Jump to content

Epidermal growth factor receptor: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Function: typo
Line 130: Line 130:
[[it:Recettore del fattore di crescita dell'epidermide]]
[[it:Recettore del fattore di crescita dell'epidermide]]
[[ja:上皮成長因子受容体]]
[[ja:上皮成長因子受容体]]
[[pt:Receptor do fator de crescimento epidérmico]]
[[ru:Рецептор эпидермального фактора роста]]
[[ru:Рецептор эпидермального фактора роста]]
[[fi:Epidermaalisen kasvutekijän reseptori]]
[[fi:Epidermaalisen kasvutekijän reseptori]]

Revision as of 04:36, 9 July 2012

Template:PBB The epidermal growth factor receptor (EGFR; ErbB-1; HER1 in humans) is the cell-surface receptor for members of the epidermal growth factor family (EGF-family) of extracellular protein ligands.[1] The epidermal growth factor receptor is a member of the ErbB family of receptors, a subfamily of four closely related receptor tyrosine kinases: EGFR (ErbB-1), HER2/c-neu (ErbB-2), Her 3 (ErbB-3) and Her 4 (ErbB-4). Mutations affecting EGFR expression or activity could result in cancer.[2] Epidermal Growth Factor was discovered by Stanley Cohen of Vanderbilt University along with Rita Levi-Montalcini for which both received the Nobel prize in Physiology or Medicine in 1986.

Function

EGFR (epidermal growth factor receptor) exists on the cell surface and is activated by binding of its specific ligands, including epidermal growth factor and transforming growth factor α (TGFα) (note, a full list of the ligands able to activate EGFR and other members of the ErbB family is given in the ErbB article). ErbB2 has no known direct activating ligand, and may be in an activated state constitutively or become active upon heterodimerization with other family members such as EGFR. Upon activation by its growth factor ligands, EGFR undergoes a transition from an inactive monomeric form to an active homodimer[3] – although there is some evidence that preformed inactive dimers may also exist before ligand binding.[citation needed] In addition to forming homodimers after ligand binding, EGFR may pair with another member of the ErbB receptor family, such as ErbB2/Her2/neu, to create an activated heterodimer. There is also evidence to suggest that clusters of activated EGFRs form, although it remains unclear whether this clustering is important for activation itself or occurs subsequent to activation of individual dimers.[citation needed]

Diagram of the EGF receptor highlighting important domains

EGFR dimerization stimulates its intrinsic intracellular protein-tyrosine kinase activity. As a result, autophosphorylation of several tyrosine (Y) residues in the C-terminal domain of EGFR occurs. These include Y992, Y1045, Y1068, Y1148 and Y1173 as shown in the diagram to the left.[4] This autophosphorylation elicits downstream activation and signaling by several other proteins that associate with the phosphorylated tyrosines through their own phosphotyrosine-binding SH2 domains. These downstream signaling proteins initiate several signal transduction cascades, principally the MAPK, Akt and JNK pathways, leading to DNA synthesis and cell proliferation.[5] Such proteins modulate phenotypes such as cell migration, adhesion, and proliferation. Activation of the receptor is important for the innate immune response in human skin.[6] [7] The kinase domain of EGFR can also cross-phosphorylate tyrosine residues of other receptors it is aggregated with, and can itself be activated in that manner.

Clinical applications

Mutations that lead to EGFR overexpression (known as upregulation) or overactivity have been associated with a number of cancers, including lung cancer, anal cancers[8] and glioblastoma multiforme. In this latter case a more or less specific mutation of EGFR, called EGFRvIII is often observed.[9] Mutations, amplifications or misregulations of EGFR or family members are implicated in about 30% of all epithelial cancers.

Mutations involving EGFR could lead to its constant activation, which could result in uncontrolled cell division – a predisposition for cancer.[10] Consequently, mutations of EGFR have been identified in several types of cancer, and it is the target of an expanding class of anticancer therapies.[2]

The identification of EGFR as an oncogene has led to the development of anticancer therapeutics directed against EGFR, including gefitinib[11] and erlotinib for lung cancer, and cetuximab for colon cancer.

Many therapeutic approaches are aimed at the EGFR. Cetuximab and panitumumab are examples of monoclonal antibody inhibitors. However the former is of the IgG1 type, the latter of the IgG2 type; consequences on antibody-dependent cellular cytotoxicity can be quite different.[12] Other monoclonals in clinical development are zalutumumab, nimotuzumab, and matuzumab. The monoclonal antibodies block the extracellular ligand binding domain. With the binding site blocked, signal molecules can no longer attach there and activate the tyrosine kinase.

Another method is using small molecules to inhibit the EGFR tyrosine kinase, which is on the cytoplasmic side of the receptor. Without kinase activity, EGFR is unable to activate itself, which is a prerequisite for binding of downstream adaptor proteins. Ostensibly by halting the signaling cascade in cells that rely on this pathway for growth, tumor proliferation and migration is diminished. Gefitinib, erlotinib, and lapatinib (mixed EGFR and ERBB2 inhibitor) are examples of small molecule kinase inhibitors.

There are several quantitative methods available that use protein phosphorylation detection to identify EGFR family inhibitors.[13]

EGFR and Lung Cancer

New drugs such as IRESSA and Tarceva directly target the EGFR. Patients have been divided into EGFR-positive and EGFR-negative, based upon whether a tissue test shows a mutation. EGFR-positive patients have shown an impressive 60% response rate, which exceeds the response rate for conventional chemotherapy.[14]

However, many patients develop resistance. Two primary sources of resistance are the T790M Mutation and MET oncogene.[14] However, as of 2010 there was no consensus of an accepted approach to combat resistance nor FDA approval of a specific combination. Preclinical results have been reported for AP26113 which targets the T790M mutation.

Preclinical

Efficient conversion of strongly absorbed light by plasmonic gold nanoparticles to heat energy and their easy bioconjugation suggest their use as selective photothermal agents in molecular cancer cell targeting. Two oral squamous carcinoma cell lines (HSC 313 and HOC 3 Clone 8) and one benign epithelial cell line (HaCaT) were incubated with anti-epithelial growth factor receptor (EGFR) antibody conjugated gold nanoparticles and then exposed to continuous visible argon ion laser at 514 nm. It is found that the malignant cells require less than half the laser energy to be killed than the benign cells after incubation with anti-EGFR antibody conjugated Au nanoparticles. No photothermal destruction is observed for all types of cells in the absence of nanoparticles at four times energy required to kill the malignant cells with anti-EGFR/Au conjugates bonded. Au nanoparticles thus offer a novel class of selective photothermal agents using a CW laser at low powers.[15]

Possible involvement in axonal regeneration

Inhibitors of EGFR could enhance axonal regeneration on non-conducive substrates such as CNS myelin.[16] The blood clotting protein fibrinogen also activates EGFR, thereby inhibiting regeneration of axons.[17]

Natural EGFR inhibitors

Natural inhibitors include potato carboxypeptidase inhibitor (PCI), which contains a small cysteine-rich module, called a T-knot scaffold, that is shared by several different protein families, including the EGF family. Structural similarities with these factors can explain the antagonistic effect of PCI.[18]

Grandinin is an ellagitannin found in Melaleuca quinquenervia leaves[19] and in oaks.[20] It suppresses the phosphorylation of the epidermal growth factor receptor in human colon carcinoma cells.[21]

Interactions

Epidermal growth factor receptor has been shown to interact with:

References

  1. ^ Herbst RS (2004). "Review of epidermal growth factor receptor biology". Int. J. Radiat. Oncol. Biol. Phys. 59 (2 Suppl): 21–6. doi:10.1016/j.ijrobp.2003.11.041. PMID 15142631.
  2. ^ a b Zhang H, Berezov A, Wang Q, Zhang G, Drebin J, Murali R, Greene MI (2007). "ErbB receptors: from oncogenes to targeted cancer therapies". J. Clin. Invest. 117 (8): 2051–8. doi:10.1172/JCI32278. PMC 1934579. PMID 17671639. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  3. ^ Yosef Yarden and Joseph Schlessinger (1987). "Epidermal Growth-Factor Induces Rapid, Reversible Aggregation of the Purified Epidermal Growth-Factor Receptor". Biochemistry. 26 (5): 1443–1451. doi:10.1021/bi00379a035. PMID 3494473.
  4. ^ Downward J, Parker P, Waterfield MD (1984). "Autophosphorylation sites on the epidermal growth factor receptor". Nature. 311 (5985): 483–5. doi:10.1038/311483a0. PMID 6090945.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. ^ Oda K, Matsuoka Y, Funahashi A, Kitano H (2005). "A comprehensive pathway map of epidermal growth factor receptor signaling". Mol. Syst. Biol. 1 (1): 2005.0010. doi:10.1038/msb4100014. PMC 1681468. PMID 16729045.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ Sorensen OE, Tapa DR, Roupé KM; et al. (2006). "Injury-induced innate immune response in human skin mediated by transactivation of the epidermal growth factor receptor". J Clin Invest. 116 (7): 1878–1885. doi:10.1172/JCI28422. PMC 1479426. PMID 16778986. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  7. ^ Roupé KM, Nybo, M, Sjöbring, U, Alberius, P, Schmidtchen, A, Sørensen, OE (2010). "Injury is a major inducer of epidermal innate immune responses during wound healing". The Journal of investigative dermatology. 130 (4): 1167–77. doi:10.1038/jid.2009.284. PMID 19727116.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. ^ Walker F, Abramowitz L, Benabderrahmane D, Duval X, Descatoire V, Hénin D, Lehy T, Aparicio T (2009). "Growth factor receptor expression in anal squamous lesions: modifications associated with oncogenic human papillomavirus and human immunodeficiency virus". Hum. Pathol. 40 (11): 1517–27. doi:10.1016/j.humpath.2009.05.010. PMID 19716155. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  9. ^ Kuan CT, Wikstrand CJ, Bigner DD (2001). "EGF mutant receptor vIII as a molecular target in cancer therapy". Endocr. Relat. Cancer. 8 (2): 83–96. doi:10.1677/erc.0.0080083. PMID 11397666. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  10. ^ Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (2004). "Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib". N. Engl. J. Med. 350 (21): 2129–39. doi:10.1056/NEJMoa040938. PMID 15118073. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  11. ^ Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M' (2004). "EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy". Science. 304 (5676): 1497–500. doi:10.1126/science.1099314. PMID 15118125. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  12. ^ Yan L, Beckman RA (2005). "Pharmacogenetics and pharmacogenomics in oncology therapeutic antibody development". BioTechniques. 39 (4): 565–8. doi:10.2144/000112043. PMID 16235569. {{cite journal}}: Unknown parameter |month= ignored (help)
  13. ^ Olive DM (2004). "Quantitative methods for the analysis of protein phosphorylation in drug development". Expert Rev Proteomics. 1 (3): 327–41. doi:10.1586/14789450.1.3.327. PMID 15966829. {{cite journal}}: Unknown parameter |month= ignored (help)
  14. ^ a b Jackman DM, Miller VA, Cioffredi LA, Yeap BY, Jänne PA, Riely GJ, Ruiz MG, Giaccone G, Sequist LV, Johnson BE (2009). "Impact of epidermal growth factor receptor and KRAS mutations on clinical outcomes in previously untreated non-small cell lung cancer patients: results of an online tumor registry of clinical trials". Clin. Cancer Res. 15 (16): 5267–73. doi:10.1158/1078-0432.CCR-09-0888. PMID 19671843. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  15. ^ El-Sayed IH, Huang X, El-Sayed MA (2006). "Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles". Cancer Lett. 239 (1): 129–35. doi:10.1016/j.canlet.2005.07.035. PMID 16198049. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  16. ^ Koprivica V, Cho KS, Park JB, Yiu G, Atwal J, Gore B, Kim JA, Lin E, Tessier-Lavigne M, Chen DF, He Z (2005). "EGFR activation mediates inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans". Science. 310 (5745): 106–10. doi:10.1126/science.1115462. PMID 16210539. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  17. ^ Schachtrup C, Lu P, Jones LL, Lee JK, Lu J, Sachs BD, Zheng B, Akassoglou K (2007). "Fibrinogen inhibits neurite outgrowth via beta 3 integrin-mediated phosphorylation of the EGF receptor". Proc. Natl. Acad. Sci. U.S.A. 104 (28): 11814–9. doi:10.1073/pnas.0704045104. PMC 1913857. PMID 17606926. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  18. ^ Blanco-Aparicio C, Molina MA, Fernández-Salas E, Frazier ML, Mas JM, Querol E, Avilés FX, de Llorens R (1998). "Potato carboxypeptidase inhibitor, a T-knot protein, is an epidermal growth factor antagonist that inhibits tumor cell growth". J. Biol. Chem. 273 (20): 12370–7. doi:10.1074/jbc.273.20.12370. PMID 9575190. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  19. ^ Moharram FA, Marzouk MS, El-Toumy SA, Ahmed AA, Aboutabl EA (2003). "Polyphenols of Melaleuca quinquenervia leaves--pharmacological studies of grandinin". Phytother Res. 17 (7): 767–73. doi:10.1002/ptr.1214. PMID 12916075. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  20. ^ Mämmelä P, Savolainen H, Lindroos L, Kangas J, Vartiainen T (2000). "Analysis of oak tannins by liquid chromatography-electrospray ionisation mass spectrometry". J Chromatogr A. 891 (1): 75–83. doi:10.1016/S0021-9673(00)00624-5. PMID 10999626. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  21. ^ Fridrich D, Glabasnia A, Fritz J, Esselen M, Pahlke G, Hofmann T, Marko D (2008). "Oak ellagitannins suppress the phosphorylation of the epidermal growth factor receptor in human colon carcinoma cells". J. Agric. Food Chem. 56 (9): 3010–5. doi:10.1021/jf073427z. PMID 18419129. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  22. ^ Bonaccorsi L, Carloni Vinicio, Muratori Monica, Formigli Lucia, Zecchi Sandra, Forti Gianni, Baldi Elisabetta (2004). "EGF receptor (EGFR) signaling promoting invasion is disrupted in androgen-sensitive prostate cancer cells by an interaction between EGFR and androgen receptor (AR)". Int. J. Cancer. 112 (1): 78–86. doi:10.1002/ijc.20362. PMID 15305378. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  23. ^ Bonaccorsi L, Muratori M, Carloni V, Marchiani S, Formigli L, Forti G, Baldi E (2004). "The androgen receptor associates with the epidermal growth factor receptor in androgen-sensitive prostate cancer cells". Steroids. 69 (8–9): 549–52. doi:10.1016/j.steroids.2004.05.011. PMID 15288768. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  24. ^ Kim S-W, Hayashi Masaaki, Lo Jeng-Fan, Yang Young, Yoo Jin-San, Lee Jiing-Dwan (2003). "ADP-ribosylation factor 4 small GTPase mediates epidermal growth factor receptor-dependent phospholipase D2 activation". J. Biol. Chem. 278 (4): 2661–8. doi:10.1074/jbc.M205819200. PMID 12446727. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  25. ^ a b Couet J, Sargiacomo M, Lisanti M P (1997). "Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities". J. Biol. Chem. 272 (48): 30429–38. doi:10.1074/jbc.272.48.30429. PMID 9374534. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  26. ^ a b Tvorogov D, Carpenter Graham (2002). "EGF-dependent association of phospholipase C-gamma1 with c-Cbl". Exp. Cell Res. 277 (1): 86–94. doi:10.1006/excr.2002.5545. PMID 12061819. {{cite journal}}: Unknown parameter |month= ignored (help)
  27. ^ a b Ettenberg SA, Keane M M, Nau M M, Frankel M, Wang L M, Pierce J H, Lipkowitz S (1999). "cbl-b inhibits epidermal growth factor receptor signaling". Oncogene. 18 (10): 1855–66. doi:10.1038/sj.onc.1202499. PMID 10086340. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  28. ^ a b Pennock S, Wang Zhixiang (2008). "A tale of two Cbls: interplay of c-Cbl and Cbl-b in epidermal growth factor receptor downregulation". Mol. Cell. Biol. 28 (9): 3020–37. doi:10.1128/MCB.01809-07. PMC 2293090. PMID 18316398. {{cite journal}}: Unknown parameter |month= ignored (help)
  29. ^ a b Umebayashi K, Stenmark Harald, Yoshimori Tamotsu (2008). "Ubc4/5 and c-Cbl continue to ubiquitinate EGF receptor after internalization to facilitate polyubiquitination and degradation". Mol. Biol. Cell. 19 (8): 3454–62. doi:10.1091/mbc.E07-10-0988. PMC 2488299. PMID 18508924. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  30. ^ Ng C, Jackson Rebecca A, Buschdorf Jan P, Sun Qingxiang, Guy Graeme R, Sivaraman J (2008). "Structural basis for a novel intrapeptidyl H-bond and reverse binding of c-Cbl-TKB domain substrates". EMBO J. 27 (5): 804–16. doi:10.1038/emboj.2008.18. PMC 2265755. PMID 18273061. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  31. ^ a b c d e f Schulze WX, Deng Lei, Mann Matthias (2005). "Phosphotyrosine interactome of the ErbB-receptor kinase family". Mol. Syst. Biol. 1 (1): 2005.0008. doi:10.1038/msb4100012. PMC 1681463. PMID 16729043.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  32. ^ Kim M, Tezuka T, Suziki Y, Sugano S, Hirai M, Yamamoto T (1999). "Molecular cloning and characterization of a novel cbl-family gene, cbl-c". Gene. 239 (1): 145–54. doi:10.1016/S0378-1119(99)00356-X. PMID 10571044. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  33. ^ Keane MM, Ettenberg S A, Nau M M, Banerjee P, Cuello M, Penninger J, Lipkowitz S (1999). "cbl-3: a new mammalian cbl family protein". Oncogene. 18 (22): 3365–75. doi:10.1038/sj.onc.1202753. PMID 10362357. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  34. ^ Wang Z, Wang Meifang, Lazo John S, Carr Brian I (2002). "Identification of epidermal growth factor receptor as a target of Cdc25A protein phosphatase". J. Biol. Chem. 277 (22): 19470–5. doi:10.1074/jbc.M201097200. PMID 11912208. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  35. ^ Hashimoto Y, Katayama H, Kiyokawa E, Ota S, Kurata T, Gotoh N, Otsuka N, Shibata M, Matsuda M (1998). "Phosphorylation of CrkII adaptor protein at tyrosine 221 by epidermal growth factor receptor". J. Biol. Chem. 273 (27): 17186–91. doi:10.1074/jbc.273.27.17186. PMID 9642287. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  36. ^ Hazan RB, Norton L (1998). "The epidermal growth factor receptor modulates the interaction of E-cadherin with the actin cytoskeleton". J. Biol. Chem. 273 (15): 9078–84. doi:10.1074/jbc.273.15.9078. PMID 9535896. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: unflagged free DOI (link)
  37. ^ Schroeder JA, Adriance Melissa C, McConnell Elizabeth J, Thompson Melissa C, Pockaj Barbara, Gendler Sandra J (2002). "ErbB-beta-catenin complexes are associated with human infiltrating ductal breast and murine mammary tumor virus (MMTV)-Wnt-1 and MMTV-c-Neu transgenic carcinomas". J. Biol. Chem. 277 (25): 22692–8. doi:10.1074/jbc.M201975200. PMID 11950845. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  38. ^ Takahashi K, Suzuki K, Tsukatani Y (1997). "Induction of tyrosine phosphorylation and association of beta-catenin with EGF receptor upon tryptic digestion of quiescent cells at confluence". Oncogene. 15 (1): 71–8. doi:10.1038/sj.onc.1201160. PMID 9233779. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  39. ^ Santra M, Reed Charles C, Iozzo Renato V (2002). "Decorin binds to a narrow region of the epidermal growth factor (EGF) receptor, partially overlapping but distinct from the EGF-binding epitope". J. Biol. Chem. 277 (38): 35671–81. doi:10.1074/jbc.M205317200. PMID 12105206. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  40. ^ Iozzo RV, Moscatello D K, McQuillan D J, Eichstetter I (1999). "Decorin is a biological ligand for the epidermal growth factor receptor". J. Biol. Chem. 274 (8): 4489–92. doi:10.1074/jbc.274.8.4489. PMID 9988678. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  41. ^ a b Wong L, Deb T B, Thompson S A, Wells A, Johnson G R (1999). "A differential requirement for the COOH-terminal region of the epidermal growth factor (EGF) receptor in amphiregulin and EGF mitogenic signaling". J. Biol. Chem. 274 (13): 8900–9. doi:10.1074/jbc.274.13.8900. PMID 10085134. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  42. ^ Stortelers C, Souriau Christelle, van Liempt Ellis, van de Poll Monique L M, van Zoelen Everardus J J (2002). "Role of the N-terminus of epidermal growth factor in ErbB-2/ErbB-3 binding studied by phage display". Biochemistry. 41 (27): 8732–41. doi:10.1021/bi025878c. PMID 12093292. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  43. ^ a b Daly RJ, Sanderson G M, Janes P W, Sutherland R L (1996). "Cloning and characterization of GRB14, a novel member of the GRB7 gene family". J. Biol. Chem. 271 (21): 12502–10. doi:10.1074/jbc.271.21.12502. PMID 8647858. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  44. ^ a b c Braverman LE, Quilliam L A (1999). "Identification of Grb4/Nckbeta, a src homology 2 and 3 domain-containing adapter protein having similar binding and biological properties to Nck". J. Biol. Chem. 274 (9): 5542–9. doi:10.1074/jbc.274.9.5542. PMID 10026169. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: unflagged free DOI (link)
  45. ^ Blagoev B, Kratchmarova Irina, Ong Shao-En, Nielsen Mogens, Foster Leonard J, Mann Matthias (2003). "A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling". Nat. Biotechnol. 21 (3): 315–8. doi:10.1038/nbt790. PMID 12577067. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  46. ^ Oneyama C, Nakano Hirofumi, Sharma Sreenath V (2002). "UCS15A, a novel small molecule, SH3 domain-mediated protein-protein interaction blocking drug". Oncogene. 21 (13): 2037–50. doi:10.1038/sj.onc.1205271. PMID 11960376. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  47. ^ Okutani T, Okabayashi Y, Kido Y, Sugimoto Y, Sakaguchi K, Matuoka K, Takenawa T, Kasuga M (1994). "Grb2/Ash binds directly to tyrosines 1068 and 1086 and indirectly to tyrosine 1148 of activated human epidermal growth factor receptors in intact cells". J. Biol. Chem. 269 (49): 31310–4. PMID 7527043. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  48. ^ Tortora G, Damiano V, Bianco C, Baldassarre G, Bianco A R, Lanfrancone L, Pelicci P G, Ciardiello F (1997). "The RIalpha subunit of protein kinase A (PKA) binds to Grb2 and allows PKA interaction with the activated EGF-receptor". Oncogene. 14 (8): 923–8. doi:10.1038/sj.onc.1200906. PMID 9050991. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  49. ^ a b Buday L, Egan S E, Rodriguez Viciana P, Cantrell D A, Downward J (1994). "A complex of Grb2 adaptor protein, Sos exchange factor, and a 36-kDa membrane-bound tyrosine phosphoprotein is implicated in ras activation in T cells". J. Biol. Chem. 269 (12): 9019–23. PMID 7510700. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  50. ^ Lowenstein EJ, Daly R J, Batzer A G, Li W, Margolis B, Lammers R, Ullrich A, Skolnik E Y, Bar-Sagi D, Schlessinger J (1992). "The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling". Cell. 70 (3): 431–42. doi:10.1016/0092-8674(92)90167-B. PMID 1322798. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  51. ^ a b c d e Olayioye MA, Beuvink I, Horsch K, Daly J M, Hynes N E (1999). "ErbB receptor-induced activation of stat transcription factors is mediated by Src tyrosine kinases". J. Biol. Chem. 274 (24): 17209–18. doi:10.1074/jbc.274.24.17209. PMID 10358079. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  52. ^ Schroeder JA, Thompson M C, Gardner M M, Gendler S J (2001). "Transgenic MUC1 interacts with epidermal growth factor receptor and correlates with mitogen-activated protein kinase activation in the mouse mammary gland". J. Biol. Chem. 276 (16): 13057–64. doi:10.1074/jbc.M011248200. PMID 11278868. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  53. ^ Li Y, Ren J, Yu W, Li Q, Kuwahara H, Yin L, Carraway K L, Kufe D (2001). "The epidermal growth factor receptor regulates interaction of the human DF3/MUC1 carcinoma antigen with c-Src and beta-catenin". J. Biol. Chem. 276 (38): 35239–42. doi:10.1074/jbc.C100359200. PMID 11483589. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  54. ^ Tang J, Feng G S, Li W (1997). "Induced direct binding of the adapter protein Nck to the GTPase-activating protein-associated protein p62 by epidermal growth factor". Oncogene. 15 (15): 1823–32. doi:10.1038/sj.onc.1201351. PMID 9362449. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  55. ^ Li W, Hu P, Skolnik E Y, Ullrich A, Schlessinger J (1992). "The SH2 and SH3 domain-containing Nck protein is oncogenic and a common target for phosphorylation by different surface receptors". Mol. Cell. Biol. 12 (12): 5824–33. doi:10.1128/​MCB.12.12.5824. PMC 360522. PMID 1333047. {{cite journal}}: Unknown parameter |month= ignored (help); zero width space character in |doi= at position 9 (help)CS1 maint: multiple names: authors list (link)
  56. ^ Chen M, She H, Davis E M, Spicer C M, Kim L, Ren R, Le Beau M M, Li W (1998). "Identification of Nck family genes, chromosomal localization, expression, and signaling specificity". J. Biol. Chem. 273 (39): 25171–8. doi:10.1074/jbc.273.39.25171. PMID 9737977. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  57. ^ Tu Y, Li F, Wu C (1998). "Nck-2, a novel Src homology2/3-containing adaptor protein that interacts with the LIM-only protein PINCH and components of growth factor receptor kinase-signaling pathways". Mol. Biol. Cell. 9 (12): 3367–82. PMC 25640. PMID 9843575. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  58. ^ Gauthier ML, Torretto Cheryl, Ly John, Francescutti Valerie, O'Day Danton H (2003). "Protein kinase Calpha negatively regulates cell spreading and motility in MDA-MB-231 human breast cancer cells downstream of epidermal growth factor receptor". Biochem. Biophys. Res. Commun. 307 (4): 839–46. doi:10.1016/S0006-291X(03)01273-7. PMID 12878187. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  59. ^ Bedrin MS, Abolafia C M, Thompson J F (1997). "Cytoskeletal association of epidermal growth factor receptor and associated signaling proteins is regulated by cell density in IEC-6 intestinal cells". J. Cell. Physiol. 172 (1): 126–36. doi:10.1002/(SICI)1097-4652(199707)172:1<126::AID-JCP14>3.0.CO;2-A. PMID 9207933. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  60. ^ Sun J, Nanjundan Meera, Pike Linda J, Wiedmer Therese, Sims Peter J (2002). "Plasma membrane phospholipid scramblase 1 is enriched in lipid rafts and interacts with the epidermal growth factor receptor". Biochemistry. 41 (20): 6338–45. doi:10.1021/bi025610l. PMID 12009895. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  61. ^ Sarmiento M, Puius Y A, Vetter S W, Keng Y F, Wu L, Zhao Y, Lawrence D S, Almo S C, Zhang Z Y (2000). "Structural basis of plasticity in protein tyrosine phosphatase 1B substrate recognition". Biochemistry. 39 (28): 8171–9. doi:10.1021/bi000319w. PMID 10889023. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  62. ^ Zhang ZY, Walsh A B, Wu L, McNamara D J, Dobrusin E M, Miller W T (1996). "Determinants of substrate recognition in the protein-tyrosine phosphatase, PTP1". J. Biol. Chem. 271 (10): 5386–92. doi:10.1074/jbc.271.10.5386. PMID 8621392. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  63. ^ a b Tomic S, Greiser U, Lammers R, Kharitonenkov A, Imyanitov E, Ullrich A, Böhmer F D (1995). "Association of SH2 domain protein tyrosine phosphatases with the epidermal growth factor receptor in human tumor cells. Phosphatidic acid activates receptor dephosphorylation by PTP1C". J. Biol. Chem. 270 (36): 21277–84. doi:10.1074/jbc.270.36.21277. PMID 7673163. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  64. ^ Keilhack H, Tenev T, Nyakatura E, Godovac-Zimmermann J, Nielsen L, Seedorf K, Böhmer F D (1998). "Phosphotyrosine 1173 mediates binding of the protein-tyrosine phosphatase SHP-1 to the epidermal growth factor receptor and attenuation of receptor signaling". J. Biol. Chem. 273 (38): 24839–46. doi:10.1074/jbc.273.38.24839. PMID 9733788. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  65. ^ Lu Y, Brush J, Stewart T A (1999). "NSP1 defines a novel family of adaptor proteins linking integrin and tyrosine kinase receptors to the c-Jun N-terminal kinase/stress-activated protein kinase signaling pathway". J. Biol. Chem. 274 (15): 10047–52. doi:10.1074/jbc.274.15.10047. PMID 10187783. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  66. ^ Soubeyran P, Kowanetz Katarzyna, Szymkiewicz Iwona, Langdon Wallace Y, Dikic Ivan (2002). "Cbl-CIN85-endophilin complex mediates ligand-induced downregulation of EGF receptors". Nature. 416 (6877): 183–7. doi:10.1038/416183a. PMID 11894095. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  67. ^ Szymkiewicz I, Kowanetz Katarzyna, Soubeyran Philippe, Dinarina Ana, Lipkowitz Stanley, Dikic Ivan (2002). "CIN85 participates in Cbl-b-mediated down-regulation of receptor tyrosine kinases". J. Biol. Chem. 277 (42): 39666–72. doi:10.1074/jbc.M205535200. PMID 12177062. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  68. ^ Sakaguchi K, Okabayashi Y, Kido Y, Kimura S, Matsumura Y, Inushima K, Kasuga M (1998). "Shc phosphotyrosine-binding domain dominantly interacts with epidermal growth factor receptors and mediates Ras activation in intact cells". Mol. Endocrinol. 12 (4): 536–43. doi:10.1210/me.12.4.536. PMID 9544989. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  69. ^ Qian X, Esteban L, Vass W C, Upadhyaya C, Papageorge A G, Yienger K, Ward J M, Lowy D R, Santos E (2000). "The Sos1 and Sos2 Ras-specific exchange factors: differences in placental expression and signaling properties". EMBO J. 19 (4): 642–54. doi:10.1093/emboj/19.4.642. PMC 305602. PMID 10675333. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  70. ^ Qian X, Vass W C, Papageorge A G, Anborgh P H, Lowy D R (1998). "N terminus of Sos1 Ras exchange factor: critical roles for the Dbl and pleckstrin homology domains". Mol. Cell. Biol. 18 (2): 771–8. PMC 108788. PMID 9447973. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  71. ^ Keely SJ, Calandrella S O, Barrett K E (2000). "Carbachol-stimulated transactivation of epidermal growth factor receptor and mitogen-activated protein kinase in T(84) cells is mediated by intracellular ca(2+), PYK-2, and p60(src)". J. Biol. Chem. 275 (17): 12619–25. doi:10.1074/jbc.275.17.12619. PMID 10777553. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  72. ^ Sato K, Kimoto M, Kakumoto M, Horiuchi D, Iwasaki T, Tokmakov A A, Fukami Y (2000). "Adaptor protein Shc undergoes translocation and mediates up-regulation of the tyrosine kinase c-Src in EGF-stimulated A431 cells". Genes Cells. 5 (9): 749–64. doi:10.1046/j.1365-2443.2000.00358.x. PMID 10971656. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  73. ^ Xia L, Wang Lijuan, Chung Alicia S, Ivanov Stanimir S, Ling Mike Y, Dragoi Ana M, Platt Adam, Gilmer Tona M, Fu Xin-Yuan, Chin Y Eugene (2002). "Identification of both positive and negative domains within the epidermal growth factor receptor COOH-terminal region for signal transducer and activator of transcription (STAT) activation". J. Biol. Chem. 277 (34): 30716–23. doi:10.1074/jbc.M202823200. PMID 12070153. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  74. ^ Yuan Z-L, Guan Ying-Jie, Wang Lijuan, Wei Wenyi, Kane Agnes B, Chin Y Eugene (2004). "Central role of the threonine residue within the p+1 loop of receptor tyrosine kinase in STAT3 constitutive phosphorylation in metastatic cancer cells". Mol. Cell. Biol. 24 (21): 9390–400. doi:10.1128/MCB.24.21.9390-9400.2004. PMC 522220. PMID 15485908. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  75. ^ Sehat B, Andersson Sandra, Girnita Leonard, Larsson Olle (2008). "Identification of c-Cbl as a new ligase for insulin-like growth factor-I receptor with distinct roles from Mdm2 in receptor ubiquitination and endocytosis". Cancer Res. 68 (14): 5669–77. doi:10.1158/0008-5472.CAN-07-6364. PMID 18632619. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  76. ^ She HY, Rockow S, Tang J, Nishimura R, Skolnik E Y, Chen M, Margolis B, Li W (1997). "Wiskott-Aldrich syndrome protein is associated with the adapter protein Grb2 and the epidermal growth factor receptor in living cells". Mol. Biol. Cell. 8 (9): 1709–21. PMC 305731. PMID 9307968. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)

Further reading

Template:Link GA