2018 in paleontology
| |||
---|---|---|---|
+... |
Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils.[1] This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2018.
Plants
Cnidarians
Research
- A study on the morphology of the conulariid species Carinachites spinatus based on a new specimen collected from the lower Cambrian Kuanchuanpu Formation (China) is published by Han et al. (2018).[2]
- Revision of stony corals from the Lower Cretaceous (Berriasian) Oehrli Formation (Austria and Switzerland) is published by Baron-Szabo (2018), who compares this fauna with five additional Berriasian coral faunas.[3]
New taxa
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
In press |
Yu |
Early Devonian |
Arthropods
Molluscs
Echinoderms
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Gladwell |
A stenurid brittle star. |
|||||
Sp. nov |
In press |
Cole et al. |
||||||
Sp. nov |
In press |
Cole et al. |
||||||
Gen. et sp. nov |
In press |
Gale |
Late Cretaceous (early Campanian) |
A crinoid. The type species is A. portusadernensis. |
||||
Sp. nov |
Valid |
Gladwell |
A stenurid brittle star. |
|||||
Sp. nov |
In press |
Blake, Halligan & Larson |
||||||
Sp. nov |
Valid |
Gale in Gale, Sadorf & Jagt |
A crinoid belonging to the group Roveacrinida. |
|||||
Gen. et sp. nov |
Valid |
Mooi et al. |
Early Miocene |
Chenque Formation |
A sand dollar belonging to the group Scutelliformes. The type species is C. maquedensis |
|||
Sp. nov |
In press |
Cole et al. |
||||||
Gen. et sp. nov |
Valid |
Rozhnov |
Katnikov Beds |
A cladid crinoid related to Crotalocrinites. The type species is E. uralicus |
||||
Sp. nov |
In press |
Gale |
Late Cretaceous (early Campanian) |
A crinoid. |
||||
Sp. nov |
In press |
Gale |
Late Cretaceous (early Campanian) |
A crinoid. |
||||
Gen. et sp. nov |
In press |
Hagdorn |
Middle Triassic (late Anisian) |
A stem-sea urchin belonging to the family Proterocidaridae. Genus includes new species L. mirabeti. |
||||
Sp. nov |
Valid |
Gladwell |
||||||
Sp. nov |
Valid |
Gale in Gale, Sadorf & Jagt |
A crinoid belonging to the group Roveacrinida. |
|||||
Sp. nov |
In press |
Schlüter & Wiese |
A sea urchin. |
|||||
Gen. et sp. nov |
In press |
Lin et al. |
Ordovician (latest Floian-earliest Dapingian) |
A crinoid related to Iocrinus. The type species is M. dawanensis. |
||||
Gen. et sp. nov |
In press |
Lefebvre & Lerosey-Aubril |
A solutan echinoderm. Genus includes new species P. utahensis. |
|||||
Gen. et sp. nov |
Valid |
Gale in Gale, Sadorf & Jagt |
A crinoid belonging to the group Roveacrinida. Genus includes new species P. sadorfi. |
|||||
Gen. et comb. nov |
Valid |
Mooi et al. |
Early Miocene |
Pirabas Formation |
A sand dollar belonging to the group Scutelliformes. The type species is "Abertella" complanata Brito (1981). |
|||
Gen. et sp. nov |
In press |
Cole et al. |
||||||
Sp. nov |
In press |
Gale |
Late Cretaceous (early Campanian) |
A crinoid. |
||||
Sp. nov |
In press |
Gale |
Late Cretaceous (early Campanian) |
A crinoid. |
||||
Gen. et sp. nov |
Valid |
Thompson et al. |
A stem-sea urchin. The type species is Y. luopingensis. |
Conodonts
Research
- A study on fossils of members of the genus Alternognathus from the Upper Devonian of the Kowala quarry (central Poland), attempting to calibrate the course of their ontogeny in days and documenting cyclic mortality events, is published by Świś (2018).[17]
- Reconstruction of the multi-element apparatus of the Middle Triassic conodont from British Columbia (Canada) belonging to the Neogondolella regalis group within the genus Neogondolella is presented by Golding (2018).[18]
New taxa
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Carlorosi, Sarmiento & Heredia |
Ordovician (Dapingian) |
|||||
Gen. et sp. nov |
In press |
Kılıç, Plasencia & Önder |
A member of the family Gondolellidae. The type species is G. quadrata. |
|||||
Sp. nov |
In press |
Kılıç, Plasencia & Önder |
A member of the family Gondolellidae. |
|||||
Sp. nov |
In press |
Kılıç, Plasencia & Önder |
A member of the family Gondolellidae. |
|||||
Gen. et 5 sp. et comb. nov |
In press |
Golding & Orchard |
Favret Formation |
A member of Ozarkodinida belonging to the family Gondolellidae. The type species is M. salomae; genus also includes new species M. alexanderi, M. cyri, M. julii and M. nebuchadnezzari, as well as "Neogondolella" regale Mosher (1970) and "Neogondolella" dilacerata Golding & Orchard (2016). |
||||
Sp. nov |
Valid |
Yuan, Zhang & Shen |
Selong Group |
|||||
Sp. nov |
Valid |
Hartenfels & Becker |
Devonian (Famennian) |
|||||
Subsp. nov |
Valid |
Hartenfels & Becker |
Devonian (Famennian) |
Fish
Amphibians
Research
- A study on the evolution of forelimb musculature from the lobe-finned fish to early tetrapods will be published by Molnar et al. (2018).[24]
- A study on the structure of stapes of Edops craigi is published by Schoch (2018).[25]
- A study on the morphology and phylogenetic relationships of Neldasaurus is published by Schoch (2018).[26]
- A study on the morphological changes in the skull that have been considered related to size reduction in dissorophoids, evaluating whether these changes are consistent with the consequences of miniaturization according to the studies in extant miniature amphibians, is published by Pérez-Ben, Schoch & Báez (2018).[27]
- Partial mandible of a large-bodied metoposaurid is described from the Upper Triassic Chinle Formation exposures at Petrified Forest National Park (Arizona, United States) by Gee & Parker (2018).[28]
- A study on the histology of the humeri of members of the species Metoposaurus krasiejowensis, revealing the occurrence of two different growth patterns (histotypes), is published by Teschner, Sander & Konietzko-Meier (2018).[29]
- A study on the feeding mode of Metoposaurus krasiejowensis as indicated by bone microstructure and computational biomechanics is published by Konietzko-Meier et al. (2018).[30]
- Redescription of Regalerpeton weichangensis based on eight new specimens and a study on the phylogenetic relationships of the species will be published by Rong (2018).[31]
- An incomplete vertebra of a member of Caudata is described from the Algerian part of the Cretaceous Kem Kem Beds by Alloul et al. (2018).[32]
- Cretaceous frog tracks are described from the Saok Island (South Korea) by Park et al. (2018), who name a new ichnotaxon Ranipes saokensis.[33]
- Fossils of the painted frog Latonia gigantea will be described from the Miocene of the Vallès-Penedès Basin (Spain) by Villa et al. (2018), representing the first known record of the species from the Iberian Peninsula.[34]
- Fossils of Latonia cf. gigantea will be described from the early Miocene of Greece (representing the first record of the species from that country) by Georgalis et al. (2018), along with other amphibian and reptile fossils.[35]
- A redescription of Pelobates praefuscus from the Pliocene of Moldova will be published by Syromyatnikova (2018), who considers this taxon to be a species distinct from Pelobates fuscus.[36]
- A redescription and a study of the phylogenetic relationships of Baurubatrachus pricei is published by Báez & Gómez (2018).[37]
- Frog fossils, including the first known fossils of shovelnose frogs, will be described from the early Pliocene of Kanapoi (Kenya) by Delfino (2018).[38]
- A study on the anatomy of regenerating tails in two specimens of the Carboniferous lepospondyl Microbrachis pelikani, comparing tail regeneration in this taxon and in extant seal salamander and Ocoee salamander, is published by van der Vos, Witzmann & Fröbisch (2018).[39]
- Description of the anatomy of the skeleton of the chroniosuchian species Bystrowiella schumanni and a study on the phylogenetic relationships of chroniosuchians will be published by Witzmann & Schoch (2018).[40]
- A study on the variation of digit proportions and trackway parameters in diadectomorph tracks with a relatively short pedal digit V, representing ichnogenus Ichniotherium, is published by Buchwitz & Voight (2018).[41]
New taxa
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Valid |
Matsumoto & Evans |
A member of the family Albanerpetontidae. The type species is S. isajii. |
Lizards and snakes
Research
- Fossil trackways probably made by lizards running bipedally are described from the Lower Cretaceous (Aptian-early Albian) Hasandong Formation (South Korea) by Lee et al. (2018), who name a new ichnotaxon Sauripes hadongensis.[43]
- A study on the manus of a putative stem-gekkotan from the Cretaceous amber from Myanmar is published by Fontanarrosa, Daza & Abdala (2018), who report the presence of adaptations to climbing, including adhesive structures.[44]
- A revision of the lizard fossils from the Upper Cretaceous of Mongolia and China which were originally assigned to the genus Bainguis is published by Dong et al. (2018), who transfer some of this fossil material to the stem-scincoid genus Parmeosaurus.[45]
- Fossil anguine material is described from the lower Miocene locality Ulm – Westtangente (Germany) for the first time by Klembara, Hain & Čerňanský (2018).[46]
- A study on the evolution of the skull shape in snakes and on its implications for inferring the ancestral ecology of snakes is published by Da Silva et al. (2018).[47]
- A natural cast of the posterior brain, skull vessels and nerves, and the inner ear of Dinilysia patagonica is described by Triviño et al. (2018).[48]
New taxa
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Klembara & Rummel |
Early Miocene |
A slow worm. |
||||
Sp. nov |
In press |
Čerňanský, Daza & Bauer |
A relative of the European leaf-toed gecko. |
Ichthyosauromorphs
- A study on the phylogenetic relationships of ichthyosaurs will be published by Moon (2018).[51]
- A survey of the form and distribution of pathological structures in the skeletons of ichthyosaurs is published by Pardo-Pérez et al. (2018).[52]
- Second specimen of Wahlisaurus massarae is reported from a quarry in Somerset (United Kingdom), from the base of the Blue Lias Formation (Triassic–Jurassic boundary) by Lomax, Evans & Carpenter (2018), extending known geographic and stratigraphic range of the species.[53]
- A reassessment of Ichthyosaurus communis and I. intermedius is published by Massare & Lomax (2018), who consider the latter species to be a junior synonym of the former.[54]
- A neonate specimen of Ichthyosaurus communis will be described by Lomax et al. (2018).[55]
Sauropterygians
Research
- A study on the internal anatomy of the skull of Nothosaurus marchicus is published by Voeten et al. (2018).[56]
- An incomplete mandible of a large-bodied predatory plesiosaur will be described from the Lower Cretaceous (Barremian) Deister Formation (Germany) by Sachs et al. (2018).[57]
- The first Jurassic plesiosaur from Antarctica is described from the Upper Jurassic Ameghino (= Nordensköld) Formation (Antarctic Peninsula) by O’Gorman et al. (2018).[58]
- Two new plesiosaur specimens, including a specimen of the species Libonectes morgani (otherwise known from North American fossils), are described from the Upper Cretaceous (Turonian) deposits of Goulmima (Morocco) by Allemand et al. (2018).[59]
- Description of a skull and partial postcranial skeleton of a juvenile elasmosaurid from the Upper Cretaceous Tahora Formation (New Zealand), referred to the species Tuarangisaurus keyesi, is published by Otero et al. (2018).[60]
New taxa
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
In press |
Sachs & Kear |
An early relative of pliosaurids. The type species is A. schuberti. |
|||||
Sp. nov |
In press |
Vincent et al. |
||||||
Sp. nov |
In press |
O’Gorman, Gasparini & Spalletti |
Vaca Muerta Formation |
Turtles
Research
- A study on the Early and Middle Triassic turtle tracks and their implications for the origin of turtles will be published by Lichtig et al. (2018).[64]
- Fossil turtle footprints will be described from the Triassic (Carnian) localities in eastern Spain by Reolid et al. (2018), who interpret the findings as indicating a freshwater semi-aquatic habit for some early turtles during the early Late Triassic.[65]
- A study on the anatomy of the brain, inner ear, nasal cavity and skull nerves of Proganochelys quenstedti, and on its implications for inferring the sensory capabilities and ecology of the species and for the evolution of turtle brains is published by Lautenschlager, Ferreira & Werneburg (2018).[66]
- A study on the anatomy and phylogenetic relationships of Kallokibotion bajazidi based on well-preserved new fossil material is published by Pérez-García & Codrea (2018).[67]
- A restudy of the type material of the Late Cretaceous pan-chelid Linderochelys rinconensis and a description of new fossils of the species is published by Jannello et al. (2018).[68]
- A study on the phylogenetic relationships and body size evolution of extant and extinct tortoises will be published by Vlachos & Rabi (2018).[69]
New taxa
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
In press |
Szczygielski, Tyborowski & Błażejowski |
A member of Pancryptodira. The type species is O. borsukbialynickae. |
|||||
Sp. nov |
Valid |
Jasinski |
Late Hemphillian |
A species of Trachemys. |
||||
Gen. et sp. nov |
In press |
Tong et al. |
Early Eocene |
A stem-testudinoid. Genus includes new species W. eocenica. |
||||
Gen. et sp. nov |
In press |
Ferreira et al. |
A member of Pleurodira related to Peiropemys. Genus includes new species Y. montealtensis. |
Archosauriformes
Pseudosuchians
Research
- Redescription of the aetosaur species Calyptosuchus wellesi is published by Parker (2018).[74]
- A study on the anatomy of the skeleton of Coahomasuchus chathamensis and on the phylogenetic relationships of aetosaurs is published by Hoffman, Heckert & Zanno (2018).[75]
- A study on the anatomy of the backbone of Poposaurus langstoni is published by Stefanic & Nesbitt (2018).[76]
- New fossil material (an isolated left dentary) of Orthosuchus stormbergi will be described from the Upper Elliot Formation (South Africa) by Dollman, Viglietti & Choiniere (2018), who also examine the stratigraphic positions of all valid crocodylomorph specimens from the main Karoo Basin.[77]
- Teleosaurid and metriorhynchid teeth will be described from, respectively, the Middle Jurassic (Aalenian) and Upper Jurassic (Tithonian) of Slovakia by Čerňanský et al. (2018), representing the first record of members of both families from the country.[78]
- A skull of a member of the genus Tyrannoneustes is described from the Middle Jurassic (Callovian) of Germany by Waskow, Grzegorczyk & Sander (2018).[79]
- New specimen of Neuquensuchus universitas, providing new information on the skeletal anatomy of members of the species, is described from the Upper Cretaceous (Santonian) Bajo de la Carpa Formation (Argentina) by Lio et al. (2018).[80]
- A redescription of the anatomy of the skull of Notosuchus terrestris is published by Barrios et al. (2018).[81]
- A study on the anatomy of the skull of Morrinhosuchus luziae is published by Iori et al. (2018).[82]
- A study on the anatomic structures and tooth wear related to mastication in Caipirasuchus is published by Iori & Carvalho (2018).[83]
- A study on the taphonomy of the baurusuchid specimens (as well as non-avian theropods and titanosaur sauropod dinosaurs) from the Upper Cretaceous Bauru Group (Brazil) will be published by Bandeira et al. (2018), who argue that low diversity of known theropods in the Bauru Group might be caused by preservational biases, and does not conclusively indicate that baurusuchids outcompeted theropods as top predators in this area.[84]
- A revision of Trematochampsa taqueti and all fossil material assigned to the species will be published by Meunier & Larsson (2018).[85]
- Description of pelvic and femoral remains of allodaposuchids from the Upper Cretaceous of the Lo Hueco fossil site (Spain) is published by de Celis, Narváez & Ortega (2018).[86]
- Fossils of an eusuchian crocodyliform are described from the Lower Cretaceous (Aptian) Khok Kruat Formation (Thailand) by Kubo et al. (2018), representing the oldest record of Asian eusuchians reported so far.[87]
- A reassessment of the anatomy and phylogenetic relationships of Asiatosuchus nanlingensis and Eoalligator chunyii will be published by Wu, Li & Wang (2018), who reinstate the latter taxon as a species distinct from the former one.[88]
- A study on the ontogenetic changes of the skull shape in extant caimans and its implications for the validity of the Miocene species Melanosuchus fisheri will be published by Foth et al. (2018).[89]
- A fragment of a mandible of a member of the genus Gryposuchus is described from the Miocene (~18 Ma) Castillo Formation (Venezuela) by Solórzano, Núñez-Flores & Rincón (2018), representing the earliest record of the genus in South America reported so far.[90]
- Fossils of a specimen of Asiatosuchus depressifrons from the late Paleocene of Mont de Berru (France), representing the oldest European crocodyloid remains reported so far, will be described by Delfino et al. (2018).[91]
- A review of the taxonomic diversity of the crocodiles from the early Pliocene of Kanapoi (Kenya) will be published by Brochu (2018).[92]
- Fossils of large crocodylians, as well as tortoise fossils with feeding traces on them, are described from the Pleistocene of Aldabra (Seychelles) by Scheyer et al. (2018), who interpret their findings as indicating the occurrence of a predator–prey interaction between crocodylians and giant tortoises on Aldabra during the Late Pleistocene.[93]
New taxa
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Ristevski et al. |
A goniopholidid. | |||||
Gen. et sp. nov |
Valid |
Filippi, Barrios & Garrido |
A peirosaurid crocodyliform. The type species is K. overoi. |
Non-avian dinosaurs
Research
- A study intending to identify the evolutionary processes that drove the diversification of dinosaur body mass is published by Benson et al. (2018).[96]
- A study on the impact of geography on the evolutionary radiation of dinosaurs is published by O’Donovan, Meade & Venditti (2018), who note increasing amounts of sympatric speciation as terrestrial space became a limiting factor.[97]
- A study on the impact of publication history on the estimates of dinosaur diversity patterns through time is published by Tennant, Chiarenza & Baron (2018).[98]
- A study comparing non-avian dinosaur faunas of Appalachia and Laramidia from the Aptian to Maastrichtian stages of the Cretaceous period is published by Brownstein (2018), who also evaluates dinosaur provincialism and ecology on Appalachia.[99]
- A study on the bone histology of sauropod dinosaurs and birds, looking for histological correlates indicative of the presence of bird-like air sacs, is published by Lambertz, Bertozzo & Sander (2018).[100]
- A study on the Middle Jurassic flora from Yorkshire (United Kingdom) as indicated by pollen and spores, and on the possible dinosaur-plant interactions in the area is published by Slater et al. (2018).[101]
- A study on the phylogenetic placement of Chilesaurus diegosuarezi and its implications for the phylogenetic relationships of major dinosaur groups will be published by Müller & Dias-da-Silva (2018).[102]
- Theropod tracks (probably produced by Acrocanthosaurus) are described from the Cretaceous (Albian) De Queen Formation (Arkansas, United States) by Platt et al. (2018).[103]
- New data on feather anatomy in theropod dinosaurs Sinosauropteryx, Caudipteryx and Anchiornis is presented by Saitta, Gelernter & Vinther (2018).[104]
- Theropod tracksite discovered in the Maastrichtian Nemegt Formation (Mongolia), preserving tracks of least four different trackmakers, and associated with a distorted foot skeleton of Gallimimus, is described by Lee et al. (2018).[105]
- Didactyl theropod tracks with similarities to footprints attributed to small deinonychosaurian theropods will be described from the Middle Jurassic (Aalenian-Bajocian) Dansirit Formation (Iran) by Xing, Abbassi & Lockley (2018).[106]
- Bishop et al. (2018) present predictive equations that may be used to model non-avian theropod locomotion, developed on the basis of a study of extant ground-running birds.[107]
- A study on the early evolution of the theropod hands and wrists, especially on the transition from five- to four-fingered hands, as indicated by the anatomy of the hands of Coelophysis bauri and Megapnosaurus rhodesiensis is published by Barta, Nesbitt & Norell (2018).[108]
- A study on the morphological changes that occurred during ontogeny in the postcranial skeleton of Coelophysis bauri and Megapnosaurus rhodesiensis is published by Griffin (2018).[109]
- A study on the pneumatization of a noasaurid vertebra recovered from the Upper Cretaceous Adamantina Formation (Brazil) is published by Brum et al. (2018).[110]
- Paulina-Carabajal & Filippi (2018) reconstruct the endocranial cavity enclosing the brain, cranial nerves, blood vessels and the labyrinth of the inner ear of the holotype specimen of Viavenator exxoni.[111]
- Description of the osteology of Viavenator exxoni is published by Filippi et al. (2018).[112]
- Fragmented theropod maxilla from the Upper Cretaceous Presidente Prudente Formation (Brazil), initially thought to be a carcharodontosaurid fossil, is interpreted as more likely to be an abelisaurid fossil by Delcourt & Grillo (2018).[113]
- Partial tibia of a tyrannosauroid theropod, possibly a relative of Bistahieversor sealeyi, is described from the Upper Cretaceous (Maastrichtian) Navesink Formation (New Jersey, United States) by Brownstein (2018).[114]
- Theropod fossils from the Lower Cretaceous (Albian) Santana Formation (Brazil), initially thought to be oviraptorosaur fossils, are reinterpreted as fossils of a member of Megaraptora by Aranciaga Rolando et al. (2018).[115]
- A study on the diversity of ornithomimosaur dinosaurs from the Upper Cretaceous Nemegt Formation (Mongolia) as indicated by the morphology of their manus bones is published by Chinzorig et al. (2018).[116]
- A study on the morphology of the dentary of a member of the genus Caenagnathasia from the Upper Cretaceous (Turonian) Bissekty Formation (Uzbekistan) is published by Wang, Zhang & Yang (2018).[117]
- Description of the anatomy of the postcranial skeleton of a newly discovered specimen of Buitreraptor gonzalezorum is published by Novas et al. (2018).[118]
- A study on the tail anatomy of Buitreraptor gonzalezorum is published by Motta, Brissón Egli & Novas (2018).[119]
- Histological analysis of the forelimb bones of Daliansaurus liaoningensis will be presented by Shen et al. (2018).[120]
- A study on the histology of limb bones of Anchiornis, Aurornis, Eosinopteryx, Serikornis and Jeholornis, and on the dynamics of skeletal growth in these taxa, is published by Prondvai et al. (2018).[121]
- Description of two new specimens of Anchiornis huxleyi and a study on the phylogenetic relationships of the species is published by Guo, Xu & Jia (2018).[122]
- A study on the evolution of the anatomy of the braincase of sauropodomorph dinosaurs is published by Bronzati, Benson & Rauhut (2018).[123]
- A dinosauriform femur, possibly of a juvenile specimen of the species Pampadromaeus barberenai, will be described from the Late Triassic of southern Brazil by Müller et al. (2018).[124]
- Redescription of the anatomy of the braincase of Efraasia minor is published by Bronzati & Rauhut (2018).[125]
- A study on the anatomy of the skull of Massospondylus carinatus is published by Chapelle & Choiniere (2018).[126]
- A study on the osteology of the sauropodomorph Pulanesaura eocollum will be published by Mcphee & Choiniere (2018).[127]
- A study on the geological age of the type locality of Vulcanodon karibaensis is published by Viglietti et al. (2018), who interpret Vulcanodon as likely to be Sinemurian–Pliensbachian in age, and potentially ∼10–15 million years older than previously thought. This makes it the oldest known sauropod.[128]
- Two neck vertebrae of an eusauropod sauropod dinosaur are described from a new Early Jurassic locality in the Haute Moulouya Basin (Morocco) by Nicholl, Mannion & Barrett (2018), representing some of the earliest eusauropod fossils reported so far.[129]
- A natural skull endocast of a sauropod dinosaur, likely a dicraeosaurid, is described from the Lower Cretaceous Mulichinco Formation (Argentina) by Paulina Carabajal et al. (2018).[130]
- A sauropod footprint assigned to the ichnogenus Brontopodus, produced by a trackmaker of the size exceeding that of any Mongolian dinosaur reported so far from skeletal material, is described from the Upper Cretaceous Nemegt Formation (Mongolia) by Stettner, Persons & Currie (2018).[131]
- New titanosaur fossil material is described from the Upper Cretaceous Río Huaco Formation and Los Llanos Formation (La Rioja Province, Argentina) by Hechenleitner et al. (2018).[132]
- A redescription of Mendozasaurus neguyelap based on previously undocumented remains and a study on the phylogenetic relationships of the species is published by Gonzàlez Riga et al. (2018).[133]
- Postcranial remains attributable to the holotype specimen of Nemegtosaurus mongoliensis is described from the Upper Cretaceous Nemegt Formation (Mongolia) by Currie et al. (2018), who consider Opisthocoelicaudia skarzynskii to be a probable junior synonym of N. mongoliensis.[134]
- A study on the morphological diversity of stegosaurs through the evolutionary history of the group will be published by Romano (2018).[135]
- Probable ankylosaurian footprints will be described from the Upper Jurassic Guará Formation (Brazil) by Francischini et al. (2018).[136]
- A study on the neuroanatomy of ankylosaurid dinosaurs based on skull endocasts of Talarurus plicatospineus and Tarchia teresae is published by Paulina-Carabajal et al. (2018).[137]
- A survey of ankylosaur occurrences in the Cretaceous deposits of Alberta (Canada) and a study looking for explanation of numerous instances of ankylosaur specimens preserved overturned is published by Mallon et al. (2018).[138]
- A study on the bone microstructure and ontogeny of basal ornithopod specimens from the Early Cretaceous of Australia is published by Woodward, Rich & Vickers-Rich (2018), who reinterpret the tracks as produced in non-marine environment.[139]
- A redescription of Iguanodon galvensis and a study on the phylogenetic relationships of the species will be published by Verdú et al. (2018).[140]
- Microfossil remains of Early Cretaceous grasses extracted from a specimen of Equijubus normani will be described by Wu, You & Li (2018).[141]
- A study on the phylogenetic relationships of Nipponosaurus sachalinensis will be published by Takasaki et al. (2018).[142]
- A hadrosaurid nestling belonging to the genus Edmontosaurus is described from the Upper Cretaceous (Maastrichtian) Hell Creek Formation (Montana), United States) by Wosik, Goodwin & Evans (2018), who interpret its anatomy as indicating that it was capable of fully quadrupedal locomotion.[143]
- A study on the differences in shape and structural performance of the lower jaws of ceratopsians is published by Maiorino et al. (2018).[144]
- A description of the anatomy of the postcranial skeleton of Yinlong downsi and a study on the phylogenetic relationships of basal ornithischians will be published by Han et al. (2018).[145]
- Two isolated ceratopsid horncores are described from the Upper Cretaceous (Campanian, ∼78.5 million years ago) Foremost Formation (Alberta, Canada) by Brown (2018), representing some of the earliest ceratopsid fossils reported so far.[146]
- Description of new fossil material of Medusaceratops lokii from the Upper Cretaceous Campanian (Judith River Formation (Montana, United States) and a study on the phylogenetic relationships of the species will be published by Chiba et al. (2018).[147]
New taxa
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Funston et al. |
An oviraptorosaurian. | |||||
Gen. et sp. nov |
Valid |
Hu et al. |
||||||
Gen. et sp. nov |
Valid |
Simón, Salgado & Calvo |
A titanosaur sauropod. The type species is C. baileywillisi. |
|||||
Gen. et sp. nov |
Valid |
Herne et al. |
A small-bodied ornithopod. The type species is D. pickeringi. |
|||||
Gen. et sp. nov |
Zheng et al. |
A member of the family Ankylosauridae belonging to the subfamily Ankylosaurinae. The type species is J. sinensis. |
||||||
Gen. et sp. nov |
In press |
Zhang et al. |
A hadrosaurid ornithopod belonging to the subfamily Saurolophinae and the tribe Edmontosaurini. The type species is L. youngi. |
|||||
Gen. et sp. nov |
Valid |
Sallam et al. |
A titanosaur sauropod. The type species is M. shahinae. |
|||||
Gen. et sp. nov |
In press |
Averianov et al. |
Early Cretaceous (probably Barremian) |
A non-titanosaurian somphospondyl sauropod. Genus includes new species S. astrosacralis. |
Birds
Research
- A study evaluating whether eggs of early birds from the Mesozoic could have borne the weight of incubating adults is published by Deeming & Mayr (2018).[156]
- A study on Praeornis sharovi from the Late Jurassic of Kazakhstan will be published by Agnolin, Rozadilla & Carvalho (2018), who interpret the fossil as a tail feather of a basal bird.[157]
- A redescription of the bird trackway originally labeled Aquatilavipes anhuiensis from the Lower Cretaceous Qiuzhuang Formation (Anhui, China) is published by Xing et al. (2018), who transfer this ichnospecies to the ichnogenus Koreanaornis.[158]
- New avian ichnospecies Ignotornis canadensis is described from the Lower Cretaceous (Albian) Gates Formation (Canada) by Buckley, McCrea & Xing (2018).[159]
- Ignotornid tracks are described from the Lower Cretaceous of Jiangsu (China) by Xing et al. (2018), representing the first known record of the ichnogenus Goseongornipes from China.[160]
- The twelfth specimen of Archaeopteryx, the oldest reported so far, is described by Rauhut, Foth & Tischlinger (2018).[161]
- Gastrolith masses preserved in five specimens of Jeholornis will be described by O'Connor et al. (2018).[162]
- A new confuciusornithid specimen, most similar to Eoconfuciusornis zhengi but also sharing traits with Confuciusornis, will be described from the Upper Cretaceous Huajiying Formation (China) by Navalón et al. (2018).[163]
- An articulated skeleton of an enantiornithine bird preserved in the Cretaceous amber from Myanmar is described by Xing et al. (2018).[164]
- A study evaluating the capacity of the enantiornithines Concornis lacustris and Eoalulavis hoyasi to use intermittent flight (alternating flapping and gliding phases) is published by Serrano et al. (2018).[165]
- A study comparing the hindlimb morphology of hesperornithiforms and modern foot-propelled diving birds is published by Bell, Wu & Chiappe (2018).[166]
- A study on the evolution of the anatomy of the crown-bird skull is published by Felice & Goswami (2018), who also present a hypothetical reconstruction of the ancestral crown-bird skull.[167]
- A study on the dietary behavior of four species of the moa and their interactions with parasites based on data from their coprolites is published by Boast et al. (2018).[168]
- A study on the phylogenetic relationships of the taxa assigned to the family Vegaviidae by Agnolín et al. (2017)[169] is published by Mayr et al. (2018).[170]
- A study on the microstructure of the bones of Vegavis iaai will be published by Garcia Marsà, Agnolín & Novas (2018).[171]
- A study on the phylogenetic relationships of the species Chendytes lawi and the Labrador duck (Camptorhynchus labradorius) is published by Buckner et al. (2018).[172]
- A nearly complete tarsometatarsus of the least seedsnipe (Thinocorus rumicivorus) will be described from the Ensenadan of Argentina by Picasso, De Mendoza & Gelfo (2018).[173]
- Petralca austriaca, originally thought to be an auk, is reinterpreted as a member of Gaviiformes by Göhlich & Mayr (2018).[174]
- Pedal phalanx of a penguin affected by osteomyelitis will be described from the Eocene of West Antarctica by Jadwiszczak & Rothschild (2018).[175]
- Fossil material attributed to the extinct Hunter Island penguin (Tasidyptes hunteri) is reinterpreted as assemblage of remains from three extant penguin species by Cole et al. (2018).[176]
- A study on the history of penguin colonization of the Vestfold Hills (Antarctica), indicating that penguins started colonizing the northern Vestfold Hills around 14.6 thousand years before present, will be published by Gao et al. (2018).[177]
- New bird fossils, including the first reported tarsometatarsus of the plotopterid Tonsala hildegardae will be described from the late Eocene/early Oligocene Makah Formation and the Oligocene Pysht Formation (Washington State, United States) by Mayr & Goedert (2018), who name a new plotopterid subfamily Tonsalinae.[178]
- Extinct lowland kagu (Rhynochetos orarius) is reinterpreted as synonymous with extant kagu (Rhynochetos jubatus) by Theuerkauf & Gula (2018).[179]
- New phorusrhacid fossils are described from the Pleistocene of Uruguay by Jones et al. (2018), providing evidence of survival of phorusrhacids until the end of the Pleistocene.[180]
- A study on the phylogenetic relationships of the extinct Cuban macaw (Ara tricolor) is published by Johansson et al. (2018).[181]
- A review of the bird fossil assemblage from the Paleocene locality of Menat (Puy-de-Dôme, France), including a new fossil specimen with exceptional soft tissue preservation, is published by Mayr, Hervet & Buffetaut (2018).[182]
- A study on the fossil bird remains from the Pliocene locality of Kanapoi (Kenya), indicating presence of many aquatic birds, will be published by Field (2018).[183]
- A study on the bird fossils from the Olduvai Gorge site (Tanzania) and their implications for inferring the environmental context of the site during the Oldowan-Acheulean transitional period is published by Prassack et al. (2018).[184]
- A study on the bird fossil assemblage from the Pleistocene of the Rio Secco Cave (north-eastern Italy) and its implications for the palaeoenvironmental reconstructions of the site is published by Carrera et al. (2018).[185]
New taxa
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Zelenkov et al. |
Middle Miocene |
A duck. |
||||
Gen. et sp. nov |
Valid |
Zheng et al. |
An early member of Ornithuromorpha. Genus includes new species E. edentulata. |
|||||
Gen. et sp. nov |
Valid |
Volkova & Zelenkov |
Early Miocene |
A passerine belonging to the group Certhioidea. Genus includes new species K. scandens. |
||||
Gen. et sp. nov |
Valid |
Mather et al. |
Bannockburn Formation |
A rail. The type species is L. livezeyi. |
||||
Gen. et comb. nov |
Valid |
Mayr et al. |
Late Paleocene |
Waipara Greensand |
An early penguin; a new genus for "Waimanu" tuatahi Ando, Jones & Fordyce in Slack et al. (2006). |
|||
Gen. et sp. nov |
Valid |
Mather et al. |
Bannockburn Formation |
A rail. The type species is P. parvales. |
||||
Gen. et sp. nov |
Valid |
Mayr et al. |
Middle Paleocene |
Waipara Greensand |
An early penguin. Genus includes new species S. rosieae. |
Pterosaurs
Research
- A pterosaur humerus from the Late Jurassic of Thailand, originally assigned to the group Azhdarchoidea, is reassigned to the family Rhamphorhynchidae by Unwin & Martill (2018).[191]
- A new juvenile specimen of Pteranodon (the smallest reported so far) will be described from the Smoky Hill Chalk Member of the Niobrara Formation (Kansas, United States) by Bennett (2018).[192]
- A giant humerus of a tapejaroid pterosaur is described from the Upper Cretaceous Plottier Formation (Argentina) by Ortiz David, González Riga & Kellner (2018).[193]
- A revision of the taxonomy of Noripterus and other Asian members of the family Dsungaripteridae is published by Hone, Jiang & Xu (2018).[194]
- A new thalassodromine specimen will be described from the Lower Cretaceous Romualdo Formation (Brazil) by Buchmann et al. (2018), providing new information on the anatomy of the postcranial skeleton of members of the group.[195]
- Purported pterosaur pelvis from the Upper Cretaceous (Campanian) Dinosaur Park Formation (Canada) described by Funston, Martin-Silverstone & Currie (2017)[196] is reinterpreted as a broken tyrannosaurid squamosal by Funston, Martin-Silverstone & Currie (2018).[197]
New taxa
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et comb. nov |
Valid |
Rigal, Martill & Sweetman |
Early Cretaceous (late Valanginian or early Hauterivian) |
A pterodactyloid pterosaur; a new genus for "Pterodactylus" sagittirostris Owen (1874). |
||||
Gen. et sp. nov |
Valid |
Lü et al. |
A member of the family Anurognathidae. Genus includes new species V. lamadongensis. |
|||||
Gen. et sp. nov |
Valid |
Martill et al. |
Cretaceous (Albian or early Cenomanian) |
A member of Azhdarchoidea. The type species is X. curvirostris. |
Other archosauriforms
- A study on the microstructure of the long bones (femur and tibiae) of Lewisuchus admixtus will be published by Garcia Marsà, Agnolín & Novas (2018).[201]
- A study on the anatomy of the braincase of Silesaurus opolensis will be published by Piechowski, Niedźwiedzki & Tałanda (2018).[202]
- Studies on the phylogenetic relationships of Pisanosaurus mertii will be published by Agnolín & Rozadilla (2018) and Baron (2018), who interpret the taxon as a likely silesaurid.[203][204]
- Reevaluation of Caseosaurus crosbyensis and a study on the phylogenetic relationships of the species is published by Baron & Williams (2018).[205]
Other reptiles
Research
- Description of the anatomy of the lower jaw of Delorhynchus will be published by Haridy, Macdougall & Reisz (2018).[206]
- Pathological sacral vertebrae of a pareiasaur belonging to the clade Velosauria are described from the Permian (Wuchiapingian) upper member of the Madumabisa Mudstone Formation (Luangwa Basin, Zambia) by Turner & Sidor (2018).[207]
- A study on the teeth of Opisthodontosaurus carrolli is published by Haridy, LeBlanc & Reisz (2018), who present evidence of regular tooth replacement events in the lower jaw of O. carrolli.[208]
- Jaw elements of members of an otherwise Gondwanan diapsid genus Palacrodon are described from the Upper Triassic Chinle Formation (Arizona, United States) by Kligman, Marsh & Parker (2018).[209]
- Description of two specimens of the rhynchocephalian species Clevosaurus hudsoni from the Upper Triassic of the Cromhall Quarry (United Kingdom), providing new information on the anatomy of the species, will be published by O’Brien, Whiteside & Marshall (2018).[210]
- A study on the anatomy of the skeleton of Pappochelys rosinae will be published by Schoch & Sues (2018).[211]
- A study on the taphonomy of the skeletons of Tanystropheus longobardicus from the Middle Triassic Besano Formation (Monte San Giorgio, Switzerland) and its implications for inferring whether Tanystropheus was terrestrial or aquatic will be published by Beardmore & Furrer (2018).[212]
- A re-analysis of the osteology of Tanystropheus, a reconstruction of the musculature of the tail, pelvic girdle and hindlimbs of the taxon and a study on the locomotion and lifestyle of the taxon is published by Renesto & Saller (2018).[213]
- Description of the maxillary tooth plate and dentary teeth of the rhynchosaur species Hyperodapedon sanjuanensis will be published by Gentil & Ezcurra (2018).[214]
- Partial maxilla of a hyperodapedontine rhynchosaur, possessing a morphology that differs from those of other South American rhynchosaur species, will be described from the Upper Triassic Ischigualasto Formation (Argentina) by Gentil & Ezcurra (2018).[215]
New taxa
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
In press |
Keeble, Whiteside & Benton |
||||||
Sp. nov |
Valid |
Liu & Bever |
Late Permian |
|||||
Gen. et sp. nov |
Valid |
Modesto, Scott & Reisz |
Early Permian |
Richards Spur locality |
A member of the family Captorhinidae. Genus includes new species L. richardi. |
Synapsids
Non-mammalian synapsids
- A description of the postcranial material referable to the caseid species Ennatosaurus tecton will be published by Romano, Brocklehurst & Fröbisch (2018).[219]
- A skull of a juvenile specimen of Anteosaurus magnificus is described from the Permian Abrahamskraal Formation (South Africa) by Kruger, Rubidge & Abdala (2018).[220]
- Femur of a specimen of the titanosuchid species Jonkeria parva affected by osteomyelitis will be described from the Permian of Karoo Basin (South Africa) by Shelton, Chinsamy & Rothschild (2018).[221]
- A study on the evolution of the trigeminal nerve innervation in anomodonts is published by Benoit et al. (2018).[222]
- Description of the anatomy of six new skulls of the dicynodont Abajudon kaayai from the Permian (Guadalupian) lower Madumabisa Mudstone Formation (Zambia) and a study on the phylogenetic relationships of the species is published by Olroyd, Sidor & Angielczyk (2018).[223]
- A study on the musculature, posture and range of motion of the forelimb of Massetognathus pascuali is published by Lai, Biewener & Pierce (2018).[224]
- A study on the bone histology of the traversodontid cynodonts Protuberum cabralense and Exaeretodon riograndesis will be published by Veiga, Botha-Brink & Soares (2018).[225]
- Right dentary with teeth of Prozostrodon brasiliensis will be described from the Late Triassic of Brazil by Pacheco et al. (2018), representing the second known specimen of this species.[226]
- A study on the origin and relationships of ictidosaurian cynodonts, i.e. tritheledontids and therioherpetids, is published by Bonaparte & Crompton (2018).[227]
- Digital skull endocast of a specimen of Riograndia guaibensis is reconstructed by Rodrigues et al. (2018).[228]
- Tetrapod burrows, likely produced by small eucynodonts, are described from the Triassic Chañares Formation (Argentina) by Fiorelli et al. (2018).[229]
Mammals
Other animals
Research
- A study on the phylogenetic relationships of the rangeomorphs, dickinsoniomorphs and erniettomorphs as indicated by what is known of the ontogeny of the rangeomorph Charnia masoni, dickinsoniomorph Dickinsonia costata and erniettomorph Pteridinium simplex will be published by Dunn, Liu & Donoghue (2018), who consider at least the rangeomorphs and dickinsoniomorphs to be metazoans.[230]
- The first reliable occurrence of abundant penetrative trace fossils, providing trace fossil evidence for Precambrian bilaterians with complex behavioural patterns, is reported from the latest Ediacaran of western Mongolia by Oji et al. (2018).[231]
- An aggregation of members of the genus Parvancorina, providing evidence of two size-clusters and bimodal orientation in this taxon, is described from the Ediacara Conservation Park (Australia) by Coutts et al. (2018).[232]
- 3D reconstructions of Cloudina aggregates are presented by Mehra & Maloof (2018).[233]
- A study on the substrate growth dynamics, mode of biomineralization and possible affinities of Namapoikia rietoogensis is published by Wood & Penny (2018).[234]
- A study on the nature and biological affinity of the Cambrian taxon Archaeooides is published by Yin et al. (2018), who interpret the fossils of Archaeooides as embryonic remains of animals.[235]
- An assemblage of animal fossils, including the oldest known pterobranchs, preserved in the form of small carbonaceous fossils is described from the Cambrian Buen Formation (Greenland) by Slater et al. (2018).[236]
- Description of new morphological features of the Cambrian mobergellan Discinella micans is published by Skovsted & Topper (2018).[237]
- A study on the slab with a dense aggregation of members of the species Banffia constricta recovered from the Cambrian Burgess Shale (Canada) and its implications for life habits of the animal will be published by Chambers & Brandt (2018).[238]
- A study on the fossil record of early Paleozoic graptoloids and on the factors influencing rates of diversification within this group is published by Foote et al. (2018).[239]
- A redescription of the species Malongitubus kuangshanensis from the Cambrian Chengjiang Lagerstätte (China) is published by Hu et al. (2018), who interpret this taxon as a pterobranch.[240]
- A study reinterpreting the putative Cambrian lobopodian Mureropodia apae as a partial isolated appendage of a member of the genus Caryosyntrips, published by Pates & Daley (2017)[241] is criticized by Gámez Vintaned & Zhuravlev (2018);[242] Pates, Daley & Ortega-Hernández (2018) defend their original conclusions.[243]
- The presence of metameric midgut diverticulae is reported for the first time in the stem-arthropod Fuxianhuia protensa by Ortega-Hernández et al. (2018), who interpret their finding as indicative of a predatory or scavenging ecology of fuxianhuiids.[244]
- Fossils of spindle- or conotubular-shaped animals of uncertain phylogenetic placement are described from the Ordovician Martinsburg Formation (Pennsylvania, United States) by Meyer et al. (2018).[245]
- Evidence of macrofauna living at depths of up to 8 metres below the seabed is reported from the Permian Fort Brown Formation (Karoo Basin, South Africa) by Cobain et al. (2018).[246]
- A study on the chemical composition, morphology and phylogeny of fossil (Cenozoic, Mesozoic and Paleozoic) annelid tubes and tubes formerly thought to have been made by annelids, recovered from hydrothermal vent and cold seep environments, will be published by Georgieva et al. (2018).[247]
- The oldest stromatoporoid–bryozoan reefs reported so far are described from the middle Ordovician Duwibong Formation (South Korea) by Hong et al. (2018).[248]
New taxa
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Valid |
Yang et al. |
A stem-arthropod related to Chengjiangocaris. The type species is A. mirabilis. |
|||||
Gen. et sp. nov |
In press |
Suárez Andrés & Wyse Jackson |
Moniello Formation |
A bryozoan belonging to the group Fenestrata. Genus includes new species A. sotoi. |
||||
Sp. nov |
Valid |
Liu et al. |
||||||
Gen. et 2 sp. nov |
In press |
Taylor & Brezina |
A bryozoan belonging to the group Tubuliporina and the family Oncousoeciidae. The type species is A. giselae; genus also includes A. mediorubiensis. |
|||||
Sp. nov |
Valid |
Benedetto, Lavie & Muñoz |
A brachiopod. |
|||||
Gen. et sp. nov |
Valid |
VandenBerg |
Ordovician (late Floian) |
A graptolite belonging to the group Sinograptina and the family Sigmagraptidae. The type species is C. communalis. |
||||
Gen. et sp. nov |
In press |
Gámez Vintaned et al. |
A tubicolous animal of uncertain phylogenetic placement. The type species is C. grioensis. |
|||||
Sp. nov |
Valid |
Gutiérrez-Marco & Vinn |
A member of Cornulitida. |
|||||
Sp. nov |
Valid |
Sun et al. |
Manto Formation |
A member of Hyolitha. |
||||
Sp. nov |
Valid |
Zong & Ma |
A brachiopod belonging to the group Spiriferida. |
|||||
Sp. nov |
In press |
Vandenberg |
A graptolite belonging to the group Dichograptina and the family Pterograptidae. |
|||||
Gen. et sp. nov |
Valid |
Nanglu & Caron |
A polychaete. Genus includes new species K. barbarensis. |
|||||
Gen. et sp. nov |
In press |
Torres-Martínez, Sour-Tovar & Barragán |
Paso Hondo Formation |
A brachiopod belonging to the group Productida and the family Productidae. The type species is K. spinosus. |
||||
Sp. nov |
In press |
Sagular, Yümün & Meriç |
Quaternary |
|||||
Gen. et sp. nov |
Valid |
Carrera et al. |
Agua de Lucho Formation |
A hexactinellid sponge belonging to the family Dictyospongiidae. The type species is M. parvis. |
||||
Gen. et sp. nov |
Valid |
Baeza-Carratalá, Pérez-Valera & Pérez-Valera |
Siles Formation |
A brachiopod belonging to the group Terebratellidina and to the superfamily Zeillerioidea. The type species is M. goyi. |
||||
Sp. nov |
In press |
Sagular, Yümün & Meriç |
Quaternary |
|||||
Sp. nov |
In press |
Schlögl et al. |
||||||
Sp. nov |
Valid |
Slater, Harvey & Butterfield |
Lontova Formation |
A member of the total group of Chaetognatha. |
||||
Gen. et sp. nov |
In press |
Yang et al. |
A palaeoscolecid. The type species is S. xixiangensis. |
|||||
Gen. et sp. nov |
Valid |
Pates, Daley & Ortega-Hernández |
A member of Radiodonta belonging to the group Hurdiidae. The type species is S. hirpex. The original description of the taxon appeared in an online supplement to the article published by Caron et al. (2010),[268] making in invalid until it was validated by Pates, Daley & Ortega-Hernández (2018).[242][243] |
Other organisms
Research
- Carbon isotope analyses of 11 microbial fossils from the ∼3,465-million-year-old Apex chert (Australia) are published by Schopf et al. (2018), who interpret two of the five studied species as primitive photosynthesizers, one as an Archaeal methane producer, and two as methane consumers.[269]
- A study on the chemical, isotopic and molecular structural characteristics of the putative multicellular eukaryote fossils from carbonaceous compressions in the 1.63 billion years old Tuanshanzi Formation (China) is published by Qu et al. (2018).[270]
- Bobrovskiy et al. (2018) report molecular fossils from organically preserved specimens of Beltanelliformis, and interpret the fossils as representing large spherical colonies of cyanobacteria.[271]
- A study on the age of the fossil red alga Bangiomorpha pubescens is published by Gibson et al. (2018).[272]
- A study on the positions of fossil specimens in the assemblages of Ediacaran fossils from Mistaken Point (Canada), as well as on their implications for inferring the interactions and associations between the Ediacaran organisms, is published by Mitchell & Butterfield (2018).[273]
- Enigmatic Devonian taxon Protonympha is interpreted as a possible post-Ediacaran vendobiont by Retallack (2018).[274]
- Taxonomic compilation and partial revision of early Eocene deep-sea benthic Foraminifera is presented by Arreguín-Rodríguez et al. (2018).[275]
New taxa
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Kaminski, Malik & Setoyama |
A foraminifer belonging to the group Lituolida and the family Spiroplectamminidae. |
|||||
Gen. et comb. nov |
Pang et al. |
A member of Cyanobacteria; a new genus for "Omalophyma" magna Steiner (1994). |
||||||
Sp. nov |
In press |
Ye et al. |
A macroalga. |
|||||
Sp. nov |
In press |
Ye et al. |
A macroalga. |
|||||
Sp. nov |
In press |
Ye et al. |
A macroalga. |
|||||
Sp. nov |
In press |
Falahatgar, Vachard & Sarfi |
An alga of uncertain phylogenetic placement. |
|||||
Sp. nov |
Valid |
McNeil & Neville |
Early Eocene |
A foraminifer belonging to the order Astrorhizida and the suborder Hemisphaeramminineae. |
||||
Sp. nov |
In press |
Ye et al. |
A macroalga. |
|||||
Gen. et sp. nov |
Valid |
Slater, Harvey & Butterfield |
Lontova Formation |
A large ornamented acritarch of unresolved biological affinity, probably an ontogenetically and metabolically active eukaryotic organism rather than a dormant protistan cyst. Genus includes new species L. grandis. |
||||
Gen. et sp. nov |
In press |
Ye et al. |
A macroalga. Genus includes new species M. stipitatum. |
|||||
Subsp. nov |
Valid |
Al Nuaimy |
A foraminifer. |
|||||
Subsp. nov |
Valid |
Al Nuaimy |
A foraminifer. |
|||||
Gen. et sp. nov |
In press |
Riedman, Porter & Calver |
Black River Dolomite |
A vase-shaped microfossil. Genus includes new species P. kabin. |
||||
Gen. et comb. nov |
In press |
Consorti, Schlagintweit & Rashidi |
A foraminifer belonging to the family Elphidiellidae; a new genus for "Elphidiella" multiscissurata Smout (1955). |
|||||
Gen. et sp. nov |
Valid |
Krings, Harper & Taylor |
A small, chytrid-like organism. Genus includes new species P. tayloriana. |
|||||
Sp. nov |
Valid |
Kaasalainen, Rikkinen & Schmidt in Kaasalainen et al. |
A lichenized fungus, a species of Phyllopsora. |
|||||
Gen. et sp. nov |
Valid |
Strullu-Derrien in Strullu-Derrien et al. |
Early Devonian |
A fungus belonging to the group Blastocladiomycota, of uncertain phylogenetic placement within the latter group. Genus includes new species R. lyonii. |
||||
Gen. et sp. nov |
Valid |
Slater, Harvey & Butterfield |
Lontova Formation |
A sheet-like or funnel-shaped organism of unresolved biological affinity. Genus includes new species R. balticus. |
||||
Sp. nov |
In press |
Ye et al. |
An organism of uncertain phylogenetic placement, possibly an alga or an exceptionally large prokaryote. |
|||||
Sp. nov |
Valid |
Yin et al. |
An acritarch. |
General paleontology
Research related to paleontology that either does not concern any of the groups of the organisms listed above, or concerns multiple groups.
- A study on the effect of different forms of primitive photosynthesis on Earth’s early atmospheric chemistry and climate is published by Ozaki et al. (2018).[288]
- A review of the history of the definition of the Great Ordovician Biodiversification Event, aiming to clarify its concept and duration, is published by Servais & Harper (2018).[289]
- A study comparing the extinction events which occurred at the end of the Ordovician and at the end of the Capitanian (middle Permian) will be published by Isozaki & Servais (2018).[290]
- A study on the Devonian strata in the Zachełmie Quarry (Poland) preserving tracks of early tetrapods is published by Qvarnström et al. (2018), who reinterpret the tracks as produced in non-marine environment.[291]
- A study on the atmospheric oxygen levels through the Phanerozoic, evaluating whether Romer's gap and the concurrent gap in the fossil record of insects were caused by low oxygen levels, is published by Schachat et al. (2018).[292]
- A study on the early tetrapod diversity and biogeography in the Carboniferous and early Permian, evaluating the impact of the Carboniferous rainforest collapse on early tetrapod communities, is published by Dunne et al. (2018).[293]
- A study on the environmental changes and faunal turnover in the Karoo Basin (South Africa) during the late Permian will be published by Viglietti, Smith & Rubidge (2018).[294]
- A study on the changes of distribution of terrestrial tetrapods from the Permian (Guadalupian) to the Middle Triassic and on the impact of Permian–Triassic extinction event on the palaeobiogeography of terrestrial tetrapods is published by Bernardi, Petti & Benton (2018).[295]
- A study on the historical shifts in geographical ranges and climatic niches of terrestrial vertebrates (both endotherms and ectotherms) based on data from extant and fossil vertebrates is published by Rolland et al. (2018).[296]
- A study on the age of the dinosaur-bearing Triassic Santa Maria Formation and Caturrita Formation (Brazil) is published by Langer, Ramezani & Da Rosa (2018).[297]
- A study on the patterns of diversity change and extinction selectivity in marine ecosystems during the Triassic–Jurassic interval, especially in relation to the Triassic–Jurassic extinction event, will be published by Dunhill et al. (2018).[298]
- Evidence of sill intrusions which were likely cause of the Triassic–Jurassic extinction event is reported from the Amazonas and Solimões basins (Brazil) by Heimdal et al. (2018).[299]
- A study on the morphological, ecological and behavioural traits linked to the evolution of tail weaponization in extant and fossil amniotes is published by Arbour & Zanno (2018).[300]
- A diverse footprint assemblage dominated by small mammal tracks is described from the Lower Cretaceous Patuxent Formation (Maryland, United States) by Stanford et al. (2018), who name a new mammal ichnotaxon Sederipes goddardensis.[301]
- A study on the atmospheric carbon dioxide concentration levels in the Early Cretaceous based on data from specimens of the fossil conifer species Pseudofrenelopsis papillosa is published by Jing & Bainian (2018).[302]
- Evidence of increased crustal production at mid-ocean ridges at the Cretaceous-Paleogene boundary, indicative of magmatism triggered by Chicxulub impact, is presented by Byrnes & Karlstrom (2018).[303]
- A study on the terrestrial climate in northern China at the Cretaceous-Paleogene boundary, indicating the occurrence of a warming caused by the onset of Deccan Traps volcanism and the occurrence of extinctions prior to the Chicxulub impact, is published by Zhang et al. (2018).[304]
- A study on the tropical sea-surface temperatures in the Eocene is published by Evans et al. (2018).[305]
- Faith (2018) evalutes the aridity index, a widely used technique for reconstructing local paleoclimate and water deficits from oxygen isotope composition of fossil mammal teeth, arguing that in some taxa altered drinking behavior (influencing oxygen isotope composition of teeth) might have been caused by dietary change rather than water deficits.[306][307][308]
- An extensive, buried sedimentary body deposited by the passage of a megaflood from the western to the eastern Mediterranean Sea in the Pliocene (Zanclean), at the end of the Messinian salinity crisis, is identified in the western Ionian Basin by Micallef et al. (2018).[309]
- A study on the climatic changes in the Lake Tana area in the last 150,000 years and their implications for early modern human dispersal out of Africa is published by Lamb et al. (2018).[310]
- A study on the effects of the Toba supereruption in East Africa is published by Yost et al. (2018), who find no evidence of the erupton causing a volcanic winter in East Africa or a population bottleneck among African populations of anatomically modern humans.[311]
References
- ^ Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN 9780070887398. OCLC 46769716.
- ^ Jian Han; Guoxiang Li; Xing Wang; Xiaoguang Yang; Junfeng Guo; Osamu Sasaki; Tsuyoshi Komiya (2018). "Olivooides-like tube aperture in early Cambrian carinachitids (Medusozoa, Cnidaria)". Journal of Paleontology. 92 (1): 3–13. doi:10.1017/jpa.2017.10.
- ^ Rosemarie Christine Baron-Szabo (2018). "Scleractinian corals from the upper Berriasian of central Europe and comparison with contemporaneous coral assemblages". Zootaxa. 4383 (1): 1–98. doi:10.11646/zootaxa.4383.1.1.
- ^ Chang-Min Yu (2018). "Restudy of the Early Devonian rugose coral Xystriphylloides from South China". Palaeoworld. in press. doi:10.1016/j.palwor.2017.06.001.
- ^ a b c David J. Gladwell (2018). "Asterozoans from the Ludlow Series (upper Silurian) of Leintwardine, Herefordshire, UK". Papers in Palaeontology. 4 (1): 101–160. doi:10.1002/spp2.1101.
- ^ a b c d Selina R. Cole; William I. Ausich; David F. Wright; Joseph M. Koniecki (2018). "An echinoderm Lagerstätte from the Upper Ordovician (Katian), Ontario: taxonomic re-evaluation and description of new dicyclic camerate crinoids". Journal of Paleontology. in press. doi:10.1017/jpa.2017.151.
- ^ a b c d e Andrew Scott Gale (2018). "An integrated microcrinoid zonation for the lower Campanian chalks of southern England, and its implications for correlation". Cretaceous Research. in press. doi:10.1016/j.cretres.2017.02.002.
- ^ Daniel B. Blake; William K. Halligan; Neal L. Larson (2018). "A new species of the asteroid genus Betelgeusia (Echinodermata) from methane seep settings, Late Cretaceous of South Dakota". Journal of Paleontology. in press. doi:10.1017/jpa.2017.96.
- ^ a b c Andrew S. Gale; Eric Sadorf; John W.M. Jagt (2018). "Roveacrinida (Crinoidea, Articulata) from the upper Maastrichtian Peedee Formation (upper Cretaceous) of North Carolina, USA – The last pelagic microcrinoids". Cretaceous Research. 85: 176–192. doi:10.1016/j.cretres.2018.01.008.
- ^ a b Rich Mooi; Sergio A. Martínez; Claudia J. Del Río; Maria Inês Feijó Ramos (2018). "Late Oligocene–Miocene non-lunulate sand dollars of South America: Revision of abertellid taxa and descriptions of two new families, two new genera, and a new species". Zootaxa. 4369 (3): 301–326. doi:10.11646/zootaxa.4369.3.1.
- ^ Sergey V. Rozhnov (2018). "Elgaecrinus uralicus gen. et sp. nov., a new crotalocrinitid (Crinoidea, Echinodermata) from the Lower Devonian (Lochkovian) of the Middle Urals". Estonian Journal of Earth Sciences. 67 (1): 12–18. doi:10.3176/earth.2017.23.
- ^ Hans Hagdorn (2018). "Slipped through the bottleneck: Lazarechinus mirabeti gen. et sp. nov., a Paleozoic-like echinoid from the Triassic Muschelkalk (late Anisian) of East France". PalZ. in press. doi:10.1007/s12542-017-0393-1.
- ^ Nils Schlüter; Frank Wiese (2018). "The variable echinoid Micraster woodi sp. nov. – Trait variability patterns in a taxonomic nightmare". Cretaceous Research. in press. doi:10.1016/j.cretres.2017.05.019.
- ^ Jih-Pai Lin; William I. Ausich; Andrzej Baliński; Stig M. Bergström; Yuanlin Sun (2018). "The oldest iocrinid crinoids from the Early/Middle Ordovician of China: Possible paleogeographic implications". Journal of Asian Earth Sciences. 151: 324–333. doi:10.1016/j.jseaes.2017.10.041.
- ^ Bertrand Lefebvre; Rudy Lerosey-Aubril (2018). "Laurentian origin of solutan echinoderms: new evidence from the Guzhangian (Cambrian Series 3) Weeks Formation of Utah, USA". Geological Magazine. in press: 1. doi:10.1017/S0016756817000152.
- ^ Jeffrey R. Thompson; Shi-xue Hu; Qi-Yue Zhang; Elizabeth Petsios; Laura J. Cotton; Jin-Yuan Huang; Chang-yong Zhou; Wen Wen; David J. Bottjer (2018). "A new stem group echinoid from the Triassic of China leads to a revised macroevolutionary history of echinoids during the end-Permian mass extinction". Royal Society Open Science. 5 (1): 171548. doi:10.1098/rsos.171548.
- ^ Przemysław Świś (2018). "Population dynamics of the Late Devonian conodont Alternognathus calibrated in days". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1427088.
- ^ Martyn Lee Golding (2018). "Reconstruction of the multielement apparatus of Neogondolella ex gr. regalis Mosher, 1970 (Conodonta) from the Anisian (Middle Triassic) in British Columbia, Canada". Journal of Micropalaeontology. 37 (1): 21–24. doi:10.5194/jm-37-21-2018.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Josefina Carlorosi; Graciela Sarmiento; Susana Heredia (2018). "Selected Middle Ordovician key conodont species from the Santa Gertrudis Formation (Salta, Argentina): an approach to its biostratigraphical significance". Geological Magazine. 155 (4): 878–892. doi:10.1017/S0016756816001035.
- ^ a b c Ali Murat Kılıç; Pablo Plasencia; Fuat Önder (2018). "Debate on skeletal elements of the Triassic conodont Cornudina Hirschmann". Acta Geologica Polonica. 68 (2). doi:10.1515/agp-2017-0034.
- ^ Martyn L. Golding; Michael J. Orchard (2018). "Magnigondolella, a new conodont genus from the Triassic of North America". Journal of Paleontology. in press. doi:10.1017/jpa.2017.123.
- ^ Dong-Xun Yuan; Yi-Chun Zhang; Shu-Zhong Shen (2018). "Conodont succession and reassessment of major events around the Permian-Triassic boundary at the Selong Xishan section, southern Tibet, China". Global and Planetary Change. 161: 194–210. doi:10.1016/j.gloplacha.2017.12.024.
- ^ a b Sven Hartenfels; Ralph Thomas Becker (2018). "Age and correlation of the transgressive Gonioclymenia Limestone (Famennian, Tafilalt, eastern Anti-Atlas, Morocco)". Geological Magazine. 155 (3): 586–629. doi:10.1017/S0016756816000893.
- ^ Julia L. Molnar; Rui Diogo; John R. Hutchinson; Stephanie E. Pierce (2018). "Reconstructing pectoral appendicular muscle anatomy in fossil fish and tetrapods over the fins-to-limbs transition". Biological Reviews. in press. doi:10.1111/brv.12386. PMID 29125205.
- ^ Rainer R. Schoch (2018). "The stapes of Edops craigi and ear evolution in the lissamphibian stem group". Acta Zoologica. in press. doi:10.1111/azo.12238.
- ^ Rainer R. Schoch (2018). "Osteology of the temnospondyl Neldasaurus and the evolution of basal dvinosaurians". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 287 (1): 1–16. doi:10.1127/njgpa/2018/0700.
- ^ Celeste M. Pérez-Ben; Rainer R. Schoch; Ana M. Báez (2018). "Miniaturization and morphological evolution in Paleozoic relatives of living amphibians: a quantitative approach". Paleobiology. in press. doi:10.1017/pab.2017.22.
- ^ Bryan M. Gee; William G. Parker (2018). "A large-bodied metoposaurid from the Revueltian (late Norian) of Petrified Forest National Park (Arizona, USA)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 287 (1): 61–73. doi:10.1127/njgpa/2018/0706.
- ^ Elżbieta M. Teschner; P. Martin Sander; Dorota Konietzko-Meier (2018). "Variability of growth pattern observed in Metoposaurus krasiejowensis humeri and its biological meaning". Journal of Iberian Geology. in press. doi:10.1007/s41513-017-0038-y.
- ^ Dorota Konietzko-Meier; Kamil Gruntmejer; Jordi Marcé-Nogué; Adam Bodzioch; Josep Fortuny (2018). "Merging cranial histology and 3D-computational biomechanics: a review of the feeding ecology of a Late Triassic temnospondyl amphibian". PeerJ. 6: e4426. doi:10.7717/peerj.4426.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Yu-Fen Rong (2018). "Restudy of Regalerpeton weichangensis (Amphibia: Urodela) from the Lower Cretaceous of Hebei, China". Vertebrata PalAsiatica. in press. doi:10.19615/j.cnki.1000-3118.170627.
- ^ Tannina Alloul; Jean-Claude Rage; Rachid Hamdidouche; Nour-Eddine Jalil (2018). "First report on Cretaceous vertebrates from the Algerian Kem Kem beds. A new procoelous salamander from the Cenomanian, with remarks on African Caudata". Cretaceous Research. 84: 384–388. doi:10.1016/j.cretres.2017.11.019.
- ^ Won Mi Park; Martin G. Lockley; Jeong Yul Kim; Kyung Soo Kim (2018). "Anuran (frog) trackways from the Cretaceous of Korea". Cretaceous Research. in press. doi:10.1016/j.cretres.2018.02.002.
- ^ Andrea Villa; Massimo Delfino; Àngel H. Luján; Sergio Almécija; David M. Alba (2018). "First record of Latonia gigantea (Anura, Alytidae) from the Iberian Peninsula". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1371712.
- ^ Georgios L. Georgalis; Andrea Villa; Martin Ivanov; Socrates Roussiakis; Panagiotis Skandalos; Massimo Delfino (2018). "Early Miocene herpetofaunas from the Greek localities of Aliveri and Karydia – bridging a gap in the knowledge of amphibians and reptiles from the early Neogene of southeastern Europe". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1417404.
- ^ Elena V. Syromyatnikova (2018). "Redescription of Pelobates praefuscus Khosatzky, 1985 and new records of Pelobates from the late Miocene–Pleistocene of Eastern Europe". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1402015.
- ^ Ana María Báez; Raúl Orencio Gómez (2018). "Dealing with homoplasy: osteology and phylogenetic relationships of the bizarre neobatrachian frog Baurubatrachus pricei from the Upper Cretaceous of Brazil". Journal of Systematic Palaeontology. 16 (4): 279–308. doi:10.1080/14772019.2017.1287130.
- ^ Massimo Delfino (2018). "Early Pliocene anuran fossils from Kanapoi, Kenya, and the first fossil record for the African burrowing frog Hemisus (Neobatrachia: Hemisotidae)". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2017.06.008.
- ^ W. van der Vos; F. Witzmann; N. B. Fröbisch (2018). "Tail regeneration in the Paleozoic tetrapod Microbrachis pelikani and comparison with extant salamanders and squamates". Journal of Zoology. 304 (1): 34–44. doi:10.1111/jzo.12516.
- ^ Florian Witzmann; Rainer R. Schoch (2018). "Skull and postcranium of the bystrowianid Bystrowiella schumanni from the Middle Triassic of Germany, and the position of chroniosuchians within Tetrapoda". Journal of Systematic Palaeontology. in press: 1. doi:10.1080/14772019.2017.1336579.
- ^ Michael Buchwitz; Sebastian Voigt (2018). "On the morphological variability of Ichniotherium tracks and evolution of locomotion in the sistergroup of amniotes". PeerJ. 6: e4346. doi:10.7717/peerj.4346.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Ryoko Matsumoto; Susan E. Evans (2018). "The first record of albanerpetontid amphibians (Amphibia: Albanerpetontidae) from East Asia". PLoS ONE. 13 (1): e0189767. doi:10.1371/journal.pone.0189767.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Hang-Jae Lee; Yuong-Nam Lee; Anthony R. Fiorillo; Junchang Lü (2018). "Lizards ran bipedally 110 million years ago". Scientific Reports. 8: Article number 2617. doi:10.1038/s41598-018-20809-z.
- ^ Gabriela Fontanarrosa; Juan D. Daza; Virginia Abdala (2018). "Cretaceous fossil gecko hand reveals a strikingly modern scansorial morphology: Qualitative and biometric analysis of an amber-preserved lizard hand". Cretaceous Research. 84: 120–133. doi:10.1016/j.cretres.2017.11.003.
- ^ Liping Dong; Xing Xu; Yuan Wang; Susan E. Evans (2018). "The lizard genera Bainguis and Parmeosaurus from the Upper Cretaceous of China and Mongolia". Cretaceous Research. 85: 95–108. doi:10.1016/j.cretres.2018.01.002.
- ^ Jozef Klembara; Miroslav Hain; Andrej Čerňanský (2018). "The first record of anguine lizards (Anguimorpha, Anguidae) from the early Miocene locality Ulm – Westtangente in Germany". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1416469.
- ^ Filipe O. Da Silva; Anne-Claire Fabre; Yoland Savriama; Joni Ollonen; Kristin Mahlow; Anthony Herrel; Johannes Müller; Nicolas Di-Poï (2018). "Nature Communications". 9: Article number 376. doi:10.1038/s41467-017-02788-3.
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ Laura N. Triviño; Adriana M. Albino; María T. Dozo; Jorge D. Williams (2018). "First natural endocranial cast of a fossil snake (Cretaceous of Patagonia, Argentina)". The Anatomical Record. 301 (1): 9–20. doi:10.1002/ar.23686.
- ^ Jozef Klembara; Michael Rummel (2018). "New material of Ophisaurus, Anguis and Pseudopus (Squamata, Anguidae, Anguinae) from the Miocene of the Czech Republic and Germany and systematic revision and palaeobiogeography of the Cenozoic Anguinae". Geological Magazine. 155 (1): 20–44. doi:10.1017/S0016756816000753.
- ^ Andrej Čerňanský; Juan D. Daza; Aaron M. Bauer (2018). "Geckos from the middle Miocene of Devínska Nová Ves (Slovakia): new material and a review of the previous record". Swiss Journal of Geosciences. in press. doi:10.1007/s00015-017-0292-1.
- ^ Benjamin C. Moon (2018). "A new phylogeny of ichthyosaurs (Reptilia: Diapsida)". Journal of Systematic Palaeontology. in press. doi:10.1080/14772019.2017.1394922.
- ^ J. M. Pardo-Pérez; B. P. Kear; M. Gómez; M. Moroni; E. E. Maxwell (2018). "Ichthyosaurian palaeopathology: evidence of injury and disease in fossil 'fish lizards'". Journal of Zoology. 304 (1): 21–33. doi:10.1111/jzo.12517.
- ^ Dean R. Lomax; Mark Evans; Simon Carpenter (2018). "An ichthyosaur from the UK Triassic–Jurassic boundary: A second specimen of the leptonectid ichthyosaur Wahlisaurus massarae Lomax 2016". Geological Journal. in press. doi:10.1002/gj.3155.
- ^ Judy A. Massare; Dean R. Lomax (2018). "A taxonomic reassessment of Ichthyosaurus communis and I. intermedius and a revised diagnosis for the genus". Journal of Systematic Palaeontology. 16 (3): 263–277. doi:10.1080/14772019.2017.1291116.
- ^ Dean R. Lomax; Nigel R. Larkin; Ian Boomer; Steven Dey; Philip Copestake (2018). "The first known neonate Ichthyosaurus communis skeleton: a rediscovered specimen from the Lower Jurassic, UK". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1382488.
- ^ Dennis F. A. E. Voeten; Tobias Reich; Ricardo Araújo; Torsten M. Scheyer (2018). "Synchrotron microtomography of a Nothosaurus marchicus skull informs on nothosaurian physiology and neurosensory adaptations in early Sauropterygia". PLoS ONE. 13 (1): e0188509. doi:10.1371/journal.pone.0188509.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Sven Sachs; Jahn J. Hornung; Jens N. Lallensack; Benjamin P. Kear (2018). "First evidence of a large predatory plesiosaurian from the Lower Cretaceous non-marine 'Wealden facies' deposits of northwestern Germany". Alcheringa: an Australasian Journal of Palaeontology. in press. doi:10.1080/03115518.2017.1373150.
- ^ Jose P. O’Gorman; Soledad Gouiric-Cavalli; Roberto A. Scasso; Marcelo Reguero; Juan J. Moly; Leonel Acosta-Burlaille (2018). "A Late Jurassic plesiosaur in Antarctica: Evidence of the dispersion of marine fauna through the Trans-Erythraean Seaway?". Comptes Rendus Palevol. in press. doi:10.1016/j.crpv.2017.10.005.
- ^ Rémi Allemand; Nathalie Bardet; Alexandra Houssaye; Peggy Vincent (2018). "New plesiosaurian specimens (Reptilia, Plesiosauria) from the Upper Cretaceous (Turonian) of Goulmima (Southern Morocco)". Cretaceous Research. 82: 83–98. doi:10.1016/j.cretres.2017.09.017.
- ^ Rodrigo A. Otero; José P. O'Gorman; William L. Moisley; Marianna Terezow; Joseph McKee (2018). "A juvenile Tuarangisaurus keyesi Wiffen and Moisley 1986 (Plesiosauria, Elasmosauridae) from the Upper Cretaceous of New Zealand, with remarks on its skull ontogeny". Cretaceous Research. 85: 214–231. doi:10.1016/j.cretres.2017.09.007.
- ^ Sven Sachs; Benjamin P. Kear (2018). "A rare new Pliensbachian plesiosaurian from the Amaltheenton Formation of Bielefeld in northwestern Germany". Alcheringa: an Australasian Journal of Palaeontology. in press: 1. doi:10.1080/03115518.2017.1367419.
- ^ Peggy Vincent; Robert Weis; Guy Kronz; Dominique Delsate (2018). "Microcleidus melusinae, a new plesiosaurian (Reptilia, Plesiosauria) from the Toarcian of Luxembourg". Geological Magazine. in press. doi:10.1017/S0016756817000814.
- ^ José P. O’Gorman; Zulma Gasparini; Luis A. Spalletti (2018). "A new Pliosaurus species (Sauropterygia, Plesiosauria) from the Upper Jurassic of Patagonia: new insights on the Tithonian morphological disparity of mandibular symphyseal morphology". Journal of Paleontology. in press. doi:10.1017/jpa.2017.82.
- ^ Asher J. Lichtig; Spencer G. Lucas; Hendrik Klein; David M. Lovelace (2018). "Triassic turtle tracks and the origin of turtles". Historical Biology: An International Journal of Paleobiology. in press: 1. doi:10.1080/08912963.2017.1339037.
- ^ Matías Reolid; Ana Márquez-Aliaga; Margarita Belinchón; Anna García-Forner; José Villena; Carlos Martínez-Pérez (2018). "Ichnological evidence of semi-aquatic locomotion in early turtles from eastern Iberia during the Carnian Humid Episode (Late Triassic)". Palaeogeography, Palaeoclimatology, Palaeoecology. 490: 450–461. doi:10.1016/j.palaeo.2017.11.025.
- ^ Stephan Lautenschlager; Gabriel S. Ferreira; Ingmar Werneburg (2018). "Sensory evolution and ecology of early turtles revealed by digital endocranial reconstructions". Frontiers in Ecology and Evolution. 6: Article 7. doi:10.3389/fevo.2018.00007.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Adán Pérez-García; Vlad Codrea (2018). "New insights on the anatomy and systematics of Kallokibotion Nopcsa, 1923, the enigmatic uppermost Cretaceous basal turtle (stem Testudines) from Transylvania". Zoological Journal of the Linnean Society. 182 (2): 419–443. doi:10.1093/zoolinnean/zlx037.
- ^ J.M. Jannello; I.J. Maniel; E. Previtera; M.S. de la Fuente (2018). "Linderochelys rinconensis (Testudines: Pan-Chelidae) from the Upper Cretaceous of northern Patagonia: New insights from shell bone histology, morphology and diagenetic implications". Cretaceous Research. 83: 47–61. doi:10.1016/j.cretres.2017.05.011.
- ^ Evangelos Vlachos; Márton Rabi (2018). "Total evidence analysis and body size evolution of extant and extinct tortoises (Testudines: Cryptodira: Pan-Testudinidae)". Cladistics. in press. doi:10.1111/cla.12227.
- ^ Tomasz Szczygielski; Daniel Tyborowski; Błażej Błażejowski (2018). "A new pancryptodiran turtle from the Late Jurassic of Poland and palaeobiology of early marine turtles". Geological Journal. in press. doi:10.1002/gj.2952.
- ^ Steven E. Jasinski (2018). "A new slider turtle (Testudines: Emydidae: Deirochelyinae: Trachemys) from the late Hemphillian (late Miocene/early Pliocene) of eastern Tennessee and the evolution of the deirochelyines". PeerJ. 6: e4338. doi:10.7717/peerj.4338.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Haiyan Tong; Julien Claude; Cheng-Sen Li; Jian Yang; Thierry Smith (2018). "Wutuchelys eocenica n. gen. n. sp., an Eocene stem testudinoid turtle from Wutu, Shandong Province, China". Geological Magazine. in press. doi:10.1017/S0016756817000905.
- ^ Gabriel S. Ferreira; Fabiano V. Iori; Guilherme Hermanson; Max C. Langer (2018). "New turtle remains from the Late Cretaceous of Monte Alto-SP, Brazil, including cranial osteology, neuroanatomy and phylogenetic position of a new taxon". PalZ. in press. doi:10.1007/s12542-017-0397-x.
- ^ William G. Parker (2018). "Redescription of Calyptosuchus (Stagonolepis) wellesi (Archosauria: Pseudosuchia: Aetosauria) from the Late Triassic of the Southwestern United States with a discussion of genera in vertebrate paleontology". PeerJ. 6: e4291. doi:10.7717/peerj.4291.
{{cite journal}}
: no-break space character in|title=
at position 17 (help)CS1 maint: unflagged free DOI (link) - ^ Devin K. Hoffman; Andrew B. Heckert; Lindsay E. Zanno (2018). "Under the armor: X-ray computed tomographic reconstruction of the internal skeleton of Coahomasuchus chathamensis (Archosauria: Aetosauria) from the Upper Triassic of North Carolina, USA, and a phylogenetic analysis of Aetosauria". PeerJ. 6: e4368. doi:10.7717/peerj.4368.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Candice M. Stefanic; Sterling J. Nesbitt (2018). "The axial skeleton of Poposaurus langstoni (Pseudosuchia: Poposauroidea) and its implications for accessory intervertebral articulation evolution in pseudosuchian archosaurs". PeerJ. 6: e4235. doi:10.7717/peerj.4235.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ K. N. Dollman; P. A. Viglietti; J. N. Choiniere (2018). "A new specimen of Orthosuchus stormbergi (Nash 1968) and a review of the distribution of Southern African Lower Jurassic crocodylomorphs". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1387110.
- ^ Andrej Čerňanský; Ján Schlögl; Tomáš Mlynský; Štefan Józsa (2018). "First evidence of the Jurassic thalattosuchian (both teleosaurid and metriorhynchid) crocodylomorphs from Slovakia (Western Carpathians)". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1414212.
- ^ Katja Waskow; Detlef Grzegorczyk; P. Martin Sander (2018). "The first record of Tyrannoneustes (Thalattosuchia: Metriorhynchidae): a complete skull from the Callovian (late Middle Jurassic) of Germany". PalZ. in press. doi:10.1007/s12542-017-0395-z.
- ^ Gabriel Lio; Federico L. Agnolin; Agustín G. Martinelli; Martín D. Ezcurra; Fernando E. Novas (2018). "New specimen of the enigmatic, Late Cretaceous crocodyliform Neuquensuchus universitas sheds light on the anatomy of the species". Cretaceous Research. 83: 62–74. doi:10.1016/j.cretres.2017.09.014.
- ^ Francisco Barrios; Paula Bona; Ariana Paulina Carabajal; Zulma Gasparini (2018). "Re-description of the cranio-mandibular anatomy of Notosuchus terrestris (Crocodyliformes, Mesoeucrocodylia) from the Upper Cretaceous of Patagonia". Cretaceous Research. 83: 3–39. doi:10.1016/j.cretres.2017.08.016.
- ^ Fabiano Vidoi Iori; Thiago da Silva Marinho; Ismar de Souza Carvalho; Luiz Augusto dos Santos Frare (2018). "Cranial morphology of Morrinhosuchus luziae (Crocodyliformes, Notosuchia) from the Upper Cretaceous of the Bauru Basin, Brazil". Cretaceous Research. 86: 41–52. doi:10.1016/j.cretres.2018.02.010.
- ^ Fabiano Vidoi Iori; Ismar de Souza Carvalho (2018). "The Cretaceous crocodyliform Caipirasuchus: Behavioral feeding mechanisms". Cretaceous Research. 84: 181–187. doi:10.1016/j.cretres.2017.11.023.
- ^ Kamila L. N. Bandeira; Arthur S. Brum; Rodrigo V. Pêgas; Giovanne M. Cidade; Borja Holgado; André Cidade; Rafael Gomes de Souza (2018). "The Baurusuchidae vs Theropoda record in the Bauru Group (Upper Cretaceous, Brazil): a taphonomic perspective". Journal of Iberian Geology. in press. doi:10.1007/s41513-018-0048-4.
- ^ Louise M. V. Meunier; Hans C. E. Larsson (2018). "Trematochampsa taqueti as a nomen dubium and the crocodyliform diversity of the Upper Cretaceous In Beceten Formation of Niger". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlx061.
- ^ A. de Celis; I. Narváez; F. Ortega (2018). "Pelvic and femoral anatomy of the Allodaposuchidae (Crocodyliformes, Eusuchia) from the Late Cretaceous of Lo Hueco (Cuenca, Spain)". Journal of Iberian Geology. in press. doi:10.1007/s41513-017-0044-0.
- ^ Tai Kubo; Masateru Shibata; Wilailuck Naksri; Pratueng Jintasakul; Yoichi Azuma (2018). "The earliest record of Asian Eusuchia from the Lower Cretaceous Khok Kruat Formation of northeastern Thailand". Cretaceous Research. 82: 21–28. doi:10.1016/j.cretres.2017.05.021.
- ^ Xiao-Chun Wu; Chun Li; Yan-Yin Wang (2018). "Taxonomic reassessment and phylogenetic test of Asiatosuchus nanlingensis Young, 1964 and Eoalligator chunyii Young, 1964". Vertebrata PalAsiatica. in press. doi:10.19615/j.cnki.1000-3118.170803.
- ^ Christian Foth; María Victoria Fernandez Blanco; Paula Bona; Torsten M. Scheyer (2018). "Cranial shape variation in jacarean caimanines (Crocodylia, Alligatoroidea) and its implications in the taxonomic status of extinct species: The case of Melanosuchus fisheri". Journal of Morphology. in press. doi:10.1002/jmor.20769.
- ^ Andrés Solórzano; Mónica Núñez-Flores; Ascanio D. Rincón (2018). "Gryposuchus (Crocodylia, Gavialoidea) from the early Miocene of Venezuela". PalZ. 92 (1): 121–129. doi:10.1007/s12542-017-0383-3.
- ^ Massimo Delfino; Jeremy E. Martin; France de Lapparent de Broin; Thierry Smith (2018). "Evidence for a pre-PETM dispersal of the earliest European crocodyloids". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1396323.
- ^ Christopher A. Brochu (2018). "Pliocene crocodiles from Kanapoi, Turkana Basin, Kenya". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2017.10.003.
- ^ Torsten M. Scheyer; Massimo Delfino; Nicole Klein; Nancy Bunbury; Frauke Fleischer-Dogley; Dennis M. Hansen (2018). "Trophic interactions between larger crocodylians and giant tortoises on Aldabra Atoll, Western Indian Ocean, during the Late Pleistocene". Royal Society Open Science. 5 (1): 171800. doi:10.1098/rsos.171800.
- ^ Jorgo Ristevski; Mark T. Young; Marco Brandalise de Andrade; Alexander K. Hastings (2018). "A new species of Anteophthalmosuchus (Crocodylomorpha, Goniopholididae) from the Lower Cretaceous of the Isle of Wight, United Kingdom, and a review of the genus". Cretaceous Research. 84: 340–383. doi:10.1016/j.cretres.2017.11.008.
- ^ L.S. Filippi; F. Barrios; A.C. Garrido (2018). "A new peirosaurid from the Bajo de la Carpa Formation (Upper Cretaceous, Santonian) of Cerro Overo, Neuquén, Argentina". Cretaceous Research. 83: 75–83. doi:10.1016/j.cretres.2017.10.021.
- ^ Roger B. J. Benson; Gene Hunt; Matthew T. Carrano; Nicolás Campione (2018). "Cope's rule and the adaptive landscape of dinosaur body size evolution". Palaeontology. 61 (1): 13–48. doi:10.1111/pala.12329.
- ^ Ciara O’Donovan; Andrew Meade; Chris Venditti (2018). "Dinosaurs reveal the geographical signature of an evolutionary radiation". Nature Ecology & Evolution. 2 (3): 452–458. doi:10.1038/s41559-017-0454-6.
- ^ Jonathan P. Tennant; Alfio Alessandro Chiarenza; Matthew Baron (2018). "How has our knowledge of dinosaur diversity through geologic time changed through research history?". PeerJ. 6: e4417. doi:10.7717/peerj.4417.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Chase D. Brownstein (2018). "The biogeography and ecology of the Cretaceous non-avian dinosaurs of Appalachia". Palaeontologia Electronica. 21 (1): Article number 21.1.5A. doi:10.26879/801.
- ^ Markus Lambertz; Filippo Bertozzo; P. Martin Sander (2018). "Bone histological correlates for air sacs and their implications for understanding the origin of the dinosaurian respiratory system". Biology Letters. 14 (1): 20170514. doi:10.1098/rsbl.2017.0514.
- ^ Sam M. Slater; Charles H. Wellman; Michael Romano; Vivi Vajda (2018). "Dinosaur-plant interactions within a Middle Jurassic ecosystem—palynology of the Burniston Bay dinosaur footprint locality, Yorkshire, UK". Palaeobiodiversity and Palaeoenvironments. 98 (1): 139–151. doi:10.1007/s12549-017-0309-9.
- ^ Rodrigo Temp Müller; Sérgio Dias-da-Silva (2018). "Taxon sample and character coding deeply impact unstable branches in phylogenetic trees of dinosaurs". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1418341.
- ^ Brian F. Platt; Celina A. Suarez; Stephen K. Boss; Malcolm Williamson; Jackson Cothren; Jo Ann C. Kvamme (2018). "LIDAR-based characterization and conservation of the first theropod dinosaur trackways from Arkansas, USA". PLoS ONE. 13 (1): e0190527. doi:10.1371/journal.pone.0190527.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Evan T. Saitta; Rebecca Gelernte; Jakob Vinther (2018). "Additional information on the primitive contour and wing feathering of paravian dinosaurs". Palaeontology. 61 (2): 273–288. doi:10.1111/pala.12342.
- ^ Hang-Jae Lee; Yuong-Nam Lee; Thomas L. Adams; Philip J. Currie; Yoshitsugu Kobayashi; Louis L. Jacobs; Eva B. Koppelhus (2018). "Theropod trackways associated with a Gallimimus foot skeleton from the Nemegt Formation, Mongolia". Palaeogeography, Palaeoclimatology, Palaeoecology. 494: 160–167. doi:10.1016/j.palaeo.2017.10.020.
- ^ Lida Xing; Nasrollah Abbassi; Martin G. Lockley (2018). "Enigmatic didactyl tracks from the Jurassic of Iran". Historical Biology: An International Journal of Paleobiology. in press: 1. doi:10.1080/08912963.2017.1339700.
- ^ P. J. Bishop; D. F. Graham; L. P. Lamas; J. R. Hutchinson; J. Rubenson; J. A. Hancock; R. S. Wilson; S. A. Hocknull; R. S. Barrett; D. G. Lloyd; C. J. Clemente (2018). "The influence of speed and size on avian terrestrial locomotor biomechanics: Predicting locomotion in extinct theropod dinosaurs". PLoS ONE. 13 (2): e0192172. doi:10.1371/journal.pone.0192172.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Daniel E. Barta; Sterling J. Nesbitt; Mark A. Norell (2018). "The evolution of the manus of early theropod dinosaurs is characterized by high inter- and intraspecific variation". Journal of Anatomy. 232 (1): 80–104. doi:10.1111/joa.12719.
- ^ C. T. Griffin (2018). "Developmental patterns and variation among early theropods". Journal of Anatomy. in press. doi:10.1111/joa.12775.
- ^ Arthur Souza Brum; Elaine Batista Machado; Diogenes de Almeida Campos; Alexander Wilhelm Armin Kellner (2018). "Description of uncommon pneumatic structures of a noasaurid (Theropoda, Dinosauria) cervical vertebra to the Bauru Group (Upper Cretaceous), Brazil". Cretaceous Research. 85: 193–206. doi:10.1016/j.cretres.2017.10.012.
- ^ Ariana Paulina-Carabajal; Leonardo Filippi (2018). "Neuroanatomy of the abelisaurid theropod Viavenator: The most complete reconstruction of a cranial endocast and inner ear for a South American representative of the clade". Cretaceous Research. 83: 84–94. doi:10.1016/j.cretres.2017.06.013.
- ^ Leonardo S. Filippi; Ariel H. Méndez; Federico A. Gianechini; Rubén D. Juárez Valieri; Alberto C. Garrido (2018). "Osteology of Viavenator exxoni (Abelisauridae; Furileusauria) from the Bajo de la Carpa Formation, NW Patagonia, Argentina". Cretaceous Research. 83: 95–119. doi:10.1016/j.cretres.2017.07.019.
- ^ Rafael Delcourt; Orlando Nelson Grillo (2018). "Reassessment of a fragmentary maxilla attributed to Carcharodontosauridae from Presidente Prudente Formation, Brazil". Cretaceous Research. 84: 515–524. doi:10.1016/j.cretres.2017.09.008.
- ^ Chase D. Brownstein (2018). "A tyrannosauroid tibia from the Navesink Formation of New Jersey and its biogeographic and evolutionary implications for North American tyrannosauroids". Cretaceous Research. in press. doi:10.1016/j.cretres.2018.01.005.
- ^ Alexis M. Aranciaga Rolando; Federico Brissón Egli; Marcos A.F. Sales; Agustín G. Martinelli; Juan I. Canale; Martín D. Ezcurra (2018). "A supposed Gondwanan oviraptorosaur from the Albian of Brazil represents the oldest South American megaraptoran". Cretaceous Research. 84: 107–119. doi:10.1016/j.cretres.2017.10.019.
- ^ Tsogtbaatar Chinzorig; Yoshitsugu Kobayashi; Khishigjav Tsogtbaatar; Philip J. Currie; Ryuji Takasaki; Tomonori Tanaka; Masaya Iijima; Rinchen Barsbold (2018). "Ornithomimosaurs from the Nemegt Formation of Mongolia: manus morphological variation and diversity". Palaeogeography, Palaeoclimatology, Palaeoecology. 494: 91–100. doi:10.1016/j.palaeo.2017.10.031.
- ^ Shuo Wang; Qiyue Zhang; Rui Yang (2018). "Reevaluation of the dentary structures of caenagnathid oviraptorosaurs (Dinosauria, Theropoda)". Scientific Reports. 8: Article number 391. doi:10.1038/s41598-017-18703-1.
- ^ Fernando E. Novas; Federico Brissón Egli; Federico L. Agnolin; Federico A. Gianechini; Ignacio Cerda (2018). "Postcranial osteology of a new specimen of Buitreraptor gonzalezorum (Theropoda, Coelurosauria)". Cretaceous Research. 83: 127–167. doi:10.1016/j.cretres.2017.06.003.
- ^ Matías J. Motta; Federico Brissón Egli; Fernando E. Novas (2018). "Tail anatomy of Buitreraptor gonzalezorum (Theropoda, Unenlagiidae) and comparisons with other basal paravians". Cretaceous Research. 83: 168–181. doi:10.1016/j.cretres.2017.09.004.
- ^ Caizhi Shen; Junchang Lü; Chunling Gao; Masato Hoshino; Kentaro Uesugi; Martin Kundrát (2018). "Forearm bone histology of the small theropod Daliansaurus liaoningensis (Paraves: Troodontidae) from the Yixian Formation, Liaoning, China". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1360296.
- ^ Edina Prondvai; Pascal Godefroit; Dominique Adriaens; Dong-Yu Hu (2018). "Intraskeletal histovariability, allometric growth patterns, and their functional implications in bird-like dinosaurs". Scientific Reports. 8: Article number 258. doi:10.1038/s41598-017-18218-9.
- ^ Xiangqi Guo; Li Xu; Songhai Jia (2018). "Morphological and phylogenetic study based on new materials of Anchiornis huxleyi (Dinosauria, Theropoda) from Jianchang, western Liaoning, China". Acta Geologica Sinica (English Edition). 92 (1): 1–15.
- ^ Mario Bronzati; Roger B. J. Benson; Oliver W. M. Rauhut (2018). "Rapid transformation in the braincase of sauropod dinosaurs: integrated evolution of the braincase and neck in early sauropods?". Palaeontology. 61 (2): 289–302. doi:10.1111/pala.12344.
- ^ Rodrigo Temp Müller; Max Cardoso Langer; Cristian Pereira Pacheco; Sérgio Dias-da-Silva (2018). "The role of ontogeny on character polarization in early dinosaurs: a new specimen from the Late Triassic of southern Brazil and its implications". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1395421.
- ^ Mario Bronzati; Oliver W. M. Rauhut (2018). "Braincase redescription of Efraasia minor Huene, 1908 (Dinosauria: Sauropodomorpha) from the Late Triassic of Germany, with comments on the evolution of the sauropodomorph braincase". Zoological Journal of the Linnean Society. 182 (1): 173–224. doi:10.1093/zoolinnean/zlx029.
- ^ Kimberley E.J. Chapelle; Jonah N. Choiniere (2018). "A revised cranial description of Massospondylus carinatus Owen (Dinosauria: Sauropodomorpha) based on computed tomographic scans and a review of cranial characters for basal Sauropodomorpha". PeerJ. 6: e4224. doi:10.7717/peerj.4224.
{{cite journal}}
: no-break space character in|title=
at position 62 (help)CS1 maint: unflagged free DOI (link) - ^ Blair W. Mcphee; Jonah N. Choiniere (2018). "The osteology of Pulanesaura eocollum: implications for the inclusivity of Sauropoda (Dinosauria)". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlx074.
- ^ Pia A. Viglietti; Paul M. Barrett; Tim J. Broderick; Darlington Munyikwa; Rowan MacNiven; Lucy Broderick; Kimberley Chapelle; Dave Glynn; Steve Edwards; Michel Zondo; Patricia Broderick; Jonah N. Choiniere (2018). "Stratigraphy of the Vulcanodon type locality and its implications for regional correlations within the Karoo Supergroup". Journal of African Earth Sciences. 137: 149–156. doi:10.1016/j.jafrearsci.2017.10.015.
- ^ Cecily S.C. Nicholl; Philip D. Mannion; Paul M. Barrett (2018). "Sauropod dinosaur remains from a new Early Jurassic locality in the Central High Atlas of Morocco". Acta Palaeontologica Polonica. 63 (1): 147–157. doi:10.4202/app.00425.2017.
- ^ A. Paulina Carabajal; R.A. Coria; P.J. Currie; E.B. Koppelhus (2018). "A natural cranial endocast with possible dicraeosaurid (Sauropoda, Diplodocoidea) affinities from the Lower Cretaceous of Patagonia". Cretaceous Research. 84: 437–441. doi:10.1016/j.cretres.2017.12.001.
- ^ Brennan Stettner; W. Scott Persons IV; Philip J. Currie (2018). "A giant sauropod footprint from the Nemegt Formation (Upper Cretaceous) of Mongolia". Palaeogeography, Palaeoclimatology, Palaeoecology. 494: 168–172. doi:10.1016/j.palaeo.2017.10.027.
- ^ E. Martín Hechenleitner; Lucas E. Fiorelli; Agustín G. Martinelli; Gerald Grellet-Tinner (2018). "Titanosaur dinosaurs from the Upper Cretaceous of La Rioja province, NW Argentina". Cretaceous Research. 85: 42–59. doi:10.1016/j.cretres.2018.01.006.
- ^ Bernardo J. Gonzàlez Riga; Philip D. Mannion; Stephen F. Poropat; Leonardo D. Ortiz David; Juan Pedro Coria (2018). "Osteology of the Late Cretaceous Argentinean sauropod dinosaur Mendozasaurus neguyelap: implications for basal titanosaur relationships". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlx103.
- ^ Philip J. Currie; Jeffrey A. Wilson; Federico Fanti; Buuvei Mainbayar; Khishigjav Tsogtbaatar (2018). "Rediscovery of the type localities of the Late Cretaceous Mongolian sauropods Nemegtosaurus mongoliensis and Opisthocoelicaudia skarzynskii: Stratigraphic and taxonomic implications". Palaeogeography, Palaeoclimatology, Palaeoecology. 494: 5–13. doi:10.1016/j.palaeo.2017.10.035.
- ^ Marco Romano (2018). "Disparity vs. diversity in Stegosauria (Dinosauria, Ornithischia): cranial and post-cranial sub-dataset provide different signals". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1397655.
- ^ Heitor Francischini; Marcos A. F. Sales; Paula Dentzien–Dias; Cesar L. Schultz (2018). "The presence of ankylosaur tracks in the Guará Formation (Brazil) and remarks on the spatial and temporal distribution of Late Jurassic dinosaurs". Ichnos: an International Journal for Plant and Animal Traces. in press: 1. doi:10.1080/10420940.2017.1337573.
- ^ Ariana Paulina-Carabajal; Yuong-Nam Lee; Yoshitsugu Kobayashi; Hang-Jae Lee; Philip J. Currie (2018). "Neuroanatomy of the ankylosaurid dinosaurs Tarchia teresae and Talarurus plicatospineus from the Upper Cretaceous of Mongolia, with comments on endocranial variability among ankylosaurs". Palaeogeography, Palaeoclimatology, Palaeoecology. 494: 135–146. doi:10.1016/j.palaeo.2017.11.030.
- ^ Jordan C. Mallon; Donald M. Henderson; Colleen M. McDonough; W.J. Loughry (2018). "A 'bloat-and-float' taphonomic model best explains the upside-down preservation of ankylosaurs". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2018.02.010.
- ^ Holly N. Woodward; Thomas H. Rich; Patricia Vickers-Rich (2018). "The bone microstructure of polar "hypsilophodontid" dinosaurs from Victoria, Australia". Scientific Reports. 8: Article number 1162. doi:10.1038/s41598-018-19362-6.
- ^ Francisco Javier Verdú; Rafael Royo-Torres; Alberto Cobos; Luis Alcalá (2018). "New systematic and phylogenetic data about the early Barremian Iguanodon galvensis (Ornithopoda: Iguanodontoidea) from Spain". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1287179.
- ^ Yan Wu; Hai-Lu You; Xiao-Qiang Li (2018). "Dinosaur-associated Poaceae epidermis and phytoliths from the Early Cretaceous of China". National Science Review. in press. doi:10.1093/nsr/nwx145.
- ^ Ryuji Takasaki; Kentaro Chiba; Yoshitsugu Kobayashi; Philip J. Currie; Anthony R. Fiorillo (2018). "Reanalysis of the phylogenetic status of Nipponosaurus sachalinensis (Ornithopoda: Dinosauria) from the Late Cretaceous of Southern Sakhalin". Historical Biology: An International Journal of Paleobiology. in press: 1. doi:10.1080/08912963.2017.1317766.
- ^ Mateusz Wosik; Mark B. Goodwin; David C. Evans (2018). "A nestling-sized skeleton of Edmontosaurus (Ornithischia, Hadrosauridae) from the Hell Creek Formation of northeastern Montana, U.S.A., with an analysis of ontogenetic limb allometry". Journal of Vertebrate Paleontology. in press: e1398168. doi:10.1080/02724634.2017.1398168.
- ^ Leonardo Maiorino; Andrew A. Farke; Tassos Kotsakis; Pasquale Raia; Paolo Piras (2018). "Who is the most stressed? Morphological disparity and mechanical behavior of the feeding apparatus of ceratopsian dinosaurs (Ornithischia, Marginocephalia)". Cretaceous Research. 84: 483–500. doi:10.1016/j.cretres.2017.11.012.
- ^ Fenglu Han; Catherine A. Forster; Xing Xu; James M. Clark (2018). "Postcranial anatomy of Yinlong downsi (Dinosauria: Ceratopsia) from the Upper Jurassic Shishugou Formation of China and the phylogeny of basal ornithischians". Journal of Systematic Palaeontology. in press. doi:10.1080/14772019.2017.1369185.
- ^ Caleb M. Brown (2018). "Long-horned Ceratopsidae from the Foremost Formation (Campanian) of southern Alberta". PeerJ. 6: e4265. doi:10.7717/peerj.4265.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Kentaro Chiba; Michael J. Ryan; Federico Fanti; Mark A. Loewen; David C. Evans (2018). "New material and systematic re-evaluation of Medusaceratops lokii (Dinosauria, Ceratopsidae) from the Judith River Formation (Campanian, Montana)". Journal of Paleontology. in press. doi:10.1017/jpa.2017.62.
- ^ G.F. Funston; S.E. Mendonca; P.J. Currie; R. Barsbold (2018). "Oviraptorosaur anatomy, diversity and ecology in the Nemegt Basin". Palaeogeography, Palaeoclimatology, Palaeoecology. 494: 101–120. doi:10.1016/j.palaeo.2017.10.023.
- ^ Dongyu Hu; Julia A. Clarke; Chad M. Eliason; Rui Qiu; Quanguo Li; Matthew D. Shawkey; Cuilin Zhao; Liliana D’Alba; Jinkai Jiang; Xing Xu (2018). "A bony-crested Jurassic dinosaur with evidence of iridescent plumage highlights complexity in early paravian evolution". Nature Communications. 9: Article number 217. doi:10.1038/s41467-017-02515-y.
- ^ Edith Simón; Leonardo Salgado; Jorge O. Calvo (2018). "A new titanosaur sauropod from the Upper Cretaceous of Patagonia, Neuquén Province, Argentina". Ameghiniana. 55 (1): 1–29. doi:10.5710/AMGH.01.08.2017.3051.
- ^ Matthew C. Herne; Alan M. Tait; Vera Weisbecker; Michael Hall; Jay P. Nair; Michael Cleeland; Steven W. Salisbury (2018). "A new small-bodied ornithopod (Dinosauria, Ornithischia) from a deep, high-energy Early Cretaceous river of the Australian–Antarctic rift system". PeerJ. 6: e4113. doi:10.7717/peerj.4113.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Wenjie Zheng; Xingsheng Jin; Yoichi Azuma; Qiongying Wang; Kazunori Miyata; Xing Xu (2018). "The most basal ankylosaurine dinosaur from the Albian–Cenomanian of China, with implications for the evolution of the tail club". Scientific Reports. 8: Article number 3711. doi:10.1038/s41598-018-21924-7.
- ^ Jialiang Zhang; Xiaolin Wang; Qiang Wang; Shunxing Jiang; Xin Cheng; Ning Li; Rui Qiu (2018). "A new saurolophine hadrosaurid (Dinosauria: Ornithopoda) from the Upper Cretaceous of Shandong, China". Anais da Academia Brasileira de Ciências. in press. doi:10.1590/0001-3765201720160920.
- ^ Hesham M. Sallam; Eric Gorscak; Patrick M. O’Connor; Iman A. El-Dawoudi; Sanaa El-Sayed; Sara Saber; Mahmoud A. Kora; Joseph J. W. Sertich; Erik R. Seiffert; Matthew C. Lamanna (2018). "New Egyptian sauropod reveals Late Cretaceous dinosaur dispersal between Europe and Africa". Nature Ecology & Evolution. 2 (3): 445–451. doi:10.1038/s41559-017-0455-5.
- ^ Alexander Averianov; Stepan Ivantsov; Pavel Skutschas; Alexey Faingertz; Sergey Leshchinskiy (2018). "A new sauropod dinosaur from the Lower Cretaceous Ilek Formation, Western Siberia, Russia". Geobios. in press. doi:10.1016/j.geobios.2017.12.004.
- ^ D. C. Deeming; G. Mayr (2018). "Pelvis morphology suggests that early Mesozoic birds were too heavy to contact incubate their eggs". Journal of Evolutionary Biology. in press. doi:10.1111/jeb.13256.
- ^ Federico L. Agnolin; Sebastián Rozadilla; Ismar de Souza Carvalho (2018). "Praeornis sharovi Rautian, 1978 a fossil feather from the early Late Jurassic of Kazakhstan". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1413102.
- ^ Li-Da Xing; Yuan-Chao Hu; Jian-Dong Huang; Qing He; Martin G. Lockley; Michael E. Burns; Jun Fang (2018). "A redescription of the ichnospecies Koreanaornis anhuiensis (Aves) from the Lower Cretaceous Qiuzhuang Formation at Mingguang city, Anhui Province, China". Journal of Palaeogeography. 7 (1): 58–65. doi:10.1016/j.jop.2017.10.003.
- ^ Lisa G. Buckley; Richard T. McCrea; Lida Xing (2018). "First report of Ignotornidae (Aves) from the Lower Cretaceous Gates Formation (Albian) of western Canada, with description of a new ichnospecies of Ignotornis, Ignotornis canadensis ichnosp. nov". Cretaceous Research. 84: 209–222. doi:10.1016/j.cretres.2017.11.021.
- ^ Lida Xing; Lisa G. Buckley; Martin G. Lockley; Richard T. McCrea; Yonggang Tang (2018). "Lower Cretaceous avian tracks from Jiangsu Province, China: A first Chinese report for ichnogenus Goseongornipes (Ignotornidae)". Cretaceous Research. 84: 571–577. doi:10.1016/j.cretres.2017.12.016.
- ^ Oliver W.M. Rauhut; Christian Foth; Helmut Tischlinger (2018). "The oldest Archaeopteryx (Theropoda: Avialiae): a new specimen from the Kimmeridgian/Tithonian boundary of Schamhaupten, Bavaria". PeerJ. 6: e4191. doi:10.7717/peerj.4191.
{{cite journal}}
: no-break space character in|title=
at position 11 (help)CS1 maint: unflagged free DOI (link) - ^ Jingmai O'Connor; Xiaoli Wang; Corwin Sullivan; Yan Wang; Xiaoting Zheng; Han Hu; Xiaomei Zhang; Zhonghe Zhou (2018). "First report of gastroliths in the Early Cretaceous basal bird Jeholornis". Cretaceous Research. 84: 200–208. doi:10.1016/j.cretres.2017.10.031.
- ^ Guillermo Navalón; Qingjin Meng; Jesús Marugán-Lobón; Yuguang Zhang; Baopeng Wang; Hai Xing; Di Liu; Luis M. Chiappe (2018). "Diversity and evolution of the Confuciusornithidae: Evidence from a new 131-million-year-old specimen from the Huajiying Formation in NE China". Journal of Asian Earth Sciences. 152: 12–22. doi:10.1016/j.jseaes.2017.11.005.
- ^ Lida Xing; Jingmai K. O'Connor; Ryan C. McKellar; Luis M. Chiappe; Ming Bai; Kuowei Tseng; Jie Zhang; Haidong Yang; Jun Fang; Gang Li (2018). "A flattened enantiornithine in mid-Cretaceous Burmese amber: morphology and preservation". Science Bulletin. 63 (4): 235–243. doi:10.1016/j.scib.2018.01.019.
- ^ Francisco J. Serrano; Luis M. Chiappe; Paul Palmqvist; Borja Figueirido; Jesús Marugán-Lobón; José L. Sanz (2018). "Flight reconstruction of two European enantiornithines (Aves, Pygostylia) and the achievement of bounding flight in Early Cretaceous birds". Palaeontology. in press. doi:10.1111/pala.12351.
- ^ Alyssa Bell; Yun-Hsin Wu; Luis M. Chiappe (2018). "Morphometric comparison of the Hesperornithiformes and modern diving birds". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2017.12.010.
- ^ Ryan N. Felice; Anjali Goswami (2018). "Developmental origins of mosaic evolution in the avian cranium". Proceedings of the National Academy of Sciences of the United States of America. 115 (3): 555–560. doi:10.1073/pnas.1716437115.
- ^ Alexander P. Boast; Laura S. Weyrich; Jamie R. Wood; Jessica L. Metcalf; Rob Knight; Alan Cooper (2018). "Coprolites reveal ecological interactions lost with the extinction of New Zealand birds". Proceedings of the National Academy of Sciences of the United States of America. 115 (7): 1546–1551. doi:10.1073/pnas.1712337115.
- ^ Federico L. Agnolín; Federico Brissón Egli; Sankar Chatterjee; Jordi Alexis Garcia Marsà; Fernando E. Novas (2017). "Vegaviidae, a new clade of southern diving birds that survived the K/T boundary". The Science of Nature. 104 (11–12): Article 87. doi:10.1007/s00114-017-1508-y.
- ^ Gerald Mayr; Vanesa L. De Pietri; R. Paul Scofield; Trevor H. Worthy (2018). "On the taxonomic composition and phylogenetic affinities of the recently proposed clade Vegaviidae Agnolín et al., 2017 ‒ neornithine birds from the Upper Cretaceous of the Southern Hemisphere". Cretaceous Research. in press. doi:10.1016/j.cretres.2018.02.013.
- ^ Jordi Alexis Garcia Marsà; Federico L. Agnolín; Fernando Novas (2018). "Bone microstructure of Vegavis iaai (Aves, Anseriformes) from the Upper Cretaceous of Vega Island, Antarctic Peninsula". Historical Biology: An International Journal of Paleobiology. in press: 1. doi:10.1080/08912963.2017.1348503.
- ^ Janet C. Buckner; Ryan Ellingson; David A. Gold; Terry L. Jones; David K. Jacobs (2018). "Mitogenomics supports an unexpected taxonomic relationship for the extinct diving duck Chendytes lawi and definitively places the extinct Labrador Duck". Molecular Phylogenetics and Evolution. 122: 102–109. doi:10.1016/j.ympev.2017.12.008.
- ^ Mariana B. J. Picasso; Ricardo S. De Mendoza; Javier N. Gelfo (2018). "A seedsnipe (Aves, Charadriiformes, Thinocoridae) from the Ensenadan Age/Stage (early-middle Pleistocene) of Buenos Aires, Argentina". Historical Biology: An International Journal of Paleobiology. in press: 1. doi:10.1080/08912963.2017.1370647.
- ^ Ursula B. Göhlich; Gerald Mayr (2018). "The alleged early Miocene Auk Petralca austriaca is a Loon (Aves, Gaviiformes): restudy of a controversial fossil bird". Historical Biology: An International Journal of Paleobiology. in press: 1. doi:10.1080/08912963.2017.1333610.
- ^ Piotr Jadwiszczak; Bruce M. Rothschild (2018). "The first evidence of an infectious disease in early penguins". Historical Biology: An International Journal of Paleobiology. in press: 1. doi:10.1080/08912963.2017.1353606.
- ^ Theresa L. Cole; Jonathan M. Waters; Lara D. Shepherd; Nicolas J. Rawlence; Leo Joseph; Jamie R. Wood (2018). "Ancient DNA reveals that the 'extinct' Hunter Island penguin (Tasidyptes hunteri) is not a distinct taxon". Zoological Journal of the Linnean Society. 182 (2): 459–464. doi:10.1093/zoolinnean/zlx043.
- ^ Yuesong Gao; Lianjiao Yang; Jianjun Wang; Zhouqing Xie; Yuhong Wang; Liguang Sun (2018). "Penguin colonization following the last glacial-interglacial transition in the Vestfold Hills, East Antarctica". Palaeogeography, Palaeoclimatology, Palaeoecology. 490: 629–639. doi:10.1016/j.palaeo.2017.11.053.
- ^ Gerald Mayr; James L. Goedert (2018). "First record of a tarsometatarsus of Tonsala hildegardae (Plotopteridae) and other avian remains from the late Eocene/early Oligocene of Washington State (USA)". Geobios. in press. doi:10.1016/j.geobios.2017.12.006.
- ^ Jörn Theuerkauf; Roman Gula (2018). "Indirect evidence for body size reduction in a flightless island bird after human colonisation". Journal of Ornithology. in press. doi:10.1007/s10336-018-1545-0.
{{cite journal}}
: no-break space character in|author1=
at position 5 (help) - ^ Washington Jones; Andrés Rinderknecht; Herculano Alvarenga; Felipe Montenegro; Martín Ubilla (2018). "The last terror birds (Aves, Phorusrhacidae): new evidence from the late Pleistocene of Uruguay". PalZ. in press. doi:10.1007/s12542-017-0388-y.
- ^ Ulf S. Johansson; Per G. P. Ericson; Mozes P. K. Blom; Martin Irestedt (2018). "The phylogenetic position of the extinct Cuban Macaw Ara tricolor based on complete mitochondrial genome sequences". Ibis. in press. doi:10.1111/ibi.12591.
- ^ Gerald Mayr; Sophie Hervet; Eric Buffetaut (2018). "On the diverse and widely ignored Paleocene avifauna of Menat (Puy-de-Dôme, France): new taxonomic records and unusual soft tissue preservation". Geological Magazine. in press. doi:10.1017/S0016756818000080.
- ^ Daniel J. Field (2018). "Preliminary paleoecological insights from the Pliocene avifauna of Kanapoi, Kenya: Implications for the ecology of Australopithecus anamensis". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2017.08.007.
- ^ Kari A. Prassack; Michael C. Pante; Jackson K. Njau; Ignacio de la Torre (2018). "The paleoecology of Pleistocene birds from Middle Bed II, at Olduvai Gorge, Tanzania, and the environmental context of the Oldowan-Acheulean transition". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2017.11.003.
- ^ Lisa Carrera; Marco Pavia; Matteo Romandini; Marco Peresani (2018). "Avian fossil assemblages at the onset of the LGM in the eastern Alps: A palaecological contribution from the Rio Secco Cave (Italy)". Comptes Rendus Palevol. in press. doi:10.1016/j.crpv.2017.10.006.
- ^ Nikita V. Zelenkov; Thomas A. Stidham; Nicolay V. Martynovich; Natalia V. Volkova; Qiang Li; Zhuding Qiu (2018). "The middle Miocene duck Chenoanas (Aves, Anatidae): new species, phylogeny and geographical range". Papers in Palaeontology. Online edition. doi:10.1002/spp2.1107.
- ^ Xiaoting Zheng; Jingmai K. O'Connor; Xiaoli Wang; Yan Wang; Zhonghe Zhou (2018). "Reinterpretation of a previously described Jehol bird clarifies early trophic evolution in the Ornithuromorpha". Proceedings of the Royal Society B: Biological Sciences. 285 (1871): 20172494. doi:10.1098/rspb.2017.2494.
- ^ Natalia V. Volkova; Nikita V. Zelenkov (2018). "A tree-climbing passerine bird (Passeriformes, Certhioidea) from the uppermost Lower Miocene of Eastern Siberia". Paleontological Journal. 52 (1).
- ^ a b Ellen K. Mather; Alan J. D. Tennyson; R. Paul Scofield; Vanesa L. De Pietri; Suzanne J. Hand; Michael Archer; Warren D. Handley; Trevor H. Worthy (2018). "Flightless rails (Aves: Rallidae) from the early Miocene St Bathans Fauna, Otago, New Zealand". Journal of Systematic Palaeontology. Online edition. doi:10.1080/14772019.2018.1432710.
- ^ a b Gerald Mayr; Vanesa L. De Pietri; Leigh Love; Al A. Mannering; R. Paul Scofield (2018). "A well-preserved new mid-Paleocene penguin (Aves, Sphenisciformes) from the Waipara Greensand in New Zealand". Journal of Vertebrate Paleontology. Online edition: e1398169. doi:10.1080/02724634.2017.1398169.
- ^ David M. Unwin; David M. Martill (2018). "Systematic reassessment of the first Jurassic pterosaur from Thailand". In D. W. E. Hone; M. P. Witton; D. M. Martill (eds.). New Perspectives on Pterosaur Palaeobiology. The Geological Society of London. pp. 181–186. doi:10.1144/SP455.13. ISBN 978-1-78620-317-5.
- ^ S. Christopher Bennett (2018). "New smallest specimen of the pterosaur Pteranodon and ontogenetic niches in pterosaurs". Journal of Paleontology. in press: 1. doi:10.1017/jpa.2017.84.
- ^ Leonardo D. Ortiz David; Bernardo J. González Riga; Alexander W.A. Kellner (2018). "Discovery of the largest pterosaur from South America". Cretaceous Research. 83: 40–46. doi:10.1016/j.cretres.2017.10.004.
- ^ D. W. E. Hone; S. Jiang; X. Xu (2018). "A taxonomic revision of Noripterus complicidens and Asian members of the Dsungaripteridae". In D. W. E. Hone; M. P. Witton; D. M. Martill (eds.). New Perspectives on Pterosaur Palaeobiology. The Geological Society of London. pp. 149–157. doi:10.1144/SP455.8. ISBN 978-1-78620-317-5.
- ^ Richard Buchmann; Taissa Rodrigues; Sabrina Polegario; Alexander W.A. Kellner (2018). "New information on the postcranial skeleton of the Thalassodrominae (Pterosauria, Pterodactyloidea, Tapejaridae)". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1343314.
- ^ Gregory F. Funston; Elizabeth Martin-Silverstone; Philip J. Currie (2017). "The first pterosaur pelvic material from the Dinosaur Park Formation (Campanian) and implications for azhdarchid locomotion". FACETS. 2: 559–574. doi:10.1139/facets-2016-0067.
- ^ Gregory F. Funston; Elizabeth Martin-Silverstone; Philip J. Currie (2018). "Correction: The first pterosaur pelvic material from the Dinosaur Park Formation (Campanian) and implications for azhdarchid locomotion". FACETS. 3: 192–194. doi:10.1139/facets-2018-0006.
- ^ Stanislas Rigal; David M. Martill; Steven C. Sweetman (2018). "A new pterosaur specimen from the Upper Tunbridge Wells Sand Formation (Cretaceous, Valanginian) of southern England and a review of Lonchodectes sagittirostris (Owen 1874)". In D. W. E. Hone; M. P. Witton; D. M. Martill (eds.). New Perspectives on Pterosaur Palaeobiology. The Geological Society of London. pp. 221–232. doi:10.1144/SP455.5. ISBN 978-1-78620-317-5.
- ^ Junchang Lü; Qingjin Meng; Baopeng Wang; Di Liu; Caizhi Shen; Yuguang Zhang (2018). "Short note on a new anurognathid pterosaur with evidence of perching behaviour from Jianchang of Liaoning Province, China". In D. W. E. Hone; M. P. Witton; D. M. Martill (eds.). New Perspectives on Pterosaur Palaeobiology. The Geological Society of London. pp. 95–104. doi:10.1144/SP455.16. ISBN 978-1-78620-317-5.
- ^ David M. Martill; David M. Unwin; Nizar Ibrahim; Nick Longrich (2018). "A new edentulous pterosaur from the Cretaceous Kem Kem beds of south eastern Morocco". Cretaceous Research. 84: 1–12. doi:10.1016/j.cretres.2017.09.006.
- ^ Jordi Alexis Garcia Marsà; Federico L. Agnolín; Fernando Novas (2018). "Bone microstructure of Lewisuchus admixtus Romer, 1972 (Archosauria, Dinosauriformes)". Historical Biology: An International Journal of Paleobiology. in press: 1. doi:10.1080/08912963.2017.1347646.
- ^ Rafał Piechowski; Grzegorz Niedźwiedzki; Mateusz Tałanda (2018). "Unexpected bird-like features and high intraspecific variation in the braincase of the Triassic relative of dinosaurs". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1418339.
- ^ Federico L. Agnolín; Sebastián Rozadilla (2018). "Phylogenetic reassessment of Pisanosaurus mertii Casamiquela, 1967, a basal dinosauriform from the Late Triassic of Argentina". Journal of Systematic Palaeontology. in press: 1. doi:10.1080/14772019.2017.1352623.
- ^ Matthew G. Baron (2018). "Pisanosaurus mertii and the Triassic ornithischian crisis: could phylogeny offer a solution?". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1410705.
- ^ Matthew G. Baron; Megan E. Williams (2018). "A re-evaluation of the enigmatic dinosauriform Caseosaurus crosbyensis from the Late Triassic of Texas, USA and its implications for early dinosaur evolution". Acta Palaeontologica Polonica. 63 (1): 129–145. doi:10.4202/app.00372.2017.
{{cite journal}}
: no-break space character in|journal=
at position 5 (help); no-break space character in|title=
at position 47 (help) - ^ Yara Haridy; Mark J. Macdougall; Robert R. Reisz (2018). "The lower jaw of the Early Permian parareptile Delorhynchus, first evidence of multiple denticulate coronoids in a reptile". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlx085.
- ^ M. L. Turner; C. A. Sidor (2018). "Pathology in a Permian parareptile: congenital malformation of sacral vertebrae". Journal of Zoology. 304 (1): 13–20. doi:10.1111/jzo.12519.
- ^ Yara Haridy; Aaron R. H. LeBlanc; Robert R. Reisz (2018). "The Permian reptile Opisthodontosaurus carrolli: a model for acrodont tooth replacement and dental ontogeny". Journal of Anatomy. 232 (3): 371–382. doi:10.1111/joa.12754.
- ^ Ben T. Kligman; Adam D. Marsh; William G. Parker (2018). "First records of diapsid Palacrodon from the Norian, Late Triassic Chinle Formation of Arizona, and their biogeographic implications". Acta Palaeontologica Polonica. 63 (1): 117–127. doi:10.4202/app.00426.2017.
- ^ Aileen O’Brien; David I. Whiteside; John E. A. Marshall (2018). "Anatomical study of two previously undescribed specimens of Clevosaurus hudsoni (Lepidosauria: Rhynchocephalia) from Cromhall Quarry, UK, aided by computed tomography, yields additional information on the skeleton and hitherto undescribed bones". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlx087.
- ^ Rainer R. Schoch; Hans-Dieter Sues (2018). "Osteology of the Middle Triassic stem-turtle Pappochelys rosinae and the early evolution of the turtle skeleton". Journal of Systematic Palaeontology. in press: 1. doi:10.1080/14772019.2017.1354936.
- ^ Susan R. Beardmore; Heinz Furrer (2018). "Land or water: using taphonomic models to determine the lifestyle of the Triassic protorosaur Tanystropheus (Diapsida, Archosauromorpha)". Palaeobiodiversity and Palaeoenvironments. in press. doi:10.1007/s12549-017-0299-7.
- ^ Silvio Renesto; Franco Saller (2018). "Evidences for a semi aquatic life style in the Triassic diapsid reptile Tanystropheus". Rivista Italiana di Paleontologia e Stratigrafia. 124 (1): 23–34. doi:10.13130/2039-4942/9541.
- ^ Adriel R. Gentil; Martín D. Ezcurra (2018). "Reconstruction of the masticatory apparatus of the holotype of the rhynchosaur Hyperodapedon sanjuanensis (Sill, 1970) from the Late Triassic of Argentina: implications for the diagnosis of the species". Ameghiniana. in press. doi:10.5710/AMGH.17.10.2017.3132.
- ^ Adriel R. Gentil; Martín D. Ezcurra (2018). "A new rhynchosaur maxillary tooth plate morphotype expands the disparity of the group in the Ischigualasto Formation (Late Triassic) of Northwestern Argentina". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1438425.
- ^ Emily Keeble; David I. Whiteside; Michael J. Benton (2018). "The terrestrial fauna of the Late Triassic Pant-y-ffynnon Quarry fissures, South Wales, UK and a new species of Clevosaurus (Lepidosauria: Rhynchocephalia)". Proceedings of the Geologists' Association. in press. doi:10.1016/j.pgeola.2017.11.001.
- ^ Jun Liu; Gabriel S. Bever (2018). "The tetrapod fauna of the upper Permian Naobaogou Formation of China: a new species of Elginia (Parareptilia, Pareiasauria)". Papers in Palaeontology. Online edition. doi:10.1002/spp2.1105.
- ^ Sean P. Modesto; Diane Scott; Robert R. Reisz (2018). "A new small captorhinid reptile from the lower Permian of Oklahoma and resource partitioning among small captorhinids in the Richards Spur fauna". Papers in Palaeontology. Online edition. doi:10.1002/spp2.1109.
- ^ Marco Romano; Neil Brocklehurst; Jörg Fröbisch (2018). "The postcranial skeleton of Ennatosaurus tecton (Synapsida, Caseidae)". Journal of Systematic Palaeontology. in press. doi:10.1080/14772019.2017.1367729.
- ^ Ashley Kruger; Bruce S. Rubidge; Fernando Abdala (2018). "A juvenile specimen of Anteosaurus magnificus Watson, 1921 (Therapsida: Dinocephalia) from the South African Karoo, and its implications for understanding dinocephalian ontogeny". Journal of Systematic Palaeontology. 16 (2): 139–158. doi:10.1080/14772019.2016.1276106.
- ^ Christen D. Shelton; Anusuya Chinsamy; Bruce M. Rothschild (2018). "Osteomyelitis in a 265-million-year-old titanosuchid (Dinocephalia, Therapsida)". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1419348.
- ^ Julien Benoit; Kenneth D. Angielczyk; Juri A. Miyamae; Paul Manger; Vincent Fernandez; Bruce Rubidge (2018). "Evolution of facial innervation in anomodont therapsids (Synapsida): Insights from X-ray computerized microtomography". Journal of Morphology. in press. doi:10.1002/jmor.20804.
- ^ Savannah L. Olroyd; Christian A. Sidor; Kenneth D. Angielczyk (2018). "New materials of the enigmatic dicynodont Abajudon kaayai (Therapsida, Anomodontia) from the lower Madumabisa Mudstone Formation, middle Permian of Zambia". Journal of Vertebrate Paleontology. in press: e1403442. doi:10.1080/02724634.2017.1403442.
- ^ Phil H. Lai; Andrew A. Biewener; Stephanie E. Pierce (2018). "Three-dimensional mobility and muscle attachments in the pectoral limb of the Triassic cynodont Massetognathus pascuali (Romer, 1967)". Journal of Anatomy. 232 (3): 383–406. doi:10.1111/joa.12766.
- ^ Fábio Hiratsuka Veiga; Jennifer Botha-Brink; Marina Bento Soares (2018). "Osteohistology of the non-mammaliaform traversodontids Protuberum cabralense and Exaeretodon riograndensis from southern Brazil". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1441292.
- ^ Cristian P. Pacheco; Agustín G. Martinelli; Ane E. B. Pavanatto; Marina B. Soares; Sérgio Dias-da-Silva (2018). "Prozostrodon brasiliensis, a probainognathian cynodont from the Late Triassic of Brazil: second record and improvements on its dental anatomy". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1292423.
- ^ José F. Bonaparte; A. W. Crompton (2018). "Origin and relationships of the Ictidosauria to non-mammalian cynodonts and mammals". Historical Biology: An International Journal of Paleobiology. 30 (1–2): 174–182. doi:10.1080/08912963.2017.1329911.
- ^ Pablo Gusmão Rodrigues; Agustín G. Martinelli; Cesar Leandro Schultz; Ian J. Corfe; Pamela G. Gill; Marina B. Soares; Emily J. Rayfield (2018). "Digital cranial endocast of Riograndia guaibensis (Late Triassic, Brazil) sheds light on the evolution of the brain in non-mammalian cynodonts". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1427742.
- ^ Lucas E. Fiorelli; Sebastián Rocher; Agustín G. Martinelli; Martín D. Ezcurra; E. Martín Hechenleitner; Miguel Ezpeleta (2018). "Tetrapod burrows from the Middle–Upper Triassic Chañares Formation (La Rioja, Argentina) and its palaeoecological implications". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2018.01.026.
- ^ Frances S. Dunn; Alexander G. Liu; Philip C. J. Donoghue (2018). "Ediacaran developmental biology". Biological Reviews. in press. doi:10.1111/brv.12379.
- ^ Tatsuo Oji; Stephen Q. Dornbos; Keigo Yada; Hitoshi Hasegawa; Sersmaa Gonchigdorj; Takafumi Mochizuki; Hideko Takayanagi; Yasufumi Iryu (2018). "Penetrative trace fossils from the late Ediacaran of Mongolia: early onset of the agronomic revolution". Royal Society Open Science. 5 (2): 172250. doi:10.1098/rsos.172250.
- ^ Felicity J. Coutts; Corey J.A. Bradshaw; Diego C. García-Bellido; James G. Gehling (2018). "Evidence of sensory-driven behavior in the Ediacaran organism Parvancorina: Implications and autecological interpretations". Gondwana Research. 55: 21–29. doi:10.1016/j.gr.2017.10.009.
- ^ Akshay Mehra; Adam Maloof (2018). "Multiscale approach reveals that Cloudina aggregates are detritus and not in situ reef constructions". Proceedings of the National Academy of Sciences of the United States of America. in press. doi:10.1073/pnas.1719911115.
- ^ Rachel Wood; Amelia Penny (2018). "Substrate growth dynamics and biomineralization of an Ediacaran encrusting poriferan". Proceedings of the Royal Society B: Biological Sciences. 285 (1870): 20171938. doi:10.1098/rspb.2017.1938.
- ^ Zongjun Yin; Duoduo Zhao; Bing Pan; Fangchen Zhao; Han Zeng; Guoxiang Li; David J. Bottjer; Maoyan Zhu (2018). "Early Cambrian animal diapause embryos revealed by X-ray tomography". Geology. in press. doi:10.1130/G40081.1.
- ^ Ben J. Slater; Sebastian Willman; Graham E. Budd; John S. Peel (2018). "Widespread preservation of small carbonaceous fossils (SCFs) in the early Cambrian of North Greenland". Geology. 46 (2): 107–110. doi:10.1130/G39788.1.
- ^ Christian B. Skovsted; Timothy P. Topper (2018). "Mobergellans from the early Cambrian of Greenland and Labrador: new morphological details and implications for the functional morphology of mobergellans". Journal of Paleontology. 92 (1): 71–79. doi:10.1017/jpa.2017.41.
- ^ Leanne Chambers; Danita Brandt (2018). "Explaining gregarious behaviour in Banffia constricta from the Middle Cambrian Burgess Shale, British Columbia". Lethaia. 51 (1): 120–125. doi:10.1111/let.12231.
- ^ Michael Foote; Roger A. Cooper; James S. Crampton; Peter M. Sadler (2018). "Diversity-dependent evolutionary rates in early Palaeozoic zooplankton". Proceedings of the Royal Society B: Biological Sciences. 285 (1873): 20180122. doi:10.1098/rspb.2018.0122.
- ^ Shixue Hu; Bernd-D. Erdtmann; Michael Steiner; Yuandong Zhang; Fangchen Zhao; Zhiliang Zhang; Jian Han (2018). "Malongitubus: a possible pterobranch hemichordate from the early Cambrian of South China". Journal of Paleontology. 92 (1): 26–32. doi:10.1017/jpa.2017.134.
- ^ Stephen Pates; Allison C. Daley (2017). "Caryosyntrips: a radiodontan from the Cambrian of Spain, USA and Canada". Papers in Palaeontology. 3 (3): 461–470. doi:10.1002/spp2.1084.
- ^ a b José A. Gámez Vintaned; Andrey Y. Zhuravlev (2018). "Comment on "Aysheaia prolata from the Utah Wheeler Formation (Drumian, Cambrian) is a frontal appendage of the radiodontan Stanleycaris" by Stephen Pates, Allison C. Daley, and Javier Ortega-Hernández". Acta Palaeontologica Polonica. in press. doi:10.4202/app.00335.2017.
- ^ a b c Stephen Pates; Allison C. Daley; Javier Ortega-Hernández (2018). "Reply to Comment on "Aysheaia prolata from the Utah Wheeler Formation (Drumian, Cambrian) is a frontal appendage of the radiodontan Stanleycaris" with the formal description of Stanleycaris". Acta Palaeontologica Polonica. Online edition. doi:10.4202/app.00443.2017.
- ^ Javier Ortega-Hernández; Dongjing Fu; Xingliang Zhang; Degan Shu (2018). "Gut glands illuminate trunk segmentation in Cambrian fuxianhuiids". Current Biology. 28 (4): R146–R147. doi:10.1016/j.cub.2018.01.040.
- ^ Mike B. Meyer; G. Robert Ganis; Jacalyn M. Wittmer; Jan A. Zalasiewicz; Kenneth De Baets (2018). "A Late Ordovician planktic assemblage with exceptionally preserved soft-bodied problematica from the Martinsburg Formation, Pennsylvania". Palaios. 33 (1): 36–46. doi:10.2110/palo.2017.036.
- ^ S. L. Cobain; D. M. Hodgson; J. Peakall; P. B. Wignall; M. R. D. Cobain (2018). "A new macrofaunal limit in the deep biosphere revealed by extreme burrow depths in ancient sediments". Scientific Reports. 8: Article number 261. doi:10.1038/s41598-017-18481-w.
- ^ Magdalena N. Georgieva; Crispin T. S. Little; Jonathan S. Watson; Mark A. Sephton; Alexander D. Ball; Adrian G. Glover (2018). "Identification of fossil worm tubes from Phanerozoic hydrothermal vents and cold seeps". Journal of Systematic Palaeontology. in press. doi:10.1080/14772019.2017.1412362.
- ^ Jongsun Hong; Jae-Ryong Oh; Jeong-Hyun Lee; Suk-Joo Choh; Dong-Jin Lee (2018). "The earliest evolutionary link of metazoan bioconstruction: Laminar stromatoporoid–bryozoan reefs from the Middle Ordovician of Korea". Palaeogeography, Palaeoclimatology, Palaeoecology. 492: 126–133. doi:10.1016/j.palaeo.2017.12.018.
- ^ Jie Yang; Javier Ortega-Hernández; David A. Legg; Tian Lan; Jin-bo Hou; Xi-guang Zhang (2018). "Early Cambrian fuxianhuiids from China reveal origin of the gnathobasic protopodite in euarthropods". Nature Communications. 9: Article number 470. doi:10.1038/s41467-017-02754-z.
- ^ Juan Luis Suárez Andrés; Patrick N. Wyse Jackson (2018). "First report of a Palaeozoic fenestrate bryozoan with an articulated growth habit". Journal of Iberian Geology. in press. doi:10.1007/s41513-018-0054-6.
- ^ Yunhuan Liu; Qi Wang; Tiequan Shao; Huaqiao Zhang; Jiachen Qin; Li Chen; Yongchun Liang; Cheng Chen; Jiaqi Xue; Xiaowen Liu (2018). "New material of three-dimensionally phosphatized and microscopic cycloneuralians from the Cambrian Paibian Stage of South China". Journal of Paleontology. 92 (1): 87–98. doi:10.1017/jpa.2017.40.
- ^ Paul D. Taylor; Soledad Brezina (2018). "A new Cenozoic cyclostome bryozoan genus from Argentina and New Zealand: strengthening the biogeographical links between South America and Australasia". Alcheringa: an Australasian Journal of Palaeontology. in press. doi:10.1080/03115518.2018.1432073.
- ^ Juan L. Benedetto; Fernando J. Lavie; Diego F. Muñoz (2018). "Broeggeria Walcott and other upper Cambrian and Tremadocian linguloid brachiopods from NW Argentina". Geological Journal. 53 (1): 102–119. doi:10.1002/gj.2880.
- ^ Alfons H.M. VandenBerg (2018). "Fragmentation as a novel propagation strategy in an Early Ordovician graptolite". Alcheringa: an Australasian Journal of Palaeontology. 42 (1): 1–9. doi:10.1080/03115518.2017.1395074.
- ^ José Antonio Gámez Vintaned; Eladio Liñán; David Navarro; Andrey Yu. Zhuravlev (2018). "The oldest Cambrian skeletal fossils of Spain (Cadenas Ibéricas, Aragón)". Geological Magazine. in press: 1. doi:10.1017/S0016756817000358.
- ^ Juan Carlos Gutiérrez-Marco; Olev Vinn (2018). "Cornulitids (tubeworms) from the Late Ordovician Hirnantia fauna of Morocco". Journal of African Earth Sciences. 137: 61–68. doi:10.1016/j.jafrearsci.2017.10.005.
- ^ Haijing Sun; John M. Malinky; Maoyan Zhu; Diying Huang (2018). "Palaeobiology of orthothecide hyoliths from the Cambrian Manto Formation of Hebei Province, North China". Acta Palaeontologica Polonica. 63 (1): 87–101. doi:10.4202/app.00413.2017.
- ^ Pu Zong; Xue-Ping Ma (2018). "Spiriferide brachiopods from the Famennian (Late Devonian) Hongguleleng Formation of western Junggar, Xinjiang, northwestern China". Palaeoworld. 27 (1): 66–89. doi:10.1016/j.palwor.2017.07.002.
- ^ Alfons H.M. Vandenberg (2018). "Didymograptellus kremastus n. sp., a new name for the Chewtonian (mid-Floian, Lower Ordovician) graptolite D. protobifidus sensu Benson & Keble, 1935, non Elles, 1933". Alcheringa: an Australasian Journal of Palaeontology. in press. doi:10.1080/03115518.2017.1398347.
- ^ Karma Nanglu; Jean-Bernard Caron (2018). "A new Burgess Shale polychaete and the origin of the annelid head revisited". Current Biology. 28 (2): 319–326.e1. doi:10.1016/j.cub.2017.12.019.
- ^ Miguel A. Torres-Martínez; Francisco Sour-Tovar; Ricardo Barragán (2018). "Kukulkanus, a new genus of buxtoniin brachiopod from the Artinskian–Kungurian (Early Permian) of Mexico". Alcheringa: an Australasian Journal of Palaeontology. in press. doi:10.1080/03115518.2017.1395073.
- ^ a b Enis Kemal Sagular; Zeki Ünal Yümün; Engin Meriç (2018). "New didemnid ascidian spicule records calibrated to the nannofossil data chronostratigraphically in the Quaternary marine deposits of Lake İznik (NW Turkey) and their paleoenvironmental interpretations". Quaternary International. in press. doi:10.1016/j.quaint.2017.08.060.
- ^ Marcelo G. Carrera; Juan Jose Rustán; N. Emilio Vaccari; Miguel Ezpeleta (2018). "A new Mississippian hexactinellid sponge from the western Gondwana: Taxonomic and paleobiogeographic implications". Acta Palaeontologica Polonica. 63 (1): 63–70. doi:10.4202/app.00403.2017.
- ^ José Francisco Baeza-Carratalá; Fernando Pérez-Valera; Juan Alberto Pérez-Valera (2018). "The oldest post-Paleozoic (Ladinian, Triassic) brachiopods from the Betic Range, SE Spain". Acta Palaeontologica Polonica. 63 (1): 71–85. doi:10.4202/app.00415.2017.
- ^ Ján Schlögl; Tomáš Kočí; Manfred Jäger; Tomasz Segit; Jan Sklenář; Driss Sadki; Mounsif Ibnoussina; Adam Tomašových (2018). "Tempestitic shell beds formed by a new serpulid polychaete from the Bajocian (Middle Jurassic) of the Central High Atlas (Morocco)". PalZ. in press. doi:10.1007/s12542-017-0381-5.
- ^ a b c Ben J. Slater; Thomas H. P. Harvey; Nicholas J. Butterfield (2018). "Small carbonaceous fossils (SCFs) from the Terreneuvian (lower Cambrian) of Baltica". Palaeontology. Online edition. doi:10.1111/pala.12350.
- ^ Yuning Yang; Xingliang Zhang; Yuanlong Zhao; Yiru Qi; Linhao Cui (2018). "New paleoscolecid worms from the early Cambrian north margin of the Yangtze Platform, South China". Journal of Paleontology. 92 (1): 49–58. doi:10.1017/jpa.2017.50.
- ^ Jean-Bernard Caron; Robert R. Gaines; M. Gabriela Mángano; Michael Streng; Allison C. Daley (2010). "A new Burgess Shale–type assemblage from the "thin" Stephen Formation of the southern Canadian Rockies". Geology. 38 (9): 811–814. doi:10.1130/G31080.1.
- ^ J. William Schopf; Kouki Kitajima; Michael J. Spicuzza; Anatoliy B. Kudryavtsev; John W. Valley (2018). "SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions". Proceedings of the National Academy of Sciences of the United States of America. 115 (1): 53–58. doi:10.1073/pnas.1718063115.
- ^ Yuangao Qu; Shixing Zhu; Martin Whitehouse; Anders Engdahl; Nicola McLoughlin (2018). "Carbonaceous biosignatures of the earliest putative macroscopic multicellular eukaryotes from 1630 Ma Tuanshanzi Formation, north China". Precambrian Research. 304: 99–109. doi:10.1016/j.precamres.2017.11.004.
- ^ Ilya Bobrovskiy; Janet M. Hope; Anna Krasnova; Andrey Ivantsov; Jochen J. Brocks (2018). "Molecular fossils from organically preserved Ediacara biota reveal cyanobacterial origin for Beltanelliformis". Nature Ecology & Evolution. 2 (3): 437–440. doi:10.1038/s41559-017-0438-6.
- ^ Timothy M. Gibson; Patrick M. Shih; Vivien M. Cumming; Woodward W. Fischer; Peter W. Crockford; Malcolm S.W. Hodgskiss; Sarah Wörndle; Robert A. Creaser; Robert H. Rainbird; Thomas M. Skulski; Galen P. Halverson (2018). "Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis". Geology. 46 (2): 135–138. doi:10.1130/G39829.1.
- ^ Emily G. Mitchell; Nicholas J. Butterfield (2018). "Spatial analyses of Ediacaran communities at Mistaken Point". Paleobiology. in press. doi:10.1017/pab.2017.35.
- ^ Gregory J. Retallack (2018). "Reassessment of the Devonian problematicum Protonympha as another post-Ediacaran vendobiont". Lethaia. in press. doi:10.1111/let.12253.
- ^ Gabriela J. Arreguín-Rodríguez; Ellen Thomas; Simon D’haenens; Robert P. Speijer; Laia Alegret (2018). "Early Eocene deep-sea benthic foraminiferal faunas: Recovery from the Paleocene Eocene Thermal Maximum extinction in a greenhouse world". PLoS ONE. 13 (2): e0193167. doi:10.1371/journal.pone.0193167.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Michael A. Kaminski; Muhammad Hammad Malik; Eiichi Setoyama (2018). "The occurrence of a shallow-water Ammobaculoides assemblage in the Middle Jurassic (Bajocian) Dhruma Formation of Central Saudi Arabia". Journal of Micropalaeontology. 37 (1): 149–152. doi:10.5194/jm-37-149-2018.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Ke Pang; Qing Tang; Lei Chen; Bin Wan; Changtai Niu; Xunlai Yuan; Shuhai Xiao (2018). "Nitrogen-fixing heterocystous Cyanobacteria in the Tonian period". Current Biology. 28 (4): 616–622.e1. doi:10.1016/j.cub.2018.01.008.
- ^ a b c d e f Qin Ye; Jinnan Tong; Zhihui An; Jun Hu; Li Tian; Kaiping Guan; Shuhai Xiao (2018). "A systematic description of new macrofossil material from the upper Ediacaran Miaohe Member in South China". Journal of Systematic Palaeontology. in press. doi:10.1080/14772019.2017.1404499.
- ^ Mostafa Falahatgar; Daniel Vachard; Mehdi Sarfi (2018). "Revision of the Lower Viséan (MFZ11) calcareous algae and archaediscoid foraminifers of the Sari area (central Alborz, Iran)". Geobios. in press. doi:10.1016/j.geobios.2018.02.005.
- ^ David H. McNeil; Lisa A. Neville (2018). "On a grain of sand – a microhabitat for the opportunistic agglutinated foraminifera Hemisphaerammina apta n. sp., from the early Eocene Arctic Ocean". Journal of Micropalaeontology. 37 (1): 295–303. doi:10.5194/jm-37-295-2018.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ a b Qahtan A.M. Al Nuaimy (2018). "New quantitative data on Omphalocyclus from the Maastrichtian in Northern Iraq". Journal of African Earth Sciences. 138: 319–335. doi:10.1016/j.jafrearsci.2017.11.016.
- ^ Leigh Anne Riedman; Susannah M. Porter; Clive R. Calver (2018). "Vase-shaped microfossil biostratigraphy with new data from Tasmania, Svalbard, Greenland, Sweden and the Yukon". Precambrian Research. in press. doi:10.1016/j.precamres.2017.09.019.
- ^ Lorenzo Consorti; Felix Schlagintweit; Koorosh Rashidi (2018). "Palaeoelphidium gen. nov. (type species: Elphidiella multiscissurata Smout 1955): The oldest Elphidiellidae (benthic foraminifera) from Maastrichtian shallow-water carbonates of the Middle East". Cretaceous Research. in press. doi:10.1016/j.cretres.2018.02.011.
- ^ Michael Krings; Carla J. Harper; Edith L. Taylor (2018). "Fungi and fungal interactions in the Rhynie chert: a review of the evidence, with the description of Perexiflasca tayloriana gen. et sp. nov.†". Philosophical Transactions of the Royal Society B: Biological Sciences. 373 (1739): 20160500. doi:10.1098/rstb.2016.0500.
- ^ Ulla Kaasalainen; Jochen Heinrichs; Matthew A. M. Renner; Lars Hedenäs; Alfons Schäfer-Verwimp; Gaik Ee Lee; Michael S. Ignatov; Jouko Rikkinen; Alexander R. Schmidt (2018). "A Caribbean epiphyte community preserved in Miocene Dominican amber". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 107 (2–3): 321–331. doi:10.1017/S175569101700010X.
- ^ Christine Strullu-Derrien; Alan R. T. Spencer; Tomasz Goral; Jaclyn Dee; Rosmarie Honegger; Paul Kenrick; Joyce E. Longcore; Mary L. Berbee (2018). "New insights into the evolutionary history of Fungi from a 407 Ma Blastocladiomycota fossil showing a complex hyphal thallus". Philosophical Transactions of the Royal Society B: Biological Sciences. 373 (1739): 20160502. doi:10.1098/rstb.2016.0502.
- ^ Lei-Ming Yin; B.P. Singh; O.N. Bhargava; Yuan-Long Zhao; R.S. Negi; Fan-Wei Meng; C.A. Sharma (2018). "Palynomorphs from the Cambrian Series 3, Parahio valley (Spiti), Northwest Himalaya". Palaeoworld. 27 (1): 30–41. doi:10.1016/j.palwor.2017.05.004.
- ^ Kazumi Ozaki; Eiichi Tajika; Peng K. Hong; Yusuke Nakagawa; Christopher T. Reinhard (2018). "Effects of primitive photosynthesis on Earth's early climate system". Nature Geoscience. 11 (1): 55–59. doi:10.1038/s41561-017-0031-2.
- ^ Thomas Servais; David A.T. Harper (2018). "The Great Ordovician Biodiversification Event (GOBE): definition, concept and duration". Lethaia. in press. doi:10.1111/let.12259.
- ^ Yukio Isozaki; Thomas Servais (2018). "The Hirnantian (Late Ordovician) and end-Guadalupian (Middle Permian) mass-extinction events compared". Lethaia. in press. doi:10.1111/let.12252.
- ^ Martin Qvarnström; Piotr Szrek; Per E. Ahlberg; Grzegorz Niedźwiedzki (2018). "Non-marine palaeoenvironment associated to the earliest tetrapod tracks". Scientific Reports. 8: Article number 1074. doi:10.1038/s41598-018-19220-5.
- ^ Sandra R. Schachat; Conrad C. Labandeira; Matthew R. Saltzman; Bradley D. Cramer; Jonathan L. Payne; C. Kevin Boyce (2018). "Phanerozoic pO2 and the early evolution of terrestrial animals". Proceedings of the Royal Society B: Biological Sciences. 285 (1871): 20172631. doi:10.1098/rspb.2017.2631.
- ^ Emma M. Dunne; Roger A. Close; David J. Button; Neil Brocklehurst; Daniel D. Cashmore; Graeme T. Lloyd; Richard J. Butler (2018). "Diversity change during the rise of tetrapods and the impact of the 'Carboniferous rainforest collapse'". Proceedings of the Royal Society B: Biological Sciences. 285 (1872): 20172730. doi:10.1098/rspb.2017.2730.
- ^ Pia A. Viglietti; Roger M.H. Smith; Bruce S. Rubidge (2018). "Changing palaeoenvironments and tetrapod populations in the Daptocephalus Assemblage Zone (Karoo Basin, South Africa) indicate early onset of the Permo-Triassic mass extinction". Journal of African Earth Sciences. 138: 102–111. doi:10.1016/j.jafrearsci.2017.11.010.
- ^ Massimo Bernardi; Fabio Massimo Petti; Michael J. Benton (2018). "Tetrapod distribution and temperature rise during the Permian–Triassic mass extinction". Proceedings of the Royal Society B: Biological Sciences. 285 (1870): 20172331. doi:10.1098/rspb.2017.2331.
- ^ Jonathan Rolland; Daniele Silvestro; Dolph Schluter; Antoine Guisan; Olivier Broennimann; Nicolas Salamin (2018). "The impact of endothermy on the climatic niche evolution and the distribution of vertebrate diversity". Nature Ecology & Evolution. 2 (3): 459–464. doi:10.1038/s41559-017-0451-9.
- ^ Max C. Langer; Jahandar Ramezani; Átila A.S. Da Rosa (2018). "U-Pb age constraints on dinosaur rise from south Brazil". Gondwana Research. in press. doi:10.1016/j.gr.2018.01.005.
- ^ Alexander M. Dunhill; William J. Foster; James Sciberras; Richard J. Twitchett (2018). "Impact of the Late Triassic mass extinction on functional diversity and composition of marine ecosystems". Palaeontology. 61 (1): 133–148. doi:10.1111/pala.12332.
- ^ Thea H. Heimdal; Henrik. H. Svensen; Jahandar Ramezani; Karthik Iyer; Egberto Pereira; René Rodrigues; Morgan T. Jones; Sara Callegaro (2018). "Large-scale sill emplacement in Brazil as a trigger for the end-Triassic crisis". Scientific Reports. 8: Article number 141. doi:10.1038/s41598-017-18629-8.
- ^ Victoria M. Arbour; Lindsay E. Zanno (2018). "The evolution of tail weaponization in amniotes". Proceedings of the Royal Society B: Biological Sciences. 285 (1871): 20172299. doi:10.1098/rspb.2017.2299.
- ^ Ray Stanford; Martin G. Lockley; Compton Tucker; Stephen Godfrey; Sheila M. Stanford (2018). "A diverse mammal-dominated, footprint assemblage from wetland deposits in the Lower Cretaceous of Maryland". Scientific Reports. 8: Article number 741. doi:10.1038/s41598-017-18619-w.
- ^ Dai Jing; Sun Bainian (2018). "Early Cretaceous atmospheric CO2 estimates based on stomatal index of Pseudofrenelopsis papillosa (Cheirolepidiaceae) from southeast China". Cretaceous Research. 85: 232–242. doi:10.1016/j.cretres.2017.08.011.
- ^ Joseph S. Byrnes; Leif Karlstrom (2018). "Anomalous K-Pg–aged seafloor attributed to impact-induced mid-ocean ridge magmatism". Science Advances. 4 (2): eaao2994. doi:10.1126/sciadv.aao2994.
- ^ Laiming Zhang; Chengshan Wang; Paul B. Wignall; Tobias Kluge; Xiaoqiao Wan; Qian Wang; Yuan Gao (2018). "Deccan volcanism caused coupled pCO2 and terrestrial temperature rises, and pre-impact extinctions in northern China". Geology. 46 (3): 271–274. doi:10.1130/G39992.1.
- ^ David Evans; Navjit Sagoo; Willem Renema; Laura J. Cotton; Wolfgang Müller; Jonathan A. Todd; Pratul Kumar Saraswati; Peter Stassen; Martin Ziegler; Paul N. Pearson; Paul J. Valdes; Hagit P. Affek (2018). "Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry". Proceedings of the National Academy of Sciences of the United States of America. 115 (6): 1174–1179. doi:10.1073/pnas.1714744115.
- ^ J. Tyler Faith (2018). "Paleodietary change and its implications for aridity indices derived from δ18O of herbivore tooth enamel". Palaeogeography, Palaeoclimatology, Palaeoecology. 490: 571–578. doi:10.1016/j.palaeo.2017.11.045.
- ^ Scott A. Blumenthal; Naomi E. Levin; Francis H. Brown; Jean-Philip Brugal; Kendra L. Chritz; Thure E. Cerling (2018). "Diet and evaporation sensitivity in African ungulates: A comment on Faith (2018)". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2018.02.022.
- ^ J. Tyler Faith (2018). "We need to critically evaluate our assumptions: Reply to Blumenthal et al. (2018)". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2018.02.023.
- ^ Aaron Micallef; Angelo Camerlenghi; Daniel Garcia-Castellanos; Daniel Cunarro Otero; Marc-André Gutscher; Giovanni Barreca; Daniele Spatola; Lorenzo Facchin; Riccardo Geletti; Sebastian Krastel; Felix Gross; Morelia Urlaub (2018). "Evidence of the Zanclean megaflood in the eastern Mediterranean Basin". Scientific Reports. 8: Article number 1078. doi:10.1038/s41598-018-19446-3.
- ^ Henry F. Lamb; C. Richard Bates; Charlotte L. Bryant; Sarah J. Davies; Dei G. Huws; Michael H. Marshall; Helen M. Roberts (2018). "150,000-year palaeoclimate record from northern Ethiopia supports early, multiple dispersals of modern humans from Africa". Scientific Reports. 8: Article number 1077. doi:10.1038/s41598-018-19601-w.
- ^ Chad L. Yost; Lily J. Jackson; Jeffery R. Stone; Andrew S. Cohen (2018). "Subdecadal phytolith and charcoal records from Lake Malawi, East Africa imply minimal effects on human evolution from the ∼74 ka Toba supereruption". Journal of Human Evolution. 116: 75–94. doi:10.1016/j.jhevol.2017.11.005.