Paleobiology. 45 (1): 201–220. doi:10.1017/pab.2018.49.
  213. ^ Gianfrancis D. Ugalde; Rodrigo T. Müller; Hermínio Ismael de Araújo-Júnior; Sérgio Dias-da-Silva; Felipe L. Pinheiro (2019). "A peculiar bonebed reinforces gregarious behaviour for the Triassic dicynodont Dinodontosaurus". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1533960.
  214. ^ Grzegorz Racki; Spencer G. Lucas (2019). "Timing of dicynodont extinction in light of an unusual Late Triassic Polish fauna and Cuvier's approach to extinction". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1499734.
  215. ^ Henrik Richard Grunert; Neil Brocklehurst; Jörg Fröbisch (2019). "Diversity and disparity of Therocephalia: macroevolutionary patterns through two mass extinctions". Scientific Reports. 9: Article number 5063. doi:10.1038/s41598-019-41628-w. PMC 6433905. PMID 30911058.
  216. ^ Neil Brocklehurst (2019). "Morphological evolution in therocephalians breaks the hypercarnivore ratchet". Proceedings of the Royal Society B: Biological Sciences. 286 (1900): Article ID 20190590. doi:10.1098/rspb.2019.0590. PMID 30966993.
  217. ^ Gabriela Fontanarrosa; Fernando Abdala; Susanna Kümmell; Robert Gess (2019). "The manus of Tetracynodon (Therapsida: Therocephalia) provides evidence for survival strategies following the Permo-Triassic extinction". Journal of Vertebrate Paleontology. 38 (4): (1)–(13). doi:10.1080/02724634.2018.1491404.
  218. ^ Marcus Lukic-Walther; Neil Brocklehurst; Christian F. Kammerer; Jörg Fröbisch (2019). "Diversity patterns of nonmammalian cynodonts (Synapsida, Therapsida) and the impact of taxonomic practice and research history on diversity estimates". Paleobiology. 45 (1): 56–69. doi:10.1017/pab.2018.38.
  219. ^ Elize Butler; Fernando Abdala; Jennifer Botha‐Brink (2019). "Postcranial morphology of the Early Triassic epicynodont Galesaurus planiceps (Owen) from the Karoo Basin, South Africa". Papers in Palaeontology. 5 (1): 1–32. doi:10.1002/spp2.1220.
  220. ^ Luisa C. Pusch; Christian F. Kammerer; Jörg Fröbisch (2019). "Cranial anatomy of the early cynodont Galesaurus planiceps and the origin of mammalian endocranial characters". Journal of Anatomy. in press. doi:10.1111/joa.12958. PMID 30772942.
  221. ^ Fábio Hiratsuka Veiga; Jennifer Botha-Brink; Marina Bento Soares (2019). "Osteohistology of the non-mammaliaform traversodontids Protuberum cabralense and Exaeretodon riograndensis from southern Brazil". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1441292.
  222. ^ Pablo Gusmão Rodrigues; Agustín G. Martinelli; Cesar Leandro Schultz; Ian J. Corfe; Pamela G. Gill; Marina B. Soares; Emily J. Rayfield (2019). "Digital cranial endocast of Riograndia guaibensis (Late Triassic, Brazil) sheds light on the evolution of the brain in non-mammalian cynodonts". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1427742.
  223. ^ Morgan L. Guignard; Agustin G. Martinelli; Marina B. Soares (2019). "Postcranial anatomy of Riograndia guaibensis (Cynodontia: Ictidosauria)". Geobios. 53: 9–21. doi:10.1016/j.geobios.2019.02.006.
  224. ^ Aitor Navarro‐Díaz; Borja Esteve‐Altava; Diego Rasskin‐Gutman (2019). "Disconnecting bones within the jaw‐otic network modules underlies mammalian middle ear evolution". Journal of Anatomy. in press. doi:10.1111/joa.12992. PMID 30977522.
  225. ^ Robert R. Reisz (2019). "A small caseid synapsid, Arisierpeton simplex gen. et sp. nov., from the early Permian of Oklahoma, with a discussion of synapsid diversity at the classic Richards Spur locality". PeerJ. 7: e6615. doi:10.7717/peerj.6615. {{cite journal}}: no-break space character in |title= at position 25 (help)CS1 maint: unflagged free DOI (link)
  226. ^ Frederik Spindler; Ralf Werneburg; Jörg W. Schneider (2019). "A new mesenosaurine from the lower Permian of Germany and the postcrania of Mesenosaurus: implications for early amniote comparative osteology". PalZ. in press. doi:10.1007/s12542-018-0439-z.
  227. ^ Jun Liu; Fernando Abdala (2019). "The tetrapod fauna of the upper Permian Naobaogou Formation of China: 3. Jiufengia jiai gen. et sp. nov., a large akidnognathid therocephalian". PeerJ. 7: e6463. doi:10.7717/peerj.6463. PMC 6388668. PMID 30809450. {{cite journal}}: no-break space character in |title= at position 73 (help)CS1 maint: unflagged free DOI (link)
  228. ^ Tomasz Sulej; Grzegorz Niedźwiedzki (2019). "An elephant-sized Late Triassic synapsid with erect limbs". Science. 363 (6422): 78–80. doi:10.1126/science.aal4853. PMID 30467179.
  229. ^ Tomasz Sulej; Grzegorz Niedźwiedzki; Mateusz Tałanda; Dawid Dróżdż; Ewa Hara (2019). "A new early Late Triassic non-mammaliaform eucynodont from Poland". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1471477.
  230. ^ Kammerer, Christian F. (2019). "A new dicynodont (Anomodontia: Emydopoidea) from the terminal Permian of KwaZulu-Natal, South Africa". Palaeontologia africana. 53: 179–191. hdl:10539/26708. ISSN 2410-4418.
  231. ^ Yaoping Cai; Shuhai Xiao; Guoxiang Li; Hong Hua (2019). "Diverse biomineralizing animals in the terminal Ediacaran Period herald the Cambrian explosion". Geology. 47 (4): 380–384. doi:10.1130/G45949.1.
  232. ^ Dominik Letsch; Simon J.E. Large; Stefano M. Bernasconi; Christian Klug; Thomas M. Blattmann; Wilfried Winkler; Albrecht von Quadt (2019). "Northwest Africa's Ediacaran to early Cambrian fossil record, its oldest metazoans and age constraints for the basal Taroudant Group (Morocco)". Precambrian Research. 320: 438–453. doi:10.1016/j.precamres.2018.11.016.
  233. ^ Xiao Min; Hong Hua; Yaoping Cai; Bo Sun (2019). "Asexual reproduction of tubular fossils in the terminal Neoproterozoic Dengying Formation, South China". Precambrian Research. 322: 18–23. doi:10.1016/j.precamres.2018.12.009.
  234. ^ Frances S. Dunn; Philip R. Wilby; Charlotte G. Kenchington; Dmitriy V. Grazhdankin; Philip C. J. Donoghue; Alexander G. Liu (2019). "Anatomy of the Ediacaran rangeomorph Charnia masoni". Papers in Palaeontology. 5 (1): 157–176. doi:10.1002/spp2.1234.
  235. ^ Breandán Anraoi MacGabhann; James D. Schiffbauer; James W. Hagadorn; Peter Van Roy; Edward P. Lynch; Liam Morrison; John Murray (2019). "Resolution of the earliest metazoan record: Differential taphonomy of Ediacaran and Paleozoic fossil molds and casts". Palaeogeography, Palaeoclimatology, Palaeoecology. 513: 146–165. doi:10.1016/j.palaeo.2018.11.009.
  236. ^ Sara B. Pruss; Camille H. Dwyer; Emily F. Smith; Francis A. Macdonald; Nicholas J. Tosca (2019). "Phosphatized early Cambrian archaeocyaths and small shelly fossils (SSFs) of southwestern Mongolia". Palaeogeography, Palaeoclimatology, Palaeoecology. 513: 166–177. doi:10.1016/j.palaeo.2017.07.002.
  237. ^ David R. Cordie; Stephen Q. Dornbos; Pedro J. Marenco; Tatsuo Oji; Sersmaa Gonchigdorj (2019). "Depauperate skeletonized reef-dwelling fauna of the early Cambrian: Insights from archaeocyathan reef ecosystems of western Mongolia". Palaeogeography, Palaeoclimatology, Palaeoecology. 514: 206–221. doi:10.1016/j.palaeo.2018.10.027.
  238. ^ David R. Cordie; Stephen Q. Dornbos (2019). "Restricted morphospace occupancy of early Cambrian reef-building archaeocyaths". Paleobiology. in press. doi:10.1017/pab.2019.5.
  239. ^ Joseph P. Botting; Lucy A. Muir (2019). "Dispersal and endemic diversification: Differences in non-lithistid spiculate sponge faunas between the Cambrian Explosion and the GOBE". Palaeoworld. in press. doi:10.1016/j.palwor.2018.03.002.
  240. ^ Brian R. Pratt; Julien Kimmig (2019). "Extensive bioturbation in a middle Cambrian Burgess Shale–type fossil Lagerstätte in northwestern Canada". Geology. 47 (3): 231–234. doi:10.1130/G45551.1.
  241. ^ Magdalena N. Georgieva; Crispin T. S. Little; Jonathan S. Watson; Mark A. Sephton; Alexander D. Ball; Adrian G. Glover (2019). "Identification of fossil worm tubes from Phanerozoic hydrothermal vents and cold seeps". Journal of Systematic Palaeontology. 17 (4): 287–329. doi:10.1080/14772019.2017.1412362.
  242. ^ Magdalena N. Georgieva; Charles K. Paull; Crispin T. S. Little; Mary McGann; Diana Sahy; Daniel Condon; Lonny Lundsten; Jack Pewsey; David W. Caress; Francis M. Kirera (2019). "Discovery of an extensive deep-sea fossil serpulid reef associated with a cold seep, Santa Monica Basin, California". Frontiers in Marine Science. 6: Article 115. doi:10.3389/fmars.2019.00115.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  243. ^ Luoyang Li; Xingliang Zhang; Christian B. Skovsted; Hao Yun; Bing Pan; Guoxiang Li (2019). "Homologous shell microstructures in Cambrian hyoliths and molluscs". Palaeontology. in press. doi:10.1111/pala.12406.
  244. ^ Fan Wei (2019). "Conch size evolution of Silurian–Devonian tentaculitoids". Lethaia. in press. doi:10.1111/let.12324.
  245. ^ Jakob Vinther; Luke A. Parry (2019). "Bilateral jaw elements in Amiskwia sagittiformis bridge the morphological gap between gnathiferans and chaetognaths". Current Biology. 29 (5): 881–888.e1. doi:10.1016/j.cub.2019.01.052. PMID 30799238.
  246. ^ Giannis Kesidis; Ben J. Slater; Sören Jensen; Graham E. Budd (2019). "Caught in the act: priapulid burrowers in early Cambrian substrates". Proceedings of the Royal Society B: Biological Sciences. 286 (1894): Article ID 20182505. doi:10.1098/rspb.2018.2505. PMC 6367179. PMID 30963879.
  247. ^ Stephen Pates; Allison C. Daley (2019). "The Kinzers Formation (Pennsylvania, USA): the most diverse assemblage of Cambrian Stage 4 radiodonts". Geological Magazine. in press. doi:10.1017/S0016756818000547.
  248. ^ Jie Yang; Javier Ortega-Hernández; Harriet B. Drage; Kun-sheng Du; Xi-guang Zhang (2019). "Ecdysis in a stem-group euarthropod from the early Cambrian of China". Scientific Reports. 9: Article number 5709. doi:10.1038/s41598-019-41911-w. PMC 6450865. PMID 30952888.
  249. ^ James W. Hagadorn; Warren D. Allmon (2019). "Paleobiology of a three-dimensionally preserved paropsonemid from the Devonian of New York". Palaeogeography, Palaeoclimatology, Palaeoecology. 513: 208–214. doi:10.1016/j.palaeo.2018.08.007.
  250. ^ Francisco Sánchez-Beristain; Pedro García-Barrera; Josep Antón Moreno-Bedmar (2019). "Acanthochaetetes huauclillensis nov. sp. (Porifera: Demospongiae) from the Lower Cretaceous of Oaxaca, Mexico, and its palaeoecological, palaeobiogeographic and stratigraphic implications". Journal of South American Earth Sciences. 91: 227–238. doi:10.1016/j.jsames.2019.02.008.
  251. ^ a b Jian Han; Simon Conway Morris; Jennifer F. Hoyal Cuthill; Degan Shu (2019). "Sclerite-bearing annelids from the lower Cambrian of South China". Scientific Reports. 9: Article number 4955. doi:10.1038/s41598-019-40841-x. PMC 6426949. PMID 30894583.
  252. ^ Martin Valent; Oldřich Fatka; Ladislav Marek (2019). "Alfaites romeo gen. et sp. nov., a new Hyolitha from the Cambrian of Skryje-Týřovice Basin (Czech Republic)". European Journal of Taxonomy. 491: 1–10. doi:10.5852/ejt.2019.491.
  253. ^ a b c d e f Fan Wei; Ruiwen Zong; Yiming Gong (2019). "Tentaculitids and their evolutionary significance in the Early Devonian Dashatian section, South China". Palaeobiodiversity and Palaeoenvironments. 99 (1): 7–28. doi:10.1007/s12549-018-0367-7.
  254. ^ a b Gerd Geyer; Martin Valent; Stefan Meier (2019). "Helcionelloids, stenothecoids and hyoliths from the Tannenknock Formation (traditional lower middle Stage 4/Wuliuan boundary interval) of the Franconian Forest, Germany". PalZ. in press. doi:10.1007/s12542-018-0433-5.
  255. ^ a b c Ewa Świerczewska-Gładysz; Agata Jurkowska; Robert Niedźwiedzki (2019). "New data about the Turonian–Coniacian sponge assemblage from Central Europe". Cretaceous Research. 94: 229–258. doi:10.1016/j.cretres.2018.10.001.
  256. ^ Hao Yun; Glenn A. Brock; Xingliang Zhang; Luoyang Li; Diego C. García-Bellido; John R. Paterson (2019). "A new chancelloriid from the Emu Bay Shale (Cambrian Stage 4) of South Australia". Journal of Systematic Palaeontology. Online edition. doi:10.1080/14772019.2018.1496952.
  257. ^ Olev Vinn; Sabiela Musabelliu; Michał Zatoń (2019). "Cornulitids from the Upper Devonian of the Central Devonian Field, Russia". GFF. in press. doi:10.1080/11035897.2018.1505777.
  258. ^ C. Earp (2019). "Costulatotheca schleigeri (Hyolitha: Orthothecida) from the Walhalla Group (Early Devonian) at Mount Pleasant, central Victoria, Australia". Alcheringa: An Australasian Journal of Palaeontology. in press. doi:10.1080/03115518.2018.1556335.
  259. ^ Juwan Jeon; Qijian Li; Jae-Ryong Oh; Suk-Joo Choh; Dong-Jin Lee (2019). "A new species of the primitive stromatoporoid Cystostroma from the Ordovician of East Asia". Geosciences Journal. in press. doi:10.1007/s12303-018-0063-7.
  260. ^ Yang Zhao; Jakob Vinther; Luke A. Parry; Fan Wei; Emily Green; Davide Pisani; Xianguang Hou; Gregory D. Edgecombe; Peiyun Cong (2019). "Cambrian sessile, suspension feeding stem-group ctenophores and evolution of the comb jelly body plan". Current Biology. 29 (7): 1112–1125.e2. doi:10.1016/j.cub.2019.02.036. PMID 30905603.
  261. ^ Lucy A. Muir; Joseph P. Botting; Bertrand Lefebvre; Christopher Upton; Yuan-Dong Zhang (2019). "Agglutinated tubes as a feature of Early Ordovician ecosystems". Palaeoworld. in press. doi:10.1016/j.palwor.2019.01.004.
  262. ^ Joseph P. Botting; Yves Candela; Vicen Carrió; William R. B. Crighton (2019). "A new hexactinellid sponge from the Silurian of the Pentland Hills (Scotland) with similarities to extant rossellids". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. in press. doi:10.1017/S1755691019000045.
  263. ^ a b c d Anna Kozłowska; Denis Bates; Jan Zalasiewicz; Sigitas Radzevičius (2019). "Evolutionary significance of the retiolitine Gothograptus (Graptolithina) with four new species from the Silurian of the East European Platform (Baltica), Poland and Lithuania". Zootaxa. 4568 (3): 435–469. doi:10.11646/zootaxa.4568.3.2.
  264. ^ Qiu-Jun Wang; Jin Peng; Rong-Qin Wen; Guang-Ying Du; Hui Zhang; De-Zhi Wang; Yi-Fan Wang (2019). "Hamptonia jianhensis sp. nov. from the Cambrian (Stage 4) Balang Fauna of Guizhou, China". Historical Biology: An International Journal of Paleobiology. Online edition. doi:10.1080/08912963.2019.1575374.
  265. ^ John M. Malinky; Gerd Geyer (2019). "Cambrian Hyolitha of Siberian, Baltican and Avalonian aspect in east Laurentian North America: taxonomy and palaeobiogeography". Alcheringa: An Australasian Journal of Palaeontology. in press. doi:10.1080/03115518.2019.1567813.
  266. ^ Jaak Nõlvak; Yan Liang; Olle Hints (2019). "Early diversification of Ordovician chitinozoans on Baltica: New data from the Jägala waterfall section, northern Estonia". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2019.04.002.
  267. ^ a b Petr Štorch; Josep Roqué Bernal; Juan Carlos Gutiérrez-Marco (2019). "A graptolite-rich Ordovician–Silurian boundary section in the south-central Pyrenees, Spain: stratigraphical and palaeobiogeographical significance". Geological Magazine. in press. doi:10.1017/S001675681800047X.
  268. ^ Lucy A. Muir; Joseph P. Botting; Steven N. A. Walker; James D. Schiffbauer; Breandán Anraoi MacGabhann (2019). "Onuphionella corusca sp. nov.: an early Cambrian-type agglutinated tube from Upper Ordovician strata of Morocco". In A. W. Hunter; J. J. Álvaro; B. Lefebvre; P. van Roy; S. Zamora (eds.). The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco. The Geological Society of London. doi:10.1144/SP485.7.
  269. ^ Lucas D. Mouro; Rodrigo S. Horodyski; Antonio. C.S. Fernandes; Marcelo A. Carvalho; Mateus. S. Silva; Breno L. Waichel; João P. Saldanha (2019). "Pennsylvanian sponge from the Mecca Quarry Shale, Carbondale Group (Indiana, USA) and the paleobiogeographic distribution of Teganiella in the paleoequatorial region of Laurentia". Journal of Paleontology. Online edition. doi:10.1017/jpa.2019.7.
  270. ^ Christopher M. Lowery; Andrew J. Fraass (2019). "Morphospace expansion paces taxonomic diversification after end Cretaceous mass extinction". Nature Ecology & Evolution. in press. doi:10.1038/s41559-019-0835-0. PMID 30962557.
  271. ^ Qinghai Zhang; Helmut Willems; Lin Ding; Xiaoxia Xu (2019). "Response of larger benthic foraminifera to the Paleocene-Eocene thermal maximum and the position of the Paleocene/Eocene boundary in the Tethyan shallow benthic zones: Evidence from south Tibet". GSA Bulletin. 131 (1–2): 84–98. doi:10.1130/B31813.1.
  272. ^ a b Fumio Kobayashi; Hiroshi Furutani (2019). "Late Early Permian fusulines along Gongendani, south of Mt. Ryozen, Shiga Prefecture, central Japan". Cretaceous Research. 23 (2): 131–151. doi:10.2517/2018PR014.
  273. ^ John H. Powell; Alda Nicora; Maria Cristina Perri; Roberto Rettori; Renato Posenato; Michael H. Stephenson; Ahmed Masri; Letizia M. Borlenghi; Valerio Gennari (2019). "Lower Triassic (Induan to Olenekian) conodonts, foraminifera and bivalves from the Al Mamalih area, Dead Sea, Jordan: constraints on the P-T boundary". Rivista Italiana di Paleontologia e Stratigrafia. 125 (1): 147–181. doi:10.13130/2039-4942/11270.
  274. ^ Felix Schlagintweit; Ioan I. Bucur; Milan N. Sudar (2019). "Bispiraloconulus serbiacus gen. et sp. nov., a giant arborescent benthic foraminifer from the Berriasian of Serbia". Cretaceous Research. 93: 98–106. doi:10.1016/j.cretres.2018.09.003.
  275. ^ R. Robles-Salcedo; V. Vicedo; M. Parente; E. Caus (2019). "Canalispina iapygia gen. et sp. nov.: the last Siderolitidae (Foraminiferida) from the upper Maastrichtian of southern Italy". Cretaceous Research. 98: 84–94. doi:10.1016/j.cretres.2019.01.009.
  276. ^ Yi-chun Zhang; Shu-zhong Shen; Yu-jie Zhang; Tong-xing Zhu; Xian-yin An; Bo-xin Huang; Chun-lin Ye; Feng Qiao; Hai-peng Xu (2019). "Middle Permian foraminifers from the Zhabuye and Xiadong areas in the central Lhasa Block and their paleobiogeographic implications". Journal of Asian Earth Sciences. 175: 109–120. doi:10.1016/j.jseaes.2018.01.008.
  277. ^ R. Villalonga; C. Boix; G. Frijia; M. Parente; J. M. Bernaus; E. Caus (2019). "Larger foraminifera and strontium isotope stratigraphy of middle Campanian shallow-water lagoonal facies of the Pyrenean Basin (NE Spain)". Facies. 65 (2): Article 20. doi:10.1007/s10347-019-0565-4.
  278. ^ Valerio Gennari; Roberto Rettori (2019). "Globigaetania angulata gen. n. sp. n. (Globivalvulininae, Foraminifera) from the Wordian (Middle Permian) of NW Iran". Rivista Italiana di Paleontologia e Stratigrafia. 125 (1): 1–11. doi:10.13130/2039-4942/11054.
  279. ^ Michel Septfontaine; Felix Schlagintweit; Koorosh Rashidi (2019). "Pachycolumella nov. gen., shallow-water benthic imperforate foraminifera and its species from the Maastrichtian and Paleocene of Iran". Micropaleontology. 65 (2): 145–160.
  280. ^ Felix Schlagintweit; Michel Septfontaine; Koorosh Rashidi (2019). "Pseudochablaisia subglobosa gen. et sp. nov., a new pfenderinid foraminifera from the Upper Cretaceous of Iran". Cretaceous Research. 100: 105–113. doi:10.1016/j.cretres.2019.03.020.
  281. ^ Brent Wilson; Philip Farfan; Lee-Ann C. Hayek; Michael A. Kaminski; Abduljamiu O. Amao; Chantelle Hughes; Sadie Samsoondar; Shaliza Ali; Krystella Rattan; Anastasia Baboolal (2019). "Agglutinated and planktonic foraminifera of the Nariva Formation, Central Trinidad, as indicators of its age and paleoenvironment". Micropaleontology. 65 (1): 1–26.
  282. ^ Mohamed Boukhary; Ahmed Abd El Naby (2019). "Tambareauella azilensis (Tambareau) n. gen. (Topotype), from Late Ypresian of Le Mas-d'Azil, southwestern France". Journal of African Earth Sciences. 151: 47–53. doi:10.1016/j.jafrearsci.2018.11.026.
  283. ^ Takayuki Tashiro; Akizumi Ishida; Masako Hori; Motoko Igisu; Mizuho Koike; Pauline Méjean; Naoto Takahata; Yuji Sano; Tsuyoshi Komiya (2017). "Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada". Nature. 549 (7673): 516–518. doi:10.1038/nature24019. PMID 28959955.
  284. ^ Martin J. Whitehouse; Daniel J. Dunkley; Monika A. Kusiak; Simon A. Wilde (2019). "On the true antiquity of Eoarchean chemofossils – assessing the claim for Earth's oldest biogenic graphite in the Saglek Block of Labrador". Precambrian Research. 323: 70–81. doi:10.1016/j.precamres.2019.01.001.
  285. ^ Abderrazak El Albani; M. Gabriela Mangano; Luis A. Buatois; Stefan Bengtson; Armelle Riboulleau; Andrey Bekker; Kurt Konhauser; Timothy Lyons; Claire Rollion-Bard; Olabode Bankole; Stellina Gwenaelle Lekele Baghekema; Alain Meunier; Alain Trentesaux; Arnaud Mazurier; Jeremie Aubineau; Claude Laforest; Claude Fontaine; Philippe Recourt; Ernest Chi Fru; Roberto Macchiarelli; Jean Yves Reynaud; François Gauthier-Lafaye; Donald E. Canfield (2019). "Organism motility in an oxygenated shallow-marine environment 2.1 billion years ago". Proceedings of the National Academy of Sciences of the United States of America. 116 (9): 3431–3436. doi:10.1073/pnas.1815721116. PMC 6397584. PMID 30808737.
  286. ^ Xiyang Zhang; Mingyue Dai; Min Wang; Yong’an Qi (2019). "Calcified coccoid from Cambrian Miaolingian: Revealing the potential cellular structure of Epiphyton". PLoS ONE. 14 (3): e0213695. doi:10.1371/journal.pone.0213695. PMC 6417771. PMID 30870473.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  287. ^ Michael Krings; Carla J. Harper (2019). "A microfossil resembling Merismopedia (Cyanobacteria) from the 410-million-yr-old Rhynie and Windyfield cherts – Rhyniococcus uniformis revisited". Nova Hedwigia. 108 (1–2): 17–35. doi:10.1127/nova_hedwigia/2018/0507.
  288. ^ Sebastian Teichert; William Woelkerling; Axel Munnecke (2019). "Coralline red algae from the Silurian of Gotland indicate that the order Corallinales (Corallinophycidae, Rhodophyta) is much older than previously thought". Palaeontology. in press. doi:10.1111/pala.12418.
  289. ^ Mirinae Lee; Robert J. Elias; Suk-Joo Choh; Dong-Jin Lee (2019). "Palaeobiological features of the coralomorph Amsassia from the Late Ordovician of South China". Alcheringa: An Australasian Journal of Palaeontology. 43 (1): 18–32. doi:10.1080/03115518.2018.1471737.
  290. ^ M. L. Droser; S. D. Evans; P. W. Dzaugis; E. B. Hughes; J. G. Gehling (2019). "Attenborites janeae: a new enigmatic organism from the Ediacara Member (Rawnsley Quartzite), South Australia". Australian Journal of Earth Sciences. in press. doi:10.1080/08120099.2018.1495668.
  291. ^ a b c d e f Qin Ye; Jinnan Tong; Zhihui An; Jun Hu; Li Tian; Kaiping Guan; Shuhai Xiao (2019). "A systematic description of new macrofossil material from the upper Ediacaran Miaohe Member in South China". Journal of Systematic Palaeontology. 17 (3): 183–238. doi:10.1080/14772019.2017.1404499.
  292. ^ a b c Matthew J. Pound; Jennifer M. K. O’Keefe; Noelia B. Nuñez Otaño; James B. Riding (2019). "Three new Miocene fungal palynomorphs from the Brassington Formation, Derbyshire, UK". Palynology. in press. doi:10.1080/01916122.2018.1473300.
  293. ^ a b Zainab Al Rawahi; Tom Dunkley Jones (2019). "Calcareous nannofossil assemblages of the Late Cretaceous Fiqa Formation, north Oman". Journal of Micropalaeontology. 38 (1): 25–54. doi:10.5194/jm-38-25-2019.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  294. ^ a b c d Corentin C. Loron; Robert H. Rainbird; Elizabeth C. Turner; J. Wilder Greenman; Emmanuelle J. Javaux (2019). "Organic-walled microfossils from the late Mesoproterozoic to early Neoproterozoic lower Shaler Supergroup (Arctic Canada): diversity and biostratigraphic significance". Precambrian Research. 321: 349–374. doi:10.1016/j.precamres.2018.12.024.
  295. ^ Serge V. Naugolnykh (2019). "Main biotic and climatic events in Early Permian of the Western Urals, Russia, as exemplified by the shallow-water biota of the early Kungurian lagoons". Palaeoworld. in press. doi:10.1016/j.palwor.2018.10.002.
  296. ^ a b Lanyun Miao; Małgorzata Moczydłowska; Shixing Zhu; Maoyan Zhu (2019). "New record of organic-walled, morphologically distinct microfossils from the late Paleoproterozoic Changcheng Group in the Yanshan Range, North China". Precambrian Research. 321: 172–198. doi:10.1016/j.precamres.2018.11.019.
  297. ^ a b Carmine C. Wainman; Daniel J. Mantle; Carey Hannaford; Peter J. McCabe (2019). "Possible freshwater dinoflagellate cysts and colonial algae from the Upper Jurassic strata of the Surat Basin, Australia". Palynology. in press. doi:10.1080/01916122.2018.1451785.
  298. ^ P. W. Dzaugis; S. D. Evans; M. L. Droser; J. G. Gehling; I. V. Hughes (2019). "Stuck in the mat: Obamus coronatus, a new benthic organism from the Ediacara Member, Rawnsley Quartzite, South Australia". Australian Journal of Earth Sciences. in press. doi:10.1080/08120099.2018.1479306.
  299. ^ L. Morais; D.J.G. Lahr; I.D. Rudnitzki; B.T. Freitas; G.R. Romero; S.M. Porter; A.H. Knoll; T.R. Fairchild (2019). "Insights into vase-shaped microfossil diversity and Neoproterozoic biostratigraphy in light of recent Brazilian discoveries". Journal of Paleontology. Online edition. doi:10.1017/jpa.2019.6.
  300. ^ Christine Strullu-Derrien; Paul Kenrick; Tomasz Goral; Andrew H. Knoll (2019). "Testate amoebae in the 407-million-year-old Rhynie Chert". Current Biology. 29 (3): 461–467.e2. doi:10.1016/j.cub.2018.12.009. PMID 30661795.
  301. ^ George Poinar (2019). "A mid-Cretaceous pycnidia, Palaeomycus epallelus gen. et sp. nov., in Myanmar amber". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1481836.
  302. ^ a b Arkamitra Vishnu (née Mandal); Mahasin Ali Khan; Meghma Bera; Krishnendu Acharya; David L. Dilcher; Subir Bera (2019). "Occurrence of Phoma Sacc. in the phyllosphere of Neogene Siwalik forest of Arunachal sub-Himalaya and its palaeoecological implications". Fungal Biology. 123 (1): 18–28. doi:10.1016/j.funbio.2018.10.007.
  303. ^ George Poinar; Fernando E. Vega (2019). "A mid-Cretaceous trichomycete, Priscadvena corymbosa gen. et sp. nov., in Burmese amber". Fungal Biology. in press. doi:10.1016/j.funbio.2019.02.007.
  304. ^ Frantz Ossa Ossa; Axel Hofmann; Jorge E. Spangenberg; Simon W. Poulton; Eva E. Stüeken; Ronny Schoenberg; Benjamin Eickmann; Martin Wille; Mike Butler; Andrey Bekker (2019). "Limited oxygen production in the Mesoarchean ocean". Proceedings of the National Academy of Sciences of the United States of America. 116 (14): 6647–6652. doi:10.1073/pnas.1818762116. PMC 6452703. PMID 30894492.
  305. ^ Chadlin M. Ostrander; Sune G. Nielsen; Jeremy D. Owens; Brian Kendall; Gwyneth W. Gordon; Stephen J. Romaniello; Ariel D. Anbar (2019). "Fully oxygenated water columns over continental shelves before the Great Oxidation Event". Nature Geoscience. 12 (3): 186–191. doi:10.1038/s41561-019-0309-7.
  306. ^ Kazumi Ozaki; Christopher T. Reinhard; Eiichi Tajika (2019). "A sluggish mid‐Proterozoic biosphere and its effect on Earth's redox balance". Geobiology. 17 (1): 3–11. doi:10.1111/gbi.12317. PMID 30281196.
  307. ^ Amber J. M. Jarrett; Grant M. Cox; Jochen J. Brocks; Emmanuelle Grosjean; Chris J. Boreham; Dianne S. Edwards (2019). "Microbial assemblage and palaeoenvironmental reconstruction of the 1.38 Ga Velkerri Formation, McArthur Basin, northern Australia". Geobiology. in press. doi:10.1111/gbi.12331. PMID 30734481.
  308. ^ C. Brenhin Keller; Jon M. Husson; Ross N. Mitchell; William F. Bottke; Thomas M. Gernon; Patrick Boehnke; Elizabeth A. Bell; Nicholas L. Swanson-Hysell; Shanan E. Peters (2019). "Neoproterozoic glacial origin of the Great Unconformity". Proceedings of the National Academy of Sciences of the United States of America. 116 (4): 1136–1145. doi:10.1073/pnas.1804350116. PMC 6347685. PMID 30598437.
  309. ^ J. Parnell; A. J. Boyce (2019). "Neoproterozoic copper cycling, and the rise of metazoans". Scientific Reports. 9: Article number 3638. doi:10.1038/s41598-019-40484-y. PMC 6403403. PMID 30842538.
  310. ^ Lennart M. van Maldegem; Pierre Sansjofre; Johan W. H. Weijers; Klaus Wolkenstein; Paul K. Strother; Lars Wörmer; Jens Hefter; Benjamin J. Nettersheim; Yosuke Hoshino; Stefan Schouten; Jaap S. Sinninghe Damsté; Nilamoni Nath; Christian Griesinger; Nikolay B. Kuznetsov; Marcel Elie; Marcus Elvert; Erik Tegelaar; Gerd Gleixner; Christian Hallmann (2019). "Bisnorgammacerane traces predatory pressure and the persistent rise of algal ecosystems after Snowball Earth". Nature Communications. 10: Article number 476. doi:10.1038/s41467-019-08306-x. PMC 6351664. PMID 30696819.
  311. ^ Benjamin J. Nettersheim; Jochen J. Brocks; Arne Schwelm; Janet M. Hope; Fabrice Not; Michael Lomas; Christiane Schmidt; Ralf Schiebel; Eva C. M. Nowack; Patrick De Deckker; Jan Pawlowski; Samuel S. Bowser; Ilya Bobrovskiy; Karin Zonneveld; Michal Kucera; Marleen Stuhr; Christian Hallmann (2019). "Putative sponge biomarkers in unicellular Rhizaria question an early rise of animals". Nature Ecology & Evolution. 3 (4): 577–581. doi:10.1038/s41559-019-0806-5. PMID 30833757.
  312. ^ Alexander G. Liu; Sean McMahon; Jack J. Matthews; John W. Still; Alexander T. Brasier (2019). "Petrological evidence supports the death mask model for the preservation of Ediacaran soft-bodied organisms in South Australia". Geology. 47 (3): 215–218. doi:10.1130/G45918.1.
  313. ^ Ilya Bobrovskiy; Anna Krasnova; Andrey Ivantsov; Ekaterina Luzhnaya (Serezhnikova); Jochen J. Brocks (2019). "Simple sediment rheology explains the Ediacara biota preservation". Nature Ecology & Evolution. 3 (4): 582–589. doi:10.1038/s41559-019-0820-7. PMID 30911145.
  314. ^ Y. Soldatenko; A. El Albani; M. Ruzina; C. Fontaine; V. Nesterovsky; J.-L. Paquette; A. Meunier; M. Ovtcharova (2019). "Precise U-Pb age constrains on the Ediacaran biota in Podolia, East European Platform, Ukraine". Scientific Reports. 9: Article number 1675. doi:10.1038/s41598-018-38448-9. PMC 6368556. PMID 30737449.
  315. ^ Ulf Linnemann; Maria Ovtcharova; Urs Schaltegger; Andreas Gärtner; Michael Hautmann; Gerd Geyer; Patricia Vickers‐Rich; Tom Rich; Birgit Plessen; Mandy Hofmann; Johannes Zieger; Rita Krause; Les Kriesfeld; Jeff Smith (2019). "New high‐resolution age data from the Ediacaran–Cambrian boundary indicate rapid, ecologically driven onset of the Cambrian explosion". Terra Nova. 31 (1): 49–58. doi:10.1111/ter.12368.
  316. ^ A. D. Muscente; Natalia Bykova; Thomas H. Boag; Luis A. Buatois; M. Gabriela Mángano; Ahmed Eleish; Anirudh Prabhu; Feifei Pan; Michael B. Meyer; James D. Schiffbauer; Peter Fox; Robert M. Hazen; Andrew H. Knoll (2019). "Ediacaran biozones identified with network analysis provide evidence for pulsed extinctions of early complex life". Nature Communications. 10: Article number 911. doi:10.1038/s41467-019-08837-3. PMC 6384941. PMID 30796215.
  317. ^ Rachel Wood; Alexander G. Liu; Frederick Bowyer; Philip R. Wilby; Frances S. Dunn; Charlotte G. Kenchington; Jennifer F. Hoyal Cuthill; Emily G. Mitchell; Amelia Penny (2019). "Integrated records of environmental change and evolution challenge the Cambrian Explosion". Nature Ecology & Evolution. 3 (4): 528–538. doi:10.1038/s41559-019-0821-6. PMID 30858589.
  318. ^ Seth Finnegan; James G. Gehling; Mary L. Droser (2019). "Unusually variable paleocommunity composition in the oldest metazoan fossil assemblages". Paleobiology. in press. doi:10.1017/pab.2019.1.
  319. ^ David R. Cordie; Stephen Q. Dornbos; Pedro J. Marenco (2019). "Increase in carbonate contribution from framework-building metazoans through early Cambrian reefs of the western Basin and Range, USA". Palaios. 34 (3): 159–174. doi:10.2110/palo.2018.085.
  320. ^ Emma U. Hammarlund; M. Paul Smith; Jan A. Rasmussen; Arne T. Nielsen; Donald E. Canfield; David A. T. Harper (2019). "The Sirius Passet Lagerstätte of North Greenland—A geochemical window on early Cambrian low‐oxygen environments and ecosystems". Geobiology. 17 (1): 12–26. doi:10.1111/gbi.12315. PMID 30264482.
  321. ^ M. Gabriela Mángano; Christopher David Hawkes; Jean-Bernard Caron (2019). "Trace fossils associated with Burgess Shale non-biomineralized carapaces: bringing taphonomic and ecological controls into focus". Royal Society Open Science. 6 (1): Article ID 172074. doi:10.1098/rsos.172074. PMC 6366168. PMID 30800334.
  322. ^ Dongjing Fu; Guanghui Tong; Tao Dai; Wei Liu; Yuning Yang; Yuan Zhang; Linhao Cui; Luoyang Li; Hao Yun; Yu Wu; Ao Sun; Cong Liu; Wenrui Pei; Robert R. Gaines; Xingliang Zhang (2019). "The Qingjiang biota—A Burgess Shale–type fossil Lagerstätte from the early Cambrian of South China". Science. 363 (6433): 1338–1342. doi:10.1126/science.aau8800. PMID 30898931.
  323. ^ Cheung, Helier (24 March 2019). "Huge fossil discovery made in China's Hubei province". BBC News. Retrieved 24 March 2019.
  324. ^ David A.T. Harper; Timothy P. Topper; Borja Cascales-Miñana; Thomas Servais; Yuan-Dong Zhang; Per Ahlberg (2019). "The Furongian (late Cambrian) Biodiversity Gap: Real or apparent?". Palaeoworld. in press. doi:10.1016/j.palwor.2019.01.007.
  325. ^ Christian M. Ø. Rasmussen; Björn Kröger; Morten L. Nielsen; Jorge Colmenar (2019). "Cascading trend of Early Paleozoic marine radiations paused by Late Ordovician extinctions". Proceedings of the National Academy of Sciences of the United States of America. 116 (15): 7207–7213. doi:10.1073/pnas.1821123116. PMID 30910963.
  326. ^ Richard Hofmann; Melanie Tietje; Martin Aberhan (2019). "Diversity partitioning in Phanerozoic benthic marine communities". Proceedings of the National Academy of Sciences of the United States of America. 116 (1): 79–83. doi:10.1073/pnas.1814487116. PMC 6320541. PMID 30559194.
  327. ^ Carl J. Reddin; Ádám T. Kocsis; Wolfgang Kiessling (2019). "Climate change and the latitudinal selectivity of ancient marine extinctions". Paleobiology. 45 (1): 70–84. doi:10.1017/pab.2018.34.
  328. ^ Francis A. Macdonald; Nicholas L. Swanson-Hysell; Yuem Park; Lorraine Lisiecki; Oliver Jagoutz (2019). "Arc-continent collisions in the tropics set Earth's climate state". Science. 364 (6436): 181–184. doi:10.1126/science.aav5300. PMID 30872536.
  329. ^ Franziska Franeck; Lee Hsiang Liow (2019). "Dissecting the paleocontinental and paleoenvironmental dynamics of the great Ordovician biodiversification". Paleobiology. in press. doi:10.1017/pab.2019.4.
  330. ^ Dirk Knaust; André Desrochers (2019). "Exceptionally preserved soft-bodied assemblage in Ordovician carbonates of Anticosti Island, eastern Canada". Gondwana Research. 71: 117–128. doi:10.1016/j.gr.2019.01.016.
  331. ^ Guillermo L. Albanesi; Christopher R. Barnes; Julie A. Trotter; Ian S. Williams; Stig M. Bergström (2019). "Comparative Lower-Middle Ordovician conodont oxygen isotope palaeothermometry of the Argentine Precordillera and Laurentian margins". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2019.03.016.
  332. ^ Guangxu Wang; Renbin Zhan; Ian G. Percival (2019). "The end-Ordovician mass extinction: A single-pulse event?". Earth-Science Reviews. 192: 15–33. doi:10.1016/j.earscirev.2019.01.023.
  333. ^ Błażej Berkowski; Michał Jakubowicz; Zdzisław Belka; Jan J. Król; Mikołaj K. Zapalski (2019). "Recurring cryptic ecosystems in Lower to Middle Devonian carbonate mounds of Hamar Laghdad (Anti-Atlas, Morocco)". Palaeogeography, Palaeoclimatology, Palaeoecology. 523: 1–17. doi:10.1016/j.palaeo.2019.03.011.
  334. ^ Catherine Girard; Jean-Jacques Cornée; Michael M. Joachimski; Anne-Lise Charruault; Anne-Béatrice Dufour; Sabrina Renaud (2019). "Paleogeographic differences in temperature, water depth and conodont biofacies during the Late Devonian". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2018.06.046.
  335. ^ Aaron M. Martinez; Diana L. Boyer; Mary L. Droser; Craig Barrie; Gordon D. Love (2019). "A stable and productive marine microbial community was sustained through the end‐Devonian Hangenberg Crisis within the Cleveland Shale of the Appalachian Basin, United States". Geobiology. 17 (1): 27–42. doi:10.1111/gbi.12314. PMID 30248226.
  336. ^ Roger A. Close; Roger B. J. Benson; John Alroy; Anna K. Behrensmeyer; Juan Benito; Matthew T. Carrano; Terri J. Cleary; Emma M. Dunne; Philip D. Mannion; Mark D. Uhen; Richard J. Butler (2019). "Diversity dynamics of Phanerozoic terrestrial tetrapods at the local-community scale". Nature Ecology & Evolution. 3 (4): 590–597. doi:10.1038/s41559-019-0811-8. PMID 30778186.
  337. ^ Benjamin K. A. Otoo; Jennifer A. Clack; Timothy R. Smithson; Carys E. Bennett; Timothy I. Kearsey; Michael I. Coates (2019). "A fish and tetrapod fauna from Romer's Gap preserved in Scottish Tournaisian floodplain deposits". Palaeontology. 62 (2): 225–253. doi:10.1111/pala.12395.
  338. ^ Jennifer A. Clack; Carys E. Bennett; Sarah J. Davies; Andrew C. Scott; Janet E. Sherwin; Timothy R. Smithson (2019). "A Tournaisian (earliest Carboniferous) conglomerate-preserved non-marine faunal assemblage and its environmental and sedimentological context". PeerJ. 6: e5972. doi:10.7717/peerj.5972. PMC 6321757. PMID 30627480.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  339. ^ Jason D. Pardo; Bryan J. Small; Andrew R. Milner; Adam K. Huttenlocker (2019). "Carboniferous–Permian climate change constrained early land vertebrate radiations". Nature Ecology & Evolution. 3 (2): 200–206. doi:10.1038/s41559-018-0776-z. PMID 30664698.
  340. ^ Gilles Didier; Olivier Chabrol; Michel Laurin (2019). "Parsimony‐based test for identifying changes in evolutionary trends for quantitative characters: implications for the origin of the amniotic egg". Cladistics. in press. doi:10.1111/cla.12371.
  341. ^ José Rafael W. Benicio; André Jasper; Rafael Spiekermann; Luciane Garavaglia; Etiene Fabbrin Pires-Oliveira; Neli Teresinha Galarce Machado; Dieter Uhl (2019). "Recurrent palaeo-wildfires in a Cisuralian coal seam: A palaeobotanical view on high-inertinite coals from the Lower Permian of the Paraná Basin, Brazil". PLoS ONE. 14 (3): e0213854. doi:10.1371/journal.pone.0213854. PMC 6417680. PMID 30870527.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  342. ^ Yuangeng Huang; Zhong-Qiang Chen; Paul B. Wignall; Stephen E. Grasby; Laishi Zhao; Xiangdong Wang; Kunio Kaiho (2019). "Biotic responses to volatile volcanism and environmental stresses over the Guadalupian-Lopingian (Permian) transition". Geology. 47 (2): 175–178. doi:10.1130/G45283.1.
  343. ^ Michael O. Day; Bruce S. Rubidge (2019). "Biesiespoort revisited: a case study on the relationship between tetrapod assemblage zones and Beaufort lithostratigraphy south of Victoria West". Palaeontologia africana. 53: 51–65. hdl:10539/26240.
  344. ^ Li Tian; Jinnan Tong; Yifan Xiao; Michael J. Benton; Huyue Song; Haijun Song; Lei Liang; Kui Wu; Daoliang Chu; Thomas J. Algeo (2019). "Environmental instability prior to end-Permian mass extinction reflected in biotic and facies changes on shallow carbonate platforms of the Nanpanjiang Basin (South China)". Palaeogeography, Palaeoclimatology, Palaeoecology. 519: 23–36. doi:10.1016/j.palaeo.2018.05.011.
  345. ^ Benjamin J. Burger; Margarita Vargas Estrada; Mae Sexauer Gustin (2019). "What caused Earth's largest mass extinction event? New evidence from the Permian-Triassic boundary in northeastern Utah". Global and Planetary Change. 177: 81–100. doi:10.1016/j.gloplacha.2019.03.013.
  346. ^ Shu-Zhong Shen; Jahandar Ramezani; Jun Chen; Chang-Qun Cao; Douglas H. Erwin; Hua Zhang; Lei Xiang; Shane D. Schoepfer; Charles M. Henderson; Quan-Feng Zheng; Samuel A. Bowring; Yue Wang; Xian-Hua Li; Xiang-Dong Wang; Dong-Xun Yuan; Yi-Chun Zhang; Lin Mu; Jun Wang; Ya-Sheng Wu (2019). "A sudden end-Permian mass extinction in South China". GSA Bulletin. 131 (1–2): 205–223. doi:10.1130/B31909.1.
  347. ^ Christopher R. Fielding; Tracy D. Frank; Stephen McLoughlin; Vivi Vajda; Chris Mays; Allen P. Tevyaw; Arne Winguth; Cornelia Winguth; Robert S. Nicoll; Malcolm Bocking; James L. Crowley (2019). "Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis". Nature Communications. 10: Article number 385. doi:10.1038/s41467-018-07934-z. PMC 6344581. PMID 30674880.
  348. ^ Jun Shen; Jiubin Chen; Thomas J. Algeo; Shengliu Yuan; Qinglai Feng; Jianxin Yu; Lian Zhou; Brennan O’Connell; Noah J. Planavsky (2019). "Evidence for a prolonged Permian–Triassic extinction interval from global marine mercury records". Nature Communications. 10: Article number 1563. doi:10.1038/s41467-019-09620-0. PMC 6450928. PMID 30952859.
  349. ^ Peter D. Roopnarine; K.D. Angielczyk; A. Weik; A. Dineen (2019). "Ecological persistence, incumbency and reorganization in the Karoo Basin during the Permian-Triassic transition". Earth-Science Reviews. 189: 244–263. doi:10.1016/j.earscirev.2018.10.014.
  350. ^ Ashley A. Dineen; Peter D. Roopnarine; Margaret L. Fraiser (2019). "Ecological continuity and transformation after the Permo-Triassic mass extinction in northeastern Panthalassa". Biology Letters. 15 (3): Article ID 20180902. doi:10.1098/rsbl.2018.0902. PMC 6451382. PMID 30862310.
  351. ^ Yong Lei; Jun Shen; Thomas J. Algeo; Thomas Servais; Qinglai Feng; Jianxin Yu (2019). "Phytoplankton (acritarch) community changes during the Permian-Triassic transition in South China". Palaeogeography, Palaeoclimatology, Palaeoecology. 519: 84–94. doi:10.1016/j.palaeo.2018.09.033.
  352. ^ Rowan C. Martindale; William J. Foster; Felicitász Velledits (2019). "The survival, recovery, and diversification of metazoan reef ecosystems following the end-Permian mass extinction event". Palaeogeography, Palaeoclimatology, Palaeoecology. 513: 100–115. doi:10.1016/j.palaeo.2017.08.014.
  353. ^ Morgane Brosse; Hugo Bucher; Aymon Baud; Åsa M. Frisk; Nicolas Goudemand; Hans Hagdorn; Alexander Nützel; David Ware; Michael Hautmann (2019). "New data from Oman indicate benthic high biomass productivity coupled with low taxonomic diversity in the aftermath of the Permian–Triassic Boundary mass extinction". Lethaia. 52 (2): 165–187. doi:10.1111/let.12281.
  354. ^ Nicolas Goudemand; Carlo Romano; Marc Leu; Hugo Bucher; Julie A. Trotter; Ian S. Williams (2019). "Dynamic interplay between climate and marine biodiversity upheavals during the early Triassic Smithian -Spathian biotic crisis". Earth-Science Reviews. in press. doi:10.1016/j.earscirev.2019.01.013.
  355. ^ Piotr Bajdek; Tomasz Szczygielski; Agnieszka Kapuścińska; Tomasz Sulej (2019). "Bromalites from a turtle-dominated fossil assemblage from the Triassic of Poland". Palaeogeography, Palaeoclimatology, Palaeoecology. 520: 214–228. doi:10.1016/j.palaeo.2019.02.002.
  356. ^ Tore Grane Klausen; Björn Nyberg; William Helland-Hansen (2019). "The largest delta plain in Earth's history". Geology. in press. doi:10.1130/G45507.1.
  357. ^ Bryony A. Caswell; Stephanie J. Dawn (2019). "Recovery of benthic communities following the Toarcian oceanic anoxic event in the Cleveland Basin, UK". Palaeogeography, Palaeoclimatology, Palaeoecology. 521: 114–126. doi:10.1016/j.palaeo.2019.02.014.
  358. ^ Slah Boulila; Bruno Galbrun; Driss Sadki; Silvia Gardin; Annachiara Bartolini (2019). "Constraints on the duration of the early Toarcian T-OAE and evidence for carbon-reservoir change from the High Atlas (Morocco)". Global and Planetary Change. 175: 113–128. doi:10.1016/j.gloplacha.2019.02.005.
  359. ^ Denis Audo; Ninon Robin; Javier Luque; Michal Krobicki; Joachim T. Haug; Carolin Haug; Clément Jauvion; Sylvain Charbonnier (2019). "Palaeoecology of Voulteryon parvulus (Eucrustacea, Polychelida) from the Middle Jurassic of La Voulte-sur-Rhône Fossil-Lagerstätte (France)". Scientific Reports. 9: Article number 5332. doi:10.1038/s41598-019-41834-6. PMC 6441058. PMID 30926859.
  360. ^ Patrick Zell; Wolfgang Stinnesbeck; Dominik Hennhoefer; Aisha Al Suwaidi; Sven Brysch; Gabriele Gruber; Nils Schorndorf (2019). "Repeated turnovers in Late Jurassic faunal assemblages of the Gulf of Mexico: Correlation with cold ocean water". Journal of South American Earth Sciences. 91: 1–7. doi:10.1016/j.jsames.2019.01.008.
  361. ^ Marta S. Fernández; Yanina Herrera; Verónica V. Vennari; Lisandro Campos; Marcelo de la Fuente; Marianella Talevi; Beatriz Aguirre-Urreta (2019). "Marine reptiles from the Jurassic/Cretaceous transition at the High Andes, Mendoza, Argentina". Journal of South American Earth Sciences. in press. doi:10.1016/j.jsames.2019.03.013.
  362. ^ Alejandro R. Gómez Dacal; Sebastián M. Richiano; Lucía E. Gómez Peral; Luis A. Spalletti; Alcides N. Sial; Daniel G. Poiré (2019). "Evidence of warm seas in high latitudes of southern South America during the Early Cretaceous". Cretaceous Research. 95: 8–20. doi:10.1016/j.cretres.2018.10.021.
  363. ^ Zikun Jiang; Benpei Liu; Yongdong Wang; Min Huang; Tom Kapitany; Ning Tian; Yong Cao; Yuanzheng Lu; Shenghui Deng (2019). "Tree ring phototropism and implications for the rotation of the North China Block". Scientific Reports. 9: Article number 4856. doi:10.1038/s41598-019-41339-2. PMC 6425038. PMID 30890749.
  364. ^ Michael D. D'Emic; Brady Z. Foreman; Nathan A. Jud; Brooks B. Britt; Mark Schmitz; James L. Crowley (2019). "Chronostratigraphic revision of the Cloverly Formation (Lower Cretaceous, Western Interior, USA)". Bulletin of the Peabody Museum of Natural History. 60 (1): 3–40. doi:10.1274/014.060.0101.
  365. ^ L. J. Krumenacker (2019). "Paleontological and chronostratigraphic correlations of the mid-Cretaceous Wayan-Vaughn depositional system of southwestern Montana and southeastern Idaho". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2019.1582035.
  366. ^ Phil R. Bell; Federico Fanti; Lachlan J. Hart; Luke A. Milan; Stephen J. Craven; Thomas Brougham; Elizabeth Smith (2019). "Revised geology, age, and vertebrate diversity of the dinosaur-bearing Griman Creek Formation (Cenomanian), Lightning Ridge, New South Wales, Australia". Palaeogeography, Palaeoclimatology, Palaeoecology. 514: 655–671. doi:10.1016/j.palaeo.2018.11.020.
  367. ^ Stuart A. Robinson; Alexander J. Dickson; Alana Pain; Hugh C. Jenkyns; Charlotte L. O’Brien; Alexander Farnsworth; Daniel J. Lunt (2019). "Southern Hemisphere sea-surface temperatures during the Cenomanian–Turonian: Implications for the termination of Oceanic Anoxic Event 2". Geology. 47 (2): 131–134. doi:10.1130/G45842.1.
  368. ^ Toban J. Wild; Jeffrey D. Stilwell (2019). "Palaeobiogeographic and tectonic significance of mid-Cretaceous invertebrate taxa from Batavia Knoll, eastern Indian Ocean". Palaeogeography, Palaeoclimatology, Palaeoecology. 522: 89–97. doi:10.1016/j.palaeo.2019.03.014.
  369. ^ Prince C. Owusu Agyemang; Eric M. Roberts; Robert Bussert; David Evans; Johannes Müller (2019). "U-Pb detrital zircon constraints on the depositional age and provenance of the dinosaur-bearing Upper Cretaceous Wadi Milk Formation of Sudan". Cretaceous Research. 97: 52–72. doi:10.1016/j.cretres.2019.01.005.
  370. ^ Attila Ősi; Márton Szabó; Heinz Kollmann; Michael Wagreich; Réka Kalmár; László Makádi; Zoltán Szentesi; Herbert Summesberger (2019). "Vertebrate remains from the Turonian (Upper Cretaceous) Gosau Group of Gams, Austria". Cretaceous Research. 99: 190–208. doi:10.1016/j.cretres.2019.03.001.
  371. ^ Jesús Alvarado-Ortega; Kleyton Magno Cantalice Severiano; Jair Israel Barrientos-Lara; Jesús Alberto Díaz-Cruz; Bruno Andrés Than-Marchese (2019). "The Huehuetla quarry, a Turonian deposit of marine vertebrates in the Sierra Norte of Puebla, central Mexico". Palaeontologia Electronica. 22 (1): Article number 22.1.13. doi:10.26879/921.
  372. ^ Joshua D. Laird; Christina L. Belanger (2019). "Quantifying successional change and ecological similarity among Cretaceous and modern cold-seep faunas". Paleobiology. 45 (1): 114–135. doi:10.1017/pab.2018.41.
  373. ^ Victoria F. Crystal; Erica S.J. Evans; Henry Fricke; Ian M. Miller; Joseph J.W. Sertich (2019). "Late Cretaceous fluvial hydrology and dinosaur behavior in southern Utah, USA: Insights from stable isotopes of biogenic carbonate". Palaeogeography, Palaeoclimatology, Palaeoecology. 516: 152–165. doi:10.1016/j.palaeo.2018.11.022.
  374. ^ T. M. Cullen; F. J. Longstaffe; U. G. Wortmann; M. B. Goodwin; L. Huang; D. C. Evans (2019). "Stable isotopic characterization of a coastal floodplain forest community: a case study for isotopic reconstruction of Mesozoic vertebrate assemblages". Royal Society Open Science. 6 (2): Article ID 181210. doi:10.1098/rsos.181210. PMC 6408390. PMID 30891263.
  375. ^ Thomas M. Lehman; Steven L. Wick; Alyson A. Brink; Thomas A.Shiller II (2019). "Stratigraphy and vertebrate fauna of the lower shale member of the Aguja Formation (lower Campanian) in West Texas". Cretaceous Research. 99: 291–314. doi:10.1016/j.cretres.2019.02.028.
  376. ^ Mariela Soledad Fernández; Xia Wang; Mátyás Vremir; Chris Laurent; Darren Naish; Gary Kaiser; Gareth Dyke (2019). "A mixed vertebrate eggshell assemblage from the Transylvanian Late Cretaceous". Scientific Reports. 9: Article number 1944. doi:10.1038/s41598-018-36305-3. PMC 6374508. PMID 30760740.
  377. ^ Blair Schoene; Michael P. Eddy; Kyle M. Samperton; C. Brenhin Keller; Gerta Keller; Thierry Adatte; Syed F. R. Khadri (2019). "U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction". Science. 363 (6429): 862–866. doi:10.1126/science.aau2422. PMID 30792300.
  378. ^ Courtney J. Sprain; Paul R. Renne; Loÿc Vanderkluysen; Kanchan Pande; Stephen Self; Tushar Mittal (2019). "The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary". Science. 363 (6429): 866–870. doi:10.1126/science.aav1446. PMID 30792301.
  379. ^ Robert A. DePalma; Jan Smit; David A. Burnham; Klaudia Kuiper; Phillip L. Manning; Anton Oleinik; Peter Larson; Florentin J. Maurrasse; Johan Vellekoop; Mark A. Richards; Loren Gurche; Walter Alvarez (2019). "A seismically induced onshore surge deposit at the KPg boundary, North Dakota". Proceedings of the National Academy of Sciences of the United States of America. in press. doi:10.1073/pnas.1817407116. PMID 30936306.
  380. ^ Shelby L. Lyons; Allison A. Baczynski; Tali L. Babila; Timothy J. Bralower; Elizabeth A. Hajek; Lee R. Kump; Ellen G. Polites; Jean M. Self-Trail; Sheila M. Trampush; Jamie R. Vornlocher; James C. Zachos; Katherine H. Freeman (2019). "Palaeocene–Eocene Thermal Maximum prolonged by fossil carbon oxidation". Nature Geoscience. 12 (1): 54–60. doi:10.1038/s41561-018-0277-3.
  381. ^ Margot J. Cramwinckel; Robin van der Ploeg; Peter K. Bijl; Francien Peterse; Steven M. Bohaty; Ursula Röhl; Stefan Schouten; Jack J. Middelburg; Appy Sluijs (2019). "Harmful algae and export production collapse in the equatorial Atlantic during the zenith of Middle Eocene Climatic Optimum warmth". Geology. 47 (3): 247–250. doi:10.1130/G45614.1.
  382. ^ Kasia K. Śliwińska; Erik Thomsen; Stefan Schouten; Petra L. Schoon; Claus Heilmann-Clausen (2019). "Climate- and gateway-driven cooling of Late Eocene to earliest Oligocene sea surface temperatures in the North Sea Basin". Scientific Reports. 9: Article number 4458. doi:10.1038/s41598-019-41013-7. PMC 6418185. PMID 30872690.
  383. ^ Geerat J. Vermeij; Roxanne Banker; Lena R. Capece; Emilia Sakai Hernandez; Sydney O. Salley; Veronica Padilla Vriesman; Barbara E. Wortham (2019). "The coastal North Pacific: Origins and history of a dominant marine biota". Journal of Biogeography. 46 (1): 1–18. doi:10.1111/jbi.13471.
  384. ^ Vera A. Korasidis; Malcolm W. Wallace; Barbara E. Wagstaff; Robert S. Hill (2019). "Terrestrial cooling record through the Eocene-Oligocene transition of Australia". Global and Planetary Change. 173: 61–72. doi:10.1016/j.gloplacha.2018.12.007.
  385. ^ Tao Su; Robert A. Spicer; Shi-Hu Li; He Xu; Jian Huang; Sarah Sherlock; Yong-Jiang Huang; Shu-Feng Li; Li Wang; Lin-Bo Jia; Wei-Yu-Dong Deng; Jia Liu; Cheng-Long Deng; Shi-Tao Zhang; Paul J. Valdes; Zhe-Kun Zhou (2019). "Uplift, climate and biotic changes at the Eocene-Oligocene transition in southeast Tibet". National Science Review. in press. doi:10.1093/nsr/nwy062.
  386. ^ Keke Ai; Gongle Shi; Kexin Zhang; Junliang Ji; Bowen Song; Tianyi Shen; Shuangxing Guo (2019). "The uppermost Oligocene Kailas flora from southern Tibetan Plateau and its implications for the uplift history of the southern Lhasa terrane". Palaeogeography, Palaeoclimatology, Palaeoecology. 515: 143–151. doi:10.1016/j.palaeo.2018.04.017.
  387. ^ T. Su; A. Farnsworth; R. A. Spicer; J. Huang; F.-X. Wu; J. Liu; S.-F. Li; Y.-W. Xing; Y.-J. Huang; W.-Y.-D. Deng; H. Tang; C.-L. Xu; F. Zhao; G. Srivastava; P. J. Valdes; T. Deng; Z.-K. Zhou (2019). "No high Tibetan Plateau until the Neogene". Science Advances. 5 (3): eaav2189. doi:10.1126/sciadv.aav2189. PMC 6402856. PMID 30854430.
  388. ^ Tao Deng; Xiaoming Wang; Feixiang Wu; Yang Wang; Qiang Li; Shiqi Wang; Sukuan Hou (2019). "Review: Implications of vertebrate fossils for paleo-elevations of the Tibetan Plateau". Global and Planetary Change. 174: 58–69. doi:10.1016/j.gloplacha.2019.01.005.
  389. ^ Svetlana Botsyun; Pierre Sepulchre; Yannick Donnadieu; Camille Risi; Alexis Licht; Jeremy K. Caves Rugenstein (2019). "Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene". Science. 363 (6430): eaaq1436. doi:10.1126/science.aaq1436. PMID 30819936.
  390. ^ Gudrun Daxner-Höck; Margarita A. Erbajeva; Ursula B. Göhlich; Paloma López-Guerrero; Tserendash Narantsetseg; Bastien Mennecart; Adriana Oliver; Davit Vasilyan; Reinhard Ziegler (2019). "The Oligocene vertebrate assemblage of Shine Us (Khaliun Basin, south western Mongolia)" (PDF). Annalen des Naturhistorischen Museums in Wien, Serie A. 121: 195–256. JSTOR 26595691.
  391. ^ Cynthia M. Liutkus-Pierce; Kevin K. Takashita-Bynum; Luke A. Beane; Cole T. Edwards; Oliver E. Burns; Sara Mana; Sidney Hemming; Aryeh Grossman; James D. Wright; Francis M. Kirera (2019). "Reconstruction of the early Miocene Critical Zone at Loperot, southwestern Turkana, Kenya". Frontiers in Ecology and Evolution. 7: Article 44. doi:10.3389/fevo.2019.00044.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  392. ^ Dirk Simon; Dan Palcu; Paul Meijer; Wout Krijgsman (2019). "The sensitivity of middle Miocene paleoenvironments to changing marine gateways in Central Europe". Geology. 47 (1): 35–38. doi:10.1130/G45698.1.
  393. ^ Steven R. May (2019). "The Lapara Creek Fauna: Early Clarendonian of south Texas, USA". Palaeontologia Electronica. 22 (1): Article number 22.1.15. doi:10.26879/929.
  394. ^ Daniel De Miguel; Beatriz Azanza; Jorge Morales (2019). "Regional impacts of global climate change: a local humid phase in central Iberia in a late Miocene drying world". Palaeontology. 62 (1): 77–92. doi:10.1111/pala.12382.
  395. ^ Kathlyn M. Stewart; Scott J. Rufolo (2019). "Kanapoi revisited: Paleoecological and biogeographical inferences from the fossil fish". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2018.01.008. PMID 29602541.
  396. ^ Laurence Dumouchel; René Bobe (2019). "Paleoecological implications of dental mesowear and hypsodonty in fossil ungulates from Kanapoi". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2018.11.004. PMID 30638945.
  397. ^ Tara R. Edwards; Brian J. Armstrong; Jessie Birkett-Rees; Alexander F. Blackwood; Andy I.R. Herries; Paul Penzo-Kajewski; Robyn Pickering; Justin W. Adams (2019). "Combining legacy data with new drone and DGPS mapping to identify the provenance of Plio-Pleistocene fossils from Bolt's Farm, Cradle of Humankind (South Africa)". PeerJ. 7: e6202. doi:10.7717/peerj.6202. PMC 6336010. PMID 30656072.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  398. ^ M. Willeit; A. Ganopolski; R. Calov; V. Brovkin (2019). "Mid-Pleistocene transition in glacial cycles explained by declining CO2 and regolith removal". Science Advances. 5 (4): eaav7337. doi:10.1126/sciadv.aav7337. PMC 6447376. PMID 30949580.
  399. ^ Yul Altolaguirre; José M. Postigo-Mijarra; Eduardo Barrón; José S. Carrión; Suzanne A.G. Leroy; Angela A. Bruch (2019). "An environmental scenario for the earliest hominins in the Iberian Peninsula: Early Pleistocene palaeovegetation and palaeoclimate". Review of Palaeobotany and Palynology. 260: 51–64. doi:10.1016/j.revpalbo.2018.10.008.
  400. ^ Fajun Sun; Yang Wang; Yuan Wang; Chang-zhu Jin; Tao Deng; Burt Wolff (2019). "Paleoecology of Pleistocene mammals and paleoclimatic change in South China: Evidence from stable carbon and oxygen isotopes". Palaeogeography, Palaeoclimatology, Palaeoecology. 524: 1–12. doi:10.1016/j.palaeo.2019.03.021.
  401. ^ Geoff M. Smith; Karen Ruebens; Sabine Gaudzinski-Windheuser; Teresa E. Steele (2019). "Subsistence strategies throughout the African Middle Pleistocene: Faunal evidence for behavioral change and continuity across the Earlier to Middle Stone Age transition". Journal of Human Evolution. 127: 1–20. doi:10.1016/j.jhevol.2018.11.011. PMID 30777352.
  402. ^ Mirosław Masojć; Ahmed Nassr; Ju Yong Kim; Joanna Krupa-Kurzynowska; Young Kwan Sohn; Marcin Szmit; Jin Cheul Kim; Ji Sung Kim; Han Woo Choi; Małgorzata Wieczorek; Axel Timmermann (2019). "Saharan green corridors and Middle Pleistocene hominin dispersals across the Eastern Desert, Sudan". Journal of Human Evolution. 130: 141–150. doi:10.1016/j.jhevol.2019.01.004.
  403. ^ Claire C. Treat; Thomas Kleinen; Nils Broothaerts; April S. Dalton; René Dommain; Thomas A. Douglas; Judith Z. Drexler; Sarah A. Finkelstein; Guido Grosse; Geoffrey Hope; Jack Hutchings; Miriam C. Jones; Peter Kuhry; Terri Lacourse; Outi Lähteenoja; Julie Loisel; Bastiaan Notebaert; Richard J. Payne; Dorothy M. Peteet; A. Britta K. Sannel; Jonathan M. Stelling; Jens Strauss; Graeme T. Swindles; Julie Talbot; Charles Tarnocai; Gert Verstraeten; Christopher J. Williams; Zhengyu Xia; Zicheng Yu; Minna Väliranta; Martina Hättestrand; Helena Alexanderson; Victor Brovkin (2019). "Widespread global peatland establishment and persistence over the last 130,000 y". Proceedings of the National Academy of Sciences of the United States of America. 116 (11): 4822–4827. doi:10.1073/pnas.1813305116. PMC 6421451. PMID 30804186.
  404. ^ Daniel H. Mann; Pamela Groves; Benjamin V. Gaglioti; Beth A. Shapiro (2019). "Climate‐driven ecological stability as a globally shared cause of Late Quaternary megafaunal extinctions: the Plaids and Stripes Hypothesis". Biological Reviews. 94 (1): 328–352. doi:10.1111/brv.12456. PMID 30136433.
  405. ^ Mario Pino; Ana M. Abarzúa; Giselle Astorga; Alejandra Martel-Cea; Nathalie Cossio-Montecinos; R. Ximena Navarro; Maria Paz Lira; Rafael Labarca; Malcolm A. LeCompte; Victor Adedeji; Christopher R. Moore; Ted E. Bunch; Charles Mooney; Wendy S. Wolbach; Allen West; James P. Kennett (2019). "Sedimentary record from Patagonia, southern Chile supports cosmic-impact triggering of biomass burning, climate change, and megafaunal extinctions at 12.8 ka". Scientific Reports. 9: Article number 4413. doi:10.1038/s41598-018-38089-y. PMC 6416299. PMID 30867437.
  406. ^ E. Grace Veatch; Matthew W. Tocheri; Thomas Sutikna; Kate McGrath; E. Wahyu Saptomo; Jatmiko; Kristofer M. Helgen (2019). "Temporal shifts in the distribution of murine rodent body size classes at Liang Bua (Flores, Indonesia) reveal new insights into the paleoecology of Homo floresiensis and associated fauna". Journal of Human Evolution. 130: 45–60. doi:10.1016/j.jhevol.2019.02.002.
  407. ^ Gilbert J. Price; Julien Louys; Garry K. Smith; Jonathan Cramb (2019). "Shifting faunal baselines through the Quaternary revealed by cave fossils of eastern Australia". PeerJ. 6: e6099. doi:10.7717/peerj.6099. PMC 6346992. PMID 30697475.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  408. ^ Laurie R. Godfrey; Nick Scroxton; Brooke E. Crowley; Stephen J. Burns; Michael R. Sutherland; Ventura R. Pérez; Peterson Faina; David McGee; Lovasoa Ranivoharimanana (2019). "A new interpretation of Madagascar's megafaunal decline: The "Subsistence Shift Hypothesis"". Journal of Human Evolution. 130: 126–140. doi:10.1016/j.jhevol.2019.03.002.
  409. ^ L. Francisco Henao Diaz; Luke J. Harmon; Mauro T. C. Sugawara; Eliot T. Miller; Matthew W. Pennell (2019). "Macroevolutionary diversification rates show time dependency". Proceedings of the National Academy of Sciences of the United States of America. 116 (15): 7403–7408. doi:10.1073/pnas.1818058116. PMID 30910958.
  410. ^ George Poinar (2019). "Vertebrate pathogens vectored by ancient hematophagous arthropods". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1545018.
  411. ^ Manabu Sakamoto; Marcello Ruta; Chris Venditti (2019). "Extreme and rapid bursts of functional adaptations shape bite force in amniotes". Proceedings of the Royal Society B: Biological Sciences. 286 (1894): Article ID 20181932. doi:10.1098/rspb.2018.1932. PMC 6367170. PMID 30963871.
  412. ^ Yi-Wei Chen; Jonny Wu; John Suppe (2019). "Southward propagation of Nazca subduction along the Andes". Nature. 565 (7740): 441–447. doi:10.1038/s41586-018-0860-1. PMID 30675041.