Jump to content

Solar eclipse of May 11, 2059

From Wikipedia, the free encyclopedia
Solar eclipse of May 11, 2059
Map
Type of eclipse
NatureTotal
Gamma−0.508
Magnitude1.0242
Maximum eclipse
Duration143 s (2 min 23 s)
Coordinates10°42′S 100°24′W / 10.7°S 100.4°W / -10.7; -100.4
Max. width of band95 km (59 mi)
Times (UTC)
Greatest eclipse19:22:16
References
Saros129 (54 of 80)
Catalog # (SE5000)9640

A total solar eclipse will occur at the Moon's ascending node of orbit on Sunday, May 11, 2059,[1] with a magnitude of 1.0242. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.5 days after perigee (on May 8, 2059, at 7:40 UTC), the Moon's apparent diameter will be larger.[2]

The path of totality will be visible from parts of Ecuador, Peru, extreme southern Colombia, and Brazil. A partial solar eclipse will also be visible for parts of eastern Oceania, South America, Central America, and the Caribbean.

Eclipse details

[edit]

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]

May 11, 2059 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 2059 May 11 at 16:45:12.3 UTC
First Umbral External Contact 2059 May 11 at 17:49:14.5 UTC
First Central Line 2059 May 11 at 17:49:34.7 UTC
First Umbral Internal Contact 2059 May 11 at 17:49:54.9 UTC
Equatorial Conjunction 2059 May 11 at 19:01:24.2 UTC
Ecliptic Conjunction 2059 May 11 at 19:16:52.0 UTC
Greatest Eclipse 2059 May 11 at 19:22:15.6 UTC
Greatest Duration 2059 May 11 at 19:24:12.0 UTC
Last Umbral Internal Contact 2059 May 11 at 20:54:52.7 UTC
Last Central Line 2059 May 11 at 20:55:10.2 UTC
Last Umbral External Contact 2059 May 11 at 20:55:27.8 UTC
Last Penumbral External Contact 2059 May 11 at 21:59:32.9 UTC
May 11, 2059 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 1.02418
Eclipse Obscuration 1.04894
Gamma −0.50795
Sun Right Ascension 03h14m47.9s
Sun Declination +18°02'08.6"
Sun Semi-Diameter 15'50.2"
Sun Equatorial Horizontal Parallax 08.7"
Moon Right Ascension 03h15m32.3s
Moon Declination +17°34'20.5"
Moon Semi-Diameter 15'59.6"
Moon Equatorial Horizontal Parallax 0°58'41.8"
ΔT 90.0 s

Eclipse season

[edit]

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of May 2059
May 11
Ascending node (new moon)
May 27
Descending node (full moon)
Total solar eclipse
Solar Saros 129
Partial lunar eclipse
Lunar Saros 141
[edit]

Eclipses in 2059

[edit]

Metonic

[edit]

Tzolkinex

[edit]

Half-Saros

[edit]

Tritos

[edit]

Solar Saros 129

[edit]

Inex

[edit]

Triad

[edit]

Solar eclipses of 2058–2061

[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]

The partial solar eclipse on June 21, 2058 occurs in the previous lunar year eclipse set.

Solar eclipse series sets from 2058 to 2061
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
119 May 22, 2058

Partial
−1.3194 124 November 16, 2058

Partial
1.1224
129 May 11, 2059

Total
−0.508 134 November 5, 2059

Annular
0.4454
139 April 30, 2060

Total
0.2422 144 October 24, 2060

Annular
−0.2625
149 April 20, 2061

Total
0.9578 154 October 13, 2061

Annular
−0.9639

Saros 129

[edit]

This eclipse is a part of Saros series 129, repeating every 18 years, 11 days, and containing 80 events. The series started with a partial solar eclipse on October 3, 1103. It contains annular eclipses from May 6, 1464 through March 18, 1969; hybrid eclipses from March 29, 1987 through April 20, 2023; and total eclipses from April 30, 2041 through July 26, 2185. The series ends at member 80 as a partial eclipse on February 21, 2528. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 34 at 5 minutes, 10 seconds on October 4, 1698, and the longest duration of totality will be produced by member 58 at 3 minutes, 43 seconds on June 25, 2131. All eclipses in this series occur at the Moon’s ascending node of orbit.[5]

Series members 40–61 occur between 1801 and 2200:
40 41 42

December 10, 1806

December 20, 1824

December 31, 1842
43 44 45

January 11, 1861

January 22, 1879

February 1, 1897
46 47 48

February 14, 1915

February 24, 1933

March 7, 1951
49 50 51

March 18, 1969

March 29, 1987

April 8, 2005
52 53 54

April 20, 2023

April 30, 2041

May 11, 2059
55 56 57

May 22, 2077

June 2, 2095

June 13, 2113
58 59 60

June 25, 2131

July 5, 2149

July 16, 2167
61

July 26, 2185

Metonic series

[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events between July 23, 2036 and July 23, 2112
July 23–24 May 11 February 27–28 December 16–17 October 4–5
117 119 121 123 125

July 23, 2036

May 11, 2040

February 28, 2044

December 16, 2047

October 4, 2051
127 129 131 133 135

July 24, 2055

May 11, 2059

February 28, 2063

December 17, 2066

October 4, 2070
137 139 141 143 145

July 24, 2074

May 11, 2078

February 27, 2082

December 16, 2085

October 4, 2089
147 149 151 153 155

July 23, 2093

May 11, 2097

February 28, 2101

December 17, 2104

October 5, 2108
157

July 23, 2112

Tritos series

[edit]

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

March 25, 1819
(Saros 107)

February 23, 1830
(Saros 108)

January 22, 1841
(Saros 109)

November 21, 1862
(Saros 111)

August 20, 1895
(Saros 114)

July 21, 1906
(Saros 115)

June 19, 1917
(Saros 116)

May 19, 1928
(Saros 117)

April 19, 1939
(Saros 118)

March 18, 1950
(Saros 119)

February 15, 1961
(Saros 120)

January 16, 1972
(Saros 121)

December 15, 1982
(Saros 122)

November 13, 1993
(Saros 123)

October 14, 2004
(Saros 124)

September 13, 2015
(Saros 125)

August 12, 2026
(Saros 126)

July 13, 2037
(Saros 127)

June 11, 2048
(Saros 128)

May 11, 2059
(Saros 129)

April 11, 2070
(Saros 130)

March 10, 2081
(Saros 131)

February 7, 2092
(Saros 132)

January 8, 2103
(Saros 133)

December 8, 2113
(Saros 134)

November 6, 2124
(Saros 135)

October 7, 2135
(Saros 136)

September 6, 2146
(Saros 137)

August 5, 2157
(Saros 138)

July 5, 2168
(Saros 139)

June 5, 2179
(Saros 140)

May 4, 2190
(Saros 141)

Inex series

[edit]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

October 20, 1827
(Saros 121)

September 29, 1856
(Saros 122)

September 8, 1885
(Saros 123)

August 21, 1914
(Saros 124)

August 1, 1943
(Saros 125)

July 10, 1972
(Saros 126)

June 21, 2001
(Saros 127)

June 1, 2030
(Saros 128)

May 11, 2059
(Saros 129)

April 21, 2088
(Saros 130)

April 2, 2117
(Saros 131)

March 12, 2146
(Saros 132)

February 21, 2175
(Saros 133)

Notes

[edit]
  1. ^ "May 11, 2059 Total Solar Eclipse". timeanddate. Retrieved 17 August 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 17 August 2024.
  3. ^ "Total Solar Eclipse of 2059 May 11". EclipseWise.com. Retrieved 17 August 2024.
  4. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. ^ "NASA - Catalog of Solar Eclipses of Saros 129". eclipse.gsfc.nasa.gov.

References

[edit]