Jump to content

Solar eclipse of July 31, 1981

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Iridescent 2 (talk | contribs) at 15:38, 26 January 2021 (top: Cleanup and typo fixing, typo(s) fixed: ’s → 's). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Solar eclipse of July 31, 1981
Map
Type of eclipse
NatureTotal
Gamma0.5792
Magnitude1.0258
Maximum eclipse
Duration122 s (2 min 2 s)
Coordinates53°18′N 134°06′E / 53.3°N 134.1°E / 53.3; 134.1
Max. width of band108 km (67 mi)
Times (UTC)
Greatest eclipse3:46:37
References
Saros145 (20 of 77)
Catalog # (SE5000)9467

A total solar eclipse occurred at the Moon's ascending node of the orbit on July 31, 1981. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The continental path of totality fell entirely within the Soviet Union, belonging to Georgia, Kazakhstan and Russia today. The southern part of Mount Elbrus, the highest mountain in Europe, also lies in the path of totality. Occurring only 3.8 days after perigee (Perigee on July 27, 1981), the Moon's apparent diameter was larger. With a path width of 107.8 km (66.984 mi, or 353,674.541 feet), this total solar eclipse had an average path.

It was the 20th eclipse of the 145th Saros cycle, which began with a partial eclipse on January 4, 1639 and will conclude with a partial eclipse on April 17, 3009.

The moon's apparent diameter was 7 arcseconds larger than the February 4, 1981 annular solar eclipse.

Solar eclipses of 1979–1982

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

The partial solar eclipses on June 21, 1982 and December 15, 1982 occur in the next lunar year eclipse set.

Solar eclipse series sets from 1979 to 1982
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
120

Totality in Brandon, MB,
Canada
February 26, 1979

Total
0.8981 125 August 22, 1979

Annular
−0.9632
130 February 16, 1980

Total
0.2224 135 August 10, 1980

Annular
−0.1915
140 February 4, 1981

Annular
−0.4838 145 July 31, 1981

Total
0.5792
150 January 25, 1982

Partial
−1.2311 155 July 20, 1982

Partial
1.2886

Saros 145

This eclipse is a part of Saros series 145, repeating every 18 years, 11 days, and containing 77 events. The series started with a partial solar eclipse on January 4, 1639. It contains an annular eclipse on June 6, 1891; a hybrid eclipse on June 17, 1909; and total eclipses from June 29, 1927 through September 9, 2648. The series ends at member 77 as a partial eclipse on April 17, 3009. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 15 at 6 seconds (by default) on June 6, 1891, and the longest duration of totality will be produced by member 50 at 7 minutes, 12 seconds on June 25, 2522. All eclipses in this series occur at the Moon’s ascending node of orbit.[2]

Series members 10–32 occur between 1801 and 2200:
10 11 12

April 13, 1801

April 24, 1819

May 4, 1837
13 14 15

May 16, 1855

May 26, 1873

June 6, 1891
16 17 18

June 17, 1909

June 29, 1927

July 9, 1945
19 20 21

July 20, 1963

July 31, 1981

August 11, 1999
22 23 24

August 21, 2017

September 2, 2035

September 12, 2053
25 26 27

September 23, 2071

October 4, 2089

October 16, 2107
28 29 30

October 26, 2125

November 7, 2143

November 17, 2161
31 32

November 28, 2179

December 9, 2197

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

22 eclipse events between December 24, 1916 and July 31, 2000
December 24–25 October 12 July 31–August 1 May 19–20 March 7
111 113 115 117 119

December 24, 1916

July 31, 1924

May 19, 1928

March 7, 1932
121 123 125 127 129

December 25, 1935

October 12, 1939

August 1, 1943

May 20, 1947

March 7, 1951
131 133 135 137 139

December 25, 1954

October 12, 1958

July 31, 1962

May 20, 1966

March 7, 1970
141 143 145 147 149

December 24, 1973

October 12, 1977

July 31, 1981

May 19, 1985

March 7, 1989
151 153 155

December 24, 1992

October 12, 1996

July 31, 2000

References

  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. ^ "NASA - Catalog of Solar Eclipses of Saros 145". eclipse.gsfc.nasa.gov.

Photos: