Jump to content

Materials Science Laboratory

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by PatrickHambloch (talk | contribs) at 08:27, 10 August 2009. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The Material Science Laboratory (MSL) of the European Space Agency will be a payload onboard the International Space Station.

It will be installed in NASA's first Materials Science Research Rack which will be placed in the Destiny laboratory onboard the ISS.

Currently it is installed in a Multi Purpose Logistics Module and waiting for launch onboard Space Shuttle Discovery as part of its STS-128 mission.

Facility Description

The Material Science Laboratory (MSL) facility is the contribution of the European Space Agency to NASA's MSRR-1. It occupies one half of an International Standard Payload Rack.

The MSL consists of a Core Facility, together with associated supported sub-systems. The Core Facility consists mainly of a vacuum-tight stainless steel cylinder (Process Chamber) capable of accommodating different individual Furnace Inserts (FI), within which sample processing is carried out. The processing chamber provides an accurately controlled processing environment and measurement of microgravity levels. It can house several different Furnace Inserts. Installed in the first batch of experiments is the Low Gradient Furnace (LGF). Another furnace, the Solidification and Quenching Furnace (SQF) is already produced and waiting on ground for future operations. The furnace can be moved with a dedicated drive mechanism to process each sample according to requirements from the Scientists. Processing takes place normally under vacuum.

The Core Facility supports FIs with up to eight heating elements, and provides the mechanical, thermal and electrical infrastructure necessary to handle the FIs, the Sample Cartridge Assembly (SCA), together with any associated experiment-dedicated electronics that may be required.

A FI is an arrangement of heating elements, isolating zones and cooling zones contained in a thermal insulation assembly. On the outer envelope of this assembly is a water-cooled metal jacket forming the mechanical interface to the Core Facility.

The major characteristics of the two produced Furnace Inserts are:

  • Low Gradient Furnace (LGF)

The LGF is designed mainly for Bridgman crystal growth of semiconductor materials. It consists of two heated cavities separated by an adiabatic zone. This assembly can establish low and precisely controlled gradients between two very stable temperature plateaux.

  • Solidification and Quenching Furnace (SQF)

The SQF is designed mainly for metallurgical research, with the option of quenching the solidification interface at the end of processing by quickly displacing the cooling zone. It consists of a heated cavity and a water-cooled cooling zone separated by an adiabatic zone. It can establish medium to steep temperature gradients along the experiment sample. For creating large gradients, a Liquid Metal Ring enhances the thermal coupling between the SCA and the cooling zone. [1]

References

  1. ^ "Material Science Laboratory" (PDF). ERASMUS User Centre and Communication Office - Directorate of Human Spaceflight - European Space Agency. Retrieved August 9, 2009.