Solar eclipse of November 10, 1920
Solar eclipse of November 10, 1920 | |
---|---|
Type of eclipse | |
Nature | Partial |
Gamma | 1.1287 |
Magnitude | 0.742 |
Maximum eclipse | |
Coordinates | 69°54′N 29°48′W / 69.9°N 29.8°W |
Times (UTC) | |
Greatest eclipse | 15:52:15 |
References | |
Saros | 151 (9 of 72) |
Catalog # (SE5000) | 9329 |
A partial solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, November 10, 1920,[1] with a magnitude of 0.742. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow passes above or below the Earth.
A partial eclipse was visible for parts of Canada, the United States, Northwest Africa, and Western Europe.
Eclipse details
[edit]Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[2]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 1920 November 10 at 13:47:26.5 UTC |
Equatorial Conjunction | 1920 November 10 at 15:28:01.8 UTC |
Greatest Eclipse | 1920 November 10 at 15:52:15.0 UTC |
Ecliptic Conjunction | 1920 November 10 at 16:05:10.6 UTC |
Last Penumbral External Contact | 1920 November 10 at 17:57:19.7 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 0.74201 |
Eclipse Obscuration | 0.65874 |
Gamma | 1.12869 |
Sun Right Ascension | 15h02m00.4s |
Sun Declination | -17°11'23.8" |
Sun Semi-Diameter | 16'09.4" |
Sun Equatorial Horizontal Parallax | 08.9" |
Moon Right Ascension | 15h02m47.8s |
Moon Declination | -16°10'02.1" |
Moon Semi-Diameter | 15'06.3" |
Moon Equatorial Horizontal Parallax | 0°55'26.3" |
ΔT | 22.1 s |
Eclipse season
[edit]This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
October 27 Descending node (full moon) |
November 10 Ascending node (new moon) |
---|---|
Total lunar eclipse Lunar Saros 125 |
Partial solar eclipse Solar Saros 151 |
Related eclipses
[edit]Eclipses in 1920
[edit]- A total lunar eclipse on May 3.
- A partial solar eclipse on May 18.
- A total lunar eclipse on October 27.
- A partial solar eclipse on November 10.
Metonic
[edit]- Preceded by: Solar eclipse of January 23, 1917
- Followed by: Solar eclipse of August 30, 1924
Tzolkinex
[edit]- Preceded by: Solar eclipse of September 30, 1913
- Followed by: Solar eclipse of December 24, 1927
Half-Saros
[edit]- Preceded by: Lunar eclipse of November 6, 1911
- Followed by: Lunar eclipse of November 17, 1929
Tritos
[edit]- Preceded by: Solar eclipse of December 12, 1909
- Followed by: Solar eclipse of October 11, 1931
Solar Saros 151
[edit]- Preceded by: Solar eclipse of October 31, 1902
- Followed by: Solar eclipse of November 21, 1938
Inex
[edit]- Preceded by: Solar eclipse of December 1, 1891
- Followed by: Solar eclipse of October 21, 1949
Triad
[edit]- Preceded by: Solar eclipse of January 9, 1834
- Followed by: Solar eclipse of September 11, 2007
Solar eclipses of 1916–1920
[edit]This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]
The solar eclipses on February 3, 1916 (total), July 30, 1916 (annular), January 23, 1917 (partial), and July 19, 1917 (partial) occur in the previous lunar year eclipse set.
Solar eclipse series sets from 1916 to 1920 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
111 | December 24, 1916 Partial |
−1.5321 | 116 | June 19, 1917 Partial |
1.2857 | |
121 | December 14, 1917 Annular |
−0.9157 | 126 | June 8, 1918 Total |
0.4658 | |
131 | December 3, 1918 Annular |
−0.2387 | 136 Totality in Príncipe |
May 29, 1919 Total |
−0.2955 | |
141 | November 22, 1919 Annular |
0.4549 | 146 | May 18, 1920 Partial |
−1.0239 | |
151 | November 10, 1920 Partial |
1.1287 |
Saros 151
[edit]This eclipse is a part of Saros series 151, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on August 14, 1776. It contains annular eclipses from February 28, 2101 through April 23, 2191; a hybrid eclipse on May 5, 2209; and total eclipses from May 16, 2227 through July 6, 2912. The series ends at member 72 as a partial eclipse on October 1, 3056. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity will be produced by member 19 at 2 minutes, 44 seconds on February 28, 2101, and the longest duration of totality will be produced by member 60 at 5 minutes, 41 seconds on May 22, 2840. All eclipses in this series occur at the Moon’s ascending node of orbit.[4]
Series members 3–24 occur between 1801 and 2200: | ||
---|---|---|
3 | 4 | 5 |
September 5, 1812 |
September 17, 1830 |
September 27, 1848 |
6 | 7 | 8 |
October 8, 1866 |
October 19, 1884 |
October 31, 1902 |
9 | 10 | 11 |
November 10, 1920 |
November 21, 1938 |
December 2, 1956 |
12 | 13 | 14 |
December 13, 1974 |
December 24, 1992 |
January 4, 2011 |
15 | 16 | 17 |
January 14, 2029 |
January 26, 2047 |
February 5, 2065 |
18 | 19 | 20 |
February 16, 2083 |
February 28, 2101 |
March 11, 2119 |
21 | 22 | 23 |
March 21, 2137 |
April 2, 2155 |
April 12, 2173 |
24 | ||
April 23, 2191 |
Metonic series
[edit]The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
25 eclipse events between April 5, 1837 and June 17, 1928 | ||||
---|---|---|---|---|
April 5–6 | January 22–23 | November 10–11 | August 28–30 | June 17–18 |
107 | 109 | 111 | 113 | 115 |
April 5, 1837 |
January 22, 1841 |
November 10, 1844 |
August 28, 1848 |
June 17, 1852 |
117 | 119 | 121 | 123 | 125 |
April 5, 1856 |
January 23, 1860 |
November 11, 1863 |
August 29, 1867 |
June 18, 1871 |
127 | 129 | 131 | 133 | 135 |
April 6, 1875 |
January 22, 1879 |
November 10, 1882 |
August 29, 1886 |
June 17, 1890 |
137 | 139 | 141 | 143 | 145 |
April 6, 1894 |
January 22, 1898 |
November 11, 1901 |
August 30, 1905 |
June 17, 1909 |
147 | 149 | 151 | 153 | 155 |
April 6, 1913 |
January 23, 1917 |
November 10, 1920 |
August 30, 1924 |
June 17, 1928 |
Tritos series
[edit]This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 1964 | ||||
---|---|---|---|---|
September 17, 1811 (Saros 141) |
August 16, 1822 (Saros 142) |
July 17, 1833 (Saros 143) |
June 16, 1844 (Saros 144) |
May 16, 1855 (Saros 145) |
April 15, 1866 (Saros 146) |
March 15, 1877 (Saros 147) |
February 11, 1888 (Saros 148) |
January 11, 1899 (Saros 149) |
December 12, 1909 (Saros 150) |
November 10, 1920 (Saros 151) |
October 11, 1931 (Saros 152) |
September 10, 1942 (Saros 153) |
August 9, 1953 (Saros 154) |
July 9, 1964 (Saros 155) |
Inex series
[edit]This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
January 30, 1805 (Saros 147) |
January 9, 1834 (Saros 148) |
December 21, 1862 (Saros 149) |
December 1, 1891 (Saros 150) |
November 10, 1920 (Saros 151) |
October 21, 1949 (Saros 152) |
October 2, 1978 (Saros 153) |
September 11, 2007 (Saros 154) |
August 21, 2036 (Saros 155) |
August 2, 2065 (Saros 156) |
July 12, 2094 (Saros 157) |
June 23, 2123 (Saros 158) |
June 3, 2152 (Saros 159) |
May 13, 2181 (Saros 160) |
Notes
[edit]- ^ "November 10, 1920 Partial Solar Eclipse". timeanddate. Retrieved 1 August 2024.
- ^ "Partial Solar Eclipse of 1920 Nov10". EclipseWise.com. Retrieved 1 August 2024.
- ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- ^ "NASA - Catalog of Solar Eclipses of Saros 151". eclipse.gsfc.nasa.gov.
References
[edit]- Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC