2019 in paleontology

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
List of years in paleontology (table)
In science
2016
2017
2018
2019
2020
2021
2022

Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils.[1] This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2019.

Plants[edit]

Sponges[edit]

Research[edit]

  • Sponge spicules and spicule-like structures that probably represent sponge fossils are described from four sections of the Ediacaran-Cambrian boundary interval in the Yangtze Gorges (China) by Chang et al. (2019).[2]
  • A study evaluating how distribution patterns of non-lithistid spiculate sponges changed during the Cambrian explosion and the Great Ordovician Biodiversification Event is published by Botting & Muir (2019).[3]

New taxa[edit]

Name Novelty Status Authors Age Type locality Country Notes Images

Acanthochaetetes huauclillensis[4]

Sp. nov

Valid

Sánchez-Beristain, García-Barrera & Moreno-Bedmar

Early Cretaceous (late Hauterivian to early Barremian)

 Mexico

A chaetetid sponge.

Allosacus pedunculatus[5]

Sp. nov

Valid

Carrera & Sumrall

Ordovician

Lenoir Limestone

 United States
( Tennessee)

A member of the family Streptosolenidae.

Carduispongia[6]

Gen. et sp. nov

Valid

Nadhira et al.

Silurian (Wenlock)

Coalbrookdale Formation

 United Kingdom

A sponge, possibly a calcareous sponge. The type species is C. pedicula.

Centrosia clavata[7]

Sp. nov

Valid

Świerczewska-Gładysz, Jurkowska & Niedźwiedzki

Late Cretaceous (late Turonian)

Opole Basin

 Poland

A hexactinellid sponge belonging to the family Callodictyonidae.

Crateromorpha opolensis[7]

Sp. nov

Valid

Świerczewska-Gładysz, Jurkowska & Niedźwiedzki

Late Cretaceous (late Turonian and early Coniacian)

Opole Basin

 Poland

A hexactinellid sponge belonging to the family Rossellidae.

Cystostroma primordia[8]

Sp. nov

Valid

Jeon et al.

Ordovician (Floian to Darriwilian)

Duwibong Formation
Hunghuayuan Formation

 China
 South Korea

A member of Stromatoporoidea.

Eoghanospongia[9]

Gen. et sp. nov

In press

Botting et al.

Silurian (Telychian)

 United Kingdom

A hexactinellid sponge. Genus includes new species E. carlinslowpensis.

Hamptonia jianhensis[10]

Sp. nov

Valid

Wang et al.

Cambrian Stage 4

 China

A sponge.

Monoplectroninia malonei[11]

Sp. nov

Valid

McSweeney, Buckeridge & Kelly

Early Miocene

Batesford Limestone

 Australia

A calcareous sponge belonging to the family Minchinellidae.

Pachastrella rara[7]

Sp. nov

Valid

Świerczewska-Gładysz, Jurkowska & Niedźwiedzki

Late Cretaceous (late Turonian)

Opole Basin

 Poland

A demosponge belonging to the family Pachastrellidae.

Palaeorossella[12]

Gen. et sp. nov

In press

Li et al.

Latest Ordovician

 China

A rossellid hexactinellid sponge. Genus includes new species P. sinensis.

Pseudoleptomitus[13]

Gen. et sp. nov

Valid

Botting et al.

Early Triassic

 United States

A sponge belonging to the group Protomonaxonida and to the family Leptomitidae. Genus includes new species P. advenus.

Rugocoelia loudonensis[5]

Sp. nov

Valid

Carrera & Sumrall

Ordovician

Lenoir Limestone

 United States
( Tennessee)

A member of the family Anthaspidellidae.

Subsphaerospongia[14]

Gen. et comb. nov

Valid

Bizzarini

Late Triassic

 Italy

A sponge; a new genus for "Stellispongia" subsphaerica Dieci, Antonacci & Zardini (1970).

Teganiella finksi[15]

Sp. nov

Valid

Mouro et al.

Carboniferous (Pennsylvanian)

Mecca Quarry Shale

 United States

Vasispongia[16]

Gen. et sp. nov

Valid

Tang & Xiao in Tang et al.

Cambrian Stage 2

Hetang Formation

 China

A sponge of uncertain phylogenetic placement. The type species is V. sinensis.

Vauxia leioia[17]

Sp. nov

Valid

Luo, Zhao & Zeng

Cambrian Stage 3

 China

A vauxiid sponge.

Cnidarians[edit]

Research[edit]

  • A study on the growth characteristics of three species of Ordovician corals belonging to the genus Agetolites from the Xiazhen Formation (China), and on their implications for inferring phylogenetic relationships of this genus, is published by Sun, Elias & Lee (2019).[18]
  • A study on a large colonial rugose coral from the Ordovician Kope Formation (Kentucky, United States) is published by Harris et al. (2019).[19]
  • A study on the morphology, growth characteristics and phylogenetic relationships of the Silurian tabulate coral Halysites catenularius is published by Liang, Elias & Lee (2019).[20]
  • A study aiming to determine whether ecological selection based on physiology, behavior, habitat, etc. played a role in the long‐term survival of corals during the late Paleocene and early Eocene is published by Weiss & Martindale (2019).[21]
  • Fossils of Acropora prolifera dating back to the Pleistocene are reported by Precht et al. (2019).[22]
  • A study on the distribution of reef corals during the last interglacial is published by Jones et al. (2019), who also evaluate the utility of fossil reef coral data for predictions of impact of future climate changes on reef corals.[23]
  • A study on a problematic fossil specimen from the Devonian Ponta Grossa Formation (Brazil), assigned by different authors to the species Serpulites sica or Euzebiola clarkei, is published by Van Iten et al. (2019), who interpret this fossil as a medusozoan capable of clonal budding, and transfer it to the genus Sphenothallus.[24]
  • The oldest mesophotic coral ecosystems, dating back to middle Silurian, from the Lower Visby Beds on Gotland have been described by Zapalski & Berkowski.[25] These communities, dominated by platy corals give also clues about the onset of coral-algal symbiosis.
  • Mihaljević (2019) describes new fossil coral collections from the Oligocene and Miocene of Sarawak (Malaysia), Negros Island and Cebu (the Philippines).[26]

New taxa[edit]

Name Novelty Status Authors Age Type locality Country Notes Images

Actinoseris riyadhensis[27]

Sp. nov

In press

Gameil, El-Sorogy & Al-Kahtany

Late Cretaceous (Campanian)

Aruma Formation

 Saudi Arabia

A solitary coral.

Amygdalophylloides omarai[28]

Sp. nov

Valid

Kora, Herbig & El Desouky

Carboniferous (Moscovian)

Rod El Hamal Formation

 Egypt

A rugose coral.

Antillia coatesi[29]

Sp. nov

Valid

Budd & Klaus in Budd et al.

Late Miocene–late Pliocene

Bowden Formation
Gurabo Formation
Mao Formation
Old Bank Formation

 Dominican Republic
 Jamaica
 Panama

A coral belonging to the subfamily Mussinae.

Asteroseris arabica[27]

Sp. nov

In press

Gameil, El-Sorogy & Al-Kahtany

Late Cretaceous (Campanian)

Aruma Formation

 Saudi Arabia

A solitary coral.

Aulopora chiharai[30]

Sp. nov

Valid

Niko, Ibaraki & Tazawa

Devonian

 Japan

Bothrophyllum cylindricum[28]

Sp. nov

Valid

Kora, Herbig & El Desouky

Carboniferous (Moscovian)

Rod El Hamal Formation

 Egypt

A rugose coral.

Bothrophyllum suezensis[28]

Sp. nov

Valid

Kora, Herbig & El Desouky

Carboniferous (Moscovian)

Rod El Hamal Formation

 Egypt

A rugose coral.

Cunnolites (Plesiocunnolites) riyadhensis[27]

Sp. nov

In press

Gameil, El-Sorogy & Al-Kahtany

Late Cretaceous (Campanian)

Aruma Formation

 Saudi Arabia

A solitary coral.

Devonodiscus[31]

Gen. et sp. et comb. nov

Valid

Pedder

Devonian

 Canada
 Colombia
 Russia
 Australia?
 China?
 United States?
 Vietnam?

A coral. The type species is D. latisubex; genus also includes "Combophyllum" multiradiatum Meek (1868), "Glossophyllum" discoideum Soshkina (1936) and possibly also "Hadrophyllum" wellingtonense Packham (1954) and "Glossophyllum" clebroseptatum Kravtsov (1975).

Dirimia[32]

Gen. et 6 sp. nov

In press

Fedorowski & Ohar

Carboniferous (Bashkirian)

 Ukraine

A rugose coral belonging to the family Kumpanophyllidae. The type species is D. multiplexa; genus also includes D. similis, D. recessia, D. composita, D. extrema and D. nana.

Gyanyimaphyllum[33]

Gen. et sp. nov

Valid

Wang et al.

Permian (Changhsingian)

 China

A rugose coral. Genus includes new species G. crassiseptatum.

Ipciphyllum floricolumellum[33]

Sp. nov

Valid

Wang et al.

Permian (Changhsingian)

 China

A rugose coral.

Ipciphyllum naoticum[33]

Sp. nov

Valid

Wang et al.

Permian (Changhsingian)

 China

A rugose coral.

Ipciphyllum zandaense[33]

Sp. nov

Valid

Wang et al.

Permian (Changhsingian)

 China

A rugose coral.

Isophyllia jacksoni[29]

Sp. nov

Valid

Budd & Klaus in Budd et al.

Late Miocene–early Pleistocene

Cercado Formation
Gurabo Formation
Los Haitises Formation
Mao Formation
Seroe Domi Formation

 Curaçao
 Dominican Republic

A species of Isophyllia.

Isophyllia maoensis[29]

Sp. nov

Valid

Budd & Klaus in Budd et al.

Late Miocene–early Pleistocene

Cercado Formation
Gurabo Formation
Isla Colón Formation
Mao Formation

 Dominican Republic
 Panama

A species of Isophyllia.

Kumpanophyllum columellatum[34]

Sp. nov

Valid

Fedorowski

Carboniferous (Bashkirian)

 Ukraine

A rugose coral belonging to the family Kumpanophyllidae.

Kumpanophyllum decessum[34]

Sp. nov

Valid

Fedorowski

Carboniferous (Bashkirian)

 Ukraine

A rugose coral belonging to the family Kumpanophyllidae.

Kumpanophyllum levis[34]

Sp. nov

Valid

Fedorowski

Carboniferous (Bashkirian)

 Ukraine

A rugose coral belonging to the family Kumpanophyllidae.

Kumpanophyllum praecox[34]

Sp. nov

Valid

Fedorowski

Carboniferous (Bashkirian)

 Ukraine

A rugose coral belonging to the family Kumpanophyllidae.

Neorylstonia[35]

Nom. nov

Valid

Vasseur et al.

Early Jurassic (Sinemurian to Pliensbachian)

 Morocco

A stony coral belonging to the group Caryophylliina and the superfamily Volzeioidea; a replacement name for Mesophyllum Beauvais (1986).

Scolymia meederi[29]

Sp. nov

Valid

Budd & Klaus in Budd et al.

Late Pliocene

Tamiami Formation

 United States

A species of Scolymia.

Scolymia tamiamiensis[29]

Sp. nov

Valid

Budd & Klaus in Budd et al.

Late Pliocene

Tamiami Formation

 United States

A species of Scolymia.

Septuconularia[36]

Gen. et sp. nov

Valid

Guo et al.

Cambrian Stage 2

Yanjiahe Formation

 China

A hexangulaconulariid. Genus includes new species S. yanjiaheensis.

Stephanocoenia annae[37]

Sp. nov

Valid

Löser

Early Cretaceous (Albian)

 Mexico
 United States

A stony coral belonging to the group Astrocoeniina.

Trachyphyllia mcneilli[29]

Sp. nov

Valid

Budd & Klaus in Budd et al.

Late Miocene–late Pliocene

Cercado Formation
Gurabo Formation
Mao Formation
Old Bank Formation
Seroe Domi Formation

 Curaçao
 Dominican Republic
 Panama

A relative of the open brain coral.

Waagenophyllum clisicolumellum[33]

Sp. nov

Valid

Wang et al.

Permian (Changhsingian)

 China

A rugose coral.

Waagenophyllum gyanyimaense[33]

Sp. nov

Valid

Wang et al.

Permian (Changhsingian)

 China

A rugose coral.

Waagenophyllum intermedium[33]

Sp. nov

Valid

Wang et al.

Permian (Changhsingian)

 China

A rugose coral.

Arthropods[edit]

Bryozoans[edit]

Name Novelty Status Authors Age Type locality Country Notes Images

Adeonellopsis keralaensis[38]

Sp. nov

Valid

Sonar & Badve

Miocene (Burdigalian)

Quilon Beds

 India

A cheilostome bryozoan.

Aluis[39]

Gen. et sp. nov

In press

López-Gappa & Pérez

Miocene (Burdigalian)

Chenque Formation
Monte León Formation
Puesto del Museo Formation

 Argentina

A cheilostome bryozoan belonging to the family Chaperiidae. Genus includes new species A. spinettai.

Atlantisina mylaensis[40]

Sp. nov

Valid

Rosso & Sciuto

Early Pleistocene (Gelasian)

 Italy

Characodoma multiavicularia[41]

Sp. nov

Valid

Di Martino & Taylor in Di Martino et al.

Miocene

 Indonesia

A species of Characodoma.

Charixa bispinata[42]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

 United States

A member of Cheilostomata.

Charixa emanuelae[42]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

 United States

A member of Cheilostomata.

Charixa sexspinata[42]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

 United States

A member of Cheilostomata.

Devonavictoria[43]

Nom. nov

Valid

Hernández

Devonian

 Russia

A rhabdomesid bryozoan; a replacement name for Salairella Mesentseva (2015).

Evactinopora mangeri[44]

Sp. nov

Valid

Yancey et al.

Carboniferous (Mississippian)

North America

A member of Cystoporata.

Homotrypa niagarensis[45]

Sp. nov

Valid

Ernst, Brett & Wilson

Silurian (Aeronian)

Reynales Formation

 United States

A trepostome bryozoan.

Hyporosopora keera[46]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

 United States

A member of Cyclostomatida.

Iyarispora[42]

Gen. et 2 sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

 United States

A member of Cheilostomata. Genus includes new species I. ikaanakiteeh and I. chiass.

Lacrimula patriciae[41]

Sp. nov

Valid

Di Martino & Taylor in Di Martino et al.

Miocene

 Indonesia

An ascophoran-grade cheilostome.

Leioclema adsuetum[45]

Sp. nov

Valid

Ernst, Brett & Wilson

Silurian (Aeronian)

Reynales Formation

 United States

A trepostome bryozoan.

Leptotrypa lipovkiensis[47]

Sp. nov

Valid

Tolokonnikova & Pakhnevich

Devonian (Famennian)

Zadonsk Formation

 Russia

A trepostome bryozoan.

Mesonopora bernardwalteri[46]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

 United States

A member of Cyclostomatida.

Micropora stellata[48]

Sp. nov

Valid

Di Martino, Taylor & Portell

Pliocene (Piacenzian)

Tamiami Formation

 United States

A species of Micropora.

Microporella sarasotaensis[48]

Sp. nov

Valid

Di Martino, Taylor & Portell

Pliocene (Piacenzian)

Tamiami Formation

 United States

A member of Ascophora belonging to the family Microporellidae.

Microporella tamiamiensis[48]

Sp. nov

Valid

Di Martino, Taylor & Portell

Pliocene (Piacenzian)

Tamiami Formation

 United States

A member of Ascophora belonging to the family Microporellidae.

Moyerella parva[45]

Sp. nov

Valid

Ernst, Brett & Wilson

Silurian (Aeronian)

Reynales Formation

 United States

A rhabdomesine cryptostome bryozoan.

Oncousoecia khirar[46]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

 United States

A member of Cyclostomatida.

Pinegopora chilensis[49]

Sp. nov

Valid

Carrera et al.

Permian

Cerro El Árbol Formation

 Chile

A member of Cryptostomata belonging to the group Rhabdomesina and to the family Nikiforovellidae.

Pourtalesella chiarae[48]

Sp. nov

Valid

Di Martino, Taylor & Portell

Pliocene (Piacenzian)

Tamiami Formation

 United States

A member of Ascophora belonging to the family Celleporidae.

Pseudobathystomella mira[50]

Sp. nov

Valid

Koromyslova, Martha & Pakhnevich

Late Cretaceous (late Maastrichtian)

 Turkmenistan

A cheilostome bryozoan belonging to the superfamily Lepralielloidea.

Ptilotrypa bajpaii[51]

Sp. nov

Valid

Swami et al.

Ordovician (Katian)

Yong Limestone

 India

A member of Cryptostomata.

Reptomultisparsa mclemoreae[46]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

 United States

A member of Cyclostomatida.

Rhammatopora glenrosa[42]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

 United States

A member of Cheilostomata.

Simplicidium jontoddi[42]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

 United States

A member of Ctenostomata.

Skylonia malabarica[38]

Sp. nov

Valid

Sonar & Badve

Miocene (Burdigalian)

Quilon Beds

 India

A cheilostome bryozoan.

Spiniflabellum laurae[48]

Sp. nov

Valid

Di Martino, Taylor & Portell

Pliocene (Piacenzian)

Tamiami Formation

 United States

A member of Ascophora belonging to the family Cribrilinidae.

Stenosipora? cribrata[41]

Sp. nov

Valid

Di Martino & Taylor in Di Martino et al.

Miocene

 Indonesia

An ascophoran-grade cheilostome.

Stylopoma warkhalensis[38]

Sp. nov

Valid

Sonar & Badve

Miocene (Burdigalian)

Quilon Beds

 India

A cheilostome bryozoan.

Tobolocella[52]

Gen. et sp. nov

Valid

Koromyslova, Pakhnevich & Fedorov

Late Cretaceous (Maastrichtian)

 Kazakhstan

A cheilostome bryozoan. Genus includes new species T. levinae.

Trypostega composita[48]

Sp. nov

Valid

Di Martino, Taylor & Portell

Pliocene (Piacenzian)

Tamiami Formation

 United States

A member of Ascophora belonging to the family Trypostegidae.

Uzbekipora[50]

Gen. et comb. nov

Valid

Koromyslova, Martha & Pakhnevich

Late Cretaceous (late Campanian)

 Uzbekistan

A cheilostome bryozoan belonging to the superfamily Lepralielloidea. The type species is "Porina" anplievae Favorskaya (1992).

Vincularia taylori[38]

Sp. nov

Valid

Sonar & Badve

Miocene (Burdigalian)

Quilon Beds

 India

A cheilostome bryozoan.

Brachiopods[edit]

Molluscs[edit]

Echinoderms[edit]

Research[edit]

New taxa[edit]

Name Novelty Status Authors Age Type locality Country Notes Images

Acanthocrinus carsli[69]

Sp. nov

Valid

Ausich & Zamora

Devonian (Emsian)

Mariposas Formation

 Spain

A camerate crinoid.

Archaeocidaris ivanovi[70]

Sp. nov

Valid

Thompson & Mirantsev in Thompson et al.

Carboniferous

 Russia

A sea urchin.

Becsciecrinus groulxi[71]

Sp. nov

Valid

Ausich & Cournoyer

Ordovician-Silurian boundary

 Canada

A crinoid.

Binocalix[72]

Gen. et sp. nov

Valid

McDermott & Paul

Late Ordovician

 United Kingdom

An aristocystitid diploporite. Genus includes new species B. dichotomus.

Bucucrinus isotaloi[71]

Sp. nov

Valid

Ausich & Cournoyer

Ordovician-Silurian boundary

 Canada

A crinoid.

Carstenicrinus[73]

Gen. et comb. nov

Valid

Roux, Eléaume & Améziane

Late Cretaceous (Campanian and Maastrichtian) and Paleocene (Danian)

 Denmark
 Germany
 Turkmenistan

A crinoid. The type species is "Apiocrinus" constrictus von Hagenow in Quenstedt (1876); genus also includes "Bourgueticrinus" baculatus Klikushin (1982) and "Bourgueticrinus" danicus Brünnich Nielsen (1913).

Cholaster whitei[74]

Sp. nov

Valid

Blake & Nestell

Carboniferous (Chesterian)

Bangor Limestone

 United States

A brittle star.

Comptonia bretoni[75]

Sp. nov

In press

Gale

Early Cretaceous (Aptian)

 United Kingdom

A starfish.

Conocrinus cahuzaci[73]

Sp. nov

Valid

Roux, Eléaume & Améziane

Eocene (Bartonian)

 France

A crinoid.

Coulonia caseyi[75]

Sp. nov

In press

Gale

Early Cretaceous (Aptian)

 United Kingdom

An astropectinid starfish.

Culicocrinus breimeri[69]

Sp. nov

Valid

Ausich & Zamora

Devonian (Emsian)

Mariposas Formation

 Spain

A camerate crinoid.

Echinolampas veracruzensis[76]

Sp. nov

Valid

Buitrón-Sánchez et al.

Oligocene

Coatzintla formation

 Mexico

A sea urchin belonging to the family Echinolampadidae.

Echinosphaerites dianae[77]

Sp. nov

In press

Zamora et al.

Late Ordovician

 Morocco

A rhombiferan blastozoan.

Eotiaris teseroensis[78]

Sp. nov

Valid

Thompson et al.

Permian-Triassic boundary (latest Changhsingian–early Induan)

Werfen Formation

 Italy

A sea urchin belonging to the group Cidaroida and to the family Miocidaridae.

Euptychocrinus? atelis[79]

Sp. nov

In press

Botting

Late Ordovician

 Morocco

A camerate crinoid.

Gamiroaster[80]

Gen. et sp. nov

Valid

Reid et al.

Early Devonian

Voorstehoek Formation

 South Africa

A brittle star belonging to the family Protasteridae. The type species is G. tempestatis.

Heloambocolumnus[81]

Gen. et sp. nov

In press

Donovan & Doyle

Carboniferous (Bashkirian)

Clare Shale Formation

 Ireland

A crinoid. Genus includes new species Heloambocolumnus (col.) harperi.

Homocystites adidiensis[77]

Sp. nov

In press

Zamora et al.

Late Ordovician

 Morocco

A rhombiferan blastozoan.

Hyattechinus anglicus[82]

Sp. nov

Valid

Thompson & Ewin

Devonian (Famennian)

Pilton Mudstone Formation

 United Kingdom

A sea urchin.

Iocrinus ouzammoui[79]

Sp. nov

In press

Botting

Late Ordovician

 Morocco

A crinoid belonging to the group Disparida.

Isthloucrinus[79]

Gen. et sp. nov

In press

Botting

Late Ordovician

 Morocco

A crinoid belonging to the group Cladida. Genus includes new species I. praecursor.

Jovacrinus clarki[71]

Sp. nov

Valid

Ausich & Cournoyer

Ordovician-Silurian boundary

 Canada

A crinoid.

Kalanacrinus[83]

Gen. et sp. nov

Valid

Ausich, Wilson & Tinn

Silurian (Aeronian)

 Estonia

A camerate crinoid. Genus includes new species K. mastikae.

Lateranicrinus[71]

Gen. et sp. nov

Valid

Ausich & Cournoyer

Ordovician-Silurian boundary

 Canada

A crinoid. Genus includes new species L. saintlaurenti.

Lebenharticrinus[84]

Gen. et sp. nov

In press

Žítt et al.

Late Cretaceous (Cenomanian)

Bohemian-Saxonian Cretaceous Basin

 Czech Republic
 Germany

A crinoid belonging to the group Roveacrinida. Genus includes new species L. canaliculatus.

Magnofossacrinus[85]

Gen. et sp. nov

Valid

Mirantsev

Carboniferous (Moscovian)

 Russia

A crinoid belonging to the family Poteriocrinidae. Genus includes new species M. domodedovoensis.

Monostychia glenelgensis[86]

Sp. nov

Valid

Sadler, Holmes & Gallagher

Miocene

 Australia

A sand dollar.

Monostychia merrimanensis[86]

Sp. nov

Valid

Sadler, Holmes & Gallagher

Miocene

 Australia

A sand dollar.

Panidiscus[87]

Gen. et sp. nov

In press

Sumrall & Zamora

Ordovician (Katian)

 Morocco

An isorophinid edrioasteroid. Genus includes new species P. tamiformis.

Paraconocrinus[73]

Gen. et comb. et sp. nov

Valid

Roux, Eléaume & Améziane

Eocene

 Italy
 France
 Spain

A crinoid. The type species is "Eugeniacrinus" pyriformis Münster in Goldfuss (1826); genus also includes "Conocrinus" cazioti Valette (1924), "Conocrinus" handiaensis Roux (1978) and "Conocrinus" romanensis Roux & Plaziat (1978), as well as a new species P. pellati.

Perforocycloides[88]

Gen. et sp. nov

Valid

Ewin et al.

Silurian (Telychian)

Jupiter Formation

 Canada
( Quebec)

A member of Echinozoa belonging to the group Cyclocystoidea. The type species is P. nathalieae.

Platyhexacrinus santacruzensis[69]

Sp. nov

Valid

Ausich & Zamora

Devonian (Emsian)

Mariposas Formation

 Spain

A camerate crinoid.

Plicodendrocrinus martini[71]

Sp. nov

Valid

Ausich & Cournoyer

Ordovician-Silurian boundary

 Canada

A crinoid.

Plicodendrocrinus petryki[71]

Sp. nov

Valid

Ausich & Cournoyer

Ordovician-Silurian boundary

 Canada

A crinoid.

Pseudoconocrinus[73]

Gen. et comb. nov

Valid

Roux, Eléaume & Améziane

Paleocene and Eocene

Crimean Peninsula
 Denmark
 France

A crinoid. The type species is "Conocrinus" doncieuxi Roux (1978); genus also includes "Democrinus" maximus Brünnich Nielsen (1915) and "Conocrinus" tauricus Klikushin (1982).

Rhenopyrgus viviani[89]

Sp. nov

Valid

Ewin et al.

Silurian (Telychian)

Jupiter Formation

 Canada
( Quebec)

A member of Edrioasteroidea.

Shoshonura[90]

Gen. et sp. nov

Valid

Thuy et al.

Early Triassic

 United States

A brittle star. Genus includes new species S. brayardi.

Sollasina cthulhu[91]

Sp. nov

Valid

Rahman et al.

Silurian (Wenlock)

Herefordshire Lagerstätte

 United Kingdom

A member of Ophiocistioidea belonging to the family Sollasinidae.

Spinadiscus[87]

Gen. et sp. nov

In press

Sumrall & Zamora

Ordovician (Katian)

 Morocco

A pyrgocystid edrioasteroid. Genus includes new species S. lefebvrei.

Superlininicrinus[79]

Gen. et sp. nov

In press

Botting

Late Ordovician

 Morocco

A crinoid belonging to the group Cladida. Genus includes new species S. advorsa.

Tartucrinus[83]

Gen. et sp. nov

Valid

Ausich, Wilson & Tinn

Silurian (Aeronian)

 Estonia

A disparid crinoid. Genus includes new species T. kalanaensis.

Thalamocrinus daoustae[71]

Sp. nov

Valid

Ausich & Cournoyer

Ordovician-Silurian boundary

 Canada

A crinoid.

Totiglobus spencensis[92]

Sp. nov

Valid

Wen et al.

Cambrian (Wuliuan)

Spence Shale

 United States

A member of Edrioasteroidea belonging to the family Totiglobidae­.

Conodonts[edit]

Research[edit]

  • A study on the feeding habits of conodonts, as indicated by data from calcium stable isotopes, is published by Balter et al. (2019).[93]
  • A study on the variation of conodont element crystal structure throughout their evolutionary history is published by Medici et al. (2019).[94]
  • A study on the evolution of platform-like P1 elements in conodonts, evaluating its possible link to ecology of conodonts, is published by Ginot & Goudemand (2019).[95]
  • A study on the impact of early Paleozoic environmental changes on evolution and paleoecology of conodonts from the Canadian part of Laurentia is published by Barnes (2019).[96]
  • A study on the morphology, occurrences and biostratigraphical value of Paroistodus horridus is published by Mestre & Heredia (2019).[97]
  • A revision of the taxonomy and evolutionary relationships of the Late Ordovician genera Tasmanognathus and Yaoxianognathus is published by Yang et al. (2019).[98]
  • A study on the composition and architecture of the apparatus of Erismodus quadridactylus is published by Dhanda et al. (2019).[99]
  • A study on fossils of members of the genus Alternognathus from the Upper Devonian of the Kowala quarry (central Poland), attempting to calibrate the course of their ontogeny in days and documenting cyclic mortality events, is published by Świś (2019).[100]
  • The apparatus of Vogelgnathus simplicatus is reconstructed from discrete elements from a sample of limited diversity from the Carboniferous strata from Ireland by Sanz-López, Blanco-Ferrera & Miller (2019).[101]
  • Neospathodid conodont elements with partly preserved basal body (one of two main parts of conodont elements, besides the crown) are reported from the Lower Triassic of Oman by Souquet & Goudemand (2019), who interpret their finding as indicating that the absence of basal bodies in post-Devonian conodonts was due to a preservational bias only.[102]
  • Natural assemblages of conodonts, preserving possible impressions of "eyes", are described from the Lower Triassic pelagic black claystones of the North Kitakami Belt (Japan) by Takahashi, Yamakita & Suzuki (2019).[103]
  • A study on the composition of the apparatus of Nicoraella, based on data from clusters from the Middle Triassic Luoping Biota (Yunnan, China), will be published by Huang et al. (2019).[104]
  • The architecture of apparatus of Nicoraella kockeli is reconstructed by Huang et al. (2019), who also evaluate proposed functional interpretations of the conodont feeding apparatus.[105]
  • A study on Middle Triassic conodont assemblages from Jenzig section of the Jena Formation and Troistedt section of the Meissner Formation (Germany) is published by Chen et al. (2019), who also study the morphology of the apparatuses of Neogondolella haslachensis and Nicoraella germanica, and review and revise the species Neogondolella mombergensis.[106]
  • A study evaluating the quantitative morphological variation of P1 conodont elements within and between seven conodont morphospecies from the Pizzo Mondello section (Sicily, Italy) and their evolution within 7 million years around the Carnian/Norian boundary is published by Guenser et al. (2019).[107]
  • A study on the taphonomy of basal tissue of conodont elements is published by Suttner & Kido (2019).[108]

New taxa[edit]

Name Novelty Status Authors Age Type locality Country Notes Images

Ancyrognathus minjini[109]

Sp. nov

In press

Suttner et al.

Late Devonian

Baruunhuurai Terrane

 Mongolia

Baltoniodus norrlandicus denticulatus[110]

Subsp. nov

In press

Dzik

Ordovician (Darriwilian)

 Poland

Gnathodus lanei[111]

Sp. nov

Valid

Lane et al.

Carboniferous

Bird Spring Formation

 United States

Misikella kolarae[112]

Sp. nov

In press

Karádi et al.

Late Triassic

 Hungary

Palmatolepis chaemensis[113]

Sp. nov

Valid

Savage

Late Devonian

 Thailand

Palmatolepis thamensis[113]

Sp. nov

Valid

Savage

Late Devonian

 Thailand

Parapetella? guanyinensis[114]

Sp. nov

Valid

Jiang et al.

Late Triassic (Carnian)

 China

Polygnathus sharyuensis[115]

Nom. nov

Valid

Ovnatanova et al.

Devonian (Famennian)

Sortomael’ Formation

 Australia
 Russia

A replacement name Polygnathus mawsonae Ovnatanova et al. (2017).

Polygnathus tenellus surinensis[113]

Subsp. nov

Valid

Savage

Late Devonian

 Thailand

Protophragmodus[116]

Gen. et comb. nov

In press

Zhen

Ordovician (Darriwilian and Sandbian)

Canning Basin
Glenwood Beds

 Australia
 United States

A new genus for "Phragmodus" polystrophos Watson, "Phragmodus" spicatus Watson and "Phragmodus" cognitus Stauffer.

Tortodus dodoensis[117]

Sp. nov

In press

Gouwy, Uyeno & McCracken

Devonian (Givetian)

 Canada

Trapezognathus pectinatus[110]

Sp. nov

In press

Dzik

Ordovician (Darriwilian)

 Poland

Zieglerodina petrea[118]

Sp. nov

In press

Hušková & Slavík

Silurian/Devonian boundary

Prague Synform

 Czech Republic

Zieglerodina schoenlaubi[119]

Sp. nov

Valid

Corradini et al.

Devonian (Lochkovian)

 Italy

Fishes[edit]

Amphibians[edit]

Research[edit]

  • A study on the evolution of hindlimb musculature from the lobe-finned fishes to early tetrapods will be published by Molnar et al. (2019).[120]
  • A study on changes of the skeletal anatomy of the pelvic and pectoral appendages during the transition from fins to limbs in vertebrate evolution, as indicated by data from fossil lobe-finned fishes and early tetrapods, is published by Esteve-Altava et al. (2019).[121]
  • An outline of a new interpretative scenario for the origin of tetrapods, based on data from tetrapod body fossils and from putative tetrapod trace fossils from Poland and Ireland that predate earliest tetrapod body fossils, is presented by Ahlberg (2019).[122]
  • A historical review of the fossil record of Devonian tetrapods and basal tetrapodomorphs from East Gondwana (Australasia, Antarctica) is published by Long, Clement & Choo (2019).[123]
  • A study on the macroevolutionary dynamics of shape changes in the humeri of all major grades and clades of early tetrapods and their fish-like forerunners is published by Ruta et al. (2019).[124]
  • A study on the phylogenetic relationships of early tetrapods is published by Marjanović & Laurin (2019).[125]
  • A study on the anatomy of the palate and neurocranium of Whatcheeria deltae is published by Bolt & Lombard (2019).[126]
  • A study on the morphology of the postcranial skeleton of Crassigyrinus scoticus is published by Herbst & Hutchinson (2019).[127]
  • Herbst et al. (2019) report new evidence of bone healing in the hindlimbs of Crassigyrinus scoticus and Eoherpeton watsoni, and evaluate the implications of these findings for the knowledge of the evolution of bone healing mechanisms in early tetrapods.[128]
  • Description of a new specimen of Oestocephalus from Five Points, Ohio, preserving much of the posterior braincase, is published by Pardo, Holmes & Anderson (2019), who also evaluate the implications of this specimen for inferring the phylogenetic placement of aïstopods.[129]
  • A study on the holotype specimen of Acherontiscus caledoniae is published by Clack et al. (2019), who consider this taxon to be the earliest known heterodont and durophagous tetrapod.[130]
  • A limb bone and a possible ilium on an early tetrapod are described from the Carboniferous (Bashkirian) Clare Shale Formation (Ireland) by Doyle & Ó Gogáin (2019), representing the oldest stratigraphically weill-constrained tetrapod skeletal fossil material from Ireland reported so far.[131]
  • Description of fossils of embolomeres collected in 1915 by Walter A. Bell from the Mississippian-aged Point Edward Formation (Nova Scotia, Canada) will be published by Adams, Mann & Maddin (2019).[132]
  • A study on patterns of shape and size changes of the orbits and vacuities in the skulls of temnospondyls and other early tetrapods is published by Witzmann & Ruta (2019).[133]
  • A study evaluating whether the intraspecific integration of morphological traits significantly affected the evolution of the skull roof of temnospondyls over geological time is published by Pérez-Ben & Gómez (2019).[134]
  • A study on patterns of ontogenetic allometry in the skull roof of temponspondyls, and on their relationship with adult morphological evolution, will be published by Pérez-Ben, Báez & Schoch (2019).[135]
  • A study on the structure of stapes of Edops craigi is published by Schoch (2019).[136]
  • A fragment of a skull roof of a possible basal dvinosaur is described from the Carboniferous (Viséan) Ortelsdorf Formation (Germany) by Werneburg, Witzmann & Schneider (2019), representing the oldest known tetrapod record in Germany and, together with Balanerpeton, the oldest temnospondyl reported so far.[137]
  • A study on the evolution of the braincase anatomy of dissorophoid temnospondyls, and on its implications for the knowledge of the evolution of the lissamphibian braincase, is published by Atkins, Reisz & Maddin (2019).[138]
  • Description of new fossil material of dissorophoid temnospondyls from the early Permian locality of Richards Spur (Oklahoma, United States) is published by Gee, Bevitt & Reisz (2019).[139]
  • Complete skull and mandibles of a small-bodied trematopid of uncertain phylogenetic placement, most closely resembling members of the genus Acheloma, is described from the Early Permian karst deposits near Richards Spur (Oklahoma, United States) by Gee, Bevitt & Reisz (2019), who also evaluate the implications of this specimen for the knowledge of trematopid ontogeny and taxonomy.[140]
  • A study on the anatomy and phylogenetic relationships of Nanobamus macrorhinus will be published by Gee & Reisz (2019).[141]
  • A study on the phylogenetic relationships of stereospondylomorph temnospondyls is published by Eltink, Schoch & Langer (2019), who name a new clade Superstes.[142]
  • Rediscovery of the original type specimen of Sclerocephalus haeuseri is reported by Schoch, Ebert & Robert (2019).[143]
  • A humerus of a member or a relative of the genus Cyclotosaurus is described from Rhaetian sediments of Exter Formation (Germany) by Konietzko-Meier et al. (2019), representing the geologically youngest record of a non-brachyopoid temnospondyl reported so far.[144]
  • A study on the palaeobiology and lifestyle adaptations of Cherninia denwai and Paracyclotosaurus crookshanki, as indicated by limb bone anatomy and histology, will be published by Mukherjee, Sengupta & Rakshit (2019).[145]
  • Redescription of the Angusaurus, based on a new specimen providing new information of the skull anatomy of this taxon, is published by Fernández-Coll et al. (2019).[146]
  • A study on the anatomy and phylogenetic relationships of Trematosaurus brauni is published by Schoch (2019).[147]
  • Morphological description of two new small-bodied metoposaurid specimens from Petrified Forest National Park (Arizona, United States) and a histological analysis of the vertebra of these specimens will be published by Gee & Parker (2019), who argue that their findings support the interpretation of Apachesaurus as a juvenile metoposaurid.[148]
  • Redescription of holotypes of metoposaurid species Anaschisma browni and A. brachygnatha will be published by Gee, Parker & Marsh (2019), who consider Anaschisma brachygnatha and Koskinonodon perfectus to be junior synonyms of Anaschisma browni.[149]
  • A study on the morphology of the mandibular sutures in Metoposaurus krasiejowensis, using histological thin sections, is published by Gruntmejer et al. (2019).[150]
  • A study on the anatomy and phylogenetic relationships of "Metoposaurus" azerouali is published by Buffa, Jalil & Steyer (2019), who transfer this species to the genus Arganasaurus.[151]
  • A revision of Triassic temnospondyl fossil material from the Folakara area of Madagascar (Isalo Group, Morondava Basin), including fossils attributed to the species "Metoposaurus" hoffmani, is published by Fortuny et al. (2019).[152]
  • A study on the age of the fossils of Siderops kehli is published by Todd et al. (2019).[153]
  • A study on long bone histology of specimens of the cryptobranchid species Eoscapherpeton asiaticum of different age is published by Skutschas et al. (2019).[154]
  • A study on the life history of the cryptobranchid Aviturus exsecratus from the Paleocene of Mongolia will be published by Skutschas et al. (2019).[155]
  • Fossils of members of Salientia, possibly more closely related to crown-group Anura than to Early Triassic taxa Triadobatrachus and Czatkobatrachus, are described from the Upper Triassic Chinle Formation (Arizona, United States) by Stocker et al. (2019), representing both the first Late Triassic and the earliest equatorial record of Salientia.[156]
  • A study on the two‐dimensional morphology of extant and fossil anuran skulls, evaluating whether phylogeny, development or ecology is a greater influence on anuran skull morphology, and quantifying how anuran skull morphology changed through time, is published by Bardua, Evans & Goswami (2019).[157]
  • A study on the ecomorphological diversity of the Early Cretaceous (Barremian) frogs from the Iberian Peninsula will be published by Gómez & Lires (2019).[158]
  • Redescription of the Cretaceous frog Wealdenbatrachus jucarensis is published by Báez & Gómez (2019).[159]
  • A specimen of a frog Genibatrachus baoshanensis with a complete adult salamander belonging or related to the genus Nuominerpeton in its gut is described from the Lower Cretaceous Guanghua Formation (China) by Xing, Niu & Evans (2019).[160]
  • Fossils of the painted frog Latonia gigantea are described from the Miocene of the Vallès-Penedès Basin (Spain) by Villa et al. (2019), representing the first known record of the species from the Iberian Peninsula.[161]
  • Fossils of Latonia cf. gigantea are described from the early Miocene of Greece (representing the first record of the species from that country) by Georgalis et al. (2019), along with other amphibian and reptile fossils.[162]
  • A study on the anatomy of the skull of Latonia seyfriedi will be published by Syromyatnikova, Roček & van de Velde (2019), who consider Latonia gigantea to be a likely junior synonym of L. seyfriedi.[163]
  • A study on the morphological diversification of pipimorph frogs and on the impact of ecological and developmental constraints on the evolution of the sacro-caudo-pelvic complex of pipid frogs, as indicated by data from extant and extinct taxa, is published by Gómez & Pérez-Ben (2019).[164]
  • A neurocranium of a clawed frog is described from the Oligocene Nsungwe Formation (Tanzania) by Blackburn et al. (2019), providing the earliest evidence for the genus Xenopus in sub-Saharan Africa reported so far.[165]
  • A redescription of Pelobates praefuscus from the Pliocene of Moldova is published by Syromyatnikova (2019), who considers this taxon to be a species distinct from Pelobates fuscus.[166]
  • A revision of the fossil material attributed to members of the genus Ceratophrys is published by Nicoli (2019).[167]
  • Frog fossils, including the first known fossils of shovelnose frogs, will be described from the early Pliocene of Kanapoi (Kenya) by Delfino (2019).[168]
  • Four new, three-dimensionally preserved specimens of Discosauriscus pulcherrimus, providing new information on the anatomy of the skull of this species, are described from the Lower Permian lacustrine sediments of the Boskovice Basin (Czech Republic) by Klembara & Mikudíková (2019).[169]
  • A study on the morphology of the skeleton of Keraterpeton is published by Milner (2019).[170]
  • New fossil material of Llistrofus pricei, providing new information on the anatomy of this taxon, is described from Permian (Sakmarian) cave deposits of Richards Spur, Oklahoma by Gee et al. (2019), who interpret their findings as indicating that Hapsidopareion lepton is not synonymous with L. pricei.[171]
  • A study on the anatomy of the postcranial skeleton of Carrolla craddocki is published by Mann, Olori & Maddin (2019).[172]
  • A study aiming to determine plausible gaits of Orobates pabsti is published by Nyakatura et al. (2019).[173]
  • A study on the anatomy of the inner ear of seymouriamorphs and diadectomorphs, and on its implications for the knowledge of the phylogenetic relationships of these groups, will be published by Klembara et al. (2019).[174]

New taxa[edit]

Name Novelty Status Authors Age Type locality Country Notes Images

Branchierpeton saberi[175]

Sp. nov

Valid

Werneburg et al.

Carboniferous (Kasimovian)

Souss Basin

 Morocco

A micromelerpetid temnospondyl

Cratopipa[176]

Gen. et sp. nov

Valid

Carvalho et al.

Early Cretaceous (Aptian)

Crato Formation

 Brazil

A frog belonging to the group Pipimorpha. Genus includes new species C. novaolindensis.

Diabloroter[177]

Gen. et sp. nov

Valid

Mann & Maddin

Carboniferous (Pennsylvanian)

Mazon Creek fossil beds

 United States

A short-bodied recumbirostran. Genus includes new species D. bolti.

Hassiacoscutum[178]

Gen. et sp. nov

In press

Witzmann et al.

Late Permian

 Germany

A chroniosuchian belonging to the family Bystrowianidae. Genus includes new species H. munki.

Infernovenator[179]

Gen. et sp. nov

Valid

Mann, Pardo & Maddin

Carboniferous (Pennsylvanian)

Mazon Creek fossil beds

 United States

A member of Lysorophia. Genus includes new species I. steenae.

Linglongtriton[180]

Gen. et sp. nov

Valid

Jia & Gao

Late Jurassic (Oxfordian)

Tiaojishan Formation

 China

A stem-hynobiid salamander. Genus includes new species L. daxishanensis.

Mattauschia[181]

Gen. et comb. nov

Valid

Milner

Late Carboniferous (Moscovian)

Kladno Formation

 Czech Republic

A trematopid temnospondyl. Genus includes "Limnerpeton" laticeps Fritsch (1881).

Nevobatrachus[182]

Nom. nov

Valid

Mahony

Early Cretaceous

 Israel

A frog belonging to the group Pipimorpha; a replacement name for Cordicephalus Nevo (1968).

Panthasaurus[183]

Gen. et comb. nov

Valid

Chakravorti & Sengupta

Late Triassic (late Carnian to early Norian)

Maleri Formation
Tiki Formation

 India

A metoposaurid temnospondyl. Genus includes "Metoposaurus" maleriensis Roy Chowdhury (1965).

Patagopipa[184]

Gen. et sp. nov

In press

Rolando, Agnolin & Corsolini

Eocene

Huitrera Formation

 Argentina

A frog belonging to the group Pipimorpha. Genus includes new species P. corsolini.

Rhinella loba[185]

Sp. nov

Valid

Pérez-Ben, Gómez & Báez

Chapadmalalan

Chapadmalal Formation

 Argentina

A true toad, a species of Rhinella.

Trypanognathus[186]

Gen. et sp. nov

Valid

Schoch & Voigt

Carboniferous-Permian boundary

 Germany

A dvinosaurian temnospondyl. Genus includes new species T. remigiusbergensis.

Lizards and snakes[edit]

Ichthyosauromorphs[edit]

Sauropterygians[edit]

Turtles[edit]

Archosauriformes[edit]

General research[edit]

Archosaurs[edit]

Other archosauriforms[edit]

Research[edit]

New taxa[edit]

Name Novelty Status Authors Age Type locality Country Notes Images

Antarctanax[194]

Gen. et sp. nov

Valid

Peecook, Smith & Sidor

Triassic

Fremouw Formation

Antarctica

An archosauriform archosauromorph reptile. The type species is A. shackletoni.

Mystriosuchus steinbergeri[195]

Sp. nov

Valid

Butler et al.

Late Triassic (Norian)

Dachstein Limestone

 Austria

A phytosaur.

Other reptiles[edit]

Synapsids[edit]

Non-mammalian synapsids[edit]

Research[edit]

  • A study on the morphological diversity and morphological changes of the humeri of Paleozoic and Triassic synapsids through time is published by Lungmus & Angielczyk (2019).[196]
  • A study on the diversity of patterns of skull shape (focusing on the relative lengths of the face and braincase regions of the skull) in non-mammalian synapsids will be published by Krone, Kammerer & Angielczyk (2019).[197]
  • Two pathologically fused tail vertebrae of a varanopid, likely affected by a metabolic bone disease closely resembling Paget's disease of bone, are described from the early Permian Richards Spur locality (Oklahoma, United States) by Haridy et al. (2019).[198]
  • Description of new skull remains of Echinerpeton intermedium and a study on the phylogenetic relationships of this species will be published by Mann & Paterson (2019).[199]
  • Fossil material of a large carnivorous synapsid belonging to the family Sphenacodontidae is described from the Torre del Porticciolo locality (Italy) by Romano et al. (2019), representing the first carnivorous non‐therapsid synapsid from the Permian of Italy reported so far, and one of the few known from Europe.[200]
  • Description of the morphology and histology of a small neural spine from the Early Permian Richards Spur locality (Oklahoma, United States) attributable to Dimetrodon is published by Brink, MacDougall & Reisz (2019), who also report evidence from fossil teeth indicative of presence of a derived species of Dimetrodon (otherwise typical of later, Kungurian localities of Texas and Oklahoma) at the Richards Spur locality.[201]
  • A study on the histology of the skull roof of burnetiamorph biarmosuchians is published by Kulik & Sidor (2019).[202]
  • Femur of a specimen of the titanosuchid species Jonkeria parva affected by osteomyelitis is described from the Permian of Karoo Basin (South Africa) by Shelton, Chinsamy & Rothschild (2019).[203]
  • An almost complete skeleton of Tapinocaninus pamelae, providing new information on the anatomy of the appendicular skeleton of this species (including the first accurate vertebral count for a dinocephalian), is described from the lowermost Beaufort Group of South Africa by Rubidge, Govender & Romano (2019).[204]
  • Romano & Rubidge (2019) present body mass estimates for a well preserved and complete skeleton of Tapinocaninus pamelae from the lowermost Beaufort Group of South Africa.[205]
  • A study on the skull anatomy and phylogenetic relationships of Styracocephalus platyrhynchus is published by Fraser-King et al. (2019).[206]
  • A study on the evolution of the sacral vertebrae of dicynodonts is published by Griffin & Angielczyk (2019).[207]
  • A study on the diversity of dicynodonts from the Upper Permian Naobaogou Formation (China) is published by Liu (2019).[208]
  • Small dicynodont skull assigned to the genus Digalodon is described from the Lopingian upper Madumabisa Mudstone Formation (Zambia) by Angielczyk (2019), expanding known geographic range of this genus.[209]
  • A study on the taphonomic history of a monotypic bonebed composed by several individuals attributable to the dicynodont Dinodontosaurus collected in a classic Middle Triassic locality in Brazil, and on its implications for inferring possible gregarious behaviour in Dinodontosaurus, will be published by Ugalde et al. (2019).[210]
  • A study on the body mass of Lisowicia bojani will be published by Romano & Manucci (2019).[211]
  • A study on the age of putative Rhaetian dicynodont from Lipie Śląskie (Poland) will be published by Racki & Lucas (2019), who consider it more likely that this dicynodont was of Norian age.[212]
  • A study on fossils of a putative Cretaceous dicynodont from Australia reported by Thulborn & Turner (2003)[213] will be published by Knutsen & Oerlemans (2019), who consider these fossils to be of Pliocene-Pleistocene age, and reinterpret it as fossils of a large mammal, probably a diprotodontid.[214]
  • A study aiming to determine patterns of morphological and phylogenetic diversity of therocephalians throughout their evolutionary history is published by Grunert, Brocklehurst & Fröbisch (2019).[215]
  • A study on variation in rates of body size evolution of therocephalians is published by Brocklehurst (2019).[216]
  • A study on the morphology of the manus of a new therocephalian specimen referable to the genus Tetracynodon from the Early Triassic of South Africa, and on the evolution of the manus morpholog of therocephalians, is published by Fontanarrosa et al. (2019).[217]
  • A study on patterns of nonmammalian cynodont species richness and the quality of their fossil record is published by Lukic-Walther et al. (2019).[218]
  • A study on the morphology and bone histology of the postcranial skeleton of Galesaurus planiceps is published by Butler, Abdala & Botha‐Brink (2019).[219]
  • Redescription of the anatomy of the skull of Galesaurus planiceps is published by Pusch, Kammerer & Fröbisch (2019).[220]
  • Description of teeth of all known diademodontid and trirachodontid cynodont taxa is published by Hendrickx, Abdala & Choiniere (2019), who also propose a standardized list of anatomical terms and abbreviations in the study of gomphodont teeth, assign Sinognathus and Beishanodon to the family Trirachodontidae, and consider all specimens previously referred to the species Cricodon kannemeyeri to be younger individuals of Trirachodon berryi.[221]
  • A study on the bone histology of the traversodontid cynodonts Protuberum cabralense and Exaeretodon riograndesis is published by Veiga, Botha-Brink & Soares (2019).[222]
  • Hypsodont postcanine teeth of Menadon besairiei are described by Melo et al. (2019), who also study patterns of dental growth and replacement in this species.[223]
  • A skull of a member of the species Massetognathus ochagaviae is described from the Carnian Santacruzodon Assemblage Zone of the Santa Maria Supersequence (Rio Grande do Sul, Brazil) by Schmitt et al. (2019).[224]
  • Description of brain endocasts of Siriusgnathus niemeyerorum and Exaeretodon riograndensis, using virtual models based on computed tomography scan data, is published by Pavanatto, Kerber & Dias‐da‐Silva (2019).[225]
  • A study on the evolution of infraorbital maxillary canal in probainognathian cynodonts and on its implications for the knowledge of evolution of mobile whiskers in non-mammalian synapsids, as indicated by data from skulls of non-mammalian probainognathian cynodonts and early mammaliaforms, will be published by Benoit et al. (2019).[226]
  • Digital skull endocast of a specimen of Riograndia guaibensis is reconstructed by Rodrigues et al. (2019).[227]
  • Description of the anatomy of the first postcranial specimens referable to Riograndia guaibensis is published by Guignard, Martinelli & Soares (2019).[228]
  • A study on the anatomy of the postcranial skeleton of Brasilodon quadrangularis is published by Guignard, Martinelli & Soares (2019).[229]
  • A study on tooth wear patterns of members of the family Tritylodontidae and on their possible diet is published by Kalthoff et al. (2019).[230]
  • Possible cynodont teeth, which might be the most recent non-mammaliaform cynodont fossils from Africa reported so far, are described from the Late Jurassic or earliest Cretaceous locality of Ksar Metlili (Anoual Syncline, eastern Morocco) by Lasseron (2019).[231]
  • A study on the origin of the mammalian middle ear ossicles, as indicated by the anatomy of the jaw-otic complex in 43 synapsid taxa, is published by Navarro‐Díaz, Esteve‐Altava & Rasskin‐Gutman (2019).[232]

New taxa[edit]

Name Novelty Status Authors Age Type locality Country Notes Images

Arisierpeton[233]

Gen. et sp. nov

Valid

Reisz

Permian (Artinskian)

 United States

A member of the family Caseidae. The type species is A. simplex.

Bohemiclavulus[234]

Gen. et comb. nov

In press

Spindler, Voigt & Fischer

Carboniferous (Gzhelian)

Slaný Formation

 Czech Republic

A member of the family Edaphosauridae; a new genus for "Naosaurus" mirabilis Fritsch (1895).

Cabarzia[235]

Gen. et sp. nov

Valid

Spindler, Werneburg & Schneider

Permian (Asselian or Sakmarian)

Goldlauter Formation

 Germany

A member of Varanopidae belonging to the subfamily Mesenosaurinae. The type species is C. trostheidei.

Counillonia[236]

Gen. et sp. nov

Valid

Olivier et al.

Most likely Early Triassic

Luang Prabang Basin
(Purple Claystone Formation)

 Laos

A Dicynodon-grade dicynodont. Genus includes new species C. superoculis.

Dicynodon angielczyki[237]

Sp. nov

Valid

Kammerer

Late Permian

Usili Formation

 Tanzania

Gorynychus sundyrensis[238]

Sp. nov

Valid

Suchkova & Golubev

Middle Permian

 Russia

A therocephalian belonging to the family Lycosuchidae.

Hypselohaptodus[239]

Gen. et comb. nov

In press

Spindler

Permian (Cisuralian)

 United Kingdom

An early member of Sphenacodontia; a new genus for "Haptodus" grandis.

Jiufengia[240]

Gen. et sp. nov

Valid

Liu & Abdala

Late Permian

Naobaogou Formation

 China

A therocephalian belonging to the family Akidnognathidae. The Type species is J. jiai.

Julognathus[241]

Gen. et sp. nov

Valid

Suchkova & Golubev

Middle Permian

 Russia

A therocephalian belonging to the family Scylacosauridae. Genus includes new species J. crudelis.

Kembawacela[242]

Gen. et sp. nov

Valid

Angielczyk, Benoit & Rubidge

Late Permian

Madumabisa Mudstone Formation

 Zambia

A dicynodont belonging to the family Cistecephalidae. Genus includes new species K. kitchingi.

Lisowicia[243]

Gen. et sp. nov

Sulej & Niedźwiedzki

Late Triassic (late Norian-earliest Rhaetian)

 Poland

A gigantic dicynodont reaching an estimated body mass of 9 tons. The type species is L. bojani.

Polonodon[244]

Gen. et sp. nov

In press

Sulej et al.

Late Triassic (Carnian)

 Poland

A non-mammaliaform eucynodont. Genus includes new species P. woznikiensis.

Pseudotherium[245]

Gen. et sp. nov

Valid

Wallace, Martínez & Rowe

Late Triassic (Carnian)

Ischigualasto Formation

 Argentina

A probainognathian cynodont closely related to tritylodontids. The type species is P. argentinus.

Remigiomontanus[234]

Gen. et sp. nov

In press

Spindler, Voigt & Fischer

CarboniferousPermian transition

Saar–Nahe Basin

 Germany

A member of the family Edaphosauridae. Genus includes new species R. robustus.

Repelinosaurus[236]

Gen. et sp. nov

Valid

Olivier et al.

Most likely Early Triassic

Luang Prabang Basin
(Purple Claystone Formation)

 Laos

A kannemeyeriiform dicynodont. Genus includes new species R. robustus.

Thliptosaurus[246]

Gen. et sp. nov

Valid

Kammerer

Late Permian (Changhsingian)

Daptocephalus Assemblage Zone

 South Africa

A late-surviving small dicynodont of the family Kingoriidae. Genus includes the new species T. imperforatus.

Ufudocyclops[247]

Gen. et sp. nov

Valid

Kammerer et al.

Probably Middle Triassic

Burgersdorp Formation

 South Africa

A stahleckeriid dicynodont. Genus includes new species U. mukanelai.

Vetusodon[248]

Gen. et sp. nov

Valid

Abdala et al.

Permian (Lopingian)

Karoo Supergroup (Daptocephalus Assemblage Zone)

 South Africa

A cynodont closely related to the group Eucynodontia. Genus includes the new species V. elikhulu.

Mammals[edit]

Other animals[edit]

Research[edit]

New taxa[edit]

Name Novelty Status Authors Age Type locality Country Notes Images

Adelochaeta[280]

Gen. et sp. nov

Han, Conway Morris & Shu in Han et al.

Cambrian Stage 3

Chiungchussu Formation

 China

A polychaete. The type species is A. sinensis.

Aladraco kirchhainensis[281]

Sp. nov

In press

Geyer & Malinky

Cambrian (Miaolingian)

Delitzsch–Torgau–Doberlug Syncline

 Germany

A member of Hyolitha.

Alfaites[282]

Gen. et sp. nov

Valid

Valent, Fatka & Marek

Cambrian (Drumian)

Buchava Formation

 Czech Republic

A member of Hyolitha. The type species is A. romeo.

Alulagraptus[283]

Gen. et comb. nov

Valid

Chen et al.

Late Ordovician

 China

A graptolite. Genus includes A. ensiformis (Mu & Zhang in Mu et al., 1963).

Anomalocaris magnabasis[284]

Sp. nov

Valid

Pates et al.

Cambrian Stage 4

Carrara Formation
Pioche Formation

 United States

Bauruascaris[285]

Gen. et 2 sp. nov

Valid

Cardia et al.

Late Cretaceous (Campanian/Maastrichtian)

Adamantina Formation

 Brazil

An ascaridoid nematode described on the basis of fossil eggs preserved in crocodyliform coprolites. Genus includes new species B. cretacicus and B. adamantinensis.

Bicingulites nanningensis[286]

Sp. nov

Valid

Wei, Zong & Gong

Early Devonian

Nagaoling Formation

 China

A member of Tentaculitida.

Cambrachelous[287]

Gen. et sp. nov

Valid

Geyer, Valent & Meier

Cambrian

Tannenknock Formation

 Germany

A member of Hyolitha. Genus includes new species C. diploprosopus.

Cambroraster[288]

Gen. et sp. nov

Valid

Moysiuk & Caron

Cambrian

Burgess Shale

 Canada

A radiodont belonging to the family Hurdiidae. Genus includes new species C. falcatus.

Cephalonega[289]

Nom. nov

Valid

Ivantsov et al.

Ediacaran

 Russia

A member of Proarticulata; a replacement name for Onega Fedonkin (1976).

Chancelloria australilonga[290]

Sp. nov

Valid

Yun et al.

Cambrian Stage 4

Emu Bay Shale

 Australia

Cornulites sokiranae[291]

Sp. nov

Valid

Vinn, Musabelliu & Zatoń

Late Devonian

Central Devonian Field

 Russia

A member of Cornulitida.

Costatubus[292]

Gen. et sp. nov

Valid

Selly et al.

Ediacaran

 United States

A cloudinid. Genus includes new species C. bibendi.

Costulatotheca[293]

Gen. et sp. nov

Valid

Earp

Early Devonian

 Australia

A member of Hyolitha. Genus includes new species C. schleigeri.

Dahescolex[294]

Gen. et sp. nov

In press

Shao et al.

Cambrian (Fortunian)

Kuanchuanpu Formation

 China

An animal which might be a stem-lineage derivative of Scalidophora. Genus includes new species D. kuanchuanpuensis.

Daihua[295]

Gen. et sp. nov

Valid

Zhao et al.

Cambrian Stage 3

Chiungchussu Formation

 China

A member of the total group of Ctenophora. The type species is D. sanqiong.

Dailyatia decobruta[296]

Sp. nov

Valid

Betts in Betts et al.

Early Cambrian

 Australia

A tommotiid belonging to the family Kennardiidae.

Echinokleptus[297]

Gen. et sp. nov

Valid

Muir et al.

Ordovician (Tremadocian)

 United Kingdom

Agglutinated tubes most likely produced by a polychaete. Genus includes new species E. anileis.

Gothograptus auriculatus[298]

Sp. nov

Valid

Kozłowska et al.

Silurian

 Germany
 Lithuania
 Poland
 Sweden

A graptolite.

Gothograptus diminutus[298]

Sp. nov

Valid

Kozłowska et al.

Silurian

 Poland

A graptolite.

Gothograptus domeyki[298]

Sp. nov

Valid

Kozłowska et al.

Silurian

 Lithuania

A graptolite.

Gothograptus velo[298]

Sp. nov

Valid

Kozłowska et al.

Silurian

 Poland

A graptolite.

Grantitheca? klani[287]

Sp. nov

Valid

Geyer, Valent & Meier

Cambrian

Tannenknock Formation

 Germany

A member of Hyolitha.

Harrisgraptus[299]

Gen. et comb. nov

Valid

VandenBerg

Ordovician (Floian)

 Australia

A graptolite belonging to the group Dichograptina and the family Pterograptidae. The type species is "Didymograptus" eocaduceus Harris (1933).

Hexitheca washingtonensis[300]

Sp. nov

Valid

Malinky & Geyer

Early Cambrian (Dyeran)

 United States

A member of Hyolitha.

Ipoliknus[280]

Gen. et sp. nov

Han, Conway Morris & Shu in Han et al.

Cambrian Stage 3

Chiungchussu Formation

 China

A polychaete. The type species is I. avitus.

Korenograptus selectus[301]

Sp. nov

In press

Chen in Chen et al.

Late Ordovician

 Myanmar

A graptolite.

Lonchidium cylicus[286]

Sp. nov

Valid

Wei, Zong & Gong

Early Devonian

Nagaoling Formation

 China

A member of Tentaculitida.

Nectocotis[302]

Gen. et sp. nov

Valid

Smith

Ordovician (Katian)

Whetstone Gulf Formation

 United States
( New York)

A relative of Nectocaris; an animal of uncertain phylogenetic placement, possibly a stem-cephalopod. The type species is N. rusmithi.

Neodiplograptus mandalayensis[301]

Sp. nov

In press

Chen in Chen et al.

Late Ordovician

 Myanmar

A graptolite.

Normalograptus baridaensis[303]

Sp. nov

Valid

Štorch, Roqué Bernal & Gutiérrez-Marco

Ordovician (Hirnantian)

 Spain

A graptolite.

Normalograptus ednae[303]

Sp. nov

Valid

Štorch, Roqué Bernal & Gutiérrez-Marco

Silurian (Rhuddanian)

 Spain

A graptolite.

Odessites aurisites[286]

Sp. nov

Valid

Wei, Zong & Gong

Early Devonian

Nagaoling Formation

 China

A member of Tentaculitida.

Odessites nahongensis[286]

Sp. nov

Valid

Wei, Zong & Gong

Early Devonian

Nagaoling Formation

 China

A member of Tentaculitida.

Onuphionella corusca[304]

Sp. nov

In press

Muir et al.

Ordovician (Sandbian)

First Bani Group

 Morocco

Agglutinated tubes produced by unknown animal.

Paratriplicatella[305]

Gen. et sp. nov

Valid

Pan et al.

Early Cambrian

 China

A member of Hyolitha. Genus includes new species P. shangwanensis.

Protomicrocornus[305]

Gen. et sp. nov

Valid

Pan et al.

Early Cambrian

 China

A member of Hyolitha. Genus includes new species P. triplicensis.

Saarina hagadorni[292]

Sp. nov

Valid

Selly et al.

Ediacaran

 United States

Shenzianyuloma[306]

Gen. et sp. nov

McMenamin

Cambrian

Maotianshan Shales

 China

A member of Vetulicolia. The type species is S. yunnanense.

Sialomorpha[307]

Gen. et sp. nov

Valid

Poinar & Nelson

Eocene or Miocene

Dominican amber

 Dominican Republic

A small invertebrate of uncertain phylogenetic placement, sharing characters with both tardigrades and mites, but belonging to neither group. The type species is S. dominicana.

Tentaculites brevitenui[286]

Sp. nov

Valid

Wei, Zong & Gong

Early Devonian

Nagaoling Formation

 China

A member of Tentaculitida.

Triplicatella xinjia[305]

Sp. nov

Valid

Pan et al.

Early Cambrian

 China

A member of Hyolitha.

Ursulinacaris[308]

Gen. et sp. nov

Pates, Daley & Butterfield

Cambrian

Mount Cap formation
Carrara Formation?

 Canada
 United States?

A radiodont belonging to the family Hurdiidae. The type species is U. grallae.

Volynites nagaolingensis[286]

Sp. nov

Valid

Wei, Zong & Gong

Early Devonian

Nagaoling Formation

 China

A member of Tentaculitida.

Yilingia[309]

Gen. et sp. nov

Valid

Chen et al.

Late Ediacaran

 China

An early bilaterian, possibly related to panarthropods or annelids. Genus includes new species Y. spiciformis.

Foraminifera[edit]

Research[edit]

New taxa[edit]

Name Novelty Status Authors Age Type locality Country Notes Images

Acervoschwagerina gongendaniensis[312]

Sp. nov

Valid

Kobayashi in Kobayashi & Furutani

Permian (late Cisuralian)

 Japan

A member of Fusulinida.

Ammodiscus jordanensis[313]

Sp. nov

Valid

Gennari and Rettori in Powell et al.

Early and Middle Triassic

Ma’in Formation

 China
 Hungary
 Jordan
 Poland
 Romania

A species of Ammodiscus.

Bispiraloconulus[314]

Gen. et sp. nov

Valid

Schlagintweit, Bucur & Sudar

Early Cretaceous (Berriasian)

 Serbia

Genus includes new species B. serbiacus.

Canalispina[315]

Gen. et sp. nov

Valid

Robles-Salcedo et al.

Late Cretaceous (Maastrichtian)

 Italy

A member of the family Siderolitidae. Genus includes new species C. iapygia.

Chusenella tsochenensis[316]

Sp. nov

Valid

Zhang et al.

Middle Permian

Xiala Formation

 China

A member of the family Schwagerinidae.

Cuniculinella omiensis[312]

Sp. nov

Valid

Kobayashi in Kobayashi & Furutani

Permian (late Cisuralian)

 Japan

A member of Fusulinida.

Cyclopsinella roselli[317]

Sp. nov

Valid

Villalonga et al.

Late Cretaceous (Campanian)

Terradets Limestone

 Spain

Globigaetania[318]

Gen. et sp. nov

Valid

Gennari & Rettori

Permian (Wordian to Capitanian)

Gnishik Formation

 Iran
 Japan

A member of the family Globivalvulinidae. Genus includes new species G. angulata.

Pachycolumella[319]

Gen. et 2 sp. nov

Valid

Septfontaine, Schlagintweit & Rashidi

Late Cretaceous (Maastrichtian) and Paleocene (Danian)

Tarbur Formation

 India
 Iran
 Oman
 Pakistan
 Turkey

The type species is P. elongata; genus also includes P. acuta.

Pseudochablaisia[320]

Gen. et sp. nov

Valid

Schlagintweit, Septfontaine & Rashidi

Late Cretaceous (Maastrichtian)

Tarbur Formation

 Iran

A member of the family Pfenderinidae. Genus includes new species P. subglobosa.

Serrakielina[321]

Gen. et sp. nov

Valid

Schlagintweit & Rashidi

Paleocene

 Iran

Genus includes new species S. chahtorshiana.

Simobaculites saundersi[322]

Sp. nov

Valid

Wilson & Kaminski in Wilson et al.

Cenozoic

Nariva Formation

 Trinidad and Tobago

Socotraella? yazdiana[321]

Sp. nov

Valid

Schlagintweit & Rashidi

Paleocene

 Iran

Tambareauella[323]

Gen. et comb. et sp. nov

Valid

Boukhary & El Naby

Eocene

 Egypt
 France

A member of the family Nummulitidae. The type species is "Operculina (Nummulitoides)" azilensis Tambareau (1966); genus also includes new species T. russeiesensis.

Other organisms[edit]

Research[edit]

New taxa[edit]

Name Novelty Status Authors Age Type locality Country Notes Images

Aguirrea[339]

Gen. et sp. nov

Valid

Teichert, Woelkerling & Munnecke

Silurian (Wenlock)

Högklint Formation

 Sweden

A coralline alga. Genus includes new species A. fluegelii.

Amsassia yushanensis[340]

Sp. nov

Valid

Lee et al.

Late Ordovician

Xiazhen Formation

 China

A coral-like organism.

Anechosoma[341]

Gen. et sp. nov

Valid

Krings & Kerp

Early Devonian

 United Kingdom

An unicellular organism with possible affinities to the Glaucophyta or Chlorophyta. Genus includes new species A. oblongum.

Appendisphaera clustera[342]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Appendisphaera lemniscata[342]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Asterocapsoides fluctuensis[342]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Attenborites[343]

Gen. et sp. nov

In press

Droser et al.

Ediacaran

Rawnsley Quartzite

 Australia

An organism of uncertain phylogenetic placement, described on the basis of a well-defined irregular oval to circular fossil. Genus includes new species A. janeae.

Bacatisphaera sparga[342]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Baculiphyca brevistipitata[344]

Sp. nov

Valid

Ye et al.

Ediacaran

 China

A macroalga.

Briareus robustus[342]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Briareus vasformis[342]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Cambrowania[345]

Gen. et sp. nov

Disputed

Tang & Xiao in Tang et al.

Early Cambrian

Hetang Formation

 China

An organism of uncertain phylogenetic placement. Originally classified as an animal of uncertain phylogenetic placement, possibly a sponge or a bivalved arthropod; Slater & Budd (2019) contested its animal affinity, and considered its fossil material to be more likely collapsed hollow organic spheroidal acritarchs belonging to the genus Leiosphaeridia.[346][347] Genus includes new species C. ovata.

Cavaspina conica[342]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Chaetosphaeria elsikii[348]

Sp. nov

Valid

Pound et al.

Miocene

Brassington Formation

 United Kingdom

A fungus, a species of Chaetosphaeria.

Chiastozygus fahudensis[349]

Sp. nov

Valid

Al Rawahi & Dunkley Jones

Late Cretaceous (late Coniacian to late Campanian)

Fiqa Formation

 Oman

A heterococcolith.

Circumpodium[350]

Gen. et sp. nov

Valid

Wisshak & Hüne

Middle Jurassic (Callovian)

Marnes de Dives Formation

 France

A microfossil of uncertain phylogenetic placement. Genus includes new species C. enigmaticum.

Cyathinema[351]

Gen. et sp. nov

Valid

Agić et al.

Early Ediacaran

Nyborg Formation

 Norway

An eukaryote of uncertain phylogenetic placement. The type species is C. digermulense.

Cymatiosphaeroides forabilatus[342]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Daedalosphaera[352]

Gen. et sp. nov

Valid

Loron et al.

MesoproterozoicNeoproterozoic transition

Grassy Bay Formation

 Canada

A spheroidal acritarch with inner wall sculpture. Genus includes new species D. digitisigna.

Dichothallus[353]

Gen. et sp. nov

In press

Naugolnykh

Permian (early Kungurian)

Philippovian Formation

 Russia

A brown alga of uncertain phylogenetic placement. Genus includes new species D. divaricatus.

Dicrospinasphaera improcera[342]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Distosphaera? corniculata[342]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Doushantuophyton? laticladus[344]

Sp. nov

Valid

Ye et al.

Ediacaran

 China

A macroalga.

Enteromorphites magnus[344]

Sp. nov

Valid

Ye et al.

Ediacaran

 China

A macroalga.

Eotylotopalla quadrata[342]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Ericiasphaera fibrilla[342]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Estrella[342]

Gen. et 2 sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil. Genus includes new species E. greyae and E. recta.

Germinosphaera alveolata[354]

Sp. nov

Valid

Miao et al.

Late Paleoproterozoic

Chuanlinggou Formation

 China

An organic-walled microfossil interpreted as a unicellular eukaryote.

Hercochitina violana[355]

Sp. nov

Valid

Nõlvak & Liang in Liang et al.

Ordovician (Katian)

Viola Springs Formation

 United States

A chitinozoan.

Herisphaera[352]

Gen. et 2 sp. nov

Valid

Loron et al.

MesoproterozoicNeoproterozoic transition

Grassy Bay Formation
Nelson Head Formation

 Canada

A spiny acritarch with regularly distributed processes. Genus includes new species H. arbovela and H. triangula.

Knollisphaeridium coniformum[342]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Knollisphaeridium heliacum[342]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Konglingiphyton? laterale[344]

Sp. nov

Valid

Ye et al.

Ediacaran

 China

A macroalga.

Laminasphaera[342]

Gen. et sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil. Genus includes new species L. capillata.

Laufeldochitina toilaensis[356]

Sp. nov

Valid

Nõlvak, Liang & Hints

Ordovician (Dapingian)

 Estonia

A chitinozoan.

Maxiphyton[344]

Gen. et sp. nov

Valid

Ye et al.

Ediacaran

 China

A macroalga. Genus includes new species M. stipitatum.

Meliolinites neogenicus[357]

Sp. nov

Valid

Khan, Bera & Bera

Late Pliocene to early Pleistocene

Kimin Formation

 India

A fungus belonging to the family Meliolaceae.

Meliolinites pliocenicus[358]

Sp. nov

Valid

Bera, Khan & Bera

Pliocene

Subansiri Formation

 India

A fungus belonging to the family Meliolaceae.

Membranosphaera[342]

Gen. et sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil. Genus includes new species M. formosa.

Mengeosphaera flammelata[342]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Mengeosphaera lunula[342]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Moorodinium crispa[359]

Sp. nov

Valid

Wainman et al.

Late Jurassic (late Kimmeridgian–early Tithonian)

Surat Basin

 Australia

A dinoflagellate.

Nimbosphaera[360]

Gen. et sp. nov

Valid

Harper & Krings

Early Devonian

Windyfield chert

 United Kingdom

A microfossil resembling the sheathed zoosporangia of extant chytrids. Genus includes new species N. rothwellii.

Nunatsiaquus[352]

Gen. et sp. nov

Valid

Loron et al.

MesoproterozoicNeoproterozoic transition

Grassy Bay Formation

 Canada

A spheroidal acritarch with inner wall sculpture. Genus includes new species N. cryptotorus.

Obamus[361]

Gen. et sp. nov

In press

Dzaugis et al.

Ediacaran

Rawnsley Quartzite

 Australia

A torus-shaped organism, similar in gross morphology to some poriferans and benthic cnidarians. Genus includes new species O. coronatus.

Obelix[362]

Gen. et comb. nov

Valid

Morais et al.

Neoproterozoic

Callison Lake Formation
Chuar Group
(Kwagunt Formation)

 Canada  United States

A vase-shaped microfossil representing tests of protists. The type species is "Cycliocyrillium" rootsi Cohen, Irvine & Strauss (2017); Morais et al. (2019) corrected the suffix for the specific epithet to rootsii.

Ourasphaira[352]

Gen. et sp. nov

Valid

Loron et al.

MesoproterozoicNeoproterozoic transition

Grassy Bay Formation

 Canada

A process-bearing multicellular eukaryotic microorganism. Argued to be an early fungus by Loron et al. (2019).[363] Genus includes new species O. giraldae.

Palaeoleptochlamys[364]

Gen. et sp. nov

Valid

Strullu-Derrien et al.

Early Devonian

Rhynie chert

 United Kingdom

A member of Amoebozoa belonging to the group Arcellinida. Genus includes new species P. hassii.

Palaeolyngbya kerpii[365]

Sp. nov

Valid

Krings

Early Devonian

Rhynie chert

 United Kingdom

A cyanobacterium with affinities to Oscillatoriaceae.

Palaeomycus[366]

Gen. et sp. nov

In press

Poinar

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A fungus described on the basis of pycnidia. Genus includes new species P. epallelus.

Paleoplastes[367]

Gen. et sp. nov

In press

Poinar & Vega

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A possible dictyostelid. Genus includes new species P. burmanica.

Perexiflasca ventricosa[368]

Sp. nov

In press

Krings & Harper

Early Devonian

Windyfield chert

 United Kingdom

A small, chytrid-like organism.

Phomites neogenicus[369]

Sp. nov

Valid

Vishnu, Khan & Bera in Vishnu et al.

Neogene

 India

A fungus similar to members of the genus Phoma.

Phomites siwalicus[369]

Sp. nov

Valid

Vishnu, Khan & Bera in Vishnu et al.

Neogene

 India

A fungus similar to members of the genus Phoma.

Priscadvena[370]

Gen. et sp. nov

Valid

Poinar & Vega

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A trichomycete fungus belonging to the group Kickxellomycotina and to the new order Priscadvenales. Genus includes new species P. corymbosa.

Rhexoampullifera stogieana[348]

Sp. nov

Valid

Pound et al.

Miocene

Brassington Formation

 United Kingdom

A fungus belonging to the group Ascomycota.

Rhexoampullifera sufflata[348]

Sp. nov

Valid

Pound et al.

Miocene

Brassington Formation

 United Kingdom

A fungus belonging to the group Ascomycota.

Rhyniotaxillus[371]

Gen. et sp. nov

Valid

Krings & Sergeev

Early Devonian

Rhynie chert

 United Kingdom

A minute coccoid cyanobacterium. Genus includes new species R. devonicus.

Rhyniovexator[341]

Gen. et sp. nov

Valid

Krings & Kerp

Early Devonian

 United Kingdom

Possibly a chytrid or a member of Aphelida. Genus includes new species R. penetrans.

Sinocylindra linearis[344]

Sp. nov

Valid

Ye et al.

Ediacaran

 China

An organism of uncertain phylogenetic placement, possibly an alga or an exceptionally large prokaryote.

Skuadinium fusum[359]

Sp. nov

Valid

Wainman et al.

Late Jurassic (late Kimmeridgian–early Tithonian)

Surat Basin

 Australia

A dinoflagellate.

Sporosphaera[372]

Gen. et sp. nov

In press

Landon et al.

Ediacaran

 China

A eukaryote reminiscent of acritarchs. Genus includes new species S. guizhouensis.

Staurolithites ormae[349]

Sp. nov

Valid

Al Rawahi & Dunkley Jones

Late Cretaceous (late Santonian to late Campanian)

Fiqa Formation

 Oman

A heterococcolith.

Tanarium capitatum[342]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Tanarium uniformum[342]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Tetraphycus laminiformis[354]

Sp. nov

Valid

Miao et al.

Late Paleoproterozoic

Chuanlinggou Formation

 China

An organic-walled microfossil, a colonial organism of uncertain phylogenetic placement, possibly a cyanobacteria.

Variomargosphaeridium varietatum[342]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil.

Verrcosphaera[342]

Gen. et sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

 China

A microfossil. Genus includes new species V. minima.

Trace fossils[edit]

History of life in general[edit]

Research related to paleontology that concerns multiple groups of the organisms listed above.

  • A study on biomarkers recovered from cap dolomites of the Araras Group (Brazil), interpreted as evidence of the transition from a bacterial to eukaryotic dominated ecosystem after the Marinoan deglaciation, likely caused by massive bacterivorous grazing by ciliates, is published by van Maldegem et al. (2019).[373]
  • Biomarkers thought to be diagnostic for demosponges and cited as evidence of rise of animals to ecological importance prior to the Cambrian radiation are reported to be also synthesized by rhizarians by Nettersheim et al. (2019), who place the oldest unambiguous evidence for animals closer to the Cambrian Explosion.[374]
  • A study on the age of the Ediacaran fossils from the Podolya Basin (southwestern Ukraine) is published by Soldatenko et al. (2019).[375]
  • A study on the duration of the faunal transition from Ediacaran to Cambrian biota, as indicated by data from a composite section in Namibia, is published by Linnemann et al. (2019).[376]
  • A study on occurrences of body and trace fossils in Ediacaran and lower Cambrian (Fortunian) rocks around the world is published by Muscente et al. (2019), who report evidence indicative of existence of a global, cosmopolitan assemblage unique to terminal Ediacaran strata, living between two episodes of biotic turnover which might be the earliest mass extinctions of complex life.[377]
  • A study on the diversification of animals and their behaviour in the Ediacaran–Cambrian interval, as indicated by fossil and environmental proxy records, is published by Wood et al. (2019), who interpret the fossil record as indicating that the rise of early animals was more likely a series of successive, transitional radiation events which extended from the Ediacaran to the early Paleozoic, rather than competitive or biotic replacement of the latest Ediacaran biotas by markedly distinct Cambrian ones.[378]
  • A study comparing the variability of Ediacaran faunal assemblages to that of more recent fossil and modern benthic assemblages is published by Finnegan, Gehling & Droser (2019).[379]
  • A study on the intensity of animal bioturbation and ecosystem engineering in trace fossil assemblages throughout the latest Ediacaran Nama Group (Namibia), evaluating the implications of this data for the knowledge of the causes of the disappearance of the Ediacaran biota, is published by Cribb et al. (2019).[380]
  • A study on mechanisms of skeletal biomineralization in early animals (focusing on Cloudina and Cambrian hyoliths and halkieriids) is published by Gilbert et al. (2019).[381]
  • A study on the relationship between atmospheric oxygen oscillations, the extent of shallow-ocean oxygenation and the animal biodiversity in the Cambrian period is published by He et al. (2019).[382]
  • A study on the course of the transition from microbial-dominated reef environments to animal-based reefs in the early Cambrian, as indicated by data from strata in the western Basin and Range of California and Nevada, is published by Cordie, Dornbos & Marenco (2019).[383]
  • An assemblage of early Cambrian small carbonaceous fossils and acritarchs, including possible oldest known annelid remains, is described from the siltstones of the Lappajärvi impact structure (Finland) by Slater & Willman (2019).[384]
  • A study aiming to explain the occurrence of the variety of trace fossils associated with Tuzoia carapaces from the Cambrian Burgess Shale (British Columbia, Canada) is published by Mángano, Hawkes & Caron (2019).[385]
  • Cambrian Lagerstätte from the Qingjiang biota (Shuijingtou Formation; Hubei, China), preserving fossils of diverse, ~518 million years old biota, is reported by Fu et al. (2019).[386][387]
  • A study aiming to infer whether a marked drop in known diversity of marine life during the period between the Cambrian explosion and the Great Ordovician Biodiversification Event (the Furongian Gap) is apparent, due to sampling failure or lack of rock, or real, is published by Harper et al. (2019).[388]
  • A study on the marine biodiversity changes throughout the first 120 million years of the Phanerozoic is published by Rasmussen et al. (2019).[389]
  • A study on rates of origination and extinction at the genus level throughout early Paleozoic is published by Kröger, Franeck & Rasmussen (2019), who also present estimates of longevity, taxon age and taxon life expectancy of early Paleozoic marine genera.[390]
  • A study on processes causing fluctuations of biodiversity of marine invertebrates throughout the Phanerozoic is published by Rominger, Fuentes & Marquet (2019).[391]
  • A study on the impact of environmental changes on the biodiversity of North American marine organisms throughout the Phanerozoic is published by Roberts & Mannion (2019).[392]
  • A study on within-habitat, between-habitat, and overall diversity of benthic marine invertebrates (gastropods, bivalves, trilobites, brachiopods and echinoderms) from Phanerozoic geological formations is published by Hofmann, Tietje & Aberhan (2019).[393]
  • A study evaluating whether rapid warming preferentially increased the extinction risk of tropical marine fossil taxa throughout the Phanerozoic is published by Reddin, Kocsis & Kiessling (2019).[394]
  • A study testing the hypothesis that the influence of ocean chemistry and climate on the ecological success of marine calcifiers decreased throughout the Phanerozoic is published by Eichenseer et al. (2019).[395]
  • A study on genus origination and extinction rates in the Ordovician on a global scale, for the paleocontinents Baltica and Laurentia, and for onshore and offshore areas, is published by Franeck & Liow (2019).[396]
  • First Middle Ordovician (DapingianDarriwilian) soft-bodied fossils from northern Gondwana (fossils of medusozoan possibly belonging to the genus Patanacta, possible members of the family Wiwaxiidae and an arthropod possibly belonging to the family Pseudoarctolepidae) are described from the Valongo Formation (Portugal) by Kimmig et al. (2019).[397]
  • New Konservat-Lagerstätte containing exceptionally preserved soft-bodied organisms, including the earliest record of Acoelomorpha, Turbellaria, Nemertea and Nematoda reported so far, is described from the Ordovician (Katian) Vauréal Formation (Canada) by Knaust & Desrochers (2019).[398]
  • A review of occurrence data of latest Ordovician benthic marine organisms is published by Wang, Zhan & Percival (2019), who evaluate the implications of the studied data for the knowledge of the course of the end-Ordovician mass extinction.[399]
  • A revision of Silurian fauna from the Pentland Hills (Scotland) described by Archibald Lamont in 1978 is published by Candela & Crighton (2019).[400]
  • A study on the course of graptolite extinctions during the middle Homerian biotic crisis and on the impact of this crisis on other marine invertebrates, as indicated by data from the Kosov Quarry section of the Prague Synform (Czech Republic), is published by Manda et al. (2019).[401]
  • Well-preserved fossil cryptic biota is reported from the submarine cavities of the Devonian (Emsian to Givetian) mud mounds in the Hamar Laghdad area (Morocco) by Berkowski et al. (2019).[402]
  • A study aiming to test and quantify the classification of Devonian biogeographic areas, based on distributional data of Devonian trilobite, brachiopod and fish taxa, will be published by Dowding & Ebach (2019).[403]
  • A study on patterns of local richness of terrestrial tetrapods throughout the Phanerozoic is published by Close et al. (2019).[404]
  • Vertebrate fossil fauna from the Tournaisian-age Ballagan Formation exposed on the beach at Burnmouth (Scotland) is described by Otoo et al. (2019).[405]
  • Description of tetrapod and fish fossils from the coastal locality of Burnmouth, Scotland (Ballagan Formation), associated plant material and sedimentological context of these fossils is published by Clack et al. (2019), who interpret these fossils as evidence of the potential richness of the Tournaisian fauna, running counter to the assumption of a depauperate nonmarine fauna following the end-Devonian Hangenberg event.[406]
  • A study on the impact of climate changes during the Carboniferous–Permian transition on the evolution of land-living vertebrates is published by Pardo et al. (2019).[407]
  • A study aiming to test one of the scenarios proposed by Robert L. Carroll in 1970 to explain the origin of the amniotic egg, based on data from Permo‐Carboniferous tetrapods, is published by Didier, Chabrol & Laurin (2019).[408]
  • An overview of the studies researching biodiversity changes in the Permian and their links to volcanism is published by Chen & Xu (2019).[409]
  • Haridy et al. (2019) report the occurrence of overgrowth of palatal dentition of Cacops and Captorhinus by a new layer of bone to which the newest teeth are then attached (the overgrowth pattern also documented in early fishes), and evaluate the implications of this finding for the knowledge of the origin of teeth.[410]
  • A study on the causes of biotic extinction during the Guadalupian-Lopingian transition is published by Huang et al. (2019).[411]
  • A study on the severity of the end-Guadalupian extinction event will be published by Rampino & Shen (2019).[412]
  • Two Permian tetrapod assemblages, recoved from the northernmost point at which the lowest Beaufort Group has been targeted for collecting fossils, are reported from the southern Free State (South Africa) by Groenewald, Day & Rubidge (2019), who evaluate the implications of these fossil for the knowledge of faunal provincialism within the Middle to Late Permian Karoo Basin.[413]
  • A study aiming to determine which Permian tetrapod assemblage zones are present in the vicinity of Victoria West (Northern Cape, South Africa), and to reassess the biostratigraphic provenance of specimens collected historically in this area (including the holotype of Lycaenops ornatus), is published by Day & Rubidge (2019).[414]
  • A study on the composition and biotic interactions in terrestrial paleocommunities from the Karoo Basin (South Africa) spanning the Permian-Triassic mass extinction is published by Roopnarine et al. (2019), who propose a new hypothesis to explain the persistence of biotic assemblages and their reorganization or destruction.[415]
  • A study on the functional diversity of middle Permian and Early Triassic marine paleocommunities in the area of present-day western United States, and on its implications for the knowledge of functional re-organization of these communities in the aftermath of the Permian–Triassic extinction event, is published by Dineen, Roopnarine & Fraiser (2019).[416]
  • A study on changes in the structure of phytoplankton communities in South China during the Permian-Triassic transition is published by Lei et al. (2019).[417]
  • A summary of knowledge of the impact of Permian-Triassic mass extinction on reef ecosystems, and on their recovery after this extinction, is presented by Martindale, Foster & Velledits (2019).[418]
  • Description of an Early Triassic marine fauna from the Ad Daffah conglomerate in eastern Oman, and on its implications for inferring the ecology and diversity during the early aftermath of the Permian–Triassic extinction event, is published by Brosse et al. (2019).[419]
  • A study aiming to explain high biodiversity preserved in the Triassic Cassian Formation (Italy) will be published by Roden et al. (2019).[420]
  • A study on shark, sizable carnivorous archosaur, big herbivorous tetrapod and probable turtle bromalites (coprolites and possibly some cololites) from a turtle-dominated fossil assemblage from the Upper Triassic Poręba site (Poland) is published by Bajdek et al. (2019), who evaluate the implications of their findings for inferring the diet of the Triassic turtle Proterochersis porebensis.[421]
  • A study on seawater oxygenation during the Early Jurassic and its impact on the recovery of marine benthos after the Triassic–Jurassic extinction event, as indicated by data from Blue Lias Formation (United Kingdom), is published by Atkinson & Wignall (2019).[422]
  • A study on the patterns and processes of recovery of marine fauna after the Toarcian oceanic anoxic event, as indicated by data from the Cleveland Basin (Yorkshire, United Kingdom), is published by Caswell & Dawn (2019).[423]
  • A study on changes of land vegetation resulting from the Toarcian oceanic anoxic event is published by Slater et al. (2019).[424]
  • Skeletal elements of Oxfordian ichthyosaurs and plesiosaurs are reported from the Kingofjeld mountain (north-east Greenland) by Delsett & Alsen (2019).[425]
  • New marine reptile-bearing localities documenting the TithonianBerriasian transition at the High Andes (Mendoza Province, Argentina) are reported by Fernández et al. (2019).[426]
  • A study on microvertebrate fossils from the Upper Jurassic or Lower Cretaceous of Ksar Metlili (Anoual Syncline, Morocco), evaluating their palaeobiogeographical implications, and on the age of this fauna, will be published by Lasseron et al. (2019).[427]
  • Description of mid-Cretaceous invertebrate fauna from Batavia Knoll (eastern Indian Ocean), and a study on its similarities to other Cretaceous faunas from around the Indian Ocean, is published by Wild & Stilwell (2019).[428]
  • Possible amphibian, gastropod and insect egg masses will be described from the Cretaceous amber from Myanmar by Xing et al. (2019).[429]
  • A study on coprolites from the Upper Cretaceous deposits in the Münster Basin (northwestern Germany), evaluating their implications for the knowledge of Cretaceous trophic structures and predator–prey interactions, is published by Qvarnström et al. (2019).[430]
  • New vertebrate assemblage from the upper Turonian Schönleiten Formation of Gams bei Hieflau (Austria) is described by Ősi et al. (2019).[431]
  • Turonian marine vertebrate fossils from the Huehuetla quarry (Puebla, Mexico) are described by Alvarado-Ortega et al. (2019).[432]
  • A study comparing the ecological similarity of Cretaceous cold seep assemblages preserved in the Pierre Shale surrounding the Black Hills and modern cold-seep assemblages is published by Laird & Belanger (2019).[433]
  • A study on the biogeography of Cretaceous terrestrial tetrapods is published by Kubo (2019).[434]
  • An accumulation of fossil eggshells of bird, crocodylomorph and gekkotan eggs is reported from the Late Cretaceous Oarda de Jos locality in the vicinity of the city of Sebeș (Romania) by Fernández et al. (2019).[435]
  • A review of the fossil record of Late Cretaceous and Paleogene vertebrates from the Seymour Island (Antarctica) is published by Reguero (2019).[436]
  • A study on the evolutionary history of the family Pospiviroidae, aiming to assess possible impact of the Cretaceous–Paleogene extinction event on the divergence rates in this family, is published by Bajdek (2019).[437]
  • A study on calcareous nanoplankton and planktic foraminiferal assemblages in a Cretaceous-Paleogene section from the peak ring of the Chicxulub crater, and on their implications for the knowledge of recovery of plankton after the Cretaceous–Paleogene extinction event, is published by Jones, Lowery & Bralower (2019).[438]
  • A study on the course of recovery of the nanoplankton communities after the Cretaceous–Paleogene extinction event is published by Alvarez et al. (2019), who report evidence indicative of 1.8 million years of exceptional volatility of post-extinction communities and indicating that the emergence of a more stable equilibrium-state community coincided with indicators of carbon cycle restoration and a fully functioning biological pump.[439]
  • A study on the timing and nature of recovery of benthic marine ecosystems of Antarctica after the Cretaceous–Paleogene mass extinction, as indicated by data from fossils of benthic molluscs, is published by Whittle et al. (2019).[440]
  • A synthesis of studies on the evolution of the cold‐water coastal North Pacific biota over the last 36 million years, its origins and its influences on other temperate regions, is presented by Vermeij et al. (2019).[441]
  • Description of the vertebrate assemblage from the Oligocene Shine Us locality in the Khaliun Basin (Mongolia) is published by Daxner-Höck et al. (2019).[442]
  • Description of reptile and amphibian fossils from the early Miocene localities of the Kilçak section (Turkey) is published by Syromyatnikova et al. (2019).[443]
  • Description of fossil fish, amphibian and reptilian fauna from the middle Miocene locality Gračanica (Bosnia and Herzegovina) will be published by Vasilyan (2019).[444]
  • A study on the vertebrate fossils from the early Clarendonian localities within the Goliad Formation in Bee and Live Oak Counties in Texas (comprising the Lapara Creek Fauna), and on the stratigraphic context of these localities, is published by May (2019).[445]
  • New late Miocene vertebrate assemblage, including turtle, rodent and xenarthran fossils (among which is the oldest record of an armadillo belonging to the genus Dasypus reported so far), is described from the Los Alisos locality (Guanaco Formation, Argentina) by Ercoli et al. (2019).[446]
  • Description of a diverse late Miocene marine fauna from the Bloomfield Quarry (Wilson Grove Formation; California, United States), including the most diverse assemblage of fossil walruses yet reported worldwide from a single locality, is published by Powell et al. (2019).[447]
  • A study on microscopic traces of hominin and animal activities in the Denisova Cave (Russia), providing the information on the use of this cave over the last 300,000 years, is published by Morley et al. (2019).[448]
  • A revision of Middle Pleistocene faunal record from archeological sites in Africa, and a study on its implications for inferring potential links between hominin subsistence behavior and the Early Stone Age/Middle Stone Age technological turnover, will be published by Smith et al. (2019).[449]
  • Revision of reptile and amphibian fossils from the late Pleistocene collection of the “Caverne Marie-Jeanne” (Hastière-Lavaux, Namur Province, Belgium) is published by Blain et al. (2019).[450]
  • New late Pleistocene site Tsaramody (Sambaina basin, Madagascar), preserving diverse subfossil remains of vertebrates, is reported by Samonds et al. (2019).[451]
  • A study on the paleoecology and diet of late Pleistocene terrestrial vertebrates known from an asphalt deposit (Project 23, Deposit 1) at Rancho La Brea (California, United States) will be published by Fuller et al. (2019).[452]
  • A study on changes of vegetation in southern Borneo over the past 40,000  calibrated years BP, as indicated by data from Saleh Cave (South Kalimantan, Indonesia), is published by Wurster et al. (2019).[453]
  • A study on the possible impact of the end of the millennial‐scale climate fluctuations characteristic of the ice age (and the beginning of the more stable climate regime of the Holocene approximately 11,700 years ago) on the Late Quaternary megafaunal extinctions is published by Mann et al. (2019).[454]
  • Late Quaternary fossils of vertebrates are described from caves in the Manning Karst Region of eastern New South Wales (Australia) by Price et al. (2019).[455]
  • A study on the causes of Holocene extinction of megafauna of Madagascar is published by Godfrey et al. (2019).[456]
  • A review discussing possible links between the fossil record of marine biodiversity, nutrient availability and primary productivity is published by Martin & Servais (2019).[457]
  • A study on the possible relationship between speciation and extinction rates of different groups of organisms and the ages of these groups, as indicated by data from extant and fossil species, is published by Diaz et al. (2019).[458]
  • Vertebrate pathogens found associated with fossil hematophagous arthropods in Dominican, Mexican, Baltic, Canadian and Burmese amber are reported by Poinar (2019).[459]
  • A study on the evolution of bite force of amniotes, as indicated by data from extant and fossil taxa, is published by Sakamoto, Ruta & Venditti (2019).[460]
  • A study on the phylogenetic distribution, morphological variation and functions of apicobasal ridges (elevated ridges of tooth enamel) in aquatic reptiles and mammals, as indicated by data from extant and fossil taxa, is published by McCurry et al. (2019).[461]
  • A study on the impact of uncertainty of stratigraphic age of fossils on studies estimating species divergence times which incorporate fossil taxa, based on data from the fossil record of North American mammals and from the dataset of extant and fossil cetaceans, is published by Barido-Sottani et al. (2019).[462]
  • A study evaluating the impact of information about stratigraphic ranges of fossil taxa on the analyses of timing of evolutionary divergence will be published by Püschel et al. (2019).[463]
  • A study on anatomical distribution, abundance, geometry, melanin chemistry and elemental inventory of melanosomes in tissues of extant vertebrates, evaluating their implications for reconstructions of internal soft-tissue anatomy in fossil vertebrates, is published by Rossi et al. (2019).[464]

Other research[edit]

Other research related to paleontology, including research related to geology, palaeogeography, paleoceanography and paleoclimatology.

  • A study on the biological oxygen production during the Mesoarchean, as indicated by data from Mesoarchean shales of the Mozaan Group (Pongola Supergroup, South Africa) preserving record of a shallow ocean "oxygen oasis", is published by Ossa Ossa et al. (2019).[465]
  • A study on the extent of the oxygenation of ocean waters over continental shelves before the Great Oxidation Event, as indicated by data from 2.5-billion-year-old Mount McRae Shale (Australia), is published by Ostrander et al. (2019).[466]
  • A study on the extent of the oxygenation of shallow oceans 2.45 billion years ago is published by Rasmussen et al. (2019), who interpret their findings as indicating that oxygen levels both the surface oceans and atmosphere were exceedingly low before the Great Oxidation Event, which the authors interpret as directly caused by evolution of oxygenic photosynthesis.[467]
  • A study aiming to determine whether the overall size of the biosphere decreased at the end of the Great Oxidation Event, based on data on isotope geochemistry of sulfate minerals from the Belcher Group (subarctic Canada), is published by Hodgskiss et al. (2019).[468]
  • A study aiming to determine the effects of competition of early anoxygenic phototrophs and primitive oxygenic phototrophs on the Earth system, especially on the large-scale oxygenation of Earth’s atmosphere ~2.3 billion years ago, is published by Ozaki et al. (2019).[469]
  • A study on the geochemistry of mat-related structures and their host sediments from the Francevillian Formation (Gabon) is published by Aubineau et al. (2019), who evaluate the implications of their findings for the knowledge whether ancient microbes induced illitisation (conversion of smectite to illite–smectite mixed-layer minerals), and for the knowledge of Earth’s climate and ocean chemistry in the Paleoproterozoic.[470]
  • A study on the rate of biotic oxygen production and the attendant large‐scale biogeochemistry of the mid‐Proterozoic Earth system is published by Ozaki, Reinhard & Tajika (2019).[471]
  • A study on the organic geochemical (biomarker) signatures of the 1.38-billion-years-old black siltstones of the Velkerri Formation (Australia), and on their implications for inferring the microbial diversity and palaeoenvironment of the Proterozoic Roper Seaway, is published by Jarrett et al. (2019).[472]
  • A study on the origins of putative stromatolites and associated carbonate minerals from lacustrine sedimentary rocks of the 1.1-billion-years-old Stoer Group is published by Brasier et al. (2019).[473]
  • A study on the causes of formation and on global extent of the Great Unconformity is published by Keller et al. (2019), who interpret their findings as indicating that this unconformity may record rapid erosion during Neoproterozoic "Snowball Earth" glaciations, and that environmental and geochemical changes which led to the diversification of multicellular animals may be a direct consequence of Neoproterozoic glaciation.[474]
  • A study suggesting a link between early evolution and diversification of animals and high availability of copper in the late Neoproterozoic is published by Parnell & Boyce (2019).[475]
  • A study aiming to determine the cause of the uniquely high amplitudes of Neoproterozoic δ13C excursions is published by Shields et al. (2019).[476]
  • A study evaluating the possible relationship between the Cryogenian magmatic activity and the evolution of early life, based on data from the Cryogenian Yaolinghe Group (China), is published by Long, Zhang & Luo (2019).[477]
  • A study on ocean oxygen levels during the Ediacaran Shuram negative C‐isotope Excursion and the middle Ediacaran, and on their implications for the evolution of the Ediacaran biota, is published by Zhang et al. (2019).[478]
  • A study on the causes of widespread preservation of soft-bodied organisms in sandstones of the Ediacara Member in South Australia is published by Liu et al. (2019).[479]
  • A study on the seafloor oxygen fugacity in the time of the emergence of the earliest known benthic animals, as inferred from data from the latest Ediacaran Dengying Formation (China), is published by Ding et al. (2019).[480]
  • A study on the process of fossilization of Ediacaran organisms, and on its impact on the preservation of the external shape of these organisms, is published by Bobrovskiy et al. (2019).[481]
  • A study on the global extent of the oxygenation of seafloor, surface oceans and atmosphere during early Cambrian is published by Dahl et al. (2019), who report evidence of two major oceanic anoxic events in the early Cambrian.[482]
  • A study on nitrogen isotope and organic carbon isotope data from the lower Cambrian Niutitang Formation (China) will be published by Xu et al. (2019), who link nitrogen cycle perturbations to animal diversification during the early Cambrian.[483]
  • High‐resolution geochemical, sedimentological and biodiversity data from the Cambrian Sirius Passet Lagerstätte (Greenland is presented by Hammarlund et al. (2019), who aim to assess the chemical conditions in the shelf sea inhabited by the Sirius Passet fauna.[484]
  • A study on the paleoecological characteristics of Cambrian marine ecosystems of central Sonora (Mexico) is published by Romero et al. (2019).[485]
  • A study on seawater temperatures during the Cambrian, as indicated by data from oxygen isotope analyses of Cambrian brachiopod shells, is published by Wotte et al. (2019).[486]
  • A study on bottom-water redox conditions in the late Cambrian Alum Shale Sea, as indicated by sedimentary molybdenum contents of the Alum Shale, is published by Dahl et al. (2019), who interpret their findings as indicating that anoxic sulfidic bottom waters were an intermittent rather than persistent feature of Cambrian oceans, and that early animals invaded the seafloor during oxygenated periods.[487]
  • A study on the paleogeographic position of all major Phanerozoic arc-continent collisions, comparing it with the latitudinal distribution of ice-sheets throughout the Phanerozoic, is published by Macdonald et al. (2019).[488]
  • A study aiming to determine whether the Ordovician meteor event directly affected Earth’s climate and biota is published by Schmitz et al. (2019).[489]
  • A review of the evidence of evolutionary radiation of animals throughout the Great Ordovician Biodiversification Event, and of environmental changes coincident with these biotic changes, is published by Stigall et al. (2019).[490]
  • A study on conodont oxygen isotope compositions in Ordovician samples from Argentine Precordillera and Laurentia, and on their implications for the knowledge of palaeothermometry and drift of the Precordillera in the early Paleozoic, is published by Albanesi et al. (2019).[491]
  • A study on carbon isotope data from stratigraphic sections at Germany Valley (West Virginia) and Union Furnace (Pennsylvania) in the Central Appalachian Basin, evaluating its implications for the knowledge of change in atmospheric oxygen levels during the late Ordovician and its possible relationship with early diversification of land plants, is published by Adiatma et al. (2019).[492]
  • A study on the sedimentary facies, oxygen isotopes and the generic conodont composition in two continuous Devonian (late Frasnian to the end-Famennian) outcrops in the Montagne Noire (Col des Tribes section, France, part of the Armorica microcontinent in the Devonian) and in the Buschteich section (Germany, part of the Saxo-Thuringian microplate in the Devonian), assessing the water depth, approximate position relative to the shore and paleotemperatures in the Late Devonian, and evaluating whether environmental changes affected both areas similarly and at the same pace in the Late Devonian, will be published by Girard et al. (2019).[493]
  • Signatures of Devonian (Famennian) forests and soils preserved in black shales in the southernmost Appalachian Basin (Chattanooga Shale; Alabama, United States) are presented by Lu et al. (2019).[494]
  • A study on the onset and paleoenvironmental transitions associated with the Hangenberg Crisis within the Cleveland Shale member of the Ohio Shale is published by Martinez et al. (2019).[495]
  • A study examining the intensity of explosive volcanism from 400 to 200 million years ago, and evaluating its impact on the late Paleozoic Ice Age, is published by Soreghan, Soreghan & Heavens (2019).[496]
  • Description of Cisuralian charcoal from the Barro Branco coal seam (Siderópolis Member of the Rio Bonito Formation, Brazil), and a study on its implications for reconstruction of palaeo-wildfire occurrences in peat-forming vegetation through the Late Palaeozoic in Gondwana, is published by Benicio et al. (2019).[497]
  • A study on the extent and causes of the end-Capitanian extinction event, based on data from the Middle to Late Permian section of the Sverdrup Basin (Ellesmere Island, Canada), is published by Bond, Wignall & Grasby (2019).[498]
  • A study on carbonate microfacies and foraminifer abundances in three Upper Permian sections from isolated carbonate platforms of the Nanpanjiang Basin (China), indicative of a marine environmental instability up to 60,000 years preceding Permian–Triassic extinction event, is published by Tian et al. (2019).[499]
  • A study on the ocean chemistry during the Permian–Triassic extinction event, as indicated by data from a new stratigraphic section in Utah, and on its implications for the knowledge of the causes of this extinction, is published by Burger, Estrada & Gustin (2019).[500]
  • A study on the U-Pb geochronology, biostratigraphy and chemostratigraphy of a highly expanded section at Penglaitan (Guangxi, China) is published by Shen et al. (2019), who interpret their findings as indicative of a sudden end-Permian mass extinction that occurred at 251.939 ± 0.031 million years ago.[501]
  • A study aiming to determine the stratigraphic position of the end-Permian biotic crisis in the Sydney Basin (Australia) is published by Fielding et al. (2019), who also attempt to determine the climate changes in this region concurrent with the end-Permian extinction.[502]
  • A study on shifts in volcanic activity across the Permian-Triassic boundary, as indicated by measurements of mercury in marine sections across the Northern Hemisphere, is published by Shen et al. (2019).[503]
  • A study on mercury enrichments in Permian-Triassic boundary sections from Lubei (South China craton) and Dalongkou (Junggar terrane), and on their implications for the knowledge of volcanic activity during the Permian-Triassic transition, will be published by Shen et al. (2019).[504]
  • A study on the nitrogen isotope variations in oceanic waters in the aftermath of the end-Permian mass extinction is published by Sun et al. (2019), whose conceptual model indicates ammonium intoxication of the oceans during this time period.[505]
  • A study on microbially induced sedimentary structures from the Lower Triassic Blind Fiord Formation (Arctic Canada), evaluating their implications for the knowledge of the course of biotic recovery in the aftermath of the Permian–Triassic extinction event, is published by Wignall et al. (2019).[506]
  • A study on the oxygen isotope compositions of discrete conodont elements from the Lower Triassic Mianwali Formation (Pakistan), and on their implications for inferring the timing of temperature changes and the interrelationship between climate and biodiversity patterns during the Smithian-Spathian biotic crisis, is published by Goudemand et al. (2019).[507]
  • A study on nutrient availability through the Early to Middle Triassic along the northern margin of Pangea is published by Grasby et al. (2019).[508]
  • A study on the character and extent of the Triassic Boreal Ocean delta plain across the area of the present-day Barents Sea, interpreted as the largest delta plain reported so far, is published by Klausen, Nyberg & Helland-Hansen (2019).[509]
  • Krencker, Lindström & Bodin (2019) present sedimentological, paleontological and geochemical evidence from the Central High Atlas Basin (Morocco) and Jameson Land (Greenland) indicative of the occurrence of a major sea-level drop prior to the onset of the Toarcian oceanic anoxic event.[510]
  • A study on the duration of the Toarcian oceanic anoxic event, as indicated by data from the Talghemt section in the High Atlas (Morocco), is published by Boulila et al. (2019).[511]
  • A study on the Middle Jurassic palaeoenvironment of La Voulte (France), as indicated by data from exceptionally preserved eyes of the polychelidan lobster Voulteryon parvulus and from epibiontic brachiopods associated with V. parvulus, is published by Audo et al. (2019).[512]
  • A study comparing the Jurassic floras of the Ayuquila Basin and the Otlaltepec Basin (Mexico) and evaluating their implications for the knowledge of the Jurassic environments of these basins is published by Velasco-de León et al. (2019).[513]
  • A study on Jurassic paleomagnetism, based on an updated set of Jurassic paleopoles from Adria (Italy), is published by Muttoni & Kent (2019).[514]
  • Evidence of repeated significant oceanic and biotic turnovers in the area of the present-day Gulf of Mexico at the Jurassic-Cretaceous transition is presented by Zell et al. (2019).[515]
  • A study on the age of the dinosaur-bearing Upper Jurassic–Lower Cretaceous sediments of western Maestrazgo Basin and South-Iberian Basin (eastern Spain), aiming to also reconstruct the palaeoenvironments of this area on the basis of data from these sediments, is published by Campos-Soto et al. (2019).[516]
  • A review of data on the Jurassic and Cretaceous climates of Siberia is published by Rogov et al. (2019).[517]
  • A study on the palaeoenvironmental conditions of the seas at high latitudes (60°) of southern South America during the Early Cretaceous is published by Gómez Dacal et al. (2019).[518]
  • Evidence from the Lower Cretaceous strata around the southern margin of the Eromanga Basin (Australia) indicative of cold (limited glacial and/or seasonal freezing) conditions persisting in Southern Australia through the Hauterivian and the Aptian is presented by Alley, Hore & Frakes (2019).[519]
  • A study on phototropism in extant trees from Beijing and Jilin Provinces and fossil tree trunks from the Jurassic Tiaojishan and Tuchengzi formations in Liaoning and Beijing regions (China), and on its implications for inferring the history of the rotation of the North China Block, is published by Jiang et al. (2019).[520]
  • A study on the age of the Cretaceous Cloverly Formation is published by D'Emic et al. (2019).[521]
  • Evidence from the chronostratigraphy, fossil content, bracketing facies and ages of the Cretaceous Wayan Formation of Idaho and Vaughn Member of the Blackleaf Formation of Montana, indicating that they represent the same depositional system prior to disruption by subsequent tectonic and volcanic events, will be presented by Krumenacker (2019).[522]
  • A study on the geology, age and palaeoenvironment of the main fossil-bearing beds of the Cretaceous Griman Creek Formation (New South Wales, Australia) will be published by Bell et al. (2019).[523]
  • A study on Cenomanian plants from the Redmond no.1 mine near Schefferville (Redmond Formation; Labrador Peninsula, Canada) and on their implications for the knowledge of paleoclimate of this site will be published by Demers‐Potvin & Larsson (2019).[524]
  • The first high-resolution record of CenomanianTuronian paleotemperatures from the Southern Hemisphere, as indicated by data from the Ocean Drilling Program Site 1138 on the Kerguelen Plateau, is presented by Robinson et al. (2019).[525]
  • A study on the impact of marine biogeochemical processes on the Cretaceous Thermal Maximum is published by Wallmann et al. (2019).[526]
  • A study on the age of the Upper Cretaceous Wadi Milk Formation (Sudan) is published by Owusu Agyemang et al. (2019).[527]
  • A study on Cenomanian to Coniacian polar environmental conditions at eight locations in northeast Russia and northern Alaska will be published by Spicer et al. (2019).[528]
  • A study on the nature of the fluvial systems of Laramidia during the Late Cretaceous, as indicated by data from vertebrate and invertebrate fossils from the Kaiparowits Formation of southern Utah, and on the behavior of dinosaurs over these landscapes, is published by Crystal et al. (2019).[529]
  • A study on variability of carbon, oxygen and nitrogen isotopes in multiple tissues from a wide array of extant vertebrate taxa from the Atchafalaya River Basin in Louisiana (inferred to be an environmental analogue to the Late Cretaceous coastal floodplains of North America), and on its implications for formulating and testing predictions about ancient ecological communities based on stable isotope data from fossil specimens, is published by Cullen et al. (2019).[530]
  • A study on the general distribution and stratigraphy of the lower shale member of the Campanian Aguja Formation (Texas, United States), and a revision of all significant larger vertebrate fossil specimens from these strata, is published by Lehman et al. (2019).[531]
  • High-precision dating and the first calibrated chronostratigraphy for the Horseshoe Canyon Formation (Alberta, Canada) will be presented by Eberth & Kamo (2019).[532]
  • A study on the Maastrichtian climate of Arctic Alaska, based on data from the Prince Creek Formation, is published by Salazar-Jaramillo et al. (2019).[533]
  • Studies on the timing of the Deccan Traps volcanism close to the Cretaceous-Paleogene boundary are published by Schoene et al. (2019), who interpret their findings as indicative of four high-volume eruptive periods close to the Cretaceous-Paleogene boundary, the first of which occurred tens of thousands of years prior to both the Chicxulub bolide impact and Cretaceous–Paleogene extinction event[534] and by Sprain et al. (2019), who interpret their findings as indicating that a steady eruption of the flood basalts mostly occurred in the earliest Paleogene.[535]
  • A turbulently deposited sediment package directly overlain by the Cretaceous–Paleogene boundary tonstein is reported from the Tanis site (Hell Creek Formation, North Dakota, United States) by DePalma et al. (2019), who interpret their findings as indicating that deposition occurred shortly after a major bolide impact, and might have been caused by the Chicxulub impact.[536]
  • A study on the immediate aftermath of the Chicxulub impact at the Cretaceous–Paleogene boundary , based on data from the Chicxulub crater, is published by Gulick et al. (2019).[537]
  • The longest, highest resolution, stratigraphically continuous, single‐species benthic foraminiferal carbon and oxygen isotope records for the Late Maastrichtian to Early Eocene from a single site in the South Atlantic Ocean, providing information on the evolution of climate and carbon‐cycling during this time period, are presented by Barnet et al. (2019).[538]
  • O'Leary et al. (2019) publish a monograph on the sedimentology and sequence stratigraphy of the part of Mali which was covered by an ancient epeiric sea known as the Trans-Saharan Seaway during the Late Cretaceous and early Paleogene, provide the first formal description of and nomenclature for the Upper Cretaceous and lower Paleogene geological formations of this region, and revise fossil flora and fauna of this region.[539]
  • Zeebe & Lourens (2019) provide a new absolute astrochronology up to 58 Ma and a new Paleocene–Eocene boundary age.[540]
  • A study on stomata of fossil specimens of members of the family Lauraceae from the Eocene of Australia and New Zealand, evaluating their implications for reconstructions of Eocene pCO2 levels, is published by Steinthorsdottir et al. (2019).[541]
  • A study on the sources of secondary CO2 inputs after the initial rapid onset of the Paleocene–Eocene Thermal Maximum, contributing to the prolongation of this event, will be published by Lyons et al. (2019).[542]
  • Climate simulations capturing major climatic features of the Early Eocene and the Paleocene–Eocene Thermal Maximum in a state-of-the-art Earth system model are presented by Zhu, Poulsen & Tierney (2019).[543]
  • A study evaluating the utility of membrane lipids of members of Thaumarchaeota as proxies for the carbon isotope excursion and surface ocean warming, and assessing their implications for the knowledge of the source and size of carbon emissions during the Paleocene–Eocene Thermal Maximum, is published by Elling et al. (2019).[544]
  • A study on abundant black charcoal shards from Paleogene sites of Wilson Lake B (New Jersey) and Randall’s Farm (Maryland) is published by Fung et al. (2019), who interpret these shards as most likely to be evidence of widespread wildfires at the Paleocene-Eocene boundary caused by extraterrestrial impact.[545]
  • Evidence from the Deep Ivorian Basin offshore West Africa (equatorial Atlantic Ocean), indicating that peak warming during the Middle Eocene Climatic Optimum was associated with upper-ocean stratification, decreased export production, and possibly harmful algal blooms, is presented by Cramwinckel et al. (2019).[546]
  • New stable isotopes record of the Middle Eocene Climatic Optimum event is reported from eastern Turkey by Giorgioni et al. (2019).[547]
  • A study on variations of ocean circulation and marine bioproductivity related to the beginnings of the formation of the Antarctic Circumpolar Current, based on data from Eocene and Oligocene sedimentary drift deposits east of New Zealand, is published by Sarkar et al. (2019).[548]
  • A study on changes in surface water temperature in the eastern North Sea Basin during the late Priabonian to earliest Rupelian is published by Śliwińska et al. (2019).[549]
  • A study linking the onset or strengthening of an Atlantic meridional overturning circulation to the closure of the Arctic–Atlantic gateway at the Eocene–Oligocene transition is published by Hutchinson et al. (2019).[550]
  • New mid-latitude terrestrial climate proxy record for southeastern Australia from the middle Eocene to the middle Miocene, indicative of a widespread cooling in the Gippsland Basin beginning in the middle Eocene, is presented by Korasidis et al. (2019).[551]
  • Su et al. (2019) use radiometrically dated plant fossil assemblages to quantify when southeastern Tibet achieved its present elevation, and what kind of floras existed there at that time.[552]
  • Description of a plant megafossil assemblage from the Kailas Formation in western part of the southern Lhasa terrane, and a study on its implications for inferring the elevation history of the southern Tibetan Plateau, is published by Ai et al. (2019).[553]
  • A study on the timing of the uplift of the Tibetan Plateau, as indicated by the discovery of the Oligocene palm fossils in the Lunpola Basin in Tibet, is published by Su et al. (2019).[554]
  • A review of vertebrate fossils from the Tibetan Plateau, evaluating their implications for inferring the course of the uplift of the Tibetan Plateau, is published by Deng et al. (2019).[555]
  • A study on the impact of changing Eocene paleogeography and climate on the utility of stable isotope paleoaltimetry methods in the studies aiming to reconstruct the elevation history of the Tibetan Plateau is published by Botsyun et al. (2019).[556][557][558]
  • A study on the causes of the long-term climate cooling during the Neogene is published by Rugenstein, Ibarra & von Blanckenburg (2019).[559]
  • A study on the climatic and environmental conditions in the Loperot site (Kenya) in the early Miocene is published by Liutkus-Pierce et al. (2019).[560]
  • A study on the causes of changes of environmental conditions in the Paratethys Sea of Central Europe during the middle Miocene is published by Simon et al. (2019).[561]
  • A study on the timing and course of the separation of the Indian Ocean and the Mediterranean Sea in the Miocene is published by Bialik et al. (2019).[562]
  • A study comparing changes of the export of intermediate-depth Pacific waters to the western North Atlantic prior to the closure of the Central American Seaway with records of strength of the Atlantic meridional overturning circulation, evaluating the implications of this data for the knowledge of the timing of closure of the Central American Seaway, is published by Kirillova et al. (2019).[563]
  • A study on climatic and environmental changes in central Andes during the late Miocene is published by Carrapa, Clementz & Feng (2019).[564]
  • A study on changes in local climate and habitat conditions in central Spain in a period from 9.1 to 6.3 million years ago, and on the diet and ecology of large mammals from this area in this time period as indicated by tooth wear patterns, is published by De Miguel, Azanza & Morales (2019).[565]
  • A study on the origin of the African C4 savannah grasslands is published by Polissar et al. (2019).[566]
  • A study on the Pliocene fish fossils from the Kanapoi site (Kenya) and their implications for reconstructing lake and river environments in the Kanapoi Formation will be published by Stewart & Rufolo (2019).[567]
  • A study on the anatomical traits of teeth and inferred diet of bovids, suids and rhinocerotids from Kanapoi, and on their implications for reconstructing the environments of this site, is published by Dumouchel & Bobe (2019).[568]
  • New spatial data on the Plio-Pleistocene Bolt's Farm pits from the Cradle of Humankind site (South Africa) is presented by Edwards et al. (2019), who also attempt to provide key biochronological ages for the Bolt's Farm deposits.[569]
  • A study on the global mean sea level during the Pliocene mid-Piacenzian Warm Period is published by Dumitru et al. (2019).[570]
  • A study on the amplitude of sea-level variations during the Pliocene is published by Grant et al. (2019).[571]
  • Simulations of coevolution of climate, ice sheets and carbon cycle over the past 3 million years are presented by Willeit et al. (2019).[572]
  • A study on the age of the Sahara, as indicated by data from Pliocene and Pleistocene paleosols from the Canary Islands, is published by Muhs et al. (2019).[573]
  • A study on the latest Villafranchian climate and environment of the area of southern Italy, as indicated by amphibian and reptile fossil record from the Pirro Nord karstic complex, is published by Blain et al. (2019).[574]
  • A study on the climate in the areas of the Iberian Peninsula inhabited by hominins during the Early Pleistocene, as indicated by data from macroflora and pollen assemblages, will be published by Altolaguirre et al. (2019).[575]
  • A study on pCO2 levels from 2.6 to 0.8 Ma is published by Da et al. (2019), who find no evidence indicating that the Mid-Pleistocene Transition was caused by the decline of pCO2.[576]
  • A study on changes in winter rainfall in the Mediterranean over the past 1.36 million years is published by Wagner et al. (2019).[577]
  • Results of stable carbon and oxygen isotope analyses of tooth enamel samples from Pleistocene mammals from the Yugong Cave and Baxian Cave (China) are presented by Sun et al. (2019), who evaluate the implications of their findings for the knowledge of Pleistocene climatic and environmental changes in South China.[578]
  • A study on Pleistocene mammal fossils from the Yai Ruak Cave (Krabi Province, Thailand), including the southernmost known record of Crocuta crocuta ultima, is published by Suraprasit et al. (2019), who evaluate the implications of these fossils for reconstructions of the environment in the area of the Malay Peninsula in the Pleistocene.[579]
  • A study on Acheulean and Middle Stone Age sites from the Eastern Desert (Sudan), preserving stone artifacts, is published by Masojć et al. (2019), who interpret these sites as evidence of green corridor or corridors across Sahara which made early hominin dispersal possible.[580]
  • A study on the spatial and temporal distribution of ancient peatlands in the past 130,000 years is published by Treat et al. (2019).[581]
  • A study on the size of fossil rabbits from 14 late Pleistocene and Holocene archaeological sites in Portugal, and on its implications for the knowledge of temperatures and environment in the area of Portugal during the last glaciation, will be published by Davis (2019).[582]
  • A study on Pleistocene small mammal remains from Stratigraphic Unit V from El Salt site (Alcoy, Spain), evaluating their implications for the knowledge of climatic conditions in the eastern Iberian Peninsula at the time of the disappearance of local Neanderthal populations during Marine Isotope Stage 3, is published by Fagoaga et al. (2019).[583]
  • A study on the sedimentary sequence from the Pilauco site in Chile, evaluating whether evidence from this site is consistent with the Younger Dryas impact hypothesis, is published by Pino et al. (2019).[584]
  • A study on variations of size of fossil murine rodents from Liang Bua (Flores, Indonesia) through time, and on their implications for reconstructions of paleoclimate and paleoenvironment of Flores, is published by Veatch et al. (2019).[585]
  • A study on human land use worldwide from 10,000 years before the present to 1850 CE, indicating that Earth was to a large extent transformed by human activity by 3000 years ago, is published by Stephens et al. (2019).[586]
  • Evidence for synchronous cyclical changes in monsoon climate, human activity and prehistoric cultural development in the area of northeast China throughout the Holocene is presented by Xu et al. (2019).[587]
  • A study on Andean plate tectonics since the late Mesozoic is published by Chen, Wu & Suppe (2019).[588]
  • A study on the course of the collision of India and Asia, as indicated by palaeomagnetic data from the Burma Terrane, is published by Westerweel et al. (2019).[589]
  • A scenario for the genesis of tropical cyclones throughout the Cenozoic is presented by Yan et al. (2019).[590]
  • A study on the extent of ice sheets in the Northern Hemisphere throughout the Quaternary is published by Batchelor et al. (2019).[591]
  • A new method of concentration of proteins from fossil specimens with high humic content and of removal of humic substances is presented by Schroeter et al. (2019).[592]

References[edit]

  1. ^ Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN 9780070887398. OCLC 46769716.
  2. ^ Shan Chang; Lei Zhang; Sébastien Clausen; David J. Bottjer; Qinglai Feng (2019). "The Ediacaran-Cambrian rise of siliceous sponges and development of modern oceanic ecosystems". Precambrian Research. 333: Article 105438. doi:10.1016/j.precamres.2019.105438.
  3. ^ Joseph P. Botting; Lucy A. Muir (2019). "Dispersal and endemic diversification: Differences in non-lithistid spiculate sponge faunas between the Cambrian Explosion and the GOBE". Palaeoworld. 28 (1–2): 24–36. doi:10.1016/j.palwor.2018.03.002.
  4. ^ Francisco Sánchez-Beristain; Pedro García-Barrera; Josep Antón Moreno-Bedmar (2019). "Acanthochaetetes huauclillensis nov. sp. (Porifera: Demospongiae) from the Lower Cretaceous of Oaxaca, Mexico, and its palaeoecological, palaeobiogeographic and stratigraphic implications". Journal of South American Earth Sciences. 91: 227–238. Bibcode:2019JSAES..91..227S. doi:10.1016/j.jsames.2019.02.008.
  5. ^ a b Marcelo G. Carrera; Colin D. Sumrall (2019). "Ordovician sponges from the Lenoir Limestone, Tennessee: new evidence for a differential sponge distribution along the margins of Laurentia". Journal of Paleontology. Online edition: 1–11. doi:10.1017/jpa.2019.67.
  6. ^ Ardianty Nadhira; Mark D. Sutton; Joseph P. Botting; Lucy A. Muir; Pierre Gueriau; Andrew King; Derek E. G. Briggs; David J. Siveter; Derek J. Siveter (2019). "Three-dimensionally preserved soft tissues and calcareous hexactins in a Silurian sponge: implications for early sponge evolution". Royal Society Open Science. 6 (7): Article ID 190911. Bibcode:2019RSOS....690911N. doi:10.1098/rsos.190911. PMC 6689616. PMID 31417767.
  7. ^ a b c Ewa Świerczewska-Gładysz; Agata Jurkowska; Robert Niedźwiedzki (2019). "New data about the Turonian–Coniacian sponge assemblage from Central Europe". Cretaceous Research. 94: 229–258. doi:10.1016/j.cretres.2018.10.001.
  8. ^ Juwan Jeon; Qijian Li; Jae-Ryong Oh; Suk-Joo Choh; Dong-Jin Lee (2019). "A new species of the primitive stromatoporoid Cystostroma from the Ordovician of East Asia". Geosciences Journal. 23 (4): 547–556. Bibcode:2019GescJ..23..547J. doi:10.1007/s12303-018-0063-7.
  9. ^ Joseph P. Botting; Yves Candela; Vicen Carrió; William R. B. Crighton (2019). "A new hexactinellid sponge from the Silurian of the Pentland Hills (Scotland) with similarities to extant rossellids". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. in press: 1–9. doi:10.1017/S1755691019000045.
  10. ^ Qiu-Jun Wang; Jin Peng; Rong-Qin Wen; Guang-Ying Du; Hui Zhang; De-Zhi Wang; Yi-Fan Wang (2019). "Hamptonia jianhensis sp. nov. from the Cambrian (Stage 4) Balang Fauna of Guizhou, China". Historical Biology: An International Journal of Paleobiology. Online edition: 1–9. doi:10.1080/08912963.2019.1575374.
  11. ^ Fearghus McSweeney; John Buckeridge; Michelle Kelly (2019). "Porifera (Calcarea: Lithonida) from the Lower Miocene Batesford Limestone, Victoria, Australia, including a new species Monoplectroninia malonei sp. nov". Proceedings of the Royal Society of Victoria. 131 (1): 7–17. doi:10.1071/RS19001.
  12. ^ Lixia Li; Dorte Janussen; Renbin Zhan; Joachim Reitner (2019). "Oldest known fossil of Rossellids (Hexactinellida, Porifera) from the Ordovician–Silurian transition of Anhui, South China". PalZ. in press. doi:10.1007/s12542-019-00452-3.
  13. ^ Joseph P. Botting; Arnaud Brayard; the Paris Biota Team (2019). "A late-surviving Triassic protomonaxonid sponge from the Paris Biota (Bear Lake County, Idaho, USA)". Geobios. 54: 5–11. doi:10.1016/j.geobios.2019.04.006.
  14. ^ Fabrizio Bizzarini (2019). "Stellispongia subsphaerica Dieci, Antonacci e Zardini 1970 (Triassico superiore, Dolomiti), osservazioni storico- sistematiche e sua attribuzione al nuovo genere Subsphaerospongia". Lavori – Società Veneziana di Scienze Naturali. 44.
  15. ^ Lucas D. Mouro; Rodrigo S. Horodyski; Antonio. C.S. Fernandes; Marcelo A. Carvalho; Mateus. S. Silva; Breno L. Waichel; João P. Saldanha (2019). "Pennsylvanian sponge from the Mecca Quarry Shale, Carbondale Group (Indiana, USA) and the paleobiogeographic distribution of Teganiella in the paleoequatorial region of Laurentia". Journal of Paleontology. 93 (5): 827–838. doi:10.1017/jpa.2019.7.
  16. ^ Qing Tang; Bin Wan; Xunlai Yuan; A. D. Muscente; Shuhai Xiao (2019). "Spiculogenesis and biomineralization in early sponge animals". Nature Communications. 10 (1): Article number 3348. Bibcode:2019NatCo..10.3348T. doi:10.1038/s41467-019-11297-4. PMC 6659672. PMID 31350398.
  17. ^ Cui Luo; Fangchen Zhao; Han Zeng (2019). "The first report of a vauxiid sponge from the Cambrian Chengjiang Biota". Journal of Paleontology. Online edition: 1–6. doi:10.1017/jpa.2019.52.
  18. ^ Ning Sun; Robert J. Elias; Dong-Jin Lee (2019). "Corallite increase in the Late Ordovician coral Agetolites, and its taxonomic implication". Journal of Paleontology. 93 (5): 839–855. doi:10.1017/jpa.2019.14.
  19. ^ Felicia Harris; Heather Alley; Ron Fine; Bradley Deline (2019). "Rare colonial corals from the Upper Ordovician Kope Formation of Kentucky and their role in ephemeral invasions in the Edenian". Palaeogeography, Palaeoclimatology, Palaeoecology. 533: Article 109279. Bibcode:2019PPP...533j9279H. doi:10.1016/j.palaeo.2019.109279.
  20. ^ Kun Liang; Robert J. Elias; Dong-Jin Lee (2019). "Morphometrics, growth characteristics, and phylogenetic implications of Halysites catenularius (Tabulata, Silurian, Estonia)". Journal of Paleontology. 93 (2): 215–231. doi:10.1017/jpa.2018.73.
  21. ^ Anna M. Weiss; Rowan C. Martindale (2019). "Paleobiological traits that determined scleractinian coral survival and proliferation during the late Paleocene and early Eocene hyperthermals". Paleoceanography and Paleoclimatology. 34 (2): 252–274. doi:10.1029/2018PA003398.
  22. ^ William F. Precht; Stephen V. Vollmer; Alexander B. Modys; Les Kaufman (2019). "Fossil Acropora prolifera (Lamarck, 1816) reveals coral hybridization is not only a recent phenomenon". Proceedings of the Biological Society of Washington. 132 (1): 40–55. doi:10.2988/18-D-18-00011.
  23. ^ Lewis A. Jones; Philip D. Mannion; Alexander Farnsworth; Paul J. Valdes; Sarah-Jane Kelland; Peter A. Allison (2019). "Coupling of palaeontological and neontological reef coral data improves forecasts of biodiversity responses under global climatic change". Royal Society Open Science. 6 (4): Article ID 182111. Bibcode:2019RSOS....682111J. doi:10.1098/rsos.182111. PMC 6502368. PMID 31183138.
  24. ^ Heyo Van Iten; Juliana De Moraes Leme; Marcello G. Simões; Mario Cournoyer (2019). "Clonal colony in the Early Devonian cnidarian Sphenothallus from Brazil". Acta Palaeontologica Polonica. 64 (2): 409–416. doi:10.4202/app.00576.2018.
  25. ^ Zapalski, Mikołaj K.; Berkowski, Błażej (2019-02-01). "The Silurian mesophotic coral ecosystems: 430 million years of photosymbiosis". Coral Reefs. 38 (1): 137–147. Bibcode:2019CorRe..38..137Z. doi:10.1007/s00338-018-01761-w. ISSN 1432-0975.
  26. ^ Morana Mihaljević (2019). "Oligocene‑Miocene Scleractinians from the Central Indo-Pacific: Malaysian Borneo and the Philippines". Palaeontologia Electronica. 22 (3): Article number 22.3.61. doi:10.26879/978.
  27. ^ a b c Mohamed Gameil; Abdelbaset S. El-Sorogy; Khaled Al-Kahtany (2019). "Solitary corals of the Campanian Hajajah Limestone Member, Aruma Formation, Central Saudi Arabia". Historical Biology: An International Journal of Paleobiology. in press: 1–17. doi:10.1080/08912963.2018.1461217.
  28. ^ a b c Mahmoud Kora; Hans-Georg Herbig; Heba El Desouky (2019). "Late Moscovian (mid-Pennsylvanian) rugose corals from Wadi Araba (Egypt, Eastern Desert): Taxonomy, palaeoecology and palaeobiogeography". Geobios. 52: 1–25. doi:10.1016/j.geobios.2018.11.004.
  29. ^ a b c d e f Ann F. Budd; James D. Woodell; Danwei Huang; James S. Klaus (2019). "Evolution of the Caribbean subfamily Mussinae (Anthozoa: Scleractinia: Faviidae): transitions between solitary and colonial forms". Journal of Systematic Palaeontology. 17 (18): 1581–1616. doi:10.1080/14772019.2018.1541932.
  30. ^ Shuji Niko; Yousuke Ibaraki; Jun-ichi Tazawa (2019). "Devonian tabulate corals from pebbles in Mesozoic conglomerate, Kotaki, Niigata Prefecture, central Japan Part 4 : Auloporida". Science Reports of Niigata University. (Geology). 34: 1–8. hdl:10191/51356.
  31. ^ Alan E.H. Pedder (2019). "Systematics, biostratigraphy and significance of discoid and partly discoid corals from the Devonian of northwestern Canada, Ural Mountains Russia and southeastern Australia". Bulletin of Geosciences. 94 (2): 137–168. doi:10.3140/bull.geosci.1734 (inactive 2019-09-07).
  32. ^ Jerzy Fedorowski; Victor V. Ohar (2019). "Bashkirian Rugosa (Anthozoa) from the Donets Basin (Ukraine). Part 9. The Subfamily Dirimiinae, subfam. nov". Acta Geologica Polonica. 69. doi:10.24425/agp.2019.126444.
  33. ^ a b c d e f g Xiaojuan Wang; Xiangdong Wang; Yichun Zhang; Changqun Cao; Dongjin Lee (2019). "Late Permian rugose corals from Gyanyima of Drhada, Tibet (Xizang), Southwest China". Journal of Paleontology. 93 (5): 856–875. doi:10.1017/jpa.2019.37.
  34. ^ a b c d Jerzy Fedorowski (2019). "Bashkirian Rugosa (Anthozoa) from the Donets Basin (Ukraine). Part 8. The Family Kumpanophyllidae Fomichev, 1953". Acta Geologica Polonica. 69 (3): 431–463. doi:10.24425/agp.2019.126436.
  35. ^ Raphaël Vasseur; Simon Boivin; Bernard Lathuilière; Iuliana Lazar; Christophe Durlet; Rowan-Clare Martindale; Stéphane Bodin; Khalid Elhmidi (2019). "Lower Jurassic corals from Morocco with skeletal structures convergent with those of Paleozoic rugosan corals". Palaeontologia Electronica. 22 (2): Article number 22.2.48. doi:10.26879/874.
  36. ^ Junfeng Guo; Jian Han; Heyo Van Iten; Xing Wang; Yaqin Qiang; Zuchen Song; Wenzhe Wang; Zhifei Zhang; Guoxiang Li (2019). "A fourteen-faced hexangulaconulariid from the early Cambrian (Stage 2) Yanjiahe Formation, South China". Journal of Paleontology. Online edition: 1–11. doi:10.1017/jpa.2019.56.
  37. ^ Hannes Löser (2019). "Regional persistence of the extant coral genus Stephanocoenia since the Early Cretaceous in the Western Atlantic". PalZ. Online edition. doi:10.1007/s12542-019-00457-y.
  38. ^ a b c d Mohan A. Sonar; Ramesh M. Badve (2019). "Bryozoan fauna from the Burdigalian of Quilon Beds of Padappakara, Kerala, India". Journal of the Geological Society of India. 93 (5): 583–593. doi:10.1007/s12594-019-1220-y.
  39. ^ Juan López-Gappa; Leandro M. Pérez (2019). "A new genus and species of Chaperiidae (Bryozoa: Cheilostomata) from the early Miocene of Patagonia (Argentina)". Ameghiniana. in press. doi:10.5710/AMGH.30.08.2019.3281.
  40. ^ Antonietta Rosso; Francesco Sciuto (2019). "First fossil record of Atlantisina (Bryozoa) from the Gelasian of Sicily: a new piece of evidence to unravel past bryodiversity of the deep Mediterranean Sea". Bollettino della Società Paleontologica Italiana. 58 (2): 141–154. doi:10.4435/BSPI.2019.01.
  41. ^ a b c Emanuela Di Martino; Paul D. Taylor; Allan Gil S. Fernando; Tomoki Kase; Moriaki Yasuhara (2019). "First bryozoan fauna from the middle Miocene of Central Java, Indonesia". Alcheringa: An Australasian Journal of Palaeontology. 43 (3): 461–478. doi:10.1080/03115518.2019.1590639.
  42. ^ a b c d e f Silviu O. Martha; Paul D. Taylor; William L. Rader (2019). "Early Cretaceous gymnolaemate bryozoans from the early to middle Albian of the Glen Rose and Walnut formations of Texas, USA". Journal of Paleontology. 93 (2): 260–277. doi:10.1017/jpa.2018.80.
  43. ^ José Amet Rivaz Hernández (2019). "Devonavictoria nomen novum: a replacement name for the preoccupied Devonian bryozoan genus Salairella Mesentseva, 2015". Paleontological Journal. 53 (4): 433. doi:10.1134/S003103011904004X.
  44. ^ Thomas E. Yancey; Patrick N. Wyse Jackson; Barry G. Sutton; Richard J. Gottfried (2019). "Evactinoporidae, a new family of Cystoporata (Bryozoa) from the Mississippian of North America: growth and functional morphology". Journal of Paleontology. Online edition: 1–17. doi:10.1017/jpa.2019.62.
  45. ^ a b c Andrej Ernst; Carlton E. Brett; Mark A. Wilson (2019). "Bryozoan fauna from the Reynales Formation (lower Silurian, Aeronian) of New York, USA". Journal of Paleontology. 93 (4): 628–657. doi:10.1017/jpa.2018.101.
  46. ^ a b c d Silviu O. Martha; Paul D. Taylor; William L. Rader (2019). "Early Cretaceous cyclostome bryozoans from the early to middle Albian of the Glen Rose and Walnut formations of Texas, USA". Journal of Paleontology. 93 (2): 244–259. doi:10.1017/jpa.2018.79.
  47. ^ Z.A. Tolokonnikova; A.V. Pakhnevich (2019). "Bryozoans and brachiopods from the Famennian (Upper Devonian) of the central Russian Platform". Paleontological Journal. 53 (1): 44–51. doi:10.1134/S0031030119010106.
  48. ^ a b c d e f Emanuela Di Martino; Paul D. Taylor; Roger W. Portell (2019). "Anomia-associated bryozoans from the upper Pliocene (Piacenzian) lower Tamiami Formation of Florida, USA". Palaeontologia Electronica. 22 (1): Article number 22.1.11. doi:10.26879/920.
  49. ^ Marcelo G. Carrera; Andrea F. Sterren; Gabriela A. Cisterna; Hans R. Niemeyer (2019). "Pinegopora chilensis, a new Permian bryozoan species of the Andean bryozoan province in southwestern Gondwana". Journal of Paleontology. Online edition: 1–5. doi:10.1017/jpa.2019.32.
  50. ^ a b Anna V. Koromyslova; Silviu O. Martha; Alexey V. Pakhnevich (2019). "Revision of Porina-like cheilostome Bryozoa from the Campanian and Maastrichtian of Central Asia". Annales de Paléontologie. 105 (1): 1–19. doi:10.1016/j.annpal.2018.10.002.
  51. ^ Narendra K. Swami; Andrej Ernst; Satish C. Tripathi; Prasenjit Barman; S.K. Bharti; Y.P. Rana (2019). "A new cryptostome bryozoan Ptilotrypa from the Upper Ordovician Yong Limestone Formation: Tethyan sequence of Kumaun Higher Himalaya, India". Journal of Paleontology. 93 (3): 585–591. doi:10.1017/jpa.2018.94.
  52. ^ Anna V. Koromyslova; Alexey V. Pakhnevich; Petr V. Fedorov (2019). "Tobolocella levinae n. gen., n. sp., a cheilostome bryozoan from the late Maastrichtian of northern Kazakhstan: scanning electron microscope and micro-CT study". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 294 (1): 91–101. doi:10.1127/njgpa/2019/0848.
  53. ^ Timothy P. Topper; Junfeng Guo; Sébastien Clausen; Christian B. Skovsted; Zhifei Zhang (2019). "A stem group echinoderm from the basal Cambrian of China and the origins of Ambulacraria". Nature Communications. 10 (1): Article number 1366. Bibcode:2019NatCo..10.1366T. doi:10.1038/s41467-019-09059-3. PMC 6433856. PMID 30911013.
  54. ^ Bertrand Lefebvre; Thomas E. Guensburg; Emmanuel L.O. Martin; Rich Mooi; Elise Nardin; Martina Nohejlova; Farid Saleh; Khaoula Kouraïss; Khadija El Hariri; Bruno David (2019). "Exceptionally preserved soft parts in fossils from the Lower Ordovician of Morocco clarify stylophoran affinities within basal deuterostomes". Geobios. 52: 27–36. doi:10.1016/j.geobios.2018.11.001.
  55. ^ Martina Nohejlová; Elise Nardin; Oldřich Fatka; Libor Kašička; Michal Szabad (2019). "Morphology, palaeoecology and phylogenetic interpretation of the Cambrian echinoderm Vyscystis (Barrandian area, Czech Republic)". Journal of Systematic Palaeontology. 17 (19): 1619–1634. doi:10.1080/14772019.2018.1541485.
  56. ^ Sarah L. Sheffield; Colin D. Sumrall (2019). "The phylogeny of the Diploporita: a polyphyletic assemblage of blastozoan echinoderms". Journal of Paleontology. 93 (4): 740–752. doi:10.1017/jpa.2019.2.
  57. ^ Sarah L. Sheffield; Colin D. Sumrall (2019). "A re‐interpretation of the ambulacral system of Eumorphocystis (Blastozoa, Echinodermata) and its bearing on the evolution of early crinoids". Palaeontology. 62 (1): 163–173. doi:10.1111/pala.12396.
  58. ^ Jennifer E. Bauer; Johnny A. Waters; Colin D. Sumrall (2019). "Redescription of Macurdablastus and redefinition of Eublastoidea as a clade of Blastoidea (Echinodermata)". Palaeontology. in press. doi:10.1111/pala.12439.
  59. ^ Samuel Zamora; Colin Sumrall (2019). "Hexedriocystis, an aberrant echinoderm from the Upper Ordovician of Morocco". In A. W. Hunter; J. J. Álvaro; B. Lefebvre; P. van Roy; S. Zamora (eds.). The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco. Geological Society, London, Special Publications. The Geological Society of London. pp. SP485–2017–213. doi:10.1144/SP485-2017-213.
  60. ^ René A. Shroat-Lewis; Emily N. Greenwood; Colin D. Sumrall (2019). "Paleoecologic analysis of edrioasteroid (Echinodermata) encrusted slabs from the Chesterian (upper Mississippian) Kinkaid Limestone of southern Illinois". PALAIOS. 34 (3): 146–158. Bibcode:2019Palai..34..146S. doi:10.2110/palo.2018.061.
  61. ^ Dezhi Wang; Jin Peng; Jorge Esteve; Yang Yuning; Rongqin Wen (2019). "New insight on thecal plate development in early Cambrian eocrinoids: an example from South China". Historical Biology: An International Journal of Paleobiology. in press: 1–11. doi:10.1080/08912963.2018.1499019.
  62. ^ M.E.Peter (2019). "Aberrations in the infrabasal circlet of the cladid crinoid genus Cupulocrinus (Echinodermata) and implications for the origin of flexible crinoids". Palaeogeography, Palaeoclimatology, Palaeoecology. 522: 52–61. Bibcode:2019PPP...522...52P. doi:10.1016/j.palaeo.2019.03.002.
  63. ^ Selina R. Cole (2019). "Phylogeny and evolutionary history of diplobathrid crinoids (Echinodermata)". Palaeontology. 62 (3): 357–373. doi:10.1111/pala.12401.
  64. ^ Krzysztof R. Brom (2019). "Body-size trends of cyrtocrinids (Crinoidea, Cyrtocrinida)". Annales de Paléontologie. 105 (2): 109–118. doi:10.1016/j.annpal.2018.12.002.
  65. ^ Selina R. Cole; David F. Wright; William I. Ausich (2019). "Phylogenetic community paleoecology of one of the earliest complex crinoid faunas (Brechin Lagerstätte, Ordovician)". Palaeogeography, Palaeoclimatology, Palaeoecology. 521: 82–98. Bibcode:2019PPP...521...82C. doi:10.1016/j.palaeo.2019.02.006.
  66. ^ Jeffrey R. Thompson; David J. Bottjer (2019). "Quantitative analysis of substrate preference in Carboniferous stem group echinoids". Palaeogeography, Palaeoclimatology, Palaeoecology. 513: 35–51. Bibcode:2019PPP...513...35T. doi:10.1016/j.palaeo.2018.06.018.
  67. ^ Carlie Pietsch; Kathleen A. Ritterbush; Jeffrey R. Thompson; Elizabeth Petsios; David J. Bottjer (2019). "Evolutionary models in the Early Triassic marine realm". Palaeogeography, Palaeoclimatology, Palaeoecology. 513: 65–85. Bibcode:2019PPP...513...65P. doi:10.1016/j.palaeo.2017.12.016.
  68. ^ Diana Fernández; Luciana Giachetti; Sabine Stöhr; Ben Thuy; Damián Perez; Marcos Comerio; Pablo Pazos (2019). "Brittle stars from the Lower Cretaceous of Patagonia: first ophiuroid articulated remains for the Mesozoic of South America". Andean Geology. 46 (2): 421–432. doi:10.5027/andgeoV46n2-3157 (inactive 2019-09-07).
  69. ^ a b c William I. Ausich; Samuel Zamora (2019). "Stratigraphic and paleogeographic distributions of Devonian crinoids from Spain with description of new taxa from the Iberian Chains". Journal of Paleontology. Online edition: 1–16. doi:10.1017/jpa.2019.29.
  70. ^ Jeffrey R. Thompson; Georgy V. Mirantsev; Elizabeth Petsios; David J. Bottjer (2019). "Phylogenetic analysis of the Archaeocidaridae and Palaeozoic Miocidaridae (Echinodermata, Echinoidea) and the origin of crown group echinoids". Papers in Palaeontology. Online edition. doi:10.1002/spp2.1280.
  71. ^ a b c d e f g William I. Ausich; Mario E. Cournoyer (2019). "New taxa and revised stratigraphic distribution of the crinoid fauna from Anticosti Island, Québec, Canada (Late Ordovician-early Silurian)". Journal of Paleontology. Online edition: 1–22. doi:10.1017/jpa.2019.36.
  72. ^ Patrick D. McDermott; Christopher R. C. Paul (2019). "A new Upper Ordovician aristocystitid diploporite genus (Echinodermata) from the Llanddowror district, South Wales". Geological Journal. 54 (1): 529–536. doi:10.1002/gj.3203.
  73. ^ a b c d Michel Roux; Marc Eléaume; Nadia Améziane (2019). "A revision of the genus Conocrinus d'Orbigny, 1850 (Echinodermata, Crinoidea, Rhizocrinidae) and its place among extant and fossil crinoids with a xenomorphic stalk". Zootaxa. 4560 (1): 51–84. doi:10.11646/zootaxa.4560.1.3. PMID 30790991.
  74. ^ Daniel B. Blake; Merlynd K. Nestell (2019). "Revision of the unusual Carboniferous ophiuroid Cholaster (Echinodermata) and remarks on skeletal differentiation within the Asterozoa". Journal of Paleontology. 93 (4): 753–763. doi:10.1017/jpa.2018.109.
  75. ^ a b Andy Gale (2019). "Asteroids (Echinodermata) from the Crackers Member (lower Aptian, Deshayesites forbesi Zone) on the Isle of Wight (UK), with a revision of fossil Pseudarchasteridae". Proceedings of the Geologists' Association. in press. doi:10.1016/j.pgeola.2019.07.002.
  76. ^ Blanca Estela Buitrón-Sánchez; Francisco Alonso Solís-Marín; Carlos Andrés Conejeros-Vargas; Andrea Alejandra Caballero-Ochoa (2019). "Equinodermos de las familias Echinolampadidae Gray, 1851 y Cassidulidae L. Agassiz y Desor, 1847 fósiles y recientes de México: estudio comparativo con base en macro y microestructuras". Paleontología Mexicana. 8 (1): 51–63.
  77. ^ a b Samuel Zamora; Elise Nardin; Jorge Esteve; Juan Carlos Gutiérrez-Marco (2019). "New rhombiferan blastozoans (Echinodermata) from the Late Ordovician of Morocco". In A. W. Hunter; J. J. Álvaro; B. Lefebvre; P. van Roy; S. Zamora (eds.). The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco. Geological Society, London, Special Publications. The Geological Society of London. pp. SP485.10. doi:10.1144/SP485.10.
  78. ^ Jeffrey R. Thompson; Renato Posenato; David J. Bottjer; Elizabeth Petsios (2019). "Echinoids from the Tesero Member (Werfen Formation) of the Dolomites (Italy): implications for extinction and survival of echinoids in the aftermath of the end-Permian mass extinction". PeerJ. 7: e7361. doi:10.7717/peerj.7361. PMC 6718154. PMID 31531267.
  79. ^ a b c d Joseph P. Botting (2019). "Late Ordovician crinoids from the Anti-Atlas region of Morocco". In A. W. Hunter; J. J. Álvaro; B. Lefebvre; P. van Roy; S. Zamora (eds.). The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco. Geological Society, London, Special Publications. The Geological Society of London. pp. SP485.4. doi:10.1144/SP485.4.
  80. ^ Mhairi Reid; Aaron W. Hunter; Wendy L. Taylor; Emese M. Bordy (2019). "A new genus of Protasteridae (Ophiuridea) from the Lower Devonian Bokkeveld Group of South Africa". Palaeontologia Africana. 53: 66–74. hdl:10539/26244.
  81. ^ Stephen K. Donovan; Eamon N. Doyle (2019). "Utility of crinoid columnals in palaeontology illustrated by a new species: Clare Shale Formation (Carboniferous), Doolin, County Clare, western Ireland". Proceedings of the Geologists' Association. in press. doi:10.1016/j.pgeola.2019.02.004.
  82. ^ Jeffrey R. Thompson; Timothy A. M. Ewin (2019). "A new species of Hyattechinus (Echinoidea) from the type Devonian of the United Kingdom and implications for the distribution of Devonian proterocidarid echinoids". Geological Magazine. 156 (5): 801–810. Bibcode:2019GeoM..156..801T. doi:10.1017/S0016756818000109.
  83. ^ a b William I. Ausich; Mark A. Wilson; Oive Tinn (2019). "Kalana Lagerstätte crinoids: Early Silurian (Llandovery) of central Estonia". Journal of Paleontology. Online edition: 1–14. doi:10.1017/jpa.2019.27.
  84. ^ J. Žítt; C. Löser; O. Nekvasilová; L. Hradecká; L. Švábenická (2019). "Předboj and Hoher Stein: Two sites of mass roveacrinid occurrence (Crinoidea, Cenomanian, Bohemian-Saxonian Cretaceous Basin)". Cretaceous Research. 94: 80–107. doi:10.1016/j.cretres.2018.08.015.
  85. ^ G. V. Mirantsev (2019). "Magnofossacrinus, a new genus of cladid crinoids (Crinoidea, Echinodermata) from the Moscovian (Pennsylvanian) of Moscow Region". Paleontological Journal. 53 (5): 488–498. doi:10.1134/S0031030119040099.
  86. ^ a b Tony Sadler; Francis C. Holmes; Stephen J. Gallagher (2019). "Two new species of the echinoid genus Monostychia from the Miocene of Victoria and a redescription of M. etheridgei Tenison-Woods, 1877". Alcheringa: An Australasian Journal of Palaeontology. 43 (2): 279–290. doi:10.1080/03115518.2018.1528508.
  87. ^ a b Colin D. Sumrall; Samuel Zamora (2019). "New Upper Ordovician edrioasteroids from Morocco". In A. W. Hunter; J. J. Álvaro; B. Lefebvre; P. van Roy; S. Zamora (eds.). The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco. Geological Society, London, Special Publications. The Geological Society of London. pp. SP485.6. doi:10.1144/SP485.6.
  88. ^ Timothy A. M. Ewin; Mike Reich; Mark R. Graham; Mario E. Cournoyer (2019). "Perforocycloides nathalieae new genus and species, an unusual Silurian cyclocystoid (Echinodermata) from Anticosti Island, Québec, Canada". PalZ. Online edition. doi:10.1007/s12542-019-00483-w.
  89. ^ Timothy A. M. Ewin; Markus Martin; Phillip Isotalo; Samuel Zamora (2019). "New rhenopyrgid edrioasteroids (Echinodermata) and their implications for taxonomy, functional morphology, and paleoecology". Journal of Paleontology. Online edition: 1–16. doi:10.1017/jpa.2019.65.
  90. ^ Ben Thuy; Gilles Escarguel; the Paris Biota Team (2019). "A new brittle star (Ophiuroidea: Ophiodermatina) from the Early Triassic Paris Biota (Bear Lake County, Idaho, USA)". Geobios. 54: 55–61. doi:10.1016/j.geobios.2019.04.004.
  91. ^ Imran A. Rahman; Jeffrey R. Thompson; Derek E. G. Briggs; David J. Siveter; Derek J. Siveter; Mark D. Sutton (2019). "A new ophiocistioid with soft-tissue preservation from the Silurian Herefordshire Lagerstätte, and the evolution of the holothurian body plan". Proceedings of the Royal Society B: Biological Sciences. 286 (1900): Article ID 20182792. doi:10.1098/rspb.2018.2792. hdl:10044/1/69181. PMC 6501687. PMID 30966985.
  92. ^ Rongqin Wen; Loren E. Babcock; Jin Peng; Richard A. Robison (2019). "New edrioasteroid (Echinodermata) from the Spence Shale (Cambrian), Idaho, USA: further evidence of attachment in the early evolutionary history of edrioasteroids". Bulletin of Geosciences. 94 (1): 115–124. doi:10.3140/bull.geosci.1730 (inactive 2019-09-07).
  93. ^ V. Balter; J.E. Martin; T. Tacail; G. Suan; S. Renaud; C. Girard (2019). "Calcium stable isotopes place Devonian conodonts as first level consumers". Geochemical Perspectives Letters. 10: 36–39. doi:10.7185/geochemlet.1912.
  94. ^ Luca Medici; Daniele Malferrari; Martina Savioli; Annalisa Ferretti (2019). "Mineralogy and crystallization patterns in conodont bioapatite from first occurrence (Cambrian) to extinction (end-Triassic)". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2019.02.024.
  95. ^ Samuel Ginot; Nicolas Goudemand (2019). "Conodont size, trophic level, and the evolution of platform elements". Paleobiology. 45 (3): 458–468. doi:10.1017/pab.2019.19.
  96. ^ Christopher R. Barnes (2019). "Impacts of climate-ocean-tectonic changes on early Paleozoic conodont ecology and evolution evidenced by the Canadian part of Laurentia". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2019.02.018.
  97. ^ Ana Mestre; Susana Heredia (2019). "The conodont Paroistodus horridus (Barnes and Poplawski) as a new biostratigraphical tool for the middle Darriwilian (Ordovician)". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2019.03.015.
  98. ^ Zhihua Yang; Xiuchun Jing; Xunlian Wang; Hongrui Zhou; Hui Ren (2019). "New recognitions on the Late Ordovician conodont genera Tasmanognathus Burrett and Yaoxianognathus An". Acta Micropalaeontologica Sinica. 36 (2): 115–129.
  99. ^ Rosie Dhanda; Duncan J. E. Murdock; John E. Repetski; Philip C. J. Donoghue; M. Paul Smith (2019). "The apparatus composition and architecture of Erismodus quadridactylus and the implications for element homology in prioniodinin conodonts". Papers in Palaeontology. in press. doi:10.1002/spp2.1257.
  100. ^ Przemysław Świś (2019). "Population dynamics of the Late Devonian conodont Alternognathus calibrated in days". Historical Biology: An International Journal of Paleobiology. 31 (9): 1161–1169. doi:10.1080/08912963.2018.1427088.
  101. ^ Javier Sanz-López; Silvia Blanco-Ferrera; C. Giles Miller (2019). "The apparatus of the Carboniferous conodont Vogelgnathus simplicatus and the early evolution of the genus". Journal of Paleontology. 93 (1): 126–136. doi:10.1017/jpa.2018.66.
  102. ^ Louise Souquet; Nicolas Goudemand (2019). "Exceptional basal-body preservation in some Early Triassic conodont elements from Oman". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2019.01.028.
  103. ^ Satoshi Takahashi; Satoshi Yamakita; Noritoshi Suzuki (2019). "Natural assemblages of the conodont Clarkina in lowermost Triassic deep-sea black claystone from northeastern Japan, with probable soft-tissue impressions". Palaeogeography, Palaeoclimatology, Palaeoecology. 524: 212–229. Bibcode:2019PPP...524..212T. doi:10.1016/j.palaeo.2019.03.034.
  104. ^ Jin-Yuan Huang; Carlos Martínez-Pérez; Shi-Xue Hu; Philip C.J. Donoghue; Qi-Yue Zhang; Chang-Yong Zhou; Wen Wen; Michael J. Benton; Mao Luo; Hua-Zhou Yao; Ke-Xin Zhang (2019). "Middle Triassic conodont apparatus architecture revealed by synchrotron X-ray microtomography". Palaeoworld. in press. doi:10.1016/j.palwor.2018.08.003. hdl:1983/6c42767e-ca94-44ea-a651-b5a5fc596eb4.
  105. ^ Jinyuan Huang; Carlos Martínez‐Pérez; Shixue Hu; Qiyue Zhang; Kexin Zhang; Changyong Zhou; Wen Wen; Tao Xie; Michael J. Benton; Zhong‐Qiang Chen; Mao Luo; Philip C. J. Donoghue (2019). "Apparatus architecture of the conodont Nicoraella kockeli (Gondolelloidea, Prioniodinina) constrains functional interpretations". Palaeontology. 62 (5): 823–835. doi:10.1111/pala.12429.
  106. ^ Yanlong Chen; Frank Scholze; Sylvain Richoz; Zhifei Zhang (2019). "Middle Triassic conodont assemblages from the Germanic Basin: implications for multi-element taxonomy and biogeography". Journal of Systematic Palaeontology. 17 (5): 359–377. doi:10.1080/14772019.2018.1424260.
  107. ^ Pauline Guenser; Louise Souquet; Sylvain Dolédec; Michele Mazza; Manuel Rigo; Nicolas Goudemand (2019). "Deciphering the roles of environment and development in the evolution of a Late Triassic assemblage of conodont elements". Paleobiology. 45 (3): 440–457. doi:10.1017/pab.2019.14.
  108. ^ Thomas J. Suttner; Erika Kido (2019). "Euconodont hard tissue: preservation patterns of the basal body". Palaeontology. in press. doi:10.1111/pala.12438.
  109. ^ T.J. Suttner; E. Kido; Ya. Ariunchimeg; G. Sersmaa; J.A. Waters; S.K. Carmichael; C.J. Batchelor; M. Ariuntogos; A. Hušková; L. Slavík; J.I. Valenzuela-Ríos; J.-C. Liao; Y.A. Gatovsky (2019). "Conodonts from Late Devonian island arc settings (Baruunhuurai Terrane, western Mongolia)". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2019.03.001.
  110. ^ a b Jerzy Dzik (2019). "Ordovician conodonts and the Tornquist Lineament". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2019.04.013.
  111. ^ H. Richard Lane; Qi Yuping; Wang Zhihao; Tamara I. Nemyrovska; Barry C. Richards; Hu Keyi (2019). "Conodonts from the mid-Carboniferous boundary GSSP at Arrow Canyon, Nevada, USA". Micropaleontology. 65 (2): 77–104.
  112. ^ Viktor Karádi; Andrea Cau; Michele Mazza; Manuel Rigo (2019). "The last phase of conodont evolution during the Late Triassic: Integrating biostratigraphic and phylogenetic approaches". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2019.03.045.
  113. ^ a b c Norman M. Savage (2019). "Frasnian-Famennian transition in western Thailand: conodonts, biofacies, eustatic changes, extinction". Journal of Paleontology. 93 (3): 476–495. doi:10.1017/jpa.2018.96.
  114. ^ Haishui Jiang; Jinling Yuan; Yan Chen; James G. Ogg; Jiaxin Yan (2019). "Synchronous onset of the Mid-Carnian Pluvial Episode in the East and West Tethys: Conodont evidence from Hanwang, Sichuan, South China". Palaeogeography, Palaeoclimatology, Palaeoecology. 520: 173–180. Bibcode:2019PPP...520..173J. doi:10.1016/j.palaeo.2019.02.004.
  115. ^ N. S. Ovnatanova; L. I. Kononova; L. S. Kolesnik; Yu. A. Gatovsky (2019). "Polygnathus sharyuensis nom. nov., a new replacement name for the Famennian (Upper Devonian) Polygnathus mawsonae Ovnatanova et al., 2017 (Conodonta)". Paleontological Journal. 53 (2): 214. doi:10.1134/S0031030119020096.
  116. ^ Yong Yi Zhen (2019). "Revision of two phragmodontid species (Conodonta) from the Darriwilian (Ordovician) of the Canning Basin in Western Australia and phylogeny of the Cyrtoniodontidae". Alcheringa: An Australasian Journal of Palaeontology. in press: 1–17. doi:10.1080/03115518.2019.1619835.
  117. ^ Sofie A. Gouwy; Thomas T. Uyeno; Alexander D. McCracken (2019). "Tortodus dodoensis, a new conodont species, and a Givetian (Middle Devonian) conodont fauna from the northern Mackenzie Mountains, northwest Canada". PalZ. in press. doi:10.1007/s12542-019-00462-1.
  118. ^ Aneta Hušková; Ladislav Slavík (2019). "In search of Silurian/Devonian boundary conodont markers in carbonate environments of the Prague Synform (Czech Republic)". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2019.03.027.
  119. ^ Carlo Corradini; Maria G. Corriga; Monica Pondrelli; Paolo Serventi; Luca Simonetto; Annalisa Ferretti (2019). "Lochkovian (Lower Devonian) marine-deposits from the Rio Malinfier West section (Carnic Alps, Italy)". Italian Journal of Geosciences. 138 (2): 153–170. doi:10.3301/IJG.2018.33. hdl:11380/1171727.
  120. ^ Julia L. Molnar; Rui Diogo; John R. Hutchinson; Stephanie E. Pierce (2019). "Evolution of hindlimb muscle anatomy across the tetrapod water‐to‐land transition, including comparisons with forelimb anatomy". The Anatomical Record. in press. doi:10.1002/ar.23997. PMID 30365249.
  121. ^ Borja Esteve-Altava; Stephanie E. Pierce; Julia L. Molnar; Peter Johnston; Rui Diogo; John R. Hutchinson (2019). "Evolutionary parallelisms of pectoral and pelvic network-anatomy from fins to limbs". Science Advances. 5 (5): eaau7459. Bibcode:2019SciA....5.7459E. doi:10.1126/sciadv.aau7459. PMC 6506248. PMID 31086814.
  122. ^ Per E. Ahlberg (2019). "Follow the footprints and mind the gaps: a new look at the origin of tetrapods". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 109 (1–2): 115–137. doi:10.1017/S1755691018000695.
  123. ^ John A. Long; Alice M. Clement; Brian Choo (2019). "New insights into the origins and radiation of the mid-Palaeozoic Gondwanan stem tetrapods". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 109 (1–2): 139–155. doi:10.1017/S1755691018000750.
  124. ^ Marcello Ruta; Jonathan Krieger; Kenneth D. Angielczyk; Matthew A. Wills (2019). "The evolution of the tetrapod humerus: morphometrics, disparity, and evolutionary rates" (PDF). Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 109 (1–2): 351–369. doi:10.1017/S1755691018000749.
  125. ^ David Marjanović; Michel Laurin (2019). "Phylogeny of Paleozoic limbed vertebrates reassessed through revision and expansion of the largest published relevant data matrix". PeerJ. 6: e5565. doi:10.7717/peerj.5565. PMC 6322490. PMID 30631641.
  126. ^ John R. Bolt; R. Eric Lombard (2019). "Palate and braincase of Whatcheeria deltae Lombard & Bolt, 1995". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 109 (1–2): 177–200. doi:10.1017/S1755691018000774.
  127. ^ Eva C. Herbst; John R. Hutchinson (2019). "New insights into the morphology of the Carboniferous tetrapod Crassigyrinus scoticus from computed tomography". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 109 (1–2): 157–175. doi:10.1017/S1755691018000804.
  128. ^ Eva C. Herbst; Michael Doube; Timothy R. Smithson; Jennifer A. Clack; John R. Hutchinson (2019). "Bony lesions in early tetrapods and the evolution of mineralized tissue repair". Paleobiology. in press: 1–22. doi:10.1017/pab.2019.31.
  129. ^ Jason D. Pardo; Robert Holmes; Jason S. Anderson (2019). "An enigmatic braincase from Five Points, Ohio (Westphalian D) further supports a stem tetrapod position for aïstopods". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 109 (1–2): 255–264. doi:10.1017/S1755691018000567.
  130. ^ Jennifer A. Clack; Marcello Ruta; Andrew R. Milner; John E. A. Marshall; Timothy R. Smithson; Keturah Z. Smithson (2019). "Acherontiscus caledoniae: the earliest heterodont and durophagous tetrapod". Royal Society Open Science. 6 (5): Article ID 182087. Bibcode:2019RSOS....682087C. doi:10.1098/rsos.182087. PMC 6549999. PMID 31218034.
  131. ^ Eamon Doyle; Aodhán Ó Gogáin (2019). "Tetrapod bones from the Clare Shale Formation (Pennsylvanian, Bashkirian) of County Clare, Ireland". Irish Journal of Earth Sciences. 37: 19–25. doi:10.3318/ijes.2019.37.2.
  132. ^ Gabrielle Ruth Adams; Arjan Mann; Hillary C. Maddin (2019). "New embolomerous tetrapod material and a faunal overview of the Mississippian-aged Point Edward locality, Nova Scotia, Canada". Canadian Journal of Earth Sciences. in press. doi:10.1139/cjes-2018-0326.
  133. ^ Florian Witzmann; Marcello Ruta (2019). "Evolutionary changes in the orbits and palatal openings of early tetrapods, with emphasis on temnospondyls" (PDF). Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 109 (1–2): 333–350. doi:10.1017/S1755691018000919.
  134. ^ Celeste M. Pérez-Ben; Raúl O. Gómez (2019). "Morphological integration and evolution of the skull roof in temnospondyl amphibians". Journal of Iberian Geology. 45 (2): 341–351. doi:10.1007/s41513-018-0088-9.
  135. ^ Celeste M. Pérez-Ben; Ana M. Báez; Rainer R. Schoch (2019). "Morphological evolution of the skull roof in temnospondyl amphibians mirrors conservative ontogenetic patterns". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlz068.
  136. ^ Rainer R. Schoch (2019). "The stapes of Edops craigi and ear evolution in the lissamphibian stem group". Acta Zoologica. 100 (2): 126–134. doi:10.1111/azo.12238.
  137. ^ Ralf Werneburg; Florian Witzmann; Joerg W. Schneider (2019). "The oldest known tetrapod (Temnospondyli) from Germany (Early Carboniferous, Viséan)". PalZ. in press. doi:10.1007/s12542-018-00442-x.
  138. ^ Jade B. Atkins; Robert R. Reisz; Hillary C. Maddin (2019). "Braincase simplification and the origin of lissamphibians". PLoS ONE. 14 (3): e0213694. Bibcode:2019PLoSO..1413694A. doi:10.1371/journal.pone.0213694. PMC 6430379. PMID 30901341.
  139. ^ Bryan M. Gee; Joseph J. Bevitt; Robert R. Reisz (2019). "Dissorophid diversity at the early Permian cave system near Richards Spur, Oklahoma, USA". Palaeontologia Electronica. 22 (2): Article number 22.2.46. doi:10.26879/976.
  140. ^ Bryan M. Gee; Joseph J. Bevitt; Robert R. Reisz (2019). "A juvenile specimen of the trematopid Acheloma from Richards Spur, Oklahoma and challenges of trematopid ontogeny". Frontiers in Earth Science. 7: Article 38. Bibcode:2019FrEaS...7...38G. doi:10.3389/feart.2019.00038.
  141. ^ Bryan M. Gee; Robert R. Reisz (2019). "The amphibamiform Nanobamus macrorhinus from the early Permian of Texas". Journal of Paleontology. in press: 1–12. doi:10.1017/jpa.2019.72.
  142. ^ Estevan Eltink; Rainer R. Schoch; Max C. Langer (2019). "Interrelationships, palaeobiogeography and early evolution of Stereospondylomorpha (Tetrapoda: Temnospondyli)". Journal of Iberian Geology. 45 (2): 251–267. doi:10.1007/s41513-019-00105-z.
  143. ^ Rainer R. Schoch; Martin Ebert; Emmanuel Robert (2019). "Type specimen of Sclerocephalus haeuseri GOLDFUSS, 1847 rediscovered". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 292 (3): 315–320. doi:10.1127/njgpa/2019/0824.
  144. ^ Dorota Konietzko-Meier; Jennifer D. Werner; Tanja Wintrich; P. Martin Sander (2019). "A large temnospondyl humerus from the Rhaetian (Late Triassic) of Bonenburg (Westphalia, Germany) and its implications for temnospondyl extinction". Journal of Iberian Geology. 45 (2): 287–300. doi:10.1007/s41513-018-0092-0.
  145. ^ Debarati Mukherjee; Dhurjati P. Sengupta; Nibedita Rakshit (2019). "New biological insights into the Middle Triassic capitosaurs from India as deduced from limb bone anatomy and histology". Papers in Palaeontology. in press. doi:10.1002/spp2.1263.
  146. ^ Meritxell Fernández-Coll; Thomas Arbez; Federico Bernardini; Josep Fortuny (2019). "Cranial anatomy of the Early Triassic trematosaurine Angusaurus (Temnospondyli: Stereospondyli): 3D endocranial insights and phylogenetic implications" (PDF). Journal of Iberian Geology. 45 (2): 269–286. doi:10.1007/s41513-018-0064-4.
  147. ^ Rainer R. Schoch (2019). "Osteology of the temnospondyl Trematosaurus brauni Burmeister, 1849 from the Middle Buntsandstein of Bernburg, Germany". Palaeodiversity. 12 (1): 41–63. doi:10.18476/pale.v12.a4.
  148. ^ Bryan M. Gee; William G. Parker (2019). "Morphological and histological description of small metoposaurids from Petrified Forest National Park, AZ, USA and the taxonomy of Apachesaurus". Historical Biology: An International Journal of Paleobiology. in press: 1–31. doi:10.1080/08912963.2018.1480616.
  149. ^ Bryan M. Gee; William G. Parker; Adam D. Marsh (2019). "Redescription of Anaschisma (Temnospondyli: Metoposauridae) from the Late Triassic of Wyoming and the phylogeny of the Metoposauridae". Journal of Systematic Palaeontology. in press: 1–26. doi:10.1080/14772019.2019.1602855.
  150. ^ Kamil Gruntmejer; Dorota Konietzko-Meier; Adam Bodzioch; Josep Fortuny (2019). "Morphology and preliminary biomechanical interpretation of mandibular sutures in Metoposaurus krasiejowensis (Temnospondyli, Stereospondyli) from the Upper Triassic of Poland". Journal of Iberian Geology. 45 (2): 301–316. doi:10.1007/s41513-018-0072-4.
  151. ^ Valentin Buffa; Nour‐Eddine Jalil; J.‐Sebastien Steyer (2019). "Redescription of Arganasaurus (Metoposaurus) azerouali (Dutuit) comb. nov. from the Upper Triassic of the Argana Basin (Morocco), and the first phylogenetic analysis of the Metoposauridae (Amphibia, Temnospondyli)". Papers in Palaeontology. in press. doi:10.1002/spp2.1259.
  152. ^ Josep Fortuny; Thomas Arbez; Eudald Mujal; J. Sébastien Steyer (2019). "Reappraisal of "Metoposaurus hoffmani" Dutuit, 1978, and description of new temnospondyl specimens from the Middle–Late Triassic of Madagascar (Morondava Basin)". Journal of Vertebrate Paleontology. 39 (1): e1576701. doi:10.1080/02724634.2019.1576701.
  153. ^ Christopher N. Todd; Eric M. Roberts; Espen M. Knutsen; Andrew C. Rozefelds; Hui-Qing Huang; Carl Spandler (2019). "Refined age and geological context of two of Australia's most important Jurassic vertebrate taxa (Rhoetosaurus brownei and Siderops kehli), Queensland". Gondwana Research. 76: 19–25. Bibcode:2019GondR..76...19T. doi:10.1016/j.gr.2019.05.008.
  154. ^ Pavel P. Skutschas; Pavel G. Saburov; Elizaveta A. Boitsova; Veniamin V. Kolchanov (2019). "Ontogenetic changes in long-bone histology of the cryptobranchid Eoscapherpeton asiaticum (Amphibia: Caudata) from the Late Cretaceous of Uzbekistan". Comptes Rendus Palevol. 18 (3): 306–316. doi:10.1016/j.crpv.2019.02.002.
  155. ^ Pavel P. Skutschas; Veniamin V. Kolchanov; Valeriy V. Bulanov; Andrey G. Sennikov; Elizaveta A. Boitsova; Valeriy K. Golubev; Elena V. Syromyatnikova (2019). "Reconstruction of the life history traits in the giant salamander Aviturus exsecratus (Caudata, Cryptobranchidae) from the Paleocene of Mongolia using zygapophyseal skeletochronology". Historical Biology: An International Journal of Paleobiology. in press: 1–4. doi:10.1080/08912963.2018.1523157.
  156. ^ Michelle R. Stocker; Sterling J. Nesbitt; Ben T. Kligman; Daniel J. Paluh; Adam D. Marsh; David C. Blackburn; William G. Parker (2019). "The earliest equatorial record of frogs from the Late Triassic of Arizona". Biology Letters. 15 (2): Article ID 20180922. doi:10.1098/rsbl.2018.0922. PMC 6405462. PMID 30958136.
  157. ^ Carla Bardua; Susan E. Evans; Anjali Goswami (2019). "Phylogeny, ecology and deep time: 2D outline analysis of anuran skulls from the Early Cretaceous to the Recent". Palaeontology. 62 (3): 417–431. doi:10.1111/pala.12405.
  158. ^ Raúl O. Gómez; Andres I. Lires (2019). "High ecomorphological diversity among Early Cretaceous frogs from a large subtropical wetland of Iberia". Comptes Rendus Palevol. in press. doi:10.1016/j.crpv.2019.07.005.
  159. ^ Ana M. Báez; Raúl O. Gómez (2019). "Redescription of the overlooked basal frog Wealdenbatrachus reveals increased diversity among Early Cretaceous anurans". Cretaceous Research. 99: 14–29. doi:10.1016/j.cretres.2019.02.006.
  160. ^ Lida Xing; Kecheng Niu; Susan E. Evans (2019). "Inter-amphibian predation in the Early Cretaceous of China". Scientific Reports. 9 (1): Article number 7751. Bibcode:2019NatSR...9.7751X. doi:10.1038/s41598-019-44247-7. PMC 6533365. PMID 31123302.
  161. ^ Andrea Villa; Massimo Delfino; Àngel H. Luján; Sergio Almécija; David M. Alba (2019). "First record of Latonia gigantea (Anura, Alytidae) from the Iberian Peninsula". Historical Biology: An International Journal of Paleobiology. 31 (3): 371–382. doi:10.1080/08912963.2017.1371712. hdl:2318/1646462.
  162. ^ Georgios L. Georgalis; Andrea Villa; Martin Ivanov; Socrates Roussiakis; Panagiotis Skandalos; Massimo Delfino (2019). "Early Miocene herpetofaunas from the Greek localities of Aliveri and Karydia – bridging a gap in the knowledge of amphibians and reptiles from the early Neogene of southeastern Europe" (PDF). Historical Biology: An International Journal of Paleobiology. 31 (8): 1045–1064. doi:10.1080/08912963.2017.1417404.
  163. ^ Elena Syromyatnikova; Zbyněk Roček; Sabrina van de Velde (2019). "New discoveries in the frog Latonia seyfriedi (Anura: Alytidae) and their impact on taxonomy of the genus Latonia". PalZ. in press. doi:10.1007/s12542-019-00477-8.
  164. ^ Raúl O. Gómez; Celeste M. Pérez-Ben (2019). "Fossils reveal long-term continuous and parallel innovation in the sacro-caudo-pelvic complex of the highly aquatic pipid frogs". Frontiers in Earth Science. 7: Article 56. Bibcode:2019FrEaS...7...56G. doi:10.3389/feart.2019.00056.
  165. ^ David C. Blackburn; Daniel J. Paluh; Isaac Krone; Eric M. Roberts; Edward L. Stanley; Nancy J. Stevens (2019). "The earliest fossil of the African clawed frog (genus Xenopus) from sub-Saharan Africa". Journal of Herpetology. 53 (2): 125–130. doi:10.1670/18-139.
  166. ^ Elena V. Syromyatnikova (2019). "Redescription of Pelobates praefuscus Khosatzky, 1985 and new records of Pelobates from the late Miocene–Pleistocene of Eastern Europe". Historical Biology: An International Journal of Paleobiology. 31 (7): 888–897. doi:10.1080/08912963.2017.1402015.
  167. ^ Laura Nicoli (2019). "The fossil record of Ceratophrys Wied-Neuwied (Anura: Ceratophryidae): a revision and update of fossil South American horned frogs". Zootaxa. 4658 (1): 37–68. doi:10.11646/zootaxa.4658.1.2.
  168. ^ Massimo Delfino (2019). "Early Pliocene anuran fossils from Kanapoi, Kenya, and the first fossil record for the African burrowing frog Hemisus (Neobatrachia: Hemisotidae)". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2017.06.008. PMID 28712471.
  169. ^ Jozef Klembara; Marika Mikudíková (2019). "New cranial material of Discosauriscus pulcherrimus (Seymouriamorpha, Discosauriscidae) from the Lower Permian of the Boskovice Basin (Czech Republic)". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 109 (1–2): 225–236. doi:10.1017/S1755691018000798.
  170. ^ Angela C. Milner (2019). "A morphological revision of Keraterpeton, the earliest horned nectridean from the Pennsylvanian of England and Ireland". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 109 (1–2): 237–253. doi:10.1017/S1755691018000579.
  171. ^ Bryan M. Gee; Joseph J. Bevitt; Ulf Garbe; Robert R. Reisz (2019). "New material of the 'microsaur' Llistrofus from the cave deposits of Richards Spur, Oklahoma and the paleoecology of the Hapsidopareiidae". PeerJ. 7: e6327. doi:10.7717/peerj.6327. PMC 6348957. PMID 30701139.
  172. ^ Arjan Mann; Jennifer C. Olori; Hillary C. Maddin (2019). "Postcranial anatomy of the 'microsaur' Carrolla craddocki from the Lower Permian of Texas". Journal of Vertebrate Paleontology. 38 (6): e1532436. doi:10.1080/02724634.2018.1532436.
  173. ^ John A. Nyakatura; Kamilo Melo; Tomislav Horvat; Kostas Karakasiliotis; Vivian R. Allen; Amir Andikfar; Emanuel Andrada; Patrick Arnold; Jonas Lauströer; John R. Hutchinson; Martin S. Fischer; Auke J. Ijspeert (2019). "Reverse-engineering the locomotion of a stem amniote". Nature. 565 (7739): 351–355. Bibcode:2019Natur.565..351N. doi:10.1038/s41586-018-0851-2. PMID 30651613.
  174. ^ Jozef Klembara; Miroslav Hain; Marcello Ruta; David S. Berman; Stephanie E. Pierce; Amy C. Henrici (2019). "Inner ear morphology of diadectomorphs and seymouriamorphs (Tetrapoda) uncovered by high‐resolution x‐ray microcomputed tomography, and the origin of the amniote crown group". Palaeontology. in press. doi:10.1111/pala.12448.
  175. ^ Ralf Werneburg; Joerg W. Schneider; Sebastian Voigt; Abouchouaib Belahmira (2019). "First African record of micromelerpetid amphibians (Temnospondyli, Dissorophoidea)". Journal of African Earth Sciences. 159: Article 103573. Bibcode:2019JAfES.15903573W. doi:10.1016/j.jafrearsci.2019.103573.
  176. ^ Ismar de Souza Carvalho; Federico Agnolin; Mauro A. Aranciaga Rolando; Fernando E. Novas; José Xavier-Neto; Francisco Idalécio de Freitas; José Artur Ferreira Gomes de Andrade (2019). "A new genus of pipimorph frog (Anura) from the Early Cretaceous Crato formation (Aptian) and the evolution of South American tongueless frogs". Journal of South American Earth Sciences. 92: 222–233. Bibcode:2019JSAES..92..222C. doi:10.1016/j.jsames.2019.03.005.
  177. ^ Arjan Mann; Hillary C. Maddin (2019). "Diabloroter bolti, a short-bodied recumbirostran 'microsaur' from the Francis Creek Shale, Mazon Creek, Illinois". Zoological Journal of the Linnean Society. 187 (2): 494–505. doi:10.1093/zoolinnean/zlz025.
  178. ^ Florian Witzmann; Hans-Dieter Sues; Christian F. Kammerer; Jörg Fröbisch (2019). "A new bystrowianid from the late Permian of Germany: First record of a Permian chroniosuchian (Tetrapoda) outside Russia and China". Journal of Vertebrate Paleontology. in press: e1667366. doi:10.1080/02724634.2019.1667366.
  179. ^ Arjan Mann; Jason D. Pardo; Hillary C. Maddin (2019). "Infernovenator steenae, a new serpentine recumbirostran from the 'Mazon Creek' Lagertätte further clarifies lysorophian origins". Zoological Journal of the Linnean Society. 187 (2): 506–517. doi:10.1093/zoolinnean/zlz026.
  180. ^ Jia Jia; Ke-Qin Gao (2019). "A new stem hynobiid salamander (Urodela, Cryptobranchoidea) from the Upper Jurassic (Oxfordian) of Liaoning Province, China". Journal of Vertebrate Paleontology. 39 (2): e1588285. doi:10.1080/02724634.2019.1588285.
  181. ^ Andrew R. Milner (2019). "Two primitive trematopid amphibians (Temnospondyli, Dissorophoidea) from the Upper Carboniferous of the Czech Republic". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 109 (1–2): 201–223. doi:10.1017/S1755691018000725.
  182. ^ Stephen Mahony (2019). "Cordicephalus Nevo, 1968 (Amphibia, Anura, Pipimorpha), is a junior homonym of Cordicephalus Wardle, 1947 (Rhabditophora, Cestoda, Diphyllobothriidae)". Journal of Vertebrate Paleontology. 39 (2): e1593186. doi:10.1080/02724634.2019.1593186.
  183. ^ Sanjukta Chakravorti; Dhurjati Prasad Sengupta (2019). "Taxonomy, morphometry and morphospace of cranial bones of Panthasaurus gen. nov. maleriensis from the Late Triassic of India". Journal of Iberian Geology. 45 (2): 317–340. doi:10.1007/s41513-018-0083-1.
  184. ^ Alexis M. Aranciaga Rolando; Federico L. Agnolin; Julián Corsolini (2019). "A new pipoid frog (Anura, Pipimorpha) from the Paleogene of Patagonia. Paleobiogeographical implications". Comptes Rendus Palevol. in press. doi:10.1016/j.crpv.2019.04.003.
  185. ^ Celeste M. Pérez-Ben; Raúl O. Gómez; Ana M. Báez (2019). "A new Pliocene true toad (Anura: Bufonidae): first record of an extinct species from South America". Journal of Vertebrate Paleontology. 39 (1): e1576183. doi:10.1080/02724634.2019.1576183.
  186. ^ Rainer R. Schoch; Sebastian Voigt (2019). "A dvinosaurian temnospondyl from the Carboniferous-Permian boundary of Germany sheds light on dvinosaurian phylogeny and distribution". Journal of Vertebrate Paleontology. 39 (1): e1577874. doi:10.1080/02724634.2019.1577874.
  187. ^ Bethany J. Allen; Thomas L. Stubbs; Michael J. Benton; Mark N. Puttick (2019). "Archosauromorph extinction selectivity during the Triassic–Jurassic mass extinction". Palaeontology. 62 (2): 211–224. doi:10.1111/pala.12399.
  188. ^ Sanghamitra Ray; Mohd Shafi Bhat; P. M. Datta (2019). "First record of varied archosauriforms from the Upper Triassic of India based on isolated teeth, and their biostratigraphic implications". Historical Biology: An International Journal of Paleobiology. in press: 1–17. doi:10.1080/08912963.2019.1609957.
  189. ^ Martín D. Ezcurra; David J. Gower; Andrey G. Sennikov; Richard J. Butler (2019). "The osteology of the holotype of the early erythrosuchid Garjainia prima (Diapsida: Archosauromorpha) from the upper Lower Triassic of European Russia". Zoological Journal of the Linnean Society. 185 (3): 717–783. doi:10.1093/zoolinnean/zly061.
  190. ^ Richard J. Butler; Martín D. Ezcurra; Jun Liu ; Roland B. Sookias ; Corwin Sullivan (2019). "The anatomy and phylogenetic position of the erythrosuchid archosauriform Guchengosuchus shiguaiensis from the earliest Middle Triassic of China". PeerJ. 7: e6435. doi:10.7717/peerj.6435. PMC 6385703. PMID 30809443.
  191. ^ Andrea Arcucci; Elena Previtera; Adriana C. Mancuso (2019). "Ecomorphology and bone microstructure of Proterochampsia from the Chañares Formation". Acta Palaeontologica Polonica. 64 (1): 157–170. doi:10.4202/app.00536.2018.
  192. ^ Martín Daniel Ezcurra; María Belén Von Baczko; María Jimena Trotteyn; Julia Brenda Desojo (2019). "New proterochampsid specimens expand the morphological diversity of the rhadinosuchines of the Chañares Formation (lower Carnian, northwestern Argentina)". Ameghiniana. 56 (2): 79–115. doi:10.5710/AMGH.25.05.2019.3230.
  193. ^ Debajit Datta; Nishant Kumar; Sanghamitra Ray (2019). "Taxonomic identification of isolated phytosaur (Diapsida, Archosauria) teeth from the Upper Triassic of India and their significances". Historical Biology: An International Journal of Paleobiology. in press: 1–11. doi:10.1080/08912963.2019.1613652.
  194. ^ Brandon R. Peecook; Roger M. H. Smith; Christian A. Sidor (2019). "A novel archosauromorph from Antarctica and an updated review of a high-latitude vertebrate assemblage in the wake of the end-Permian mass extinction". Journal of Vertebrate Paleontology. 38 (6): e1536664. doi:10.1080/02724634.2018.1536664.
  195. ^ Richard J. Butler; Andrew S. Jones; Eric Buffetaut; Gerhard W Mandl; Torsten M. Scheyer; Ortwin Schultz (2019). "Description and phylogenetic placement of a new marine species of phytosaur (Archosauriformes: Phytosauria) from the Late Triassic of Austria". Zoological Journal of the Linnean Society. 187 (1): 198–228. doi:10.1093/zoolinnean/zlz014.
  196. ^ Jacqueline K. Lungmus; Kenneth D. Angielczyk (2019). "Antiquity of forelimb ecomorphological diversity in the mammalian stem lineage (Synapsida)". Proceedings of the National Academy of Sciences of the United States of America. 116 (14): 6903–6907. doi:10.1073/pnas.1802543116. PMC 6452662. PMID 30886085.
  197. ^ Isaac W. Krone; Christian F. Kammerer; Kenneth D. Angielczyk (2019). "The many faces of synapsid cranial allometry". Paleobiology. in press: 1–15. doi:10.1017/pab.2019.26.
  198. ^ Yara Haridy; Florian Witzmann; Patrick Asbach; Robert R. Reisz (2019). "Permian metabolic bone disease revealed by microCT: Paget's disease-like pathology in vertebrae of an early amniote". PLoS ONE. 14 (8): e0219662. doi:10.1371/journal.pone.0219662. PMC 6685605. PMID 31390345.
  199. ^ Arjan Mann; Ryan S. Paterson (2019). "Cranial osteology and systematics of the enigmatic early 'sail-backed' synapsid Echinerpeton intermedium Reisz, 1972, and a review of the earliest 'pelycosaurs'". Journal of Systematic Palaeontology. in press: 1–11. doi:10.1080/14772019.2019.1648323.
  200. ^ Marco Romano; Paolo Citton; Simone Maganuco; Eva Sacchi; Martina Caratelli; Ausonio Ronchi; Umberto Nicosia (2019). "New basal synapsid discovery at the Permian outcrop of Torre del Porticciolo (Alghero, Italy)". Geological Journal. 54 (3): 1554–1566. doi:10.1002/gj.3250.
  201. ^ Kirstin S. Brink; Mark J. MacDougall; Robert R. Reisz (2019). "Dimetrodon (Synapsida: Sphenacodontidae) from the cave system at Richards Spur, OK, USA, and a comparison of Early Permian–aged vertebrate paleoassemblages". The Science of Nature. 106 (1–2): Article 2. Bibcode:2019SciNa.106....2B. doi:10.1007/s00114-018-1598-1. PMID 30610457.
  202. ^ Zoe T. Kulik; Christian A. Sidor (2019). "The original boneheads: histologic analysis of the pachyostotic skull roof in Permian burnetiamorphs (Therapsida: Biarmosuchia)". Journal of Anatomy. 235 (1): 151–166. doi:10.1111/joa.12987. PMID 31070781.
  203. ^ Christen D. Shelton; Anusuya Chinsamy; Bruce M. Rothschild (2019). "Osteomyelitis in a 265-million-year-old titanosuchid (Dinocephalia, Therapsida)". Historical Biology: An International Journal of Paleobiology. 31 (8): 1093–1096. doi:10.1080/08912963.2017.1419348.
  204. ^ Bruce S. Rubidge; Romala Govender; Marco Romano (2019). "The postcranial skeleton of the basal tapinocephalid dinocephalian Tapinocaninus pamelae (Synapsida: Therapsida) from the South African Karoo Supergroup". Journal of Systematic Palaeontology. 17 (20): 1767–1789. doi:10.1080/14772019.2018.1559244.
  205. ^ Marco Romano; Bruce Rubidge (2019). "First 3D reconstruction and volumetric body mass estimate of the tapinocephalid dinocephalian Tapinocaninus pamelae (Synapsida: Therapsida)". Historical Biology: An International Journal of Paleobiology. in press: 1–8. doi:10.1080/08912963.2019.1640219.
  206. ^ Simon W. Fraser-King; Julien Benoit; Michael O. Day; Bruce S. Rubidge (2019). "Cranial morphology and phylogenetic relationship of the enigmatic dinocephalian Styracocephalus platyrhynchus from the Karoo Supergroup, South Africa". Palaeontologia Africana. 54: 14–29. hdl:10539/28128.
  207. ^ Christopher T. Griffin; Kenneth D. Angielczyk (2019). "The evolution of the dicynodont sacrum: constraint and innovation in the synapsid axial column". Paleobiology. 45 (1): 201–220. doi:10.1017/pab.2018.49.
  208. ^ Jun Liu (2019). "The tetrapod fauna of the upper Permian Naobaogou Formation of China— 4. the diversity of dicynodonts". Vertebrata PalAsiatica. 57 (3): 173–180. doi:10.19615/j.cnki.1000-3118.190522.
  209. ^ Kenneth D. Angielczyk (2019). "First occurrence of the dicynodont Digalodon (Therapsida, Anomodontia) from the Lopingian upper Madumabisa Mudstone Formation, Luangwa Basin, Zambia". Palaeontologia Africana. 53: 219–225. hdl:10539/26832.
  210. ^ Gianfrancis D. Ugalde; Rodrigo T. Müller; Hermínio Ismael de Araújo-Júnior; Sérgio Dias-da-Silva; Felipe L. Pinheiro (2019). "A peculiar bonebed reinforces gregarious behaviour for the Triassic dicynodont Dinodontosaurus". Historical Biology: An International Journal of Paleobiology. in press: 1–9. doi:10.1080/08912963.2018.1533960.
  211. ^ Marco Romano; Fabio Manucci (2019). "Resizing Lisowicia bojani: volumetric body mass estimate and 3D reconstruction of the giant Late Triassic dicynodont". Historical Biology: An International Journal of Paleobiology. in press: 1–6. doi:10.1080/08912963.2019.1631819.
  212. ^ Grzegorz Racki; Spencer G. Lucas (2019). "Timing of dicynodont extinction in light of an unusual Late Triassic Polish fauna and Cuvier's approach to extinction". Historical Biology: An International Journal of Paleobiology. in press: 1–11. doi:10.1080/08912963.2018.1499734.
  213. ^ Tony Thulborn; Susan Turner (2003). "The last dicynodont: an Australian Cretaceous relict". Proceedings of the Royal Society B: Biological Sciences. 270 (1518): 985–993. doi:10.1098/rspb.2002.2296. JSTOR 3558635. PMC 1691326. PMID 12803915.
  214. ^ Espen M. Knutsen; Emma Oerlemans (2019). "The last dicynodont? Re-assessing the taxonomic and temporal relationships of a contentious Australian fossil". Gondwana Research. in press: 184–203. doi:10.1016/j.gr.2019.07.011.
  215. ^ Henrik Richard Grunert; Neil Brocklehurst; Jörg Fröbisch (2019). "Diversity and disparity of Therocephalia: macroevolutionary patterns through two mass extinctions". Scientific Reports. 9 (1): Article number 5063. Bibcode:2019NatSR...9.5063G. doi:10.1038/s41598-019-41628-w. PMC 6433905. PMID 30911058.
  216. ^ Neil Brocklehurst (2019). "Morphological evolution in therocephalians breaks the hypercarnivore ratchet". Proceedings of the Royal Society B: Biological Sciences. 286 (1900): Article ID 20190590. doi:10.1098/rspb.2019.0590. PMC 6501669. PMID 30966993.
  217. ^ Gabriela Fontanarrosa; Fernando Abdala; Susanna Kümmell; Robert Gess (2019). "The manus of Tetracynodon (Therapsida: Therocephalia) provides evidence for survival strategies following the Permo-Triassic extinction". Journal of Vertebrate Paleontology. 38 (4): (1)–(13). doi:10.1080/02724634.2018.1491404.
  218. ^ Marcus Lukic-Walther; Neil Brocklehurst; Christian F. Kammerer; Jörg Fröbisch (2019). "Diversity patterns of nonmammalian cynodonts (Synapsida, Therapsida) and the impact of taxonomic practice and research history on diversity estimates". Paleobiology. 45 (1): 56–69. doi:10.1017/pab.2018.38.
  219. ^ Elize Butler; Fernando Abdala; Jennifer Botha‐Brink (2019). "Postcranial morphology of the Early Triassic epicynodont Galesaurus planiceps (Owen) from the Karoo Basin, South Africa". Papers in Palaeontology. 5 (1): 1–32. doi:10.1002/spp2.1220.
  220. ^ Luisa C. Pusch; Christian F. Kammerer; Jörg Fröbisch (2019). "Cranial anatomy of the early cynodont Galesaurus planiceps and the origin of mammalian endocranial characters". Journal of Anatomy. 234 (5): 592–621. doi:10.1111/joa.12958. PMID 30772942.
  221. ^ Christophe Hendrickx; Fernando Abdala; Jonah N. Choiniere (2019). "A proposed terminology for the dentition of gomphodont cynodonts and dental morphology in Diademodontidae and Trirachodontidae". PeerJ. 7: e6752. doi:10.7717/peerj.6752. PMC 6571134. PMID 31223521.
  222. ^ Fábio Hiratsuka Veiga; Jennifer Botha-Brink; Marina Bento Soares (2019). "Osteohistology of the non-mammaliaform traversodontids Protuberum cabralense and Exaeretodon riograndensis from southern Brazil". Historical Biology: An International Journal of Paleobiology. 31 (9): 1231–1241. doi:10.1080/08912963.2018.1441292.
  223. ^ Tomaz P. Melo; Ana Maria Ribeiro; Agustín G. Martinelli; Marina Bento Soares (2019). "Early evidence of molariform hypsodonty in a Triassic stem-mammal". Nature Communications. 10 (1): Article number 2841. Bibcode:2019NatCo..10.2841M. doi:10.1038/s41467-019-10719-7. PMC 6598982. PMID 31253810.
  224. ^ Maurício Rodrigo Schmitt; Agustín G. Martinelli; Tomaz Panceri Melo; Marina Bento Soares (2019). "On the occurrence of the traversodontid Massetognathus ochagaviae (Synapsida, Cynodontia) in the early late Triassic Santacruzodon Assemblage Zone (Santa Maria Supersequence, southern Brazil): Taxonomic and biostratigraphic implications". Journal of South American Earth Sciences. 93: 36–50. Bibcode:2019JSAES..93...36S. doi:10.1016/j.jsames.2019.04.011.
  225. ^ Ane E. B. Pavanatto; Leonardo Kerber; Sérgio Dias‐da‐Silva (2019). "Virtual reconstruction of cranial endocasts of traversodontid cynodonts (Eucynodontia: Gomphodontia) from the upper Triassic of Southern Brazil". Journal of Morphology. 280 (9): 1267–1281. doi:10.1002/jmor.21029. PMID 31241801.
  226. ^ Julien Benoit; Irina Ruf; Juri A. Miyamae; Vincent Fernandez; Pablo Gusmão Rodrigues; Bruce S. Rubidge (2019). "The evolution of the maxillary canal in Probainognathia (Cynodontia, Synapsida): reassessment of the homology of the infraorbital foramen in mammalian ancestors". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-019-09467-8.
  227. ^ Pablo Gusmão Rodrigues; Agustín G. Martinelli; Cesar Leandro Schultz; Ian J. Corfe; Pamela G. Gill; Marina B. Soares; Emily J. Rayfield (2019). "Digital cranial endocast of Riograndia guaibensis (Late Triassic, Brazil) sheds light on the evolution of the brain in non-mammalian cynodonts". Historical Biology: An International Journal of Paleobiology. 31 (9): 1195–1212. doi:10.1080/08912963.2018.1427742. hdl:1983/4f437b31-8913-4699-a3f5-b800384c68e0.
  228. ^ Morgan L. Guignard; Agustin G. Martinelli; Marina B. Soares (2019). "Postcranial anatomy of Riograndia guaibensis (Cynodontia: Ictidosauria)". Geobios. 53: 9–21. doi:10.1016/j.geobios.2019.02.006.
  229. ^ Morgan L. Guignard; Agustin G. Martinelli; Marina B. Soares (2019). "The postcranial anatomy of Brasilodon quadrangularis and the acquisition of mammaliaform traits among non-mammaliaform cynodonts". PLoS ONE. 14 (5): e0216672. Bibcode:2019PLoSO..1416672G. doi:10.1371/journal.pone.0216672. PMC 6510408. PMID 31075140.
  230. ^ Daniela C. Kalthoff; Ellen Schulz-Kornas; Ian Corfe; Thomas Martin; Stephen McLoughlin; Julia A. Schultz (2019). "Complementary approaches to tooth wear analysis in Tritylodontidae (Synapsida, Mammaliamorpha) reveal a generalist diet". PLoS ONE. 14 (7): e0220188. doi:10.1371/journal.pone.0220188. PMC 6658083. PMID 31344085.
  231. ^ Maxime Lasseron (2019). "Enigmatic teeth from the Jurassic–Cretaceous transition of Morocco: The latest known non-mammaliaform cynodonts (Synapsida, Cynodontia) from Africa?". Comptes Rendus Palevol. in press. doi:10.1016/j.crpv.2019.05.002.
  232. ^ Aitor Navarro‐Díaz; Borja Esteve‐Altava; Diego Rasskin‐Gutman (2019). "Disconnecting bones within the jaw‐otic network modules underlies mammalian middle ear evolution". Journal of Anatomy. 235 (1): 15–33. doi:10.1111/joa.12992. PMID 30977522.
  233. ^ Robert R. Reisz (2019). "A small caseid synapsid, Arisierpeton simplex gen. et sp. nov., from the early Permian of Oklahoma, with a discussion of synapsid diversity at the classic Richards Spur locality". PeerJ. 7: e6615. doi:10.7717/peerj.6615. PMC 6462398. PMID 30997285.
  234. ^ a b Frederik Spindler; Sebastian Voigt; Jan Fischer (2019). "Edaphosauridae (Synapsida, Eupelycosauria) from Europe and their relationship to North American representatives". PalZ. in press. doi:10.1007/s12542-019-00453-2.
  235. ^ Frederik Spindler; Ralf Werneburg; Jörg W. Schneider (2019). "A new mesenosaurine from the lower Permian of Germany and the postcrania of Mesenosaurus: implications for early amniote comparative osteology". PalZ. 93 (2): 303–344. doi:10.1007/s12542-018-0439-z.
  236. ^ a b Chloe Olivier; Bernard Battail; Sylvie Bourquin; Camille Rossignol; J.-Sebastien Steyer; Nour-Eddine Jalil (2019). "New dicynodonts (Therapsida, Anomodontia) from near the Permo-Triassic boundary of Laos: implications for dicynodont survivorship across the Permo-Triassic mass extinction and the paleobiogeography of Southeast Asian blocks". Journal of Vertebrate Paleontology. 39 (2): e1584745. doi:10.1080/02724634.2019.1584745.
  237. ^ Christian F. Kammerer (2019). "Revision of the Tanzanian dicynodont Dicynodon huenei (Therapsida: Anomodontia) from the Permian Usili Formation". PeerJ. 7: e7420. doi:10.7717/peerj.7420. PMC 6708577. PMID 31497385.
  238. ^ Yulia A. Suchkova; Valeriy K. Golubev (2019). "A new Permian therocephalian (Therocephalia, Theromorpha) from the Sundyr assemblage of Eastern Europe". Paleontological Journal. 53 (4): 411–417. doi:10.1134/S0031030119040117.
  239. ^ Frederik Spindler (2019). "Re-evaluation of an early sphenacodontian synapsid from the Lower Permian of England". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. in press: 1–11. doi:10.1017/S175569101900015X.
  240. ^ Jun Liu; Fernando Abdala (2019). "The tetrapod fauna of the upper Permian Naobaogou Formation of China: 3. Jiufengia jiai gen. et sp. nov., a large akidnognathid therocephalian". PeerJ. 7: e6463. doi:10.7717/peerj.6463. PMC 6388668. PMID 30809450.
  241. ^ Julia A. Suchkova; Valeriy K. Golubev (2019). "A new primitive therocephalian (Theromorpha) from the Middle Permian of Eastern Europe". Paleontological Journal. 53 (3): 305–314. doi:10.1134/S0031030119030158.
  242. ^ Kenneth D. Angielczyk; Julien Benoit; Bruce S. Rubidge (2019). "A new tusked cistecephalid dicynodont (Therapsida, Anomodontia) from the upper Permian upper Madumabisa Mudstone Formation, Luangwa Basin, Zambia". Papers in Palaeontology. Online edition. doi:10.1002/spp2.1285.
  243. ^ Tomasz Sulej; Grzegorz Niedźwiedzki (2019). "An elephant-sized Late Triassic synapsid with erect limbs". Science. 363 (6422): 78–80. Bibcode:2019Sci...363...78S. doi:10.1126/science.aal4853. PMID 30467179.
  244. ^ Tomasz Sulej; Grzegorz Niedźwiedzki; Mateusz Tałanda; Dawid Dróżdż; Ewa Hara (2019). "A new early Late Triassic non-mammaliaform eucynodont from Poland". Historical Biology: An International Journal of Paleobiology. in press: 1–13. doi:10.1080/08912963.2018.1471477.
  245. ^ Rachel V. S. Wallace; Ricardo Martínez; Timothy Rowe (2019). "First record of a basal mammaliamorph from the early Late Triassic Ischigualasto Formation of Argentina". PLoS ONE. 14 (8): e0218791. doi:10.1371/journal.pone.0218791. PMC 6685608. PMID 31390368.
  246. ^ Kammerer, Christian F. (2019). "A new dicynodont (Anomodontia: Emydopoidea) from the terminal Permian of KwaZulu-Natal, South Africa". Palaeontologia Africana. 53: 179–191. hdl:10539/26708. ISSN 2410-4418.
  247. ^ Christian F. Kammerer; Pia A. Viglietti; P. John Hancox; Richard J. Butler; Jonah N. Choiniere (2019). "A new kannemeyeriiform dicynodont (Ufudocyclops mukanelai, gen. et sp. nov.) from Subzone C of the Cynognathus Assemblage Zone, Triassic of South Africa, with implications for biostratigraphic correlation with other African Triassic Faunas". Journal of Vertebrate Paleontology. 39 (2): e1596921. doi:10.1080/02724634.2019.1596921.
  248. ^ Fernando Abdala; Leandro C. Gaetano; Roger M. H. Smith; Bruce S. Rubidge (2019). "A new large cynodont from the Late Permian (Lopingian) of the South African Karoo Basin and its phylogenetic significance". Zoological Journal of the Linnean Society. 186 (4): 983–1005. doi:10.1093/zoolinnean/zlz004.
  249. ^ A.Yu. Ivantsov; M.A. Zakrevskaya; A.L. Nagovitsyn (2019). "Morphology of integuments of the Precambrian animals, Proarticulata". Invertebrate Zoology. 16 (1): 19–26. doi:10.15298/invertzool.16.1.03.
  250. ^ Brandt M. Gibson; Imran A. Rahman; Katie M. Maloney; Rachel A. Racicot; Helke Mocke; Marc Laflamme; Simon A. F. Darroch (2019). "Gregarious suspension feeding in a modular Ediacaran organism". Science Advances. 5 (6): eaaw0260. Bibcode:2019SciA....5..260G. doi:10.1126/sciadv.aaw0260. PMC 6584682. PMID 31223655.
  251. ^ Yaoping Cai; Shuhai Xiao; Guoxiang Li; Hong Hua (2019). "Diverse biomineralizing animals in the terminal Ediacaran Period herald the Cambrian explosion". Geology. 47 (4): 380–384. Bibcode:2019Geo....47..380C. doi:10.1130/G45949.1.
  252. ^ Dominik Letsch; Simon J.E. Large; Stefano M. Bernasconi; Christian Klug; Thomas M. Blattmann; Wilfried Winkler; Albrecht von Quadt (2019). "Northwest Africa's Ediacaran to early Cambrian fossil record, its oldest metazoans and age constraints for the basal Taroudant Group (Morocco)". Precambrian Research. 320: 438–453. Bibcode:2019PreR..320..438L. doi:10.1016/j.precamres.2018.11.016.
  253. ^ Xiao Min; Hong Hua; Yaoping Cai; Bo Sun (2019). "Asexual reproduction of tubular fossils in the terminal Neoproterozoic Dengying Formation, South China". Precambrian Research. 322: 18–23. Bibcode:2019PreR..322...18M. doi:10.1016/j.precamres.2018.12.009.
  254. ^ Frances S. Dunn; Philip R. Wilby; Charlotte G. Kenchington; Dmitriy V. Grazhdankin; Philip C. J. Donoghue; Alexander G. Liu (2019). "Anatomy of the Ediacaran rangeomorph Charnia masoni". Papers in Palaeontology. 5 (1): 157–176. doi:10.1002/spp2.1234.
  255. ^ Scott D. Evans; James G. Gehling; Mary L. Droser (2019). "Slime travelers: Early evidence of animal mobility and feeding in an organic mat world". Geobiology. 17 (5): 490–509. doi:10.1111/gbi.12351. PMID 31180184.
  256. ^ Scott D. Evans; Wei Huang; Jim G. Gehling; David Kisailus; Mary L. Droser (2019). "Stretched, mangled, and torn: Responses of the Ediacaran fossil Dickinsonia to variable forces". Geology. in press. doi:10.1130/G46574.1.
  257. ^ Frances S. Dunn; Alexander G. Liu; James G. Gehling (2019). "Anatomical and ontogenetic reassessment of the Ediacaran frond Arborea arborea and its placement within total group Eumetazoa". Palaeontology. 62 (5): 851–865. doi:10.1111/pala.12431.