Jump to content

Solar eclipse of June 20, 1955

From Wikipedia, the free encyclopedia
Solar eclipse of June 20, 1955
Map
Type of eclipse
NatureTotal
Gamma−0.1528
Magnitude1.0776
Maximum eclipse
Duration428 s (7 min 8 s)
Coordinates14°48′N 117°00′E / 14.8°N 117°E / 14.8; 117
Max. width of band254 km (158 mi)
Times (UTC)
Greatest eclipse4:10:42
References
Saros136 (34 of 71)
Catalog # (SE5000)9410

A total solar eclipse occurred at the Moon's descending node of orbit on Monday, June 20, 1955,[1][2][3][4][5][6][7][8][9][10][11][12] with a magnitude of 1.0776. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 14.5 hours after perigee (on June 19, 1955, at 14:40 UTC), the Moon's apparent diameter was larger.[13]

With a maximum duration of 7 minutes 7.74 seconds, this is the longest solar eclipse of Saros series 136, as well as the longest total solar eclipse since the 11th century, and until the 22nd century, because greatest eclipse occurred near the equator.[14]

Totality began over the Indian Ocean, British Seychelles (today's Seychelles) and Maldives, crossing Ceylon (name changed to Sri Lanka later) including the capital city Colombo, Andaman Islands, Burma, Thailand including the capital city Bangkok, Cambodia, Laos, South Vietnam (now belonging to Vietnam), Paracel Islands and Scarborough Shoal (near the greatest eclipse), moving across the Philippines including the capital city Manila, Kayangel Atoll in the Trust Territory of the Pacific Islands (now belonging to Palau), Nukumanu Islands in the Territory of Papua New Guinea (today's Papua New Guinea), towards northern Ontong Java Atoll in British Solomon Islands (today's Solomon Islands) ending over Southwestern Pacific Ocean. A partial eclipse was visible for parts of South Asia, Southeast Asia, East Asia, Australia, and Oceania.

This was the second of four central solar eclipses visible from Bangkok from 1948 to 1958, where it is extremely rare for a large city to witness four central solar eclipses within 10 years.

Observations

[edit]

The Tokyo Astronomical Observatory (now incorporated into the National Astronomical Observatory of Japan) of the University of Tokyo sent an expedition to Ceylon, but observation failed due to bad weather conditions. The Hydrographic Office of Japan (now Hydrographic and Oceanographic Department [ja] of Japan Coast Guard) sent a team to the western coast of Bình Thuận [vi], Bình Sơn district, Quảng Ngãi province, South Vietnam. The whole process was not affected by any clouds or fog. The team said that totality of this eclipse was particularly dark compared with previous total solar eclipses observed, and the long duration of totality was also one of the reasons. The team took many images of solar corona successfully.[15] A small team from the United States observed the total eclipse from Thailand. Some members of the Thai royal family also saw the eclipse from Phra Nakhon Si Ayutthaya province, north of the capital city Bangkok. In addition, Radio Thailand also broadcast a special program on the total solar eclipse nationally, which was the first such broadcast in Thailand.[16]

Eclipse details

[edit]

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[17]

June 20, 1955 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 1955 June 20 at 01:33:50.0 UTC
First Umbral External Contact 1955 June 20 at 02:27:20.5 UTC
First Central Line 1955 June 20 at 02:28:55.7 UTC
First Umbral Internal Contact 1955 June 20 at 02:30:30.9 UTC
First Penumbral Internal Contact 1955 June 20 at 03:25:02.8 UTC
Greatest Duration 1955 June 20 at 04:08:34.6 UTC
Greatest Eclipse 1955 June 20 at 04:10:42.0 UTC
Equatorial Conjunction 1955 June 20 at 04:12:01.6 UTC
Ecliptic Conjunction 1955 June 20 at 04:12:15.4 UTC
Last Penumbral Internal Contact 1955 June 20 at 04:56:19.0 UTC
Last Umbral Internal Contact 1955 June 20 at 05:50:53.2 UTC
Last Central Line 1955 June 20 at 05:52:27.7 UTC
Last Umbral External Contact 1955 June 20 at 05:54:02.2 UTC
Last Penumbral External Contact 1955 June 20 at 06:47:35.0 UTC
June 20, 1955 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 1.07756
Eclipse Obscuration 1.16113
Gamma −0.15278
Sun Right Ascension 05h51m36.9s
Sun Declination +23°25'50.7"
Sun Semi-Diameter 15'44.3"
Sun Equatorial Horizontal Parallax 08.7"
Moon Right Ascension 05h51m33.5s
Moon Declination +23°16'33.0"
Moon Semi-Diameter 16'40.5"
Moon Equatorial Horizontal Parallax 1°01'11.8"
ΔT 31.2 s

Eclipse season

[edit]

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of June 1955
June 5
Ascending node (full moon)
June 20
Descending node (new moon)
Penumbral lunar eclipse
Lunar Saros 110
Total solar eclipse
Solar Saros 136
[edit]

Eclipses in 1955

[edit]

Metonic

[edit]

Tzolkinex

[edit]

Half-Saros

[edit]

Tritos

[edit]

Solar Saros 136

[edit]

Inex

[edit]

Triad

[edit]

Solar eclipses of 1953–1956

[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[18]

The partial solar eclipses on February 14, 1953 and August 9, 1953 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 1953 to 1956
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
116 July 11, 1953

Partial
1.4388 121 January 5, 1954

Annular
−0.9296
126 June 30, 1954

Total
0.6135 131 December 25, 1954

Annular
−0.2576
136 June 20, 1955

Total
−0.1528 141 December 14, 1955

Annular
0.4266
146 June 8, 1956

Total
−0.8934 151 December 2, 1956

Partial
1.0923

Saros 136

[edit]

This eclipse is a part of Saros series 136, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on June 14, 1360. It contains annular eclipses from September 8, 1504 through November 12, 1594; hybrid eclipses from November 22, 1612 through January 17, 1703; and total eclipses from January 27, 1721 through May 13, 2496. The series ends at member 71 as a partial eclipse on July 30, 2622. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 9 at 32 seconds on September 8, 1504, and the longest duration of totality was produced by member 34 at 7 minutes, 7.74 seconds on June 20, 1955. All eclipses in this series occur at the Moon’s descending node of orbit.[19]

Series members 26–47 occur between 1801 and 2200:
26 27 28

March 24, 1811

April 3, 1829

April 15, 1847
29 30 31

April 25, 1865

May 6, 1883

May 18, 1901
32 33 34

May 29, 1919

June 8, 1937

June 20, 1955
35 36 37

June 30, 1973

July 11, 1991

July 22, 2009
38 39 40

August 2, 2027

August 12, 2045

August 24, 2063
41 42 43

September 3, 2081

September 14, 2099

September 26, 2117
44 45 46

October 7, 2135

October 17, 2153

October 29, 2171
47

November 8, 2189

Metonic series

[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between April 8, 1902 and August 31, 1989
April 7–8 January 24–25 November 12 August 31–September 1 June 19–20
108 110 112 114 116

April 8, 1902

August 31, 1913

June 19, 1917
118 120 122 124 126

April 8, 1921

January 24, 1925

November 12, 1928

August 31, 1932

June 19, 1936
128 130 132 134 136

April 7, 1940

January 25, 1944

November 12, 1947

September 1, 1951

June 20, 1955
138 140 142 144 146

April 8, 1959

January 25, 1963

November 12, 1966

August 31, 1970

June 20, 1974
148 150 152 154

April 7, 1978

January 25, 1982

November 12, 1985

August 31, 1989

Tritos series

[edit]

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

August 28, 1802
(Saros 122)

July 27, 1813
(Saros 123)

June 26, 1824
(Saros 124)

May 27, 1835
(Saros 125)

April 25, 1846
(Saros 126)

March 25, 1857
(Saros 127)

February 23, 1868
(Saros 128)

January 22, 1879
(Saros 129)

December 22, 1889
(Saros 130)

November 22, 1900
(Saros 131)

October 22, 1911
(Saros 132)

September 21, 1922
(Saros 133)

August 21, 1933
(Saros 134)

July 20, 1944
(Saros 135)

June 20, 1955
(Saros 136)

May 20, 1966
(Saros 137)

April 18, 1977
(Saros 138)

March 18, 1988
(Saros 139)

February 16, 1999
(Saros 140)

January 15, 2010
(Saros 141)

December 14, 2020
(Saros 142)

November 14, 2031
(Saros 143)

October 14, 2042
(Saros 144)

September 12, 2053
(Saros 145)

August 12, 2064
(Saros 146)

July 13, 2075
(Saros 147)

June 11, 2086
(Saros 148)

May 11, 2097
(Saros 149)

April 11, 2108
(Saros 150)

March 11, 2119
(Saros 151)

February 8, 2130
(Saros 152)

January 8, 2141
(Saros 153)

December 8, 2151
(Saros 154)

November 7, 2162
(Saros 155)

October 7, 2173
(Saros 156)

September 4, 2184
(Saros 157)

August 5, 2195
(Saros 158)

Inex series

[edit]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

September 28, 1810
(Saros 131)

September 7, 1839
(Saros 132)

August 18, 1868
(Saros 133)

July 29, 1897
(Saros 134)

July 9, 1926
(Saros 135)

June 20, 1955
(Saros 136)

May 30, 1984
(Saros 137)

May 10, 2013
(Saros 138)

April 20, 2042
(Saros 139)

March 31, 2071
(Saros 140)

March 10, 2100
(Saros 141)

February 18, 2129
(Saros 142)

January 30, 2158
(Saros 143)

January 9, 2187
(Saros 144)

Notes

[edit]
  1. ^ "June 20, 1955 Total Solar Eclipse". timeanddate. Retrieved 5 August 2024.
  2. ^ "U.S. to Observe Eclipse of Sun April 8, 2024". Idaho State Journal. Pocatello, Idaho. 1955-06-21. p. 3. Retrieved 2023-10-17 – via Newspapers.com.
  3. ^ "Longest Eclipse In 1238 Years Lasts For Seven Minutes And Blacks Out An Area Of 1276000 Square Miles". The Lexington Herald. Lexington, Kentucky. 1955-06-21. p. 1. Retrieved 2023-10-17 – via Newspapers.com.
  4. ^ "Didn't See Eclipse? Catch The One In 2024". The World. Coos Bay, Oregon. 1955-06-21. p. 11. Retrieved 2023-10-17 – via Newspapers.com.
  5. ^ "Long Eclipse Seen In South China Sea Area". Troy Daily News. Troy, Ohio. 1955-06-20. p. 10. Retrieved 2023-10-18 – via Newspapers.com.
  6. ^ "Seven Minute Long Eclipse Darkens South China Seas". News-Pilot. San Pedro, California. 1955-06-20. p. 3. Retrieved 2023-10-18 – via Newspapers.com.
  7. ^ "CLOUDS BLACK OUT ECLIPSE IN CEYLON". Coventry Evening Telegraph. Coventry, West Midlands, England. 1955-06-20. p. 14. Retrieved 2023-10-18 – via Newspapers.com.
  8. ^ "Clouds black out eclipse". Hull Daily Mail. Hull, Humberside, England. 1955-06-20. p. 5. Retrieved 2023-10-18 – via Newspapers.com.
  9. ^ "In tears as cloud hides the eclipse". Birmingham Evening Mail. Birmingham, West Midlands, England. 1955-06-20. p. 9. Retrieved 2023-10-18 – via Newspapers.com.
  10. ^ "'Night' Fliers: Eclipse". Des Moines Tribune. Des Moines, Iowa. 1955-06-20. p. 3. Retrieved 2023-10-18 – via Newspapers.com.
  11. ^ "Clouds Spoil Ceylon Show: Harvard's Team Gets Best Look at Eclipse". The Boston Globe. Boston, Massachusetts. 1955-06-20. p. 8. Retrieved 2023-10-18 – via Newspapers.com.
  12. ^ "Clouds Favor Harvard Eclipse Lookout But Balk Hayden, German Photographing". The Berkshire Eagle. Pittsfield, Massachusetts. 1955-06-20. p. 1. Retrieved 2023-10-18 – via Newspapers.com.
  13. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 5 August 2024.
  14. ^ Fred Espenak. "Catalog of Solar Eclipses: 1001 to 1100". NASA.
  15. ^ Kuniji Saito. "Photometry of the Solar Corona at the Eclipse on June 20, 1955". Publications of the Astronomical Society of Japan. 8: 126–141. Archived from the original on 13 May 2020.
  16. ^ "SOLAR ECLIPSES IN SIAM (THAILAND)". National Astronomical Research Institute of Thailand. Archived from the original on 30 March 2016.
  17. ^ "Total Solar Eclipse of 1955 Jun 20". EclipseWise.com. Retrieved 5 August 2024.
  18. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  19. ^ "NASA - Catalog of Solar Eclipses of Saros 136". eclipse.gsfc.nasa.gov.

References

[edit]