2017 in paleontology

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
List of years in paleontology
In science
2014
2015
2016
2017
2018
2019
2020

Paleontology or palaeontology (from Greek: paleo, "ancient"; ontos, "being"; and logos, "knowledge") is the study of prehistoric life forms on Earth through the examination of plant and animal fossils.[1] This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2017.

Important taxa described (but not necessarily validly named) in 2017

Plants[edit]

Cnidarians[edit]

Research[edit]

New taxa[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Acanthophyllum filiforme[8]

Sp. nov

Valid

Coen-Aubert

Devonian (Givetian)

 Mauritania

A rugose coral belonging to the family Ptenophyllidae.

Acanthophyllum sougyi[8]

Sp. nov

Valid

Coen-Aubert

Devonian (Givetian)

 Mauritania

A rugose coral belonging to the family Ptenophyllidae.

Agetolites angullongensis[9]

Sp. nov

Valid

Zhen, Wang & Percival

Late Ordovician

Angullong Formation

 Australia

A tabulate coral.

Bothrophyllum gorbachevensis[10]

Sp. nov

Valid

Fedorowski

Carboniferous (Bashkirian)

 Ukraine

A rugose coral belonging to the family Bothrophyllidae.

Bothrophyllum kalmyussi[10]

Sp. nov

Valid

Fedorowski

Carboniferous (Bashkirian)

 Ukraine

A rugose coral belonging to the family Bothrophyllidae.

Cambroctoconus koori[11]

Sp. nov

Valid

Peel

Cambrian Stage 4 or Stage 5

Henson Gletscher Formation

 Greenland

A possible member of Octocorallia.

Charactophyllum mauritanicum[8]

Sp. nov

Valid

Coen-Aubert

Devonian (Givetian)

 Mauritania

A rugose coral belonging to the family Disphyllidae.

Charactophyllum soraufi[8]

Sp. nov

Valid

Coen-Aubert

Devonian (Givetian)

 Mauritania

A rugose coral belonging to the family Disphyllidae.

Dianqianophyllum[12]

Gen. et sp. nov

Valid

Liao & Ma

Devonian (Givetian)

 China

A rugose coral. Genus includes new species D. bianqingense.

Dibunophylloides columnatus[13]

Sp. nov

Valid

Fedorowski

Carboniferous (Bashkirian)

 Ukraine

A rugose coral belonging to the family Aulophyllidae.

Dibunophylloides paulus[13]

Sp. nov

Valid

Fedorowski

Carboniferous (Bashkirian)

 Ukraine

A rugose coral belonging to the family Aulophyllidae.

Dibunophylloides similis[13]

Sp. nov

Valid

Fedorowski

Carboniferous (Bashkirian)

 Ukraine

A rugose coral belonging to the family Aulophyllidae.

Dibunophyllum medium[13]

Sp. nov

Valid

Fedorowski

Carboniferous (Bashkirian)

 Ukraine

A rugose coral belonging to the family Aulophyllidae.

Fungiaphyllia[14]

Gen. et sp. nov

Valid

Melnikova & Roniewicz

Early Jurassic (Hettangian/SinemurianPliensbachian)

 Afghanistan

A stony coral belonging to the family Latomeandridae. The type species is Fungiaphyllia communis.

Gillismilia[15]

Nom. nov

Valid

Lathuilière, Charbonnier & Pacaud

Early Jurassic (Pliensbachian)

 France

A coral; a replacement name for Palaeocyathus Alloiteau (1956).

Guembelastraea dronovi[14]

Sp. nov

Valid

Melnikova & Roniewicz

Early Jurassic (Hettangian/Sinemurian)

 Afghanistan

A stony coral belonging to the family Tropiastraeidae, a species of Guembelastraea.

Lithostrotion termieri[16]

Sp. nov

Valid

Rodríguez & Somerville in Rodríguez, Somerville & Said

Carboniferous (Viséan)

Azrou-Khenifra Basin

 Morocco

A rugose coral belonging to the family Lithostrotionidae.

Macgeea tourneuri[8]

Sp. nov

Valid

Coen-Aubert

Devonian (Givetian)

 Mauritania

A rugose coral belonging to the family Phillipsastreidae.

Nina[10]

Gen. et 3 sp. et comb. nov

Junior homonym

Fedorowski

Carboniferous (Serpukhovian and Bashkirian)

 Ukraine

A rugose coral belonging to the family Bothrophyllidae. The type species is N. donetsiana; genus also includes new species N. dibimitaria and N. magna, as well as "Bothrophyllum" berestovensis Vassilyuk (1960). The generic name is preoccupied by Nina Horsfield (1829).

Oppelismilia spectabilis[14]

Sp. nov

Valid

Melnikova & Roniewicz

Early Jurassic (Hettangian/Sinemurian)

 Afghanistan

A stony coral belonging to the family Oppelismiliidae, a species of Oppelismilia.

Parepismilia dolichostoma[14]

Sp. nov

Valid

Melnikova & Roniewicz

Early Jurassic (Hettangian–early Sinemurian)

 Afghanistan

A stony coral belonging to the family Parepismiliidae, a species of Parepismilia.

Parepismilia dronovi[14]

Sp. nov

Valid

Melnikova & Roniewicz

Early Jurassic (Hettangian/Sinemurian)

 Afghanistan

A stony coral belonging to the family Parepismiliidae, a species of Parepismilia.

Periplacotrochus[17]

Gen. et comb. et sp. nov

Valid

Cairns

Late Eocene to middle Miocene

 Australia

A flabellid coral. Genus includes P. deltoideus (Duncan, 1864), P. corniculatus (Dennant, 1899), P. elongatus (Duncan, 1864), P. pueblensis (Dennant, 1903), P. inflectus (Dennant, 1903) and P. magnus (Dennant, 1904), as well as new species P. cudmorei.

Petrophyllia niimiensis[18]

Sp. nov

Valid

Niko, Suzuki & Taguchi

Miocene

Bihoku Group

 Japan

A stony coral.

Qinscyphus[19]

Gen. et sp. nov

Valid

Liu et al.

Cambrian (Fortunian)

Kuanchuanpu Formation

 China

A probable crown jellyfish belonging to the family Olivooidae. The type species is Q. necopinus.

Rozkowskia lenta[13]

Sp. nov

Valid

Fedorowski

Carboniferous (Bashkirian)

 Ukraine

A rugose coral belonging to the family Aulophyllidae.

Scoliopora hosakai[20]

Sp. nov

Valid

Niko, Ibaraki & Tazawa

Middle Devonian

 Japan

A tabulate coral belonging to the order Favositida and the family Alveolitidae.

Sinaster[21]

Gen. et sp. nov

Valid

Wang et al.

Early Cambrian

Kuanchuanpu Formation

 China

A member of Medusozoa belonging to the family Olivooidae. The type species is S. petalon.

Stephanophyllia plattenwaldensis[22]

Sp. nov

Valid

Baron-Szabo

Early Cretaceous (late Aptian to Albian)

Garschella Formation

 Austria

A stony coral belonging to the family Micrabaciidae.

Sterictopathes[23]

Gen. et sp. nov

Valid

Baliński & Sun

Ordovician (early Floian)

Fenxiang Formation
Honghuayuan Formation

 China

A black coral related to Sinopathes reptans. The type species is S. radicatus.

Voragoaxum[13]

Gen. et sp. nov

Valid

Fedorowski

Carboniferous (Bashkirian)

 Ukraine

A rugose coral belonging to the family Aulophyllidae. The type species is V. cavum.

Arthropods[edit]

Bryozoans[edit]

Research[edit]

New taxa[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Acupipora mexicana[25]

Sp. nov

Valid

Ernst & Vachard

Carboniferous (middle Pennsylvanian)

 Mexico

Adeonellopsis sandbergi[26]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

 United States
( Florida)

A cheilostome bryozoan belonging to the family Adeonidae.

'Akatopora' wilmseni[27]

Sp. nov

Valid

Martha, Niebuhr & Scholz

Late Cretaceous (mid-late Turonian)

Strehlen Formation

 Germany

A cheilostome bryozoan.

Atactotoechus vaulxensis[28]

Sp. nov

Valid

Ernst et al.

Carboniferous (Mississippian)

 Belgium

A bryozoan.

Bashkirella arnaoense[29]

Sp. nov

Valid

Suárez Andrés & Wyse Jackson

Devonian (Eifelian)

Moniello Formation

 Spain

A member of Fenestrata belonging to the family Chasmatoporidae.

Bigeyina cantabrica[29]

Sp. nov

Valid

Suárez Andrés & Wyse Jackson

Devonian (Emsian–early Eifelian)

Moniello Formation

 Spain

A member of Fenestrata belonging to the family Semicosciniidae.

Bigeyina spinosa[29]

Sp. nov

Valid

Suárez Andrés & Wyse Jackson

Devonian (Emsian–early Eifelian)

Moniello Formation

 Spain

A member of Fenestrata belonging to the family Semicosciniidae.

Bragella[30]

Gen. et sp. nov

Valid

Di Martino et al.

EoceneOligocene transition

 Tanzania

A cheilostome bryozoan. Genus includes new species B. pseudofedora.

Buskia waiinuensis[31]

Sp. nov

Valid

Di Martino et al.

Pleistocene

Nukumaru Limestone

 New Zealand

A member of Ctenostomata belonging to the superfamily Vesicularioidea and the family Buskiidae.

Cheiloporina clarksvillensis[26]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

 United States
( Florida)

A cheilostome bryozoan belonging to the family Cheiloporinidae.

Cigclisula solenoides[26]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

 United States
( Florida)

A cheilostome bryozoan belonging to the family Colatooeciidae.

Coeloclemis zefrehensis[32]

Sp. nov

Valid

Ernst et al.

Devonian (Frasnian)

Bahram Formation

 Iran

A trepostome bryozoan.

Diplosolen akatjevense[33]

Sp. nov

Valid

Viskova & Pakhnevich

Middle Jurassic (Callovian)

 Russia

A bryozoan belonging to the class Stenolaemata and the order Tubuliporida.

Ditaxipora lakriensis[34]

Sp. nov

Valid

Sonar & Pawar

Miocene (Burdigalian)

Chhasra Formation

 India

A member of the family Catenicellidae.

Eridopora moravica[35]

Sp. nov

Valid

Tolokonnikova, Kalvoda & Kumpan

Carboniferous (Tournaisian)

 Czech Republic

Escharoides joannae[26]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

 United States
( Florida)

A cheilostome bryozoan belonging to the family Romancheinidae.

Euthyrhombopora tenuis[32]

Sp. nov

Valid

Ernst et al.

Devonian (Frasnian)

Bahram Formation

 Iran

A rhabdomesine cryptostome bryozoan.

Exechonella minutiperforata[26]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

 United States
( Florida)

A cheilostome bryozoan belonging to the family Exechonellidae.

Exidmonea baghi[36]

Sp. nov

Valid

Zágoršek, Yazdi & Bahrami

Miocene

Qom Formation

 Iran

A cyclostome bryozoan.

Fabifenestella almazani[25]

Sp. nov

Valid

Ernst & Vachard

Carboniferous (middle Pennsylvanian)

 Mexico

Fenestrapora elegans[29]

Sp. nov

Valid

Suárez Andrés & Wyse Jackson

Devonian (late Emsian–early Eifelian)

Moniello Formation

 Spain

A member of Fenestrata belonging to the family Semicosciniidae.

Filites robustus[29]

Sp. nov

Valid

Suárez Andrés & Wyse Jackson

Devonian (Emsian–early Eifelian)

Moniello Formation

 Spain

A member of Fenestrata belonging to the family Acanthocladiidae.

Floridina subantiqua[26]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

 United States
( Florida)

A cheilostome bryozoan belonging to the family Onychocellidae.

Foratella cervisia[37]

Sp. nov

Valid

Taylor & Martha

Late Cretaceous (Cenomanian)

Beer Head Limestone Formation

 United Kingdom

A cheilostome bryozoan.

Hagiosynodos simplex[26]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

 United States
( Florida)

A cheilostome bryozoan belonging to the family Cheiloporinidae.

Heteractis tanzaniensis[30]

Sp. nov

Valid

Di Martino et al.

EoceneOligocene transition

 Tanzania

A cheilostome bryozoan.

Hillmeropora[27]

Gen. et sp. nov

Valid

Martha, Niebuhr & Scholz

Late Cretaceous (mid-late Turonian)

Strehlen Formation

 Germany

A cheilostome bryozoan genus belonging to the family Calloporidae. Type species H. pavonina; genus also includes Membranipora procurrens Brydone, 1929.

Jablonskipora[38]

Gen. et sp. nov

Valid

Martha & Taylor

Early Cretaceous (Albian)

Upper Greensand

 United Kingdom

A cheilostome bryozoan. The type species is J. kidwellae.

Kalvariella antiqua[29]

Sp. nov

Valid

Suárez Andrés & Wyse Jackson

Devonian (Emsian–early Eifelian)

Moniello Formation

 Spain

A member of Fenestrata belonging to the family Acanthocladiidae.

Lacrimula crassa[30]

Sp. nov

Valid

Di Martino et al.

EoceneOligocene transition

 Tanzania

A cheilostome bryozoan.

Lacrimula kilwaensis[30]

Sp. nov

Valid

Di Martino et al.

EoceneOligocene transition

 Tanzania

A cheilostome bryozoan.

Margaretta pentaceratops[26]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

 United States
( Florida)

A cheilostome bryozoan belonging to the family Margarettidae.

Metrarabdotos aquaeguttum[39]

Sp. nov

Valid

Ramalho, Távora & Zagorsek

Early Miocene

Pirabas Formation

 Brazil

A member of Lepralielloidea belonging to the family Metrarabdotosidae.

Metrarabdotos capanemensis[39]

Sp. nov

Valid

Ramalho, Távora & Zagorsek

Early Miocene

Pirabas Formation

 Brazil

A member of Lepralielloidea belonging to the family Metrarabdotosidae.

Metrarabdotos elongatum[39]

Sp. nov

Valid

Ramalho, Távora & Zagorsek

Early Miocene

Pirabas Formation

 Brazil

A member of Lepralielloidea belonging to the family Metrarabdotosidae.

Microeciella kolomnensis[33]

Sp. nov

Valid

Viskova & Pakhnevich

Middle Jurassic (Callovian)

 Russia

A bryozoan belonging to the suborder Tubuliporina and the family Oncousoeciidae.

Microporella rusti[31]

Sp. nov

Valid

Di Martino et al.

Pleistocene

Nukumaru Limestone

 New Zealand

A member of the family Microporellidae.

Nellia winstonae[26]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

 United States
( Florida)

A cheilostome bryozoan belonging to the family Quadricellariidae.

Nevianipora isfahani[36]

Sp. nov

Valid

Zágoršek, Yazdi & Bahrami

Miocene

Qom Formation

 Iran

A cyclostome bryozoan.

'Onychocella' barbata[27]

Sp. nov

Valid

Martha, Niebuhr & Scholz

Late Cretaceous (late Cenomanian)

Dölzschen Formation

 Germany

A cheilostome bryozoan. Taylor, Martha & Gordon (2018) transferred this species to the genus Kamilocella.[40]

Onychocella saxoniae[27]

Sp. nov

Valid

Martha, Niebuhr & Scholz

Late Cretaceous (late Cenomanian)

Dölzschen Formation

 Germany

A cheilostome bryozoan.

Paralicornia interdigitata[26]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

 United States
( Florida)

A cheilostome bryozoan belonging to the family Candidae.

Paraseptopora geometrica[29]

Sp. nov

Valid

Suárez Andrés & Wyse Jackson

Devonian (late Emsian–early Eifelian)

Moniello Formation

 Spain

A member of Fenestrata belonging to the family Septoporidae.

Paraseptopora irregularis[29]

Sp. nov

Valid

Suárez Andrés & Wyse Jackson

Devonian (Emsian–early Eifelian)

Moniello Formation

 Spain

A member of Fenestrata belonging to the family Septoporidae.

Pharopora[41]

Gen. et sp. nov

Valid

Wyse Jackson, Ernst & Suárez Andrés

Carboniferous (Tournaisian)

Hook Head Formation

 Ireland

A member of Cryptostomata belonging to the family Rhabdomesidae. The type species is P. regularis.

Pleuromucrum epifanioi[26]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

 United States
( Florida)

A cheilostome bryozoan belonging to the family Phidoloporidae.

Pleuromucrum liowae[26]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

 United States
( Florida)

A cheilostome bryozoan belonging to the family Phidoloporidae.

Polyascosoecia iranica[36]

Sp. nov

Valid

Zágoršek, Yazdi & Bahrami

Miocene

Qom Formation

 Iran

A cyclostome bryozoan.

Puellina quadrispinosa[26]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

 United States
( Florida)

A cheilostome bryozoan belonging to the family Cribrilinidae.

Revalotrypa inopinata[42]

Sp. nov

Valid

Fedorov, Koromyslova & Martha

Ordovician (Floian)

 Russia

An esthonioporate bryozoan belonging to the family Revalotrypidae.

Revalotrypa yugaensis[42]

Sp. nov

Valid

Fedorov, Koromyslova & Martha

Ordovician (Floian)

 Russia

An esthonioporate bryozoan belonging to the family Revalotrypidae.

Schizolepraliella[26]

Gen. et sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

 United States
( Florida)

A Schizoporella-like cheilostome bryozoan of uncertain phylogenetic placement. The type species is S. nancyae.

Selenaria lyrulata[43]

Sp. nov

Valid

López-Gappa, Pérez & Griffin

Early Miocene

Monte León Formation

 Argentina

A bryozoan belonging to the family Selenariidae.

Spiniflabellum jacksoni[26]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

 United States
( Florida)

A cheilostome bryozoan belonging to the family Cribrilinidae.

Steginoporella tiara[44]

Sp. nov

Valid

Gordon, Voje & Taylor

Early Pleistocene

 New Zealand

A member of Cheilostomata belonging to the family Steginoporellidae.

Stylopoma farleyensis[26]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

 United States
( Florida)

A cheilostome bryozoan belonging to the family Schizoporellidae.

Stylopoma leverhulme[26]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

 United States
( Florida)

A cheilostome bryozoan belonging to the family Schizoporellidae.

Thalamoporella bitorquata[26]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

 United States
( Florida)

A cheilostome bryozoan belonging to the family Thalamoporellidae.

Thalamoporella hastigera[26]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

 United States
( Florida)

A cheilostome bryozoan belonging to the family Thalamoporellidae.

Thalamoporella ogivalis[26]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

 United States
( Florida)

A cheilostome bryozoan belonging to the family Thalamoporellidae.

Thalamoporella papalis[26]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

 United States
( Florida)

A cheilostome bryozoan belonging to the family Thalamoporellidae.

Thalamoporella polygonalis[26]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

 United States
( Florida)

A cheilostome bryozoan belonging to the family Thalamoporellidae.

Trypostega vokesi[26]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

 United States
( Florida)

A cheilostome bryozoan belonging to the family Trypostegidae.

Turbicellepora giardinai[26]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

 United States
( Florida)

A cheilostome bryozoan belonging to the family Celleporidae.

Utropora parva[29]

Sp. nov

Valid

Suárez Andrés & Wyse Jackson

Devonian (Emsian–early Eifelian)

Moniello Formation

 Spain

A member of Fenestrata belonging to the family Semicosciniidae.

Vix scolaroi[26]

Sp. nov

Valid

Di Martino, Taylor & Portell

Early Miocene

Chipola Formation

 United States
( Florida)

A cheilostome bryozoan belonging to the family Vicidae.

Wilbertopora manubriformis[37]

Sp. nov

Valid

Taylor & Martha

Late Cretaceous (Cenomanian)

Beer Head Limestone Formation

 United Kingdom

A cheilostome bryozoan.

Wilbertopora ostiolatoides[27]

Sp. nov

Valid

Martha, Niebuhr & Scholz

Late Cretaceous (mid-late Turonian)

Strehlen Formation

 Germany

A cheilostome bryozoan.

Brachiopods[edit]

Research[edit]

New taxa[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Acrothyra bonnia[47]

Sp. nov

Valid

Skovsted et al.

Cambrian Stage 4

Forteau Formation

 Canada
( Newfoundland and Labrador)

A member of Acrotretida belonging to the family Acrotretidae.

Anarhynchia smithi[48]

Sp. nov

Valid

Pálfy et al.

Early Jurassic (Pliensbachian)

Inklin Formation

 Canada
( British Columbia)

Atelelasma longisulcum[49]

Sp. nov

Valid

Liljeroth et al.

Ordovician

Dunabrattin Limestone Formation
Tramore Limestone Formation

 Ireland

A member of Strophomenata belonging to the order Billingsellida and the family Clitambonitidae.

Atychorhynchia[50]

Gen. et sp. nov

Valid

Baeza-Carratalá, Reolid & García Joral

Early Jurassic (late Pliensbachian–early Toarcian)

Zegrí Formation

 Spain

A member of Rhynchonellida belonging to the family Norellidae. The type species is A. falsiorigo.

Avdeevella[51]

Gen. et sp. nov

Valid

Baranov

Ordovician

 Russia

The type species is A. mica.

Bilobia alichovae[52]

Sp. nov

Valid

Madison

Ordovician (Sandbian)

 Russia
( Leningrad Oblast)

A member of Strophomenida.

Bittnerithyris[53]

Gen. nov

Valid

Popov & Zakharov

Early Triassic (Olenekian)

 Russia
( Primorsky Krai)

A member of Terebratulida.

Bronnothyris danaperensis[54]

Sp. nov

Valid

Bitner & Müller

Eocene (Priabonian)

 Ukraine

A member of Terebratulida belonging to the family Megathyrididae.

Burrirhynchia albiensis[55]

Sp. nov

Valid

Gaspard

Early Cretaceous (Albian)

 France

A member of Rhynchonellida belonging to the family Tetrarhynchiidae.

Colaptomena auduni[49]

Sp. nov

Valid

Liljeroth et al.

Ordovician

Tramore Limestone Formation

 Ireland

A member of Strophomenida belonging to the family Rafinesquinidae.

Cyrtinaella? houi[56]

Sp. nov

Valid

Lü & Ma

Devonian (late Frasnian)

 China

A member of Spiriferinida.

Cyrtospirifer ainosawensis[57]

Sp. nov

Valid

Tazawa, Inose & Kaneko

Late Devonian

Ainosawa Formation

 Japan

A member of Spiriferida belonging to the family Cyrtospiriferidae.

Cyrtospirifer choanjiensis[58]

Sp. nov

Valid

Tazawa

Late Devonian

 Japan

A member of Spiriferida belonging to the family Cyrtospiriferidae.

Dactylogonia costellata[49]

Sp. nov

Valid

Liljeroth et al.

Ordovician

Dunabrattin Limestone Formation
Tramore Limestone Formation

 Ireland

A member of Strophomenida belonging to the family Strophomenidae.

Dirafinesquina antiqua[59]

Sp. nov

Valid

Popov & Cocks

Ordovician (Dapingian)

 Iran

A strophomenoid brachiopod.

Discinisca suborbicularis[60]

Sp. nov

Valid

Smirnova et al.

Late Jurassic

 Russia

Discinisca undata[61]

Sp. nov

Valid

Smirnova in Smirnova et al.

Late Jurassic

 Russia

A brachiopod belonging to the family Discinidae, a species of Discinisca.

Elkanathyris[62]

Gen. et sp. nov

Valid

Copper & Jin

Silurian (Aeronian)

 Canada
( Quebec)

An athyride brachiopod. The type species is E. pallula.

Eoporambonites raziabadensis[59]

Sp. nov

Valid

Popov & Cocks

Ordovician (Dapingian)

 Iran

A porambonitoid brachiopod.

Foveola ivari[63]

Sp. nov

Valid[64]

Holmer et al.

Ordovician (Sandbian)

 Estonia

A member of Obolidae.

Gypidula xui[56]

Sp. nov

Valid

Lü & Ma

Devonian (late Frasnian)

 China

A member of Pentamerida.

Hesperorthis leinsterensis[49]

Sp. nov

Valid

Liljeroth et al.

Ordovician

Dunabrattin Limestone Formation
Tramore Limestone Formation

 Ireland

A member of Orthida belonging to the family Hesperorthidae.

Hexigtenichonetes[65]

Gen. et comb. nov

Valid

Shen in Shen et al.

Permian (Guadalupian)

Miaoling Formation

 China

A member of Productida belonging to the family Rugosochonetidae. The type species is "Hemichonetes" hemipleura Li & Su in Li et al. (1980); genus also includes "Hemichonetes guangxingensis Li & Su in Li et al. (1980), "Hemichonetes subquadrata Li & Su in Li et al. (1980) and "Hemichonetes yanjiensis Li & Su in Li et al. (1980).

Hibernobonites[49]

Gen. et comb. nov

Valid

Liljeroth et al.

Ordovician

Dunabrattin Limestone Formation
Tramore Limestone Formation
Tourmakeady Limestone Formation?

 Ireland

A member of Pentamerida belonging to the family Porambonitidae. The type species is "Atrypa" filosa M’Coy (1846); genus might also include "Porambonites" dubius Williams & Curry (1985).

Howellites hibernicus[49]

Sp. nov

Valid

Liljeroth et al.

Ordovician

Dunabrattin Limestone Formation
Tramore Limestone Formation

 Ireland

A member of Orthida belonging to the family Dalmanellidae.

Isophragma parallelum[49]

Sp. nov

Valid

Liljeroth et al.

Ordovician

Dunabrattin Limestone Formation
Tramore Limestone Formation

 Ireland

A member of Strophomenida belonging to the family Plectambonitidae.

Joania ukrainica[54]

Sp. nov

Valid

Bitner & Müller

Eocene (Priabonian)

 Ukraine

A member of Terebratulida belonging to the family Megathyrididae.

Karadagithyris boullierae[66]

Sp. nov

Valid

Halamski & Cherif

Late Jurassic (Oxfordian)

Argiles de Saïda Formation

 Algeria

A member of Terebratulida belonging to the family Muirwoodellidae.

Karlsorus[67]

Gen. et comb. nov

Valid

Jin & Holmer

Silurian (Wenlock)

 Sweden

A new genus for "Pentamerus" gothlandicus Lebedev (1892).

Koninckodonta sumuntanensis[50]

Sp. nov

Valid

Baeza-Carratalá, Reolid & García Joral

Early Jurassic (late Pliensbachian–early Toarcian)

Zegrí Formation

 Spain

A member of Athyridida belonging to the family Koninckinidae.

Kurtothyris[65]

Nom. nov

Valid

Shen in Shen et al.

Permian (late Cisuralian)

Chihsia Formation

 China

A member of Spiriferida belonging to the family Skelidorygmidae; a replacement name for Litothyris Chang (1987). The type species is "Litothyris" anhuiensis Chang (1987).

Kyrshabaktella diabola[47]

Sp. nov

Valid

Skovsted et al.

Cambrian Stage 4

Forteau Formation

 Canada
( Newfoundland and Labrador)

A member of Linguloidea belonging to the family Kyrshabaktellidae.

Lacunites ivantsovi[63]

Sp. nov

Valid[64]

Holmer et al.

Ordovician (early Darriwilian)

 Russia

A paterinid brachiopod.

Lamellaerhynchia carronensis[55]

Sp. nov

Valid

Gaspard

Early Cretaceous (Albian)

 France

A member of Rhynchonellida belonging to the family Cyclothyrididae.

Leptagonia franca[68]

Sp. nov

Valid

Mottequin & Simon

Carboniferous (Tournaisian)

Tournai Formation

 Belgium

A member of Strophomenoidea belonging to the family Rafinesquinidae.

Levipugnax? liui[56]

Sp. nov

Valid

Lü & Ma

Devonian (late Frasnian)

 China

A member of Rhynchonellida.

Liaotarimella[65]

Nom. nov

Valid

Shen in Shen et al.

Permian (Artinskian)

Wutankule Formation

 China

A member of Productida belonging to the family Productellidae. A replacement name for Tarimella Chen (2004). The type species is "Tarimella" tarimensis Chen (2004).

Lichuanorelloides[69]

Gen. et sp. nov

Valid

Wang et al.

Early Triassic

 China

Genus includes new species L. lichuanensis.

Meristella? aksuensis[70]

Sp. nov

Valid

Modzalevskaya et al.

Devonian (Lochkovian)

 Tajikistan

Nisusia guizhouensis[71]

Sp. nov

Valid

Mao et al.

Cambrian

Kaili Formation
Qingxudong Formation

 China

A brachiopod belonging to the subphylum Rhynchonelliformea, order Kutorginida and the family Nisusiidae.

Nucleospira hannoniae[68]

Nom. nov

Valid

Mottequin & Simon

Carboniferous (Tournaisian)

Tournai Formation

 Belgium

A member of Athyridida belonging to the family Nucleospiridae; a replacement name for Athyris globulina de Koninck (1887).

Onniella variabilis[72]

Sp. nov

Valid

Harper, Parkes & Zhan

Ordovician (Katian)

Raheen Formation

 Ireland

A dalmanelloid brachiopod belonging to the family Dalmanellidae.

Ouraniorhynchus[70]

Gen. et sp. nov

Valid

Modzalevskaya et al.

Devonian (Lochkovian)

 Tajikistan

A brachiopod. Genus includes new species O. dronovi.

Permocryptospirifer[65]

Gen. et comb. nov

Valid

Shen & Grunt in Shen et al.

Permian (late Cisuralian and Guadalupian)

Chihsia Formation
Maokou Formation
Shazipo Formation

 China

A member of Athyridida belonging to the family Athyrididae. The type species is "Cryptospirifer" omeishanensis Huang (1933); genus also includes "Cryptospirifer" minor Yang (1984) and "Cryptospirifer" shawanensis Jin et al. (1974).

Piarorhynchella tazawai[53]

Sp. nov

Valid

Popov & Zakharov

Early Triassic (Olenekian)

 Russia
( Primorsky Krai)

A member of Rhynchonellida.

Platystrophia tramorensis[49]

Sp. nov

Valid

Liljeroth et al.

Ordovician

Tramore Limestone Formation

 Ireland

A member of Orthida belonging to the family Platystrophiidae.

Pustulobolus[47]

Gen. et sp. nov

Valid

Skovsted et al.

Cambrian Stage 3-4

Forteau Formation

 Canada
( Newfoundland and Labrador)

A member of Linguloidea belonging to the family Eoobolidae. The type species is P. triangulus.

Qidongia[56]

Gen. et sp. nov

Valid

Lü & Ma

Devonian (late Frasnian)

 China

A member of Terebratulida. The type species is Q. tani.

Rhipidomella discreta[73]

Sp. nov

Valid

Cisterna et al.

Carboniferous (late SerpukhovianBashkirian)

El Paso Formation

 Argentina

A brachiopod belonging to the group Orthida and the family Rhipidomellidae.

Rioultina zalasensis[74]

Sp. nov

Valid

Radwańska

Late Jurassic (Oxfordian)

 Poland

A member of Thecideida belonging to the family Thecidellinidae.

Sericoidea hibernica[72]

Sp. nov

Valid

Harper, Parkes & Zhan

Ordovician (Katian)

Raheen Formation

 Ireland

A plectambonitoid brachiopod belonging to the family Sowerbyellidae.

Serratocrista scaldisensis[68]

Sp. nov

Valid

Mottequin & Simon

Carboniferous (Tournaisian)

Tournai Formation

 Belgium

A member of Orthotetida belonging to the family Schuchertellidae.

Simehorthis[75]

Gen. et sp. nov

Valid

Kebria-Ee Zadeh, Popov & Ghobadi Pour

Ordovician (Darriwilian)

Lashkarak Formation

 Iran

A member of Orthida belonging to the family Hesperorthidae. Genus includes new species S. fascicostellata.

Somalithyris lakhaparensis[76]

Sp. nov

Valid

Mukherjee & Shome

Late Jurassic (Tithonian)

 India

Starnikoviella[51]

Gen. et sp. nov

Valid

Baranov

Ordovician

 Russia

The type species is S. settedabanica.

Tectogonotoechia rivasi[77]

Sp. nov

Valid

García-Alcalde & Herrera

Devonian (Pragian)

Nogueras Formation

 Spain

A member of Rhynchonellida belonging to the superfamily Ancistrorhynchoidea and the family Iberirhynchiidae.

Thomasaria? baii[56]

Sp. nov

Valid

Lü & Ma

Devonian (late Frasnian)

 China

A member of Spiriferida.

Thomasaria? liangi[56]

Sp. nov

Valid

Lü & Ma

Devonian (late Frasnian)

 China

A member of Spiriferida.

Tunethyris blodgetti[78]

Sp. nov

Valid

Feldman

Middle Triassic

Saharonim Formation

 Israel

A member of Terebratulida belonging to the family Dielasmatidae.

Westonia mardini[79]

Sp. nov

Valid

Mergl et al.

Cambrian (Furongian)

Sosink Formation

 Turkey

Xiangia[56]

Gen. et sp. nov

Junior homonym

Lü & Ma

Devonian (late Frasnian)

 China

A member of Spiriferida. The type species is X. liaoi. The generic name is preoccupied by Xiangia Peng (1987).

Zhanorthis[59]

Gen. et sp. nov

Valid

Popov & Cocks

Ordovician (Dapingian)

 Iran

An orthoid brachiopod. Genus includes new species Z. gerdkuhensis.

Ziyunospirifer[80]

Nom. nov

Valid

Shen in Shen et al.

Early Carboniferous

Zhaojiashan Formation

 China

A member of Spiriferida belonging to the family Choristitidae; a replacement name for Quizhouspirifer Xian (1982). The type species is "Quizhouspirifer" ziyunensis Xian (1982).

Molluscs[edit]

Echinoderms[edit]

Research[edit]

New taxa[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Amblypygus matruhensis[97]

Sp. nov

Valid

Ali

Middle Miocene

 Egypt

A sea urchin.

Ambonacrinus[98]

Gen. et sp. nov

Valid

Cole et al.

Ordovician (Katian)

Fombuena Formation

 Spain

A diplobathrid camerate crinoid. Genus includes new species A. decorus.

Andymetra toarcensis[99]

Sp. nov

Valid

Hess & Thuy

Early Jurassic

 France

A comatulid crinoid.

Anthroosasterias[100]

Gen. et sp. nov

Valid

Blake

Carboniferous

Gilmore City Formation

 United States
( Iowa)

A starfish belonging to the family Urasterellidae. Genus includes new species A. mikrotero.

Antillaster farisi[101]

Sp. nov

Valid

Ali

Middle Eocene

 Egypt

A sea urchin.

Aspidophiura? seren[102]

Sp. nov

Valid

Ewin & Thuy

Jurassic

Oxford Clay Formation

 United Kingdom

A brittle star.

Ateleocystites? lansae[103]

Sp. nov

Valid

McDermott & Paul

Ordovician (Katian)

Slade and Redhill Beds

 United Kingdom

A mitrate belonging to the family Anomalocystitidae, possibly a species of Ateleocystites.

Brissus mihalyi[104]

Sp. nov.

Valid

Polonkai et al.

Middle Miocene

Leitha Limestone Formation

 Hungary

A heart urchin belonging to the family Brissidae.

Crepidosoma doylei[105]

Sp. nov

Valid

Blake, Donovan & Harper

Silurian (Telychian)

Kilbride Formation

 Ireland

A brittle star belonging to the group Oegophiurida and the family Encrinasteridae.

Dalicrinus[98]

Gen. et sp. nov

Valid

Cole et al.

Ordovician (Katian)

Fombuena Formation

 Spain

A diplobathrid camerate crinoid. Genus includes new species D. hammanni.

Diplodetus brisenoi[106]

Sp. nov

Valid

Silva-Martínez et al.

Late Cretaceous (early Campanian)

Austin Formation

 Mexico

A heart urchin belonging to the family Brissidae.

Echinocyamus belali[101]

Sp. nov

Valid

Ali

Middle Eocene

 Egypt

A sea urchin.

Enakomusium whymanae[102]

Sp. nov

Valid

Ewin & Thuy

Jurassic

Oxford Clay Formation

 United Kingdom

A brittle star.

Eopatelliocrinus hispaniensis[98]

Sp. nov

Valid

Cole et al.

Ordovician (Katian)

Fombuena Formation

 Spain

A monobathrid camerate crinoid.

Eotiaris guadalupensis[107]

Sp. nov

Valid

Thompson in Thompson, Petsios & Bottjer

Permian (Capitanian)

Bell Canyon Formation

 United States
( Texas)

A sea urchin. The name first appeared in the publication of Thompson et al. (2015);[108] however, it was published in an online only journal Scientific Reports and it was not registered with ZooBank, making it invalid until it was validated by Thompson, Petsios & Bottjer (2017).[107]

Felbabkacystis[109]

Gen. et sp. nov

Valid

Nardin et al.

Cambrian (Drumian)

Jince Formation

 Czech Republic

A transitional form between calyx-bearing and theca-bearing blastozoans. Genus includes new species F. luckae.

Fombuenacrinus[98]

Gen. et sp. nov

Valid

Cole et al.

Ordovician (Katian)

Fombuena Formation

 Spain

A diplobathrid camerate crinoid. Genus includes new species F. nodulus.

Forcipicrinus[99]

Gen. et sp. nov

Valid

Hess & Thuy

Early Jurassic

 France

An isocrinid crinoid. Genus includes new species F. normannicus.

Globator roselli[110]

Sp. nov

Valid

Carrasco

Eocene

 Spain

A sea urchin related to members of the genus Conulus.

Goniopygus emmae[111]

Sp. nov

Valid

Forner i Valls

Late Cretaceous (Campanian)

 Morocco

A sea urchin belonging to the group Arbacioida and the family Acropeltidae.

Grigopyrgus[112]

Gen. et comb. nov

Valid

Müller & Hahn

Early Devonian

 Germany

A member of Edrioasteroidea belonging to the family Agelacrinitidae; a new genus for "Agelacrinites" curvatus Grigo (1995).

Goyacrinus[98]

Gen. et sp. nov

Valid

Cole et al.

Ordovician (Katian)

Fombuena Formation

 Spain

A diplobathrid camerate crinoid. Genus includes new species G. gutierrezi.

Heropyrgus[113]

Gen. et sp. nov

Valid

Briggs et al.

Silurian

Herefordshire Lagerstätte

 United Kingdom

A rhenopyrgid edrioasteroid. The type species is H. disterminus.

Holocystites salmoensis[114]

Sp. nov

Valid

Sheffield, Ausich & Sumrall

Ordovician (Hirnantian)

Ellis Bay Formation

 Canada
( Quebec)

A member of Diploporita belonging to the group Sphaeronitida and the family Holocystitidae.

Metalia lindaae[101]

Sp. nov

Valid

Ali

Middle Eocene

 Egypt

A sea urchin.

Monostychia alanrixi[115]

Sp. nov

Valid

Sadler, Martin & Gallagher

Miocene

Colville Sandstone

 Australia

A sea urchin.

Monostychia macnamarai[115]

Sp. nov

Valid

Sadler, Martin & Gallagher

Miocene

Colville Sandstone

 Australia

A sea urchin.

Monostychia robertirwini[115]

Sp. nov

Valid

Sadler, Martin & Gallagher

Miocene

Colville Sandstone

 Australia

A sea urchin.

Moroccodiscus[116]

Gen. et sp. nov

Valid

Reich et al.

Ordovician (Darriwilian)

Taddrist Formation

 Morocco

A cyclocystoid echinoderm. Genus includes new species M. smithi.

Oehlerticrinus peachi[117]

Sp. nov

Valid

Donovan & Fearnhead

Early Devonian

Looe Basin

 United Kingdom

A crinoid belonging to the group Monobathrida and the family Hexacrinitidae.

Ophiotitanos smithi[102]

Sp. nov

Valid

Ewin & Thuy

Jurassic

Oxford Clay Formation

 United Kingdom

A brittle star.

Ova rancoca[118]

Sp. nov

Valid

Zachos

Paleocene (Thanetian)

Vincentown Formation

 United States
( New Jersey)

A sea urchin.

Paerticrinus[119]

Gen. et sp. nov

Valid

Wright & Toom

Silurian (Rhuddanian)

 Estonia

A crinoid. Genus includes new species P. arvosus.

Palaeocomaster structus[99]

Sp. nov

Valid

Hess & Thuy

Early Jurassic

 France

A comatulid crinoid.

Persiacarpos[120]

Gen. et sp. nov

Valid

Rozhnov & Parsley

Cambrian

Mila Formation

 Iran

A member of Cornuta. Genus includes new species P. jefferiesi.

Petalobrissus ossoi[111]

Sp. nov

Valid

Forner i Valls

Late Cretaceous (Campanian)

 Morocco

A sea urchin belonging to the group Cassiduloida and the family Faujasidae.

Petalocrinus stenopetalus[121]

Sp. nov

Valid

Mao et al.

Silurian (Aeronian)

 China

A crinoid belonging to the family Petalocrinidae.

Picassocrinus[98]

Gen. et sp. nov

Valid

Cole et al.

Ordovician (Katian)

Fombuena Formation

 Spain

A cladid crinoid. Genus includes new species P. villasi.

Ronsocrinus[122]

Gen. et sp. nov

Valid

Cordie & Witzke

Devonian (Givetian)

 United States
( Iowa)

A camerate crinoid belonging to the family Melocrinitidae. Genus includes new species R. rabia.

Salenia palmyra[118]

Sp. nov

Valid

Zachos

Paleocene (Danian)

Clayton Formation

 United States
( Alabama
 Georgia (U.S. state))

A sea urchin.

Sanducystis[123]

Gen. et sp. nov

Valid

Zamora et al.

Cambrian (Furongian)

Sandu Formation

 China

A stemmed echinoderm. The type species is S. sinensis.

Singillatimetra truncata[99]

Sp. nov

Valid

Hess & Thuy

Early Jurassic

 France

An isocrinid crinoid.

Solanocrinites jagti[99]

Sp. nov

Valid

Hess & Thuy

Early Jurassic

 France

A comatulid crinoid.

Spinimetra[99]

Gen. et sp. nov

Valid

Hess & Thuy

Early Jurassic

 France

A comatulid crinoid. Genus includes new species S. chesnieri.

Spirocrinus circularis[121]

Sp. nov

Valid

Mao et al.

Silurian (Aeronian)

 China

A crinoid belonging to the family Petalocrinidae.

Spirocrinus dextrosus[121]

Sp. nov

Valid

Mao et al.

Silurian (Aeronian)

 China

A crinoid belonging to the family Petalocrinidae.

Staurasterias[100]

Gen. et sp. nov

Valid

Blake

Carboniferous

Keokuk Formation

 United States
( Indiana)

A starfish belonging to the family Urasterellidae. Genus includes new species S. elegans.

Sumrallia[124]

Gen. et sp. nov

Valid

Müller & Hahn

Early Devonian

Seifen Formation

 Germany

A member of Edrioasteroidea. Genus includes new species S. rseiberti.

Superstesaster[125]

Gen. et sp. nov

Valid

Villier et al.

Early Triassic

 United States
( Utah)

A starfish. Genus includes new species S. promissor.

Teleosaster[126]

Gen. et sp. nov

Valid

Hunter & McNamara

Permian (Kungurian)

Cundlego Formation

 Australia

A brittle star. Genus includes new species T. creasyi.

Tintinnabulicrinus[119]

Gen. et sp. nov

Valid

Wright & Toom

Ordovician (Katian)

 Estonia

A crinoid. Genus includes new species T. estoniensis.

Ulphaceaster[127]

Gen. et sp. nov

Valid

Néraudeau et al.

Late Cretaceous (Cenomanian)

 France

A sea urchin belonging to the family Archiaciidae. Genus includes new species U. sarthacensis.

Vologesia rollingstones[128]

Sp. nov

Valid

Schlüter & Wiese

Late Cretaceous (early Campanian)

 Spain

A sea urchin belonging to the family Echinolampadidae.

Conodonts[edit]

Research[edit]

  • A study on the conodont assemblage from the Silurian (Homerian) Rootsiküla Formation (Estonia), interpreted as occurring in the evaporite-bearing strata, and on the conodont diversity in various environments, is published by Jarochowska et al. (2017).[129]
  • Articulated skeletal remains of Hindeodus parvus, providing direct evidence of the number and arrangement of elements in the apparatus, are described from the Lower Triassic of China by Zhang et al. (2017).[130][131][132]

New taxa[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Acodus zeballus[133]

Sp. nov

Valid

Voldman & Albanesi in Voldman et al.

Early Ordovician

 Argentina

Aldridgeognathus[134]

Gen. et sp. nov

Valid

Miller et al.

Ordovician (Darriwilian)

Amdeh Formation

 Oman

A member of Balognathidae. Genus includes new species A. manniki.

Bispathodus ultimus corradinii[135]

Subsp. nov

Valid

Söte, Hartenfels & Becker

Devonian (Famennian)

 Germany

Coelocerodontus hunanensis[136]

Sp. nov

Valid

Dong & Zhang

Cambrian (Furongian)

Panjiazui Formation

 China

An euconodont.

Ctenopolygnathus parallelus[137]

Sp. nov

Valid

Ovnatanova et al.

Late Devonian

 Russia

Fahraeusodus jachalensis[138]

Sp. nov

Valid

Feltes & Albanesi in Serra et al.

Ordovician (Darriwilian)

Gualcamayo Formation
Las Aguaditas Formation
Las Chacritas Formation
San Juan Formation

 Argentina

Furnishina wangcunensis[136]

Sp. nov

Valid

Dong & Zhang

Cambrian (Furongian)

Bitiao Formation

 China

A member of Paraconodontida.

Gothodus vetus[133]

Sp. nov

Valid

Voldman & Albanesi in Voldman et al.

Early Ordovician

 Argentina

Guexispathodus[139]

Gen. et comb. nov

Valid

Plasencia et al.

Middle Triassic

Mukheiris Formation
Saharonim Formation

 Israel
 Jordan

A member of the family Gondolellidae. The type species is "Neospathodus" shagami Benjamini & Chepstow-Lusty (1986); genus also includes "Pseudofurnishius" siyalaensis Sadeddin & Kozur (1992).

Gullodus tieqiaoensis[140]

Sp. nov

Valid

Sun et al.

Permian

 China

Icriodus ballbergensis[141]

Sp. nov

Valid

Lüddecke, Hartenfels & Becker

Devonian (Famennian)

 Germany

Icriodus marieae[142]

Sp. nov

Valid

Suttner, Kido & Suttner

Middle Devonian

Valentin Formation

 Austria
 France
 Germany

Idiognathodus boardmani[143]

Sp. nov

Valid

Hogancamp & Barrick

Carboniferous (Gzhelian)

Heebner Shale

 United States

Idiognathodus itaitubensis[144]

Sp. nov

Valid

Cardoso, Sanz-López & Blanco-Ferrera

Carboniferous (Pennsylvanian)

Tapajós Group

 Brazil

Idiognathoides luokunensis[145]

Sp. nov

Valid

Hu & Qi in Hu et al.

Carboniferous (Bashkirian)

 China

Iowagnathus[146]

Gen. et sp. nov

Valid

Liu et al.

Ordovician (Whiterock Stage)

Winneshiek Konservat-Lagerstätte

 United States
( Iowa)

Genus includes new species I. grandis.

Kirilella[139]

Gen. et comb. nov

Valid

Plasencia et al.

Middle Triassic

 Austria
 Canada
 China
 Egypt
 Hungary
 Israel
 Italy
 Japan
 Jordan
 Russia
 Spain
 United States

A member of the family Gondolellidae. The type species is "Polygnathus" mungoensis Diebel (1956); genus also includes "Tardogondolella" diebeli Kozur & Mostler (1971), "Epigondolella" mostleri Kozur in Kozur & Mock (1972) and "Metapolygnathus" longobardicus Kovács (1983).

Laiwugnathus hunanensis[136]

Sp. nov

Valid

Dong & Zhang

Cambrian (Drumian)

Huaqiao Formation

 China

A member of Paraconodontida.

Laiwugnathus transitans[136]

Sp. nov

Valid

Dong & Zhang

Cambrian (Guzhangian and Paibian)

Chefu Formation

 China

A member of Paraconodontida.

Lenathodus[147]

Gen. et sp. nov

Valid

Izokh in Izokh & Yazikov

Early Carboniferous

 Russia

Genus includes new species L. bakharevi.

Lugnathus[136]

Gen. et sp. nov

Valid

Dong & Zhang

Cambrian Stage 10 and Early Ordovician (Tremadocian)

Panjiazui Formation

 China

A member of Paraconodontida. Genus includes new species L. hunanensis.

Marquezella[139]

Gen. et comb. nov

Valid

Plasencia et al.

Middle Triassic

 Austria
 Bulgaria
 China
 France
 Greece
 Hungary
 India
 Italy
 Japan
 Russia
 Slovakia
 Slovenia
 Spain

A member of the family Gondolellidae. The type species is "Gladigondolella" truempyi Hirsch (1971); genus also includes "Polygnathus" japonicus Hayashi (1968).

Mayrodus[148]

Gen. et sp. nov

Valid

Zhang, Jowett & Barnes

Silurian (Sheinwoodian)

Cape Phillips Formation

 Canada
( Nunavut)

A conodont of uncertain phylogenetic placement. The type species is M. melchini.

Miaognathus[136]

Gen. et sp. nov

Valid

Dong & Zhang

Cambrian Stage 10

Shenjiawan Formation

 China

A member of Paraconodontida. Genus includes new species M. multicostatus.

Millerodontus[136]

Gen. et sp. nov

Valid

Dong & Zhang

Cambrian (Furongian)

Shenjiawan Formation

 China

An euconodont. Genus includes new species M. intermedius.

Mosherella praebudaensis[149]

Sp. nov

Valid

Chen & Lukeneder

Late Triassic (Carnian)

Kasimlar Formation

 Turkey

Neopolygnathus communis yazikovi[147]

Subsp. nov

Valid

Izokh in Izokh & Yazikov

Early Carboniferous

 Russia

Norigondolella carlae[150]

Sp. nov

In press

Rigo et al.

Late Triassic (Carnian)

Scillato Formation

 Austria
 Italy
 Turkey

A member of Ozarkodinida.

Omanognathus[134]

Gen. et sp. nov

Valid

Miller et al.

Ordovician (Darriwilian)

Amdeh Formation

 Oman

A member of Balognathidae. Genus includes new species O. daiqaensis.

Palmatolepis spallettae[151]

Nom. nov

Valid

Klapper et al.

Devonian (Frasnian)

 Canada
( Ontario)

A replacement name for Palmatolepis nodosa Klapper et al. (2004).

Polygnathus masonae[137]

Sp. nov

Valid

Ovnatanova et al.

Late Devonian

 Russia

Polygnathus postvogesi[152]

Sp. nov

Valid

Plotitsyn & Zhuravlev

Carboniferous (Tournaisian)

 Russia

Prosagittodontus compressus[136]

Sp. nov

Valid

Dong & Zhang

Cambrian (Guzhangian and Paibian)

Chefu Formation

 China

A member of Paraconodontida.

Pseudohindeodus elliptica[140]

Sp. nov

Valid

Sun et al.

Permian

 China

Quadralella wanlanensis[153]

Sp. nov

Valid

Zhang et al.

Triassic

 China

Quadralella yongyueensis[153]

Sp. nov

Valid

Zhang et al.

Triassic

 China

Siphonodella carinata[154]

Sp. nov

Valid

Zhuravlev

Carboniferous (Tournaisian)

Idzhid Formation

 Russia
( Komi Republic)

Siphonodella kalvodai[155]

Sp. nov

Valid

Kaiser, Kumpan & Cígler

Carboniferous (Tournaisian)

Líšeň Formation

 Czech Republic
 Tajikistan

A member of Ozarkodinida belonging to the family Elictognathidae.

Sweetognathus asymmetrica[140]

Sp. nov

Valid

Sun et al.

Permian

 China

Tujiagnathus[136]

Gen. et sp. nov

Valid

Dong & Zhang

Cambrian (Furongian)

Bitiao Formation

 China

An euconodont. Genus includes new species T. gracilis.

Vjalovognathus carinatus[156]

Sp. nov

Valid

Wang et al.

Permian (Changhsingian)

 China
 India

Wangcunella[136]

Gen. et sp. nov

Valid

Dong & Zhang

Cambrian (Furongian)

Bitiao Formation

 China

An euconodont. Genus includes new species W. conicus.

Wangcunognathus[136]

Gen. et sp. nov

Valid

Dong & Zhang

Cambrian (Paibian)

Bitiao Formation

 China

A member of Paraconodontida. Genus includes new species W. elegans.

Westergaardodina dimorpha[136]

Sp. nov

Valid

Dong & Zhang

Cambrian (Paibian)

Bitiao Formation

 China

A member of Paraconodontida.

Westergaardodina gigantea[136]

Sp. nov

Valid

Dong & Zhang

Cambrian (Guzhangian)

Chefu Formation

 China

A member of Paraconodontida.

Westergaardodina sola[136]

Sp. nov

Valid

Dong & Zhang

Cambrian (Guzhangian)

Chefu Formation

 China

A member of Paraconodontida.

Zentagnathus[133]

Gen. et comb. nov

Valid

Voldman & Albanesi in Voldman et al.

Early Ordovician

 Argentina

A new genus for "Trapezognathus" primitivus Voldman, Albanesi & Zeballo in Voldman et al. (2013); genus also includes "Trapezognathus" argentinensis Rao et al. (1994)

Fishes[edit]

Amphibians[edit]

Research[edit]

  • A study on the evolution of eye size in early tetrapods and in fish belonging to the lineage that gave rise to tetrapods, as well as on the impact of the eye size on the eye performance while viewing objects through water and through air is published by MacIver et al. (2017).[157]
  • A study on the influence of habitat traits on the persistence length of living and fossil amphibian species is published by Tietje & Rödel (2017).[158]
  • A study on the development of the vertebral intercentrum and pleurocentrum in fossil amphibians is published by Danto et al. (2017).[159]
  • A study on the probable function of the interpterygoid vacuities (holes in the palate) in temnospondyls as the site of muscle attachment is published by Witzmann & Werneburg (2017).[160]
  • A study on the earliest larval development in temnospondyls, as indicated by specimens from the Permian (Sakmarian) lake sediments near Obermoschel (Saar–Nahe Basin, Germany), is published by Werneburg (2017).[161]
  • A study on the histology of the small palatal plates and their denticles in a Permian dissorophoid temnospondyl from the Dolese Brothers Limestone Quarry near Richards Spur (Oklahoma, United States) is published by Gee, Haridy & Reisz (2017).[162]
  • Taxonomic revision of all described rhinesuchids and a study on the phylogenetic relationships of members of Rhinesuchidae is published by Marsicano et al. (2017), who transfer the species "Rhinesuchus" capensis Haughton (1925) to the genus Rhinesuchoides.[163]
  • New specimen of the rhinesuchid Australerpeton cosgriffi (a skull and mandible) is described from the Permian Rio do Rasto Formation (Brazil) by Azevedo, Vega & Soares (2017).[164]
  • A description of the anatomy of the braincase and middle ear regions of an exceptionally well-preserved skull of Stanocephalosaurus amenasensis from the Triassic of Algeria is published by Arbez, Dahoumane & Steyer (2017).[165]
  • A study on the anatomy of the skulls of metoposaurid species Metoposaurus krasiejowensis and Apachesaurus gregorii, as well as its implications for establishing whether metoposaurids were active or ambush predators is published by Fortuny, Marcé-Nogué & Konietzko-Meier (2017).[166]
  • An analysis of the microanatomy and histology of metoposaurid vertebra from the Petrified Forest National Park is published by Gee, Parker & Marsh (2017), who interpret Apachesaurus gregorii as more likely to be an early ontogenetic stage of a large metoposaurid, such as Koskinonodon perfectus rather than a distinct species.[167]
  • A juvenile specimen of Koskinonodon perfectus is described from the Norian Petrified Forest Member of the Late Triassic Chinle Formation (Arizona, United States) by Gee & Parker (2017).[168]
  • A study on the physiology (especially metabolic rate, body temperature, breathing, feeding, digestion, osmoregulation and excretion) of Archegosaurus decheni is published by Witzmann & Brainerd (2017).[169]
  • A study on the histology of the dermal skull roof bones in Kokartus honorarius is published by Skutschas & Boitsova (2017).[170]
  • Fossilized soft tissues preserved with the type specimen of the salamander Phosphotriton sigei are described by Tissier, Rage & Laurin (2017).[171]
  • A study on the bite force in extant Cranwell's horned frog (Ceratophrys cranwelli) and its implications for estimating the bite force in the Late Cretaceous species Beelzebufo ampinga is published by Lappin et al. (2017).[172]
  • A study on the morphology of the skull of Lethiscus stocki and on the phylogenetic relationships of early tetrapods, recovering lepospondyls as a polyphyletic group, is published by Pardo et al. (2017).[173]

New taxa[edit]

Temnospondyls[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Aphaneramma gavialimimus[174]

Sp. nov

Valid

Fortuny et al.

Early Triassic (Olenekian)

 Madagascar

Chinlestegophis[175]

Gen. et sp. nov

Valid

Pardo, Small & Huttenlocker

Late Triassic

Chinle Formation

 United States
( Colorado)

A member of Stereospondyli, possibly a stem-caecilian. The type species is C. jenkinsi.

Cyclotosaurus naraserluki[176]

Sp. nov

Valid

Marzola et al.

Late Triassic

Fleming Fjord Formation

 Greenland

Tomeia[177]

Gen. et sp. nov

Valid

Eltink, Stock Da-Rosa, & Dias-da-Silva

Early Triassic

Sanga do Cabral Formation

 Brazil

A capitosaur.

Lissamphibians[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Chachaiphrynus[178]

Gen. et sp. nov

Valid

Nicoli

Oligocene

 Argentina

A member of Odontophrynidae. The type species is C. lynchi.

Genibatrachus[179]

Gen. et sp. nov

Valid

Gao & Chen

Early Cretaceous

Guanghua (upper part of Longjiang) Formation

 China

A crown-group frog. The type species is G. baoshanensis.

Sanshuibatrachus[180]

Gen. et sp. nov

Valid

Wang, Roček & Dong

Early Eocene

 China

A pelobatoid frog of uncertain phylogenetic placement. Genus includes new species S. sinensis.

Other amphibians[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Spathicephalus marsdeni[181]

Sp. nov

Valid

Smithson et al.

Carboniferous (Viséan)

Anstruther Formation

 United Kingdom

A member of the supefamily Baphetoidea.

Yumenerpeton[182]

Gen. et sp. nov

Valid

Jiang, Ji & Mo

Middle Permian

Xidagou Formation

 China

A bystrowianid chroniosuchian. The type species is Y. yangi.

Lepidosaurs[edit]

Rhynchocephalians[edit]

Research[edit]

New taxa[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Deltadectes[186]

Gen. et sp. nov

Valid

Whiteside, Duffin & Furrer

Late Triassic

  Switzerland

A basal member of Rhynchocephalia. The type species is D. elvetica.

Gephyrosaurus evansae[187]

Sp. nov

Valid

Whiteside & Duffin

Late Triassic (Rhaetian)

 United Kingdom

Penegephyrosaurus[187]

Gen. et sp. nov

Valid

Whiteside & Duffin

Late Triassic (Rhaetian)

 United Kingdom

A member of the family Gephyrosauridae. The type species is P. curtiscoppi.

Vadasaurus[188]

Gen. et sp. nov

Bever & Norell

Late Jurassic (Kimmeridgian)

Solnhofen Limestone

 Germany

A relative of pleurosaurids. The type species is V. herzogi.

Lizards and snakes[edit]

Research[edit]

  • A study comparing inner ear morphology of Dinilysia patagonica and extant lizards and snakes is published by Palci et al. (2017).[189]
  • An overview of the discoveries of Mesozoic lizards from Brazil is published by Simões et al. (2017).[190]
  • A study on the origins of the Australian fauna of lizards and snakes is published by Oliver & Hugall (2017).[191]
  • A study on the nomenclature and phylogenetic relationships of the lizard species assigned to the genus Necrosaurus is published by Georgalis (2017), who assigns the species Necrosaurus cayluxi and Melanosauroides giganteus to the genus Palaeovaranus and names a new family Palaeovaranidae.[192]
  • A study on the anatomy and phylogenetic relationships of Eichstaettisaurus schroederi and Ardeosaurus digitatellus is published by Simões et al. (2017).[193]
  • A redescription of the anatomy of the holotype specimen of the teiid species Callopistes bicuspidatus from the late Miocene–early Pliocene of Argentina is published by Brizuela & Albino (2017).[194]
  • An almost complete skull and a few associated postcranial bones of the lacertid Dracaenosaurus croizeti are described from the Oligocene locality of Cournon (south-central France) by Čerňanský et al. (2017).[195]
  • A description of the anatomy of the postcranial skeleton of the putative stem-amphisbaenian Slavoia darevskii and a study on its implications for the evolution of the postcranial skeleton of amphisbaenians is published by Tałanda (2017).[196]
  • Description of a new specimen of Geiseltaliellus maarius from the Eocene Messel pit (Germany), preserving details of the squamation, is published by Smith (2017).[197]
  • A study testing whether extant anole species adapted to similar ecological niches have similar semicircular canal morphologies, as well as a reconstruction of the vestibular system in five Miocene anoles from the Dominican Republic and a study on their ecology is published by Dickson et al. (2017).[198]
  • An autotomized tail of a shinisaurid is described from the Eocene Messel pit (Germany) by Smith (2017).[199]
  • Fossils of a monitor lizard are described from the middle Pleistocene of Greece by Georgalis, Villa & Delfino (2017), representing the most recent known record of the family Varanidae from Europe.[200]
  • A study on the phylogenetic relationships of members of Mosasauroidea is published by Simões et al. (2017).[201]
  • A study on the robustness of the hypotheses about mosasauroid phylogenetic relationships and a reevaluation of the dataset from the study of Simões et al. (2017) is published by Madzia & Cau (2017).[202]
  • A revision of mosasauroids from the Upper Cretaceous marine sediments associated with Gondwanan landmasses is published by Jiménez-Huidobro, Simões & Caldwell (2017).[203]
  • A redescription of Mosasaurus hoffmannii based on examination of many specimens is published by Street & Caldwell (2017), who also provide emended diagnoses for both the genus Mosasaurus and its type species M. hoffmannii.[204]
  • A study on the presence of ligamentous tooth attachment in mosasaurs and in fossil and modern snakes is published by LeBlanc, Lamoureux & Caldwell (2017).[205]
  • A pachyostotic marine squamate specimen belonging to the family Pachyophiidae, consisting of 29 vertebrae, is described from the Upper Cretaceous (Turonian) of Bosnia and Herzegovina by Đurić et al. (2017).[206]
  • An overview of the snake fossil record from Brazil is published by Onary, Fachini & Hsiou (2017).[207]
  • A redescription of the type material of Gigantophis garstini, a reevaluation of referred material from North Africa and Pakistan, and a study on the phylogenetic relationships of Gigantophis and other madtsoiids is published by Rio & Mannion (2017).[208]
  • Snake fossils, including the first record of an indigenous member of the genus Pantherophis in West Indies and the first reported member of the genus Nerodia in the fossil record of West Indies, are described from the late Pleistocene of the Bahamas by Mead & Steadman (2017).[209]
  • A large viperine snake assigned to the genus Macrovipera is reported from the early Vallesian of Romania by Codrea et al. (2017), representing the first occurrence of this genus in the late Miocene of eastern Romania.[210]

New taxa[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Gaimanophis powelli[211]

Sp. nov

Valid

Albino

Late Miocene

India Muerta Formation

 Argentina

A boa.

Kaikaifilu[212]

Gen. et sp. nov

Valid

Otero et al.

Late Cretaceous (late Maastrichtian)

Lopez de Bertodano Formation

 Antarctica

A mosasaur. The type species is K. hervei.

Magnuviator[213]

Gen. et sp. nov

Valid

DeMar et al.

Late Cretaceous (Campanian)

Two Medicine Formation

 United States
( Montana)

A member of Iguanomorpha (the group containing crown and stem-iguanians) related to Saichangurvel davidsoni and Temujinia ellisoni. The type species is M. ovimonsensis.

Norisophis[214]

Gen. et sp. nov

Valid

Klein et al.

Cretaceous

Kem Kem Beds

 Morocco

A stem-snake. The type species is N. begaa.

Oardasaurus[215]

Gen. et sp. nov

Valid

Codrea, Venczel & Solomon

Late Cretaceous (Maastrichtian)

 Romania

A member of Teiioidea, possibly a relative of Barbatteius vremiri. Genus includes new species O. glyphis.

Pholidoscelis turukaeraensis[216]

Sp. nov

Valid

Bochaton et al.

Late Pleistocene and Holocene

 France
(Marie-Galante Island)

A member of Teiidae.

Schoenesmahl[217]

Gen. et sp. nov

Valid

Conrad

Late Jurassic (Tithonian)

Solnhofen Limestone

 Germany

A relative of Ardeosaurus found in the abdominal cavity of the holotype specimen of Compsognathus longipes. The type species is S. dyspepsia.

Stefanikia[218]

Gen. et sp. nov

Valid

Čerňanský & Smith

Eocene

Messel pit

 Germany

A lizard related to Eolacerta and the wall lizards. The type species is S. siderea.

Varanus mokrensis[219]

Sp. nov

Valid

Ivanov et al.

Early Miocene

 Czech Republic

A monitor lizard.

Yabeinosaurus bicuspidens[220]

Sp. nov

Valid

Dong, Wang & Evans

Early Cretaceous

Yixian Formation

 China

Yabeinosaurus robustus[220]

Sp. nov

Valid

Dong, Wang & Evans

Early Cretaceous

 China

Zilantophis[221]

Gen. et sp. nov

Valid

Jasinski & Moscato

Late Hemphillian

Gray Fossil Site

 United States
( Tennessee)

A colubrid snake. Genus includes new species Z. schuberti.

Ichthyosauromorphs[edit]

Research[edit]

New taxa[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Gengasaurus[228]

Gen. et sp. nov

Valid

Paparella et al.

Late Jurassic

 Italy

A member of Ophthalmosauridae. The type species is G. nicosiai.

Keilhauia[229]

Gen. et sp. nov

Valid

Delsett et al.

Early Cretaceous (early Berriasian)

Agardhfjellet Formation

 Norway

A member of Ophthalmosauridae. The type species is K. nui.

Protoichthyosaurus applebyi[230]

Sp. nov

Valid

Lomax, Massare & Mistry

Early Jurassic (Hettangian)

 United Kingdom

Sauropterygians[edit]

Research[edit]

New taxa[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Acostasaurus[252]

Gen. et sp. nov

Valid

Gómez-Pérez & Noè

Early Cretaceous (Barremian)

Paja Formation

 Colombia

A member of the family Pliosauridae. Genus includes new species A. pavachoquensis.

Hispaniasaurus[253]

Gen. et sp. nov

Valid

Marquez-Aliaga et al.

Middle Triassic (Ladinian)

Cañete Formation

 Spain

A marine reptile with nothosauroid affinities. The type species is H. cranioelongatus.

Lagenanectes[254]

Gen. et sp. nov

Valid

Sachs, Hornung & Kear

Early Cretaceous (probably late Hauterivian)

 Germany

A member of Elasmosauridae. The type species is L. richterae.

Luskhan[255]

Gen. et sp. nov

Valid

Fischer et al.

Early Cretaceous

 Russia

A member of Pliosauridae. The type species is L. itilensis.

Mauriciosaurus[256]

Gen. et sp. nov

Valid

Frey et al.

Late Cretaceous

Aguas Nuevas Formation

 Mexico

A member of Polycotylidae. The type species is M. fernandezi.

Nakonanectes[257]

Gen. et sp. nov

Valid

Serratos, Druckenmiller & Benson

Late Cretaceous (early Maastrichtian)

Bearpaw Shale

 United States
( Montana)

A member of Elasmosauridae. The type species is N. bradti.

Rhaeticosaurus[258]

Gen. et sp. nov

Wintrich et al.

Late Triassic (Rhaetian)

Exter Formation

 Germany

An early plesiosaur, possibly a basal member of Pliosauridae. The type species is R. mertensi.

Thaumatodracon[259]

Gen. et sp. nov

Valid

Smith & Araújo

Early Jurassic (Sinemurian)

 United Kingdom

A member of the family Rhomaleosauridae. The type species is T. wiedenrothi.

Turtles[edit]

Research[edit]

New taxa[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Andrewsemys[290]

Gen. et comb. nov

Valid

Pérez-García

Late Eocene and early Oligocene

 Egypt

A member of the family Podocnemididae belonging to the subfamily Erymnochelyinae; a new genus for "Stereogenys" libyca Andrews (1903).

Apalone amorense[291]

Sp. nov

Valid

Valdes, Bourque & Vitek

Miocene (Clarendonian)

Alachua Formation

 United States
( Florida)

A species of Apalone.

Cabindachelys[292]

Gen. et sp. nov

Valid

Myers et al.

Early Paleocene

 Angola

A stem-cheloniid. The type species is C. landanensis.

Chelonoidis marcanoi[293]

Sp. nov

Disputed

Turvey et al.

Late Quaternary

 Dominican Republic

A tortoise, a species of Chelonoidis. Considered to be a nomen dubium by Albury et al. (2018).[294]

Eocenochelus[295]

Gen. et comb. et 2 sp. nov

Valid

Pérez-García, de Lapparent de Broin & Murelaga

Eocene (middle Ypresian to Priabonian)

 Belgium[296]
 France
 Spain
 United Kingdom[297]

A member of Podocnemididae belonging to the subfamily Erymnochelyinae. The type species is "Erymnochelys" eremberti Broin (1977); genus also includes new species E. lacombianus and E. farresi.

Lutemys[298]

Gen. et sp. nov

Valid

Lyson, Joyce & Sertich

Late Cretaceous (Campanian)

Kaiparowits Formation

 United States
( Utah)

A stem-kinosternoid. Genus includes new species L. warreni.

Mendozachelys[299]

Gen. et sp. nov

Valid

De la Fuente et al.

Late Cretaceous (late Campanian–early Maastrichtian)

Loncoche Formation

 Argentina

A member of Chelidae. The type species is M. wichmanni.

Perochelys hengshanensis[300]

Sp. nov

Valid

Brinkman, Rabi & Zhao

Early Cretaceous

Hengshan Formation

 China

A pan-trionychid.

Petrochelys[301]

Gen. et comb. nov

Valid

Vitek et al.

Early Cretaceous (Albian)

 Kyrgyzstan

A member of Trionychidae; a new genus for "Trionyx" kyrgyzensis Nessov (1995).

Plesiochelys bigleri[302]

Sp. nov

Valid

Püntener, Anquetin & Billon-Bruyat

Late Jurassic (Kimmeridgian)

Reuchenette Formation

  Switzerland

A member of the family Plesiochelyidae.

Rionegrochelys[303]

Gen. et sp. nov

Valid

De la Fuente, Maniel & Jannello in De La Fuente et al.

Late Cretaceous

Plottier Formation

 Argentina

A relative of members of the family Chelidae. The type species is R. caldieroi.

“Trionyx” onomatoplokos[304]

Nom. nov

Valid

Georgalis & Joyce

Late Cretaceous (Santonian–early Campanian)

Bostobe Svita

 Kazakhstan

A member of Pan-Trionychidae of uncertain phylogenetic placement; a replacement name for Palaeotrionyx riabinini Kuznetsov & Chkhikvadze (1987).

Archosauriformes[edit]

Archosaurs[edit]

Other archosauriforms[edit]

Other reptiles[edit]

Research[edit]

New taxa[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Avicranium[327]

Gen. et sp. nov

Pritchard & Nesbitt

Late Triassic (late Norian or Rhaetian)

Chinle Formation

 United States
( New Mexico)

A member of the family Drepanosauridae. The type species is A. renestoi.

Pectodens[328]

Gen. et sp. nov

Valid

Li et al.

Middle Triassic (Anisian)

Guanling Formation

 China

A long-necked archosauromorph reptile of uncertain phylogenetic placement, possibly a member of Protorosauria. The type species is P. zhenyuensis.

Shringasaurus[329]

Gen. et sp. nov

Valid

Sengupta, Ezcurra & Bandyopadhyay

Middle Triassic (Anisian)

Denwa Formation

 India

An archosauromorph reptile belonging to the group Allokotosauria and the family Azendohsauridae. The type species is S. indicus.

Synapsids[edit]

Non-mammalian synapsids[edit]

Research[edit]

New taxa[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Alemoatherium[360]

Gen. et sp. nov

Valid

Martinelli et al.

Late Triassic (late Carnian)

Santa Maria Formation

 Brazil

A cynodont belonging to the group Prozostrodontia. The type species is A. huebneri.

Aleodon cromptoni[361]

Sp. nov

Valid

Martinelli et al.

Triassic (Ladinian—early Carnian)

 Brazil
 Namibia?

A cynodont belonging to the family Chiniquodontidae.

Bulbasaurus[362]

Gen. et sp. nov

Valid

Kammerer & Smith

Late Permian

Teekloof Formation

 South Africa

A dicynodont belonging to the family Geikiidae. The type species is B. phylloxyron.

Dalongkoua[363]

Gen. et sp. nov

Valid

Liu & Abdala

Late Permian

Guodikeng Formation

 China

A therocephalian. The type species is D. fuae.

Microwhaitsia[364]

Gen. et sp. nov

Valid

Huttenlocker & Smith

Permian (Wuchiapingian)

Teekloof Formation

 South Africa

A whaitsiid therocephalian. The type species is M. mendrezi.

Nuurtherium[365]

Gen. et sp. nov

Valid

Velazco, Buczek & Novacek

Late Jurassic

Ulan Malgait Sequence

 Mongolia

A tritylodontid cynodont. The type species is N. baruunensis.

Ophidostoma[364]

Gen. et sp. nov

Valid

Huttenlocker & Smith

Permian (Wuchiapingian)

Teekloof Formation

 South Africa

A whaitsioid therocephalian of uncertain phylogenetic placement. The type species is O. tatarinovi.

Parasuminia[366]

Gen. et sp. nov

Valid

Kurkin

Permian (Severodvinian)

 Russia

An anomodont belonging to the family Galeopidae. Genus includes new species P. ivakhnenkoi.

Scalenodon ribeiroae[367]

Sp. nov

Valid

Melo, Martinelli & Soares

Triassic

Santa Maria Supersequence

 Brazil

A traversodontid cynodont.

Shartegodon[365]

Gen. et sp. nov

Valid

Velazco, Buczek & Novacek

Late Jurassic

Ulan Malgait Sequence

 Mongolia

A tritylodontid cynodont. The type species is S. altai.

Shiguaignathus[368]

Gen. et sp. nov

Valid

Liu & Abdala

Late Permian

Naobaogou Formation

 China

An akidnognathid therocephalian. The type species is S. wangi.

Mammals[edit]

Other animals[edit]

Research[edit]

New taxa[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Acoelia discontinua[390]

Sp. nov

Valid

Wu

Permian (Changhsingian)

 China

A calcareous sponge belonging to the order Inozoa and the family Acoeliidae.

Aeroretiolites[391]

Gen. et sp. nov

Valid

Melchin, Lenz & Kozłowska

Silurian

 Canada

A graptolite. Genus includes new species A. cancellatus.

Aladraco[392]

Nom. et sp. nov

Valid

Geyer

Cambrian

Jbel Wawrmast Formation
Tannenknock Formation

 Germany
 Morocco

A member of Hyolitha; a replacement name for Oxyprymna Kiderlen (1933). Genus includes A. schloppensis (Wurm, 1925) and a new species A. ougnatensis.

Allonnia erjiensis[393]

Sp. nov

Valid

Yun, Zhang & Li

Cambrian

Chengjiang Lagerstätte

 China

A chancelloriid.

Andiprion[394]

Gen. et sp. nov

Valid

Hints et al.

Ordovician (Dapingian)

 Argentina

A polychaete described on the basis of scolecodonts. Genus includes new species A. paxtonae.

Angulosuspongia[395][396]

Gen. et sp. nov

Valid

Yang et al.

Cambrian Stage 5

Kaili Formation

 China

A sponge belonging to the order Verongida and the family Vauxiidae. Genus includes new species A. sinensis.

Ankalodous[397]

Gen. et sp. nov

Valid

Shu et al.

Cambrian Series 3

Qiongzhusi (Chiungchussu) Formation

 China

An arrow worm. The type species is A. sericus.

Archaeochionelasmus[398]

Gen. et sp. nov

Valid

Kočí et al.

Late Cretaceous (Cenomanian)

Bohemian Cretaceous Basin

 Czech Republic

An animal of uncertain phylogenetic placement. Originally interpreted as a barnacle belonging to the group Balanomorpha and the superfamily Chionelasmatoidea; Gale & Skelton (2018) considered it to be a rudist bivalve instead.[399] Genus includes new species A. nekvasilovae.

Biskolites[400]

Gen. et sp. nov

Valid

Valent, Fatka & Marek

Cambrian (Drumian)

Buchava Formation

 Czech Republic

A member of Hyolitha. Genus includes new species B. iactans.

Capinatator[401]

Gen. et sp. nov

Valid

Briggs & Caron

Cambrian

Burgess Shale

 Canada
( British Columbia)

An arrow worm. The type species is C. praetermissus.

Caryosyntrips camurus[384]

Sp. nov

Valid

Pates & Daley

Cambrian

Burgess Shale
Langston Formation
Valdemiedes Formation?

 Canada
( British Columbia)
 United States
( Utah)
 Spain?

A member of Radiodonta.

Caryosyntrips durus[384]

Sp. nov

Valid

Pates & Daley

Cambrian

Wheeler Shale

 United States
( Utah)

A member of Radiodonta.

Cloudina ningqiangensis[402]

Sp. nov

Valid

Cai et al.

Late Ediacaran

 China

Cloudina xuanjiangpingensis[402]

Sp. nov

Valid

Cai et al.

Late Ediacaran

 China

Conchicolites rossicus[403]

Sp. nov

Valid

Vinn & Madison

Ordovician (Katian)

 Russia

A member of Cornulitida belonging to the family Cornulitidae.

Conciliospongia[404]

Gen. et sp. nov

Botting, Zhang & Muir

Late Ordovician

Wenchang Formation

 China

A stem-demosponge of uncertain phylogenetic placement. The type species is C. anjiensis.

Corallistes campanensis[405]

Sp. nov

Valid

Świerczewska-Gładysz

Late Cretaceous (early Campanian)

 Poland

A lithistid demosponge belonging to the family Corallistidae.

Cretacimermis aphidophilus[406]

Sp. nov

Valid

Poinar

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A nematode belonging to the family Mermithidae.

Eolorica[407]

Gen. et sp. nov

Valid

Harvey & Butterfield

Cambrian (Furongian)

Deadwood Formation

 Canada
( Saskatchewan)

A member of the total group of Loricifera. The type species is E. deadwoodensis.

Eorograptus spirifer[391]

Sp. nov

Valid

Melchin, Lenz & Kozłowska

Silurian

 Canada

A graptolite.

Feiyanella[408]

Gen. et sp. nov

Valid

Han et al.

Earliest Cambrian

Kuanchuanpu Formation

 China

A Cloudina-like tubular microfossil. The type species is F. manica.

Geoditesia jordaniensis[409]

Sp. nov

Valid

Ungureanu, Ahmad & Farouk

Middle Jurassic (Callovian)

 Jordan

A sponge.

Glomerula gemmellaroi[410]

Sp. nov

Valid

Sanfilippo in Sanfilippo et al.

Permian

“Pietra di Salomone” Limestone

 Italy

A polychaete belonging to the family Sabellidae, a species of Glomerula.

Guettardiscyphia zitti[411]

Sp. nov

Valid

Vodrážka

Late Cretaceous (Turonian)

Bílá Hora Formation

 Czech Republic

A hexactinellid sponge belonging to the family Cribrospongiidae.

Inquicus[412]

Gen. et sp. nov

Valid

Cong et al.

Early Cambrian

Chengjiang Lagerstätte

 China

A tiny worm infecting members of the genera Cricocosmia and Mafangscolex. Genus includes new species I. fellatus.

Keretsa[413]

Gen. et sp. nov

Valid

Ivantsov

Late Precambrian

Zimnie Gory Formation

 Russia
( Arkhangelsk Oblast)

An early eumetazoan, showing similarities to the arthropod species Naraoia longicaudata. The type species is K. brutoni.

Labechia yeongwolense[414]

Sp. nov

Valid

Jeon et al.

Ordovician (Darriwilian)

Yeongheung Formation

 South Korea

A stromatoporoid.

Lepidocoleus kuangguoduni[415]

Sp. nov

Valid

Gügel et al.

Devonian (Eifelian)

Nandan Formation

 China

A machaeridian.

‘Linevitus’ guizhouensis[416]

Sp. nov

Valid

Sun et al.

Cambrian Stage 4

Balang Formation

 China

A member of Hyolitha.

Microdictyon cuneum[417]

Sp. nov

Valid

Wotte & Sundberg

Cambrian

 United States
( Nevada)

A lobopodian.

Microdictyon montezumaensis[417]

Sp. nov

Valid

Wotte & Sundberg

Cambrian

 United States
( Nevada)

A lobopodian.

Mughanniyyum[409]

Gen. et sp. nov

Valid

Ungureanu, Ahmad & Farouk

Middle Jurassic (Callovian)

 Jordan

A sponge. Genus includes new species M. hanium.

Multiconotubus[402]

Gen. et sp. nov

Valid

Cai et al.

Late Ediacaran

 China

A Cloudina-like fossil. Genus includes new species M. chinensis.

Neophrissospongia kacperskii[405]

Sp. nov

Valid

Świerczewska-Gładysz

Late Cretaceous (early Campanian)

 Poland

A lithistid demosponge belonging to the family Corallistidae.

Orthrozanclus elongata[418]

Sp. nov

Zhao & Smith in Zhao et al.

Cambrian Stage 3

Maotianshan Shales

 China

Ovatiovermis[419]

Gen. et sp. nov

Valid

Caron & Aria

Cambrian

Burgess Shale

 Canada
( British Columbia)

A lobopodian belonging to the family Luolishaniidae. The type species is O. cribratus.

Pachinion canaliculatum[405]

Sp. nov

Valid

Świerczewska-Gładysz

Late Cretaceous (early Campanian)

 Poland

A lithistid demosponge belonging to the family Corallistidae.

Plumulites lamonti[420]

Sp. nov

Valid

Candela & Crighton

Silurian (Telychian)

Wether Law Linn Formation

 United Kingdom

A machaeridian.

Propomatoceros permianus[410]

Sp. nov

Valid

Sanfilippo in Sanfilippo et al.

Permian

“Pietra di Salomone” Limestone

 Italy

A polychaete belonging to the family Serpulidae, a species of Propomatoceros.

Pseudoretiolites hyrichus[391]

Sp. nov

Valid

Melchin, Lenz & Kozłowska

Silurian

 Canada

A graptolite.

Pyrgopolon (Septenaria) cenomanensis[421]

Sp. nov

Valid

Kočí, Jäger & Morel

Late Cretaceous (Cenomanian)

 France

A polychaete belonging to the family Serpulidae.

Pyrgopolon (Turbinia?) gaiae[410]

Sp. nov

Valid

Sanfilippo in Sanfilippo et al.

Permian

“Pietra di Salomone” Limestone

 Italy

A polychaete belonging to the family Serpulidae, a species of Pyrgopolon.

Radiofibrosclera[390]

Gen. et sp. nov

Valid

Wu

Permian (Changhsingian)

 China

A sclerosponge. The type species is R. laibinensis.

Ratcliffespongia arivechensis[422]

Sp. nov

Valid

Beresi et al.

Cambrian Series 3

 Mexico

A reticulosan sponge of uncertain phylogenetic placement.

Saccorhytus[423]

Gen. et sp. nov

Valid

Han et al.

Earliest Cambrian

 China

An early deuterostome related to vetulicolians and vetulocystids. The type species is S. coronarius.

“Serpula” distefanoi[410]

Sp. nov

Valid

Sanfilippo in Sanfilippo et al.

Permian

“Pietra di Salomone” Limestone

 Italy

A polychaete belonging to the family Serpulidae.

Serpula? pseudoserpentina[421]

Sp. nov

Valid

Kočí, Jäger & Morel

Late Cretaceous (Cenomanian)

 France

A polychaete belonging to the family Serpulidae.

Silicunculus saaqqutit[424]

Sp. nov

Valid

Peel

Cambrian Series 3

 Greenland

A sponge.

Singuuriqia[425]

Gen. et sp. nov

Valid

Peel

Cambrian Stage 3

Sirius Passet Lagerstätte

 Greenland

A member of Priapulida. Genus includes new species S. simoni.

Siphusauctum lloydguntheri[426]

Sp. nov

Valid

Kimmig, Strotz & Lieberman

Cambrian Stage 5

Spence Shale

 United States
( Utah)

Tauricornicaris[382]

Gen. et 2 sp. nov

Valid[427]

Zeng et al.

Early Cambrian

Chengjiang Lagerstätte

 China

A member of Radiodonta, possibly a member of Hurdiidae. Genus includes new species T. latizonae and T. oxygonae.

Thoracospongia lacrimiformis[424]

Sp. nov

Valid

Peel

Cambrian Series 3

 Greenland

A sponge.

Tianzhushanella tolli[428]

Sp. nov

Valid

Kouchinsky et al.

Cambrian

Medvezhya Formation

 Russia

A member of Tianzhushanellidae (a group of animals of uncertain phylogenetic placement, possibly stem-brachiopods).

Valospongia sonorensis[422]

Sp. nov

Valid

Beresi et al.

Cambrian Series 3

 Mexico

A reticulosan sponge of uncertain phylogenetic placement.

Vittatusivermis[429]

Gen. et sp. nov

Zhang et al.

Cambrian (Fortunian)

Yuhucun Formation

 China

A worm-like organism, possibly a member of Bilateria of uncertain phylogenetic placement. The type species is V. annularius.

Websteroprion[430]

Gen. et sp. nov

Valid

Eriksson, Parry & Rudkin

Devonian (late Emsian-early Eifelian)

Kwataboahegan Formation

 Canada
( Ontario)

An eunicidan polychaete of uncertain phylogenetic placement. The type species is W. armstrongi.

Other organisms[edit]

Research[edit]

New taxa[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Acadialithus[446]

Gen. et 2 sp. nov

Valid

Howe

Late Jurassic (Tithonian)

 Bulgaria
Offshore eastern Newfoundland, Canada
Offshore in the eastern Gulf of Mexico
Offshore of the northeast coast of the United States

A nannofossil. Genus includes new species A. dennei and A. valentinei.

Adendorfia[447]

Gen. et sp. nov

Valid

Worobiec et al.

Miocene

 Germany

A fungus, probably a member of Chaetomiaceae. Genus includes new species A. miocenica.

Algites philippoviensis[448]

Sp. nov

Valid

Naugolnykh

Permian (Kungurian)

Philippovian Formation

 Russia

A brown alga.

Algites shurtanensis[448]

Sp. nov

Valid

Naugolnykh

Permian (Kungurian)

Shurtan Formation

 Russia

A brown alga.

Alpinoschwagerina nagatoensis[449]

Sp. nov

Valid

Kobayashi

Permian (Asselian)

Akiyoshi Limestone Group

 Japan

A foraminifer belonging to the group Fusulinida.

Amsassia argentina[450]

Sp. nov

Valid

Carrera, Astini & Gomez

Early Ordovician

La Silla Formation

 Argentina

A coral-like organism of uncertain phylogenetic placement.

Asterina indodeightonii[451]

Sp. nov

Valid

Vishnu et al.

Mid-Miocene to early Pleistocene

 India

A fungus, a species of Asterina.

Asterina mioconsobrina[451]

Sp. nov

Valid

Vishnu et al.

Mid-Miocene to early Pleistocene

 India

A fungus, a species of Asterina.

Asterina miosphaerelloides[451]

Sp. nov

Valid

Vishnu et al.

Mid-Miocene to early Pleistocene

 India

A fungus, a species of Asterina.

Asterina neocombreticola[451]

Sp. nov

Valid

Vishnu et al.

Mid-Miocene to early Pleistocene

 India

A fungus, a species of Asterina.

Asterina neoelaeocarpi[451]

Sp. nov

Valid

Vishnu et al.

Mid-Miocene to early Pleistocene

 India

A fungus, a species of Asterina.

Asterina presaracae[451]

Sp. nov

Valid

Vishnu et al.

Mid-Miocene to early Pleistocene

 India

A fungus, a species of Asterina.

Baculogypsinella[452]

Gen. et sp. nov

Valid

Matsumaru

Eocene

 Philippines

A foraminifer. Genus includes new species B. eocenica.

Blastanosphaira[453]

Gen. et sp. nov

Valid

Javaux & Knoll

Mesoproterozoic

Mainoru Formation

 Australia

A possible eukaryotic microorganism of uncertain phylogenetic placement. The type species is B. kokkoda.

Bonniea makrokurtos[454]

Sp. nov

Valid

Cohen, Irvine & Strauss

Tonian

Callison Lake Formation

 Canada
( Yukon)

A vase-shaped microfossil.

Braarudosphaera pseudobatilliformis[455]

Sp. nov

Valid

Alves, Lima & Shimabukuro

Early Cretaceous (Aptian)

 Brazil

A haptophyte belonging to the family Braarudosphaeraceae.

Carbonoschwagerina nipponica[449]

Sp. nov

Valid

Kobayashi

Carboniferous (Kasimovian and Gzhelian)

Akiyoshi Limestone Group

 Japan

A foraminifer belonging to the group Fusulinida.

Cephalothecoidomyces[447]

Gen. et sp. nov

Valid

Worobiec et al.

Neogene

 Germany
 Poland

A fungus, probably a member of Cephalothecaceae. Genus includes new species C. neogenicus.

Chiphragmalithus muzylevii[456]

Sp. nov

Valid

Musatov

Eocene (Ypresian)

 Russia

A haptophyte.

Cobios[457]

Gen. et sp. nov

Valid

Du et al.

Ediacaran

Doushantuo Formation

 China

A red alga. The type species is Cobios rubo.

Curviacus[458]

Gen. et sp. nov

Valid

Shen et al.

Ediacaran

Dengying Formation

 China

A benthic modular organism consisting of serially arranged and crescent-shaped chambers. Genus includes new species C. ediacaranus.

Cyanonema grandis[459]

Sp. nov

Valid

Shi & Feng in Shi et al.

Early Mesoproterozoic

Gaoyuzhuang Formation

 China

A member of Cyanobacteria belonging to the group Nostocales.

Cycliocyrillium rootsi[454]

Sp. nov

Valid

Cohen, Irvine & Strauss

Tonian

Callison Lake Formation

 Canada
( Yukon)

A vase-shaped microfossil.

Dalongicaepa[460]

Gen. et sp. et comb. nov

Valid

Xiao & Suzuki in Xiao, Suzuki & He

Late Permian

Upper Dalong Formation

 China
 Thailand

A radiolarian belonging to the group Spumellaria and the family Spongotortilispinidae. The type species is D. bipolaris; genus also includes "Pseudospongoprunum" fontainei Sashida in Sashida et al. (2000).

Denaricion[461]

Gen. et sp. nov

Valid

Bengtson in Bengtson et al.

~1.6 billion years ago

 India

An organism of uncertain phylogenetic placement, might be an alga or prokaryote. Genus includes new species D. mendax.

Devisphaera[462]

Gen. et sp. nov

Valid

Tang et al.

Late Mesoproterozoic – early Neoproterozoic

Madhubani Group

 India

An organic-walled microfossil. Genus includes new species D. corallis.

Discusphyton[463]

Gen. et sp. nov

Valid

Wang, Wang & Du

Ediacaran

Doushantuo Formation

 China

A macroalga of uncertain phylogenetic placement. Genus includes new species D. whenghuiensis.

Fissumella[464]

Gen. et sp. nov

Valid

Cruz-Abad et al.

Early Cretaceous (Albian)

 Italy

A foraminifer. Genus includes new species F. motolae.

Flabelloperforata[465]

Gen. et sp. nov

Valid

Schlagintweit & Rashidi

Late Cretaceous (Maastrichtian)

Tarbur Formation

 Iran

A foraminifer belonging to the group Loftusiida, possibly a member of the family Biokovinidae. Genus includes new species F. tarburensis.

Gigantosphaeridium floccosum[466]

Sp. nov

Valid

Agić, Moczydłowska & Yin

Early Mesoproterozoic

Ruyang Group

 China

A microfossil.

Gondwanagaricites[467][468]

Gen. et sp. nov

Valid

Heads, Miller & Crane

Early Cretaceous (Aptian)

Crato Formation

 Brazil

A gilled mushroom. Genus includes new species G. magnificus.

Hagenococcus[469]

Gen. et sp. nov

Valid

Krings et al.

Early Devonian

Rhynie chert

 United Kingdom

A microorganism of uncertain phylogenetic placement, most likely an alga with affinities to the Chlorophyta or Streptophyta. Genus includes new species H. aggregatus.

Haplophragmoides arcticus[470]

Sp. nov

Valid

Kaminski, Waskowska & Chan

Middle Pleistocene

Arctic Ocean
(Lomonosov Ridge)

A foraminifer.

Jigulites titanicus[449]

Sp. nov

Valid

Kobayashi

Carboniferous (Gzhelian) and Permian (Asselian)

Akiyoshi Limestone Group

 Japan

A foraminifer belonging to the group Fusulinida.

Limeta[471]

Gen. et sp. nov

Valid

Morais, Fairchild & Lahr in Morais et al.

Neoproterozoic

Urucum Formation

 Brazil

A vase-shaped microfossil. Genus includes new species L. lageniformis.

Montiparus minensis[449]

Sp. nov

Valid

Kobayashi

Carboniferous (Kasimovian)

Akiyoshi Limestone Group

 Japan

A foraminifer belonging to the group Fusulinida.

Nannoconus troelsenii[455]

Sp. nov

Valid

Alves, Lima & Shimabukuro

Early Cretaceous (Aptian)

 Brazil

A haptophyte belonging to the family Nannoconaceae.

Oscillatoriopsis gigas[459]

Sp. nov

Valid

Shi & Feng in Shi et al.

Early Mesoproterozoic

Gaoyuzhuang Formation

 China

A member of Cyanobacteria belonging to the group Oscillatoriales.

Palaeoamphora[471]

Gen. et sp. nov

Valid

Morais, Fairchild & Lahr in Morais et al.

Neoproterozoic

Urucum Formation

 Brazil

A vase-shaped microfossil. Genus includes new species P. urucumense.

Palaeostromatus[472]

Gen. et sp. nov

Valid

Dentzien-Dias, Poinar & Francischini

Permian (Guadalupian)

Rio do Rasto Formation

 Brazil

An actinomycete. Genus includes new species P. diairetus.

Paleohaimatus[473]

Gen. et sp. nov

Valid

Poinar

Eocene-Miocene

El Mamey Formation
(Dominican amber)

 Dominican Republic

A member of Apicomplexa belonging to the group Piroplasmida. Genus includes new species P. calabresi.

Parastaffelloides kanmerai[449]

Sp. nov

Valid

Kobayashi

Carboniferous (Moscovian)

Akiyoshi Limestone Group

 Japan

A foraminifer belonging to the group Fusulinida.

Pentadinium darmirae[474]

Sp. nov

Valid

Slimani & Ţabără in Ţabără et al.

Paleocene (Danian)

Izvor Formation
Runcu Formation

 Romania

A dinoflagellate belonging to the group Gonyaulacales and the family Gonyaulacaceae.

Persiella[465]

Gen. et sp. nov

Valid

Schlagintweit & Rashidi

Late Cretaceous (Maastrichtian)

Tarbur Formation

 Iran

A foraminifer belonging to the group Loftusiida, possibly a member of the family Spirocyclinidae. Genus includes new species P. pseudolituus.

Pocillithus crucifer[475]

Sp. nov

Valid

Lees, Bown & Young

Late Cretaceous (Turonian)

 Tanzania

A haptophyte belonging to the family Papposphaeraceae.

Pocillithus macleodii[475]

Sp. nov

Valid

Lees, Bown & Young

Late Cretaceous (Turonian)

 Tanzania

A haptophyte belonging to the family Papposphaeraceae.

Quasifusulinoides grandis[449]

Sp. nov

Valid

Kobayashi

Carboniferous (Kasimovian)

Akiyoshi Limestone Group

 Japan

A foraminifer belonging to the group Fusulinida.

Rafatazmia[461]

Gen. et sp. nov

Valid

Bengtson in Bengtson et al.

~1.6 billion years ago

 India

An alga of uncertain phylogenetic placement. Genus includes new species R. chitrakootensis.

Ramathallus[461]

Gen. et sp. nov

Valid

Sallstedt in Bengtson et al.

~1.6 billion years ago

 India

A possible stem-florideophycean red algae. Genus includes new species R. lobatus.

Schwagerina wakatakeyamensis[449]

Sp. nov

Valid

Kobayashi

Permian (Asselian)

Akiyoshi Limestone Group

 Japan

A foraminifer belonging to the group Fusulinida.

Schwagerina watanabei[449]

Sp. nov

Valid

Kobayashi

Permian (Asselian)

Akiyoshi Limestone Group

 Japan

A foraminifer belonging to the group Fusulinida.

Spearlithus[476]

Gen. et 12 sp. nov

Valid

Da Gama

Pleistocene

 Dominican Republic

A calcareous nannofossil of uncertain phylogenetic placement.

Staffella subsphaerica[449]

Sp. nov

Valid

Kobayashi

Carboniferous (Kasimovian and Gzhelian)

Akiyoshi Limestone Group

 Japan

A foraminifer belonging to the group Fusulinida.

Stradnerlithus? haynesiae[475]

Sp. nov

Valid

Lees, Bown & Young

Late Cretaceous (Turonian)

 Tanzania

A haptophyte belonging to the order Stephanolithiales and the family Stephanolithiaceae.

Stradnerlithus wendleri[475]

Sp. nov

Valid

Lees, Bown & Young

Late Cretaceous (Turonian)

 Tanzania

A haptophyte belonging to the order Stephanolithiales and the family Stephanolithiaceae.

Suraqalatia[477]

Gen. et sp. nov

Valid

Görmüş, Ameen Lawa & Al Nuaimy

Late Cretaceous (Maastrichtian)

 Iraq

A foraminifer belonging to the family Dicyclinidae. Genus includes new species S. brasieri.

Synaptomitus[478]

Gen. et sp. nov

Valid

Poinar

Eocene to Miocene

Dominican amber

 Dominican Republic

Originally described as a fungus belonging to the group Basidiomycota,[478] but this interpretation was challenged by Selosse et al. (2017).[479] Genus includes new species S. orchiphilus.

Syracosphaera antiqua[475]

Sp. nov

Valid

Bown, Lees & Young

Late Cretaceous (Turonian)

 Tanzania

A haptophyte belonging to the order Syracosphaerales and the family Syracosphaeraceae.

Syracosphaera repagula[475]

Sp. nov

Valid

Bown, Lees & Young

Late Cretaceous (Turonian)

 Tanzania

A haptophyte belonging to the order Syracosphaerales and the family Syracosphaeraceae.

Tarburina[480]

Gen. et sp. nov

Valid

Schlagintweit, Rashidi & Barani

Late Cretaceous (late Maastrichtian)

Tarbur Formation

 Iran

A foraminifer. Genus includes new species T. zagrosiana.

Taruma[471]

Gen. et sp. nov

Valid

Morais, Fairchild & Lahr in Morais et al.

Neoproterozoic

Urucum Formation

 Brazil

A vase-shaped microfossil. Genus includes new species T. rata.

Tortolithus foramen[475]

Sp. nov

Valid

Lees, Bown & Young

Late Cretaceous (Turonian)

 Tanzania

A haptophyte of uncertain phylogenetic placement.

Veteronostocale grandis[459]

Sp. nov

Valid

Shi & Feng in Shi et al.

Early Mesoproterozoic

Gaoyuzhuang Formation

 China

A member of Cyanobacteria belonging to the group Nostocales.

Windipila[481]

Gen. et sp. nov

Valid

Krings & Harper

Early Devonian

Windyfield chert

 United Kingdom

A fungus described on the basis of a reproductive unit. Genus includes new species W. spinifera.

Xiaohongyuia[482]

Gen. et sp. nov

Valid

Shi & Feng in Shi et al.

Late Paleoproterozoic

Dahongyu Formation

 China

A probable eukaryotic microfossil. Genus includes new species X. sinica.

General paleontology[edit]

Research related to paleontology that either does not concern any of the groups of the organisms listed above, or concerns multiple groups.

  • A study on the links between changes in the composition of exposed continental crust and oxygenation of the atmosphere in the Precambrian is published by Smit & Mezger (2017).[483]
  • A review of the progress in modeling the Snowball Earth atmosphere, cryosphere, hydrosphere and lithosphere, specifically as it pertains to Cryogenian geology and geobiology, is published by Hoffman et al. (2017).[484]
  • A revised record of fossil eukaryotic steroids during the Neoproterozoic is presented by Brocks et al. (2017), who argue that bacteria were the only notable primary producers in the oceans before the Cryogenian, and that rapid rise of marine planktonic algae to domination occurred in the narrow time interval between the Sturtian and Marinoan glaciations, 659–645 million years ago, likely driving the subsequent radiation of animals in the Ediacaran period.[485]
  • A study evaluating whether mass extinction events over the last 500 million year were caused by astronomical phenomena is published by Erlykin et al. (2017).[486]
  • A study on the water column geochemistry of the Yangtze Sea during the Ediacaran-Cambrian transition and its implications for the relationship between ocean oxygenation and Early Cambrian animal diversification is published by Zhang et al. (2017).[487]
  • A study on the links between the expansion of siliceous sponges and seawater oxygenation during the Ediacaran–Cambrian transition is published by Tatzel et al. (2017).[488]
  • A study on the factors influencing marine invertebrate diversity dynamics through the Phanerozoic is published by Cermeño et al. (2017).[489]
  • Edwards et al. (2017) identify a strong temporal link between the rising atmospheric oxygen levels and the Great Ordovician Biodiversification Event.[490]
  • A study on the impact of the drawdown of atmospheric carbon dioxide (caused by burial of organic carbon leading to the formation of coal) on the climate around the Carboniferous/Permian boundary is published by Feulner (2017).[491]
  • A comprehensive reconstruction of the Permian (Lopingian) Bletterbach Biota (Italy) and a review of other best-known Lopingian terrestrial associations containing both vertebrate and plant remains is published by Bernardi et al. (2017).[492]
  • A study on the causal connection between the Siberian Traps large igneous province magmatism and Permian–Triassic extinction event, identifying the initial emplacement pulse as likely to have triggered mass extinction, is published by Burgess, Muirhead & Bowring (2017).[493]
  • Viglietti, Rubidge & Smith (2017) review the tectonic setting of the Late Permian Karoo Basin (South Africa), provide an updated basin development model, and interpret their findings as indicating that the climatic changes associated with the Permian–Triassic extinction event were occurring much lower in the stratigraphy (and thus earlier) than previously documented.[494]
  • A study on the impact of the magmatic activity associated with the Central Atlantic magmatic province on the Triassic–Jurassic extinction event is published by Davies et al. (2017).[495]
  • A study on the volcanic activity at the end of the Triassic as indicated by mercury concentrations in sediments from around the world is published by Percival et al. (2017).[496]
  • A study on the oxygen levels in Earth’s oceans during and after the Triassic–Jurassic extinction event as indicated by uranium isotopes in shallow-marine limestones in the Lombardy Basin (northern Italy) is published by Jost et al. (2017).[497]
  • A high-resolution stratigraphic chart for terrestrial Late Cretaceous units of North America and a study on the stratigraphic ranges of North American dinosaurs is published by Fowler (2017).[498]
  • A study on the impact that large amounts of soot injected into the atmosphere during the Cretaceous–Paleogene extinction event (probably caused by global wildfires) had on the climate is published by Bardeen et al. (2017).[499]
  • A study estimating the decrease of the air temperature and the duration of the climate cooling caused by Chicxulub impact at the end of the Cretaceous is published by Brugger, Feulner & Petri (2017).[500]
  • A study on the volume of the climate-active gases released from sedimentary rocks as a result of the Chicxulub impact, as well as on their effect on the global climate, is published by Artemieva, Morgan & Expedition 364 Science Party (2017).[501]
  • Kaiho & Oshima (2017) calculate the amounts of stratospheric soot and sulfate formed by a virtual asteroid impact at various global locations, and conclude that the Cretaceous–Paleogene extinction event was caused by the Chicxulub impact happening at the hydrocarbon-rich, sulfate-dominated area on the Earth’s surface, and that an impact at a low–medium hydrocarbon area on Earth would be unlikely to cause mass extinction.[502]
  • A study on the data sets of molluscan fossils from the Cretaceous–Paleogene of the Seymour Island (Antarctica) is published by Tobin (2017), who identifies possible evidence of two separate extinction events, one prior to the Cretaceous–Paleogene boundary, and one simultaneous with the bolide impact at the Cretaceous–Paleogene boundary.[503]
  • A study on the behavioral and ecological diversification of animals that colonized land as indicated by trace fossils is published by Minter et al. (2017).[504]
  • A study on the age of the Cowie Harbour Fish Bed (Scotland, United Kingdom), containing fish and arthropod fossils (including the millipede Pneumodesmus newmani), is published by Suarez et al. (2017).[505]
  • A study on the preservation of skin and keratinous integumentary structures in tetrapod fossils through time is published by Eliason et al. (2017).[506]
  • A study on the differences between the tetrapod faunas at different latitudes during the early and middle Permian, as well as their implications for establishing whether the Olson's Extinction was a genuine event, is published by Brocklehurst et al. (2017).[507]
  • A study on the non-flying terrestrial tetrapod species richness through the Mesozoic and early Palaeogene is published by Close et al. (2017).[508]
  • A study on the evolution of the shape of brain and skull roof during the transition from early reptiles through archosauromorphs, including nonavian dinosaurs, to birds is published by Fabbri et al. (2017).[509]
  • A study on the structure and vulnerability of the food web in marine vertebrate assemblages prior to the Cretaceous–Paleogene extinction event as indicated by calcium isotope data from plesiosaurs and mosasaurs is published by Martin et al. (2017).[510]
  • Qvarnström et al. (2017) reconstruct fossil inclusions in two coprolites (produced by an insectivorous animal and a large aquatic predator) from the Late Triassic locality of Krasiejów (Poland) using propagation phase-contrast synchrotron microtomography.[511]
  • A study on the fossil inclusions in coprolite fragments (produced by medium to large-sized carnivores, possibly therocephalian therapsids or early archosauriforms) recovered from the Late Permian locality of Vyazniki (Russia) is published by Bajdek et al. (2017).[512]
  • A new tetrapod assemblage from the lowermost levels of the Triassic Chañares Formation (Argentina), dominated by fossils of Tarjadia ruthae, dicynodonts and cynodonts, and also including fossils of other pseudosuchians and rhynchosaurs, is described by Ezcurra et al. (2017), who also reinterpret Tarjadia ruthae and Archeopelta arborensis as erpetosuchid archosaurs.[513]
  • A study on the cosmopolitanism of terrestrial amniote faunas in the aftermath of the Permian–Triassic extinction event and Triassic–Jurassic extinction event is published by Button et al. (2017).[514]
  • Frese et al. (2017) determine the mineral and elemental composition of a range of fossils from the Talbragar fossil site (Australia) and their rock matrices using ultraviolet light-induced fluorescence/photoluminescence, X-ray fluorescence and X-ray diffractometry, and use those techniques to reveal anatomical details of animals and plants fossils that weren't discernible otherwise.[515]
  • A study on changes of the size of fossil marine shells and predatory drill holes in those shells during the Phanerozoic, as well as their implications for changes of predator-prey size ratio throughout the Phanerozoic, is published by Klompmaker et al. (2017).[516]
  • A study evaluating the utility of oxygen-isotope compositions of fossilised foraminifera tests as proxies for surface- and deep-ocean paleotemperatures, and its implications for inferring Late Cretaceous and Paleogene deep-ocean and high-latitude surface-ocean temperatures, is published by Bernard et al. (2017).[517][518][519]
  • A study on the glacial development and environmental changes in the Aurora Subglacial Basin (Antarctica) throughout the Cenozoic based on geophysical and geological evidence is published by Gulick et al. (2017).[520]
  • A study on the onset duration of the Paleocene–Eocene Thermal Maximum is published by Kirtland Turner et al. (2017).[521]
  • A study on the relationship between volcanic activity in the North Atlantic Igneous Province and the Paleocene–Eocene Thermal Maximum is published by Gutjahr et al. (2017).[522]
  • A study on the environment in the area corresponding to the present-day Amazon basin in the Miocene as indicated by data from the shark and ray fossils from the Pirabas Formation (Brazil) is published by Aguilera et al. (2017).[523]
  • A study on the impact of the Messinian salinity crisis on Mediterranean magmatism is published by Sternai et al. (2017).[524]
  • A study on the changes of ice sheets volume and sea level during the late Pliocene is published by de Boer et al. (2017).[525]
  • Pimiento et al. (2017) identify a previously unrecognized extinction event among marine megafauna at the end of the Pliocene.[526]
  • A study on the aridity in eastern Africa over the past 4.4 million years as indicated by oxygen isotope ratios in fossil herbivore tooth enamel, and on its implications for inferring the role of climate in shaping early hominin environments, is published by Blumenthal et al. (2017).[527]
  • Tierney, deMenocal & Zander (2017) reconstruct temperature and aridity in the Horn of Africa region spanning the past 200,000 years.[528]
  • A vertebrate fauna from the Pleistocene and Holocene of Sumba (Indonesia) is described by Turvey et al. (2017).[529]
  • A study on the modified mammalian bones from the Plio–Pleistocene of Ethiopia is published by Sahle, El Zaatari & White (2017), who interpret the marks on some of these bones as more likely to be produced by crocodiles than by hominids using stone tools.[530]
  • Hagstrum et al. (2017) report impact-related microspherules and elevated platinum concentrations found in fine-grained sediments retained within Late Pleistocene bison and mammoth skull fragments from Alaska and Yukon, and interpret the findings as evidence of repeated airbursts and ground/ice impacts associated with multiple episodes of cosmic impact.[531]
  • A study on changes in landscape moisture in the rangelands in Europe, Siberia and the Americas during the late Pleistocene as indicated by data from the bones of megaherbivores is published by Rabanus-Wallace et al. (2017).[532]

References[edit]

  1. ^ Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN 9780070887398. OCLC 46769716.
  2. ^ Qiang Ou; Jian Han; Zhifei Zhang; Degan Shu; Ge Sun; Georg Mayer (2017). "Three Cambrian fossils assembled into an extinct body plan of cnidarian affinity". Proceedings of the National Academy of Sciences of the United States of America. 114 (33): 8835–8840. doi:10.1073/pnas.1701650114. PMC 5565419. PMID 28760981.
  3. ^ Baichuan Duan; Xi-Ping Dong; Luis Porras; Kelly Vargas; John A. Cunningham; Philip C. J. Donoghue (2017). "The early Cambrian fossil embryo Pseudooides is a direct-developing cnidarian, not an early ecdysozoan". Proceedings of the Royal Society B: Biological Sciences. 284 (1869): 20172188. doi:10.1098/rspb.2017.2188. PMC 5745419. PMID 29237861.
  4. ^ Aaron D. Sappenfield; Lidya G. Tarhan; Mary L. Droser (2017). "Earth's oldest jellyfish strandings: a unique taphonomic window or just another day at the beach?". Geological Magazine. 154 (4): 859–874. doi:10.1017/S0016756816000443.
  5. ^ Jerzy Dzik; Andrzej Baliński; Yuanlin Sun (2017). "The origin of tetraradial symmetry in cnidarians". Lethaia. 50 (2): 306–321. doi:10.1111/let.12199.
  6. ^ Guangxu Wang; Renbin Zhan; Bing Huang; Ian G. Percival (2017). "Coral faunal turnover through the Ordovician–Silurian transition in South China and its global implications for carbonate stratigraphy and macroevolution". Geological Magazine. 154 (4): 829–836. doi:10.1017/S0016756816000406.
  7. ^ Chiara Tornabene; Rowan C. Martindale; Xingchen T. Wang; Morgan F. Schaller (2017). "Detecting Photosymbiosis in Fossil Scleractinian Corals". Scientific Reports. 7 (1): Article number 9465. doi:10.1038/s41598-017-09008-4. PMC 5572714. PMID 28842582.
  8. ^ a b c d e Marie Coen-Aubert (2017). "Givetian rugose corals from the Zemmour in Mauritania". Geologica Belgica. 20 (3–4): 161–180. doi:10.20341/gb.2017.009.
  9. ^ Yong Yi Zhen; Guangxu Wang; Ian G. Percival (2017). "Conodonts and tabulate corals from the Upper Ordovician Angullong Formation of central New South Wales, Australia". Alcheringa: An Australasian Journal of Palaeontology. 41 (2): 141–168. doi:10.1080/03115518.2016.1185869.
  10. ^ a b c Jerzy Fedorowski (2017). "Early Bashkirian Rugosa (Anthozoa) from the Donets Basin (Ukraine). Part 5. The Family Bothrophyllidae Fomichev, 1953". Acta Geologica Polonica. 67 (2): 249–298. Bibcode:2017AcGeP..67..249F. doi:10.1515/agp-2017-0013.
  11. ^ John S. Peel (2017). "A problematic cnidarian (Cambroctoconus; Octocorallia?) from the Cambrian (Series 2–3) of Laurentia". Journal of Paleontology. 91 (5): 871–882. doi:10.1017/jpa.2017.49.
  12. ^ Wei-hua Liao; Xue-ping Ma (2017). "Devonian corals from Zhaotong, NE Yunnan (2)——Givetian rugose corals". Acta Palaeontologica Sinica. 56 (1): 68–81.
  13. ^ a b c d e f Jerzy Fedorowski (2017). "Early Bashkirian Rugosa (Anthozoa) from the Donets Basin (Ukraine). Part 6. The Family Aulophyllidae Dybowski, 1873". Acta Geologica Polonica. 67 (4): 459–514. doi:10.1515/agp-2017-0028.
  14. ^ a b c d e Galina K. Melnikova; Ewa Roniewicz (2017). "Early Jurassic corals with dominating solitary growth forms from the Kasamurg Mountains, Central Asia". Palaeoworld. 26 (1): 124–148. doi:10.1016/j.palwor.2016.01.001.
  15. ^ Bernard Lathuilière; Sylvain Charbonnier; Jean-Michel Pacaud (2017). Nomenclatural and taxonomic acts and remarks for the revision of Jurassic corals (PDF). Zitteliana. 89. pp. 133–150. ISBN 978-3-946705-00-0.
  16. ^ Sergio Rodríguez; Ian D. Somerville; Ismail Said (2017). "New species of the rugose coral genus Lithostrotion Fleming in the upper Viséan from the Azrou-Khenifra Basin (Morocco)" (PDF). Spanish Journal of Palaeontology. 32 (1): 27–34.
  17. ^ Stephen D. Cairns (2017). "New azooxanthellate genus of Scleractinia (Flabellidae) from the Australian Cenozoic". Journal of Paleontology. 91 (3): 407–416. doi:10.1017/jpa.2016.83.
  18. ^ Shuji Niko; Shigeyuki Suzuki; Eiji Taguchi (2017). "Petrophyllia niimiensis, a new Miocene species of scleractinian coral from the Bihoku Group in Niimi City, Okayama Prefecture, Southwest Japan". Bulletin of the Akiyoshi-dai Museum of Natural History. 52: 5–9.
  19. ^ Yunhuan Liu; Tiequan Shao; Huaqiao Zhang; Qi Wang; Yanan Zhang; Cheng Chen; Yongchun Liang; Jiaqi Xue (2017). "A new scyphozoan from the Cambrian Fortunian Stage of South China". Palaeontology. 60 (4): 511–518. doi:10.1111/pala.12306.
  20. ^ Shuji Niko; Yousuke Ibaraki; Jun-ichi Tazawa (2017). "Middle Devonian tabulate corals from the Kotaki area, Niigata Prefecture, central Japan". Science Reports of Niigata University. (Geology). 32: 25–31. hdl:10191/47651.
  21. ^ Xing Wang; Jian Han; Jean Vannier; Qiang Ou; Xiaoguang Yang; Kentaro Uesugi; Osamu Sasaki; Tsuyoshi Komiya (2017). "Anatomy and affinities of a new 535-million-year-old medusozoan from the Kuanchuanpu Formation, South China". Palaeontology. 60 (6): 853–867. doi:10.1111/pala.12320.
  22. ^ Rosemarie Christine Baron-Szabo (2017). "Scleractinian corals from the upper Aptian–Albian of the Garschella Formation of central Europe (western Austria; eastern Switzerland): The Albian" (PDF). Jahrbuch der Geologischen Bundesanstalt. 157 (1–4): 241–260.
  23. ^ Andrzej Baliński; Yuanlin Sun (2017). "Early Ordovician black corals from China". Bulletin of Geosciences. 92 (1): 1–12. doi:10.3140/bull.geosci.1632.
  24. ^ Marcus M. Key, Jr.; Matúš Hyžný; Erfan Khosravi; Natália Hudáčková; Ninon Robin; Majid Mirzaie Ataabadi (2017). "Bryozoan epibiosis on fossil crabs: a rare occurrence from the Miocene of Iran". PALAIOS. 32 (8): 491–505. Bibcode:2017Palai..32..491K. doi:10.2110/palo.2017.040.
  25. ^ a b Andrej Ernst; Daniel Vachard (2017). "Middle Pennsylvanian bryozoans of Cerros de Tule, Sonora, Mexico". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 285 (1): 11–38. doi:10.1127/njgpa/2017/0660.
  26. ^ a b c d e f g h i j k l m n o p q r s t u v w x y Emanuela Di Martino; Paul D. Taylor; Roger W. Portell (2017). "Bryozoans from the lower Miocene Chipola Formation, Calhoun County, Florida, USA". Bulletin of the Florida Museum of Natural History. 53 (4): 97–200.
  27. ^ a b c d e Silviu O. Martha; Birgit Niebuhr; Joachim Scholz (2017). "Cheilostome Bryozoen" (PDF). Geologica Saxonica. 62: 11–52.
  28. ^ Andrej Ernst; Zoya Tolokonnikova; Edouard Poty; Bernard Mottequin (2017). "A bryozoan fauna from the Mississippian (Tournaisian and Viséan) of Belgium". Geobios. 50 (2): 105–121. doi:10.1016/j.geobios.2017.02.002.
  29. ^ a b c d e f g h i Juan Luis Suárez Andrés; Patrick N. Wyse Jackson (2017). "Fenestrate Bryozoa of the Moniello Formation (Lower-Middle Devonian, NW Spain)". Bulletin of Geosciences. 92 (2): 153–183. doi:10.3140/bull.geosci.1668.
  30. ^ a b c d Emanuela Di Martino; Paul D. Taylor; Laura J. Cotton; Paul N. Pearson (2017). "First bryozoan fauna from the Eocene–Oligocene transition in Tanzania". Journal of Systematic Palaeontology. 16 (3): 225–243. doi:10.1080/14772019.2017.1284163.
  31. ^ a b Emanuela Di Martino; Paul D. Taylor; Dennis P. Gordon; Lee Hsiang Liow (2017). "New bryozoan species from the Pleistocene of the Wanganui Basin, North Island, New Zealand". European Journal of Taxonomy. 345 (345): 1–15. doi:10.5852/ejt.2017.345.
  32. ^ a b Andrej Ernst; Peter Königshof; Ali Bahrami; Mehdi Yazdi; Iliana Boncheva (2017). "A Late Devonian (Frasnian) bryozoan fauna from central Iran". Palaeobiodiversity and Palaeoenvironments. 97 (3): 541–552. doi:10.1007/s12549-016-0269-5.
  33. ^ a b L. A. Viskova; A. V. Pakhnevich (2017). "Bryozoan (Stenolaemata) records from the upper Callovian (Middle Jurassic) of the Moscow region". Paleontological Journal. 51 (3): 258–263. doi:10.1134/S0031030117030121.
  34. ^ M. A. Sonar; R. V. Pawar (2017). "Some fossil species of catenicellid and schizoporelloid bryozoans from the Cenozoic sediments of western Kachchh, Gujarat, India". Journal of the Palaeontological Society of India. 62 (1): 31–38.
  35. ^ Zoya Tolokonnikova; Jiří Kalvoda; Tomáš Kumpan (2017). "An early Tournaisian (Mississippian) bryozoan fauna from the Moravian Karst (Rhenohercynian Zone, Czech Republic)". Geobios. 50 (4): 341–348. doi:10.1016/j.geobios.2017.06.006.
  36. ^ a b c Kamil Zágoršek; Mehdi Yazdi; Ali Bahrami (2017). "Cenozoic cyclostomatous bryozoans from the Qom Formation (Chahriseh area northeast of Isfahan, central Iran)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 283 (1): 109–118. doi:10.1127/njgpa/2017/0631.
  37. ^ a b Paul D. Taylor; Silviu O. Martha (2017). "Cenomanian cheilostome bryozoans from Devon, England". Annales de Paléontologie. 103 (1): 19–31. doi:10.1016/j.annpal.2016.11.002.
  38. ^ Silviu O. Martha; Paul D. Taylor (2017). "The oldest erect cheilostome bryozoan: Jablonskipora gen. nov. from the upper Albian of south-west England". Papers in Palaeontology. 4 (1): 55–66. doi:10.1002/spp2.1097.
  39. ^ a b c Laís V. Ramalho; Vladimir A. Távora; Kamil Zagorsek (2017). "New records of the Bryozoan Metrarabdotos from the Pirabas Formation (Lower Miocene), Pará State, Brazil". Palaeontologia Electronica. 20 (2): Article number 20.2.32A. doi:10.26879/704.
  40. ^ Paul D. Taylor; Silviu O. Martha; Dennis P. Gordon (2018). "Synopsis of 'onychocellid' cheilostome bryozoan genera". Journal of Natural History. 52 (25–26): 1657–1721. doi:10.1080/00222933.2018.1481235.
  41. ^ Patrick N. Wyse Jackson; Andrej Ernst; Juan L. Suárez Andrés (2017). "Articulation in the Family Rhabdomesidae (Cryptostomata: Bryozoa) from the Mississippian of Ireland". Irish Journal of Earth Sciences. 35: 35–44. doi:10.3318/ijes.2017.35.35.
  42. ^ a b Petr V. Fedorov; Anna V. Koromyslova; Silviu O. Martha (2017). "The oldest bryozoans of Baltoscandia from the lowermost Floian (Ordovician) of north-western Russia: two new rare, small and simple species of Revalotrypidae". PalZ. 91 (3): 353–373. doi:10.1007/s12542-017-0351-y.
  43. ^ Juan López-Gappa; Leandro Martín Pérez; Miguel Griffin (2017). "First record of a fossil selenariid bryozoan in South America". Alcheringa: An Australasian Journal of Palaeontology. 41 (3): 365–368. doi:10.1080/03115518.2017.1283054.
  44. ^ Dennis P. Gordon; Kjetil L. Voje; Paul D. Taylor (2017). "Living and fossil Steginoporellidae (Bryozoa: Cheilostomata) from New Zealand". Zootaxa. 4350 (2): 345–362. doi:10.11646/zootaxa.4350.2.9. PMID 29245558.
  45. ^ Seth Finnegan; Christian M. Ø. Rasmussen; David A. T. Harper (2017). "Identifying the most surprising victims of mass extinction events: an example using Late Ordovician brachiopods". Biology Letters. 13 (9): 20170400. doi:10.1098/rsbl.2017.0400. PMC 5627174. PMID 28954854.
  46. ^ Claudio Garbelli; Lucia Angiolini; Shu-zhong Shen (2017). "Biomineralization and global change: A new perspective for understanding the end-Permian extinction". Geology. 45 (1): 19–22. doi:10.1130/G38430.1.
  47. ^ a b c C.B. Skovsted; I. Knight; U. Balthasar; W.D. Boyce (2017). "Depth related brachiopod faunas from the lower Cambrian Forteau Formation of southern Labrador and western Newfoundland, Canada". Palaeontologia Electronica. 20 (3): Article number 20.3.54A. doi:10.26879/775.
  48. ^ József Pálfy; Zsófia Kovács; Gregory D. Price; Attila Vörös; Gary G. Johannson (2017). "A new occurrence of the Early Jurassic brachiopod Anarhynchia from the Canadian Cordillera confirms its membership in chemosynthesis-based ecosystems". Canadian Journal of Earth Sciences. 54 (12): 1179–1193. doi:10.1139/cjes-2017-0179. hdl:1807/79681.
  49. ^ a b c d e f g h Maria Liljeroth; David A. T. Harper; Hilary Carlisle; Arne T. Nielsen (2017). Fossils and Strata, Number 62, Ordovician rhynchonelliformean brachiopods from Co. Waterford, SE Ireland: palaeobiogeography of the Leinster Terrane. Wiley-Blackwell. pp. 1–164. ISBN 978-1-119-41255-7.
  50. ^ a b José F. Baeza-Carratalá; Matías Reolid; Fernando García Joral (2017). "New deep-water brachiopod resilient assemblage from the South-Iberian Palaeomargin (Western Tethys) and its significance for the brachiopod adaptive strategies around the Early Toarcian Mass Extinction Event". Bulletin of Geosciences. 92 (2): 233–256. doi:10.3140/bull.geosci.1631.
  51. ^ a b V. V. Baranov (2017). "New brachiopods from the Ordovician of northeastern Russia". Paleontological Journal. 51 (1): 47–52. doi:10.1134/S0031030117010038.
  52. ^ A. A. Madison (2017). "To the revision of the Upper Ordovician Bilobia Cooper (Strophomenida, Brachiopoda)". Paleontological Journal. 51 (4): 368–373. doi:10.1134/S0031030117040062.
  53. ^ a b A. M. Popov; Yu. D. Zakharov (2017). "Olenekian brachiopods from the Kamenushka River basin, South Primorye: New data on the brachiopod recovery after the end-Permian mass extinction". Paleontological Journal. 51 (7): 735–745. doi:10.1134/S0031030117070085.
  54. ^ a b Maria Aleksandra Bitner; Arnold Müller (2017). "Late Eocene (Priabonian) brachiopod fauna from Dnipropetrovsk, eastern Ukraine". Bulletin of Geosciences. 92 (2): 211–231. doi:10.3140/bull.geosci.1661.
  55. ^ a b Danièle Gaspard (2017). "Deux nouvelles espèces de brachiopodes rhynchonelliformes de l'Albien stratotypique (Bassin de Paris) – mise au point". Annales de Paléontologie. 103 (2): 93–100. doi:10.1016/j.annpal.2017.04.004.
  56. ^ a b c d e f g Dan Lü; Xue-Ping Ma (2017). "Small-sized brachiopods from the Upper Frasnian (Devonian) of central Hunan, China". Palaeoworld. 26 (3): 456–478. doi:10.1016/j.palwor.2017.01.005.
  57. ^ Jun-ichi Tazawa; Hiroaki Inose; Naotomo Kaneko (2017). "Cyrtospirifer ainosawensis sp. nov., from the Upper Devonian Ainosawa Formation, Soma, Abukuma Mountains, northeastern Japan". The Journal of the Geological Society of Japan. 123 (8): 653–656. doi:10.5575/geosoc.2017.0011.
  58. ^ Jun-ichi Tazawa (2017). "Discovery of Cyrtospirifer (Late Devonian Brachiopoda) from Choanji in the South Kitakami Belt, northeastern Japan". The Journal of the Geological Society of Japan. 123 (2): 101–105. doi:10.5575/geosoc.2016.0059.
  59. ^ a b c L.E. Popov; L.R.M. Cocks (2017). "The World's second oldest strophomenoid-dominated benthic assemblage in the first Dapingian (Middle Ordovician) brachiopod fauna identified from Iran". Journal of Asian Earth Sciences. 140: 1–12. Bibcode:2017JAESc.140....1P. doi:10.1016/j.jseaes.2017.03.007.
  60. ^ T.N. Smirnova; G.T. Ushatinskaya; E.A. Zhegallo; I.V. Panchenko (2017). "Shell microstructure of Discinisca suborbicularis sp. nov. (Brachiopoda, Lingulata) from the Upper Jurassic of Western Siberia". Paleontological Journal. 51 (5): 480–490. doi:10.1134/S0031030117050124.
  61. ^ T. N. Smirnova; G. T. Ushatinskaya; E. A. Zhegallo; I. V. Panchenko (2017). "First records of brachiopods of the family Discinidae (Class Lingulata) from the Upper Jurassic of West Siberia". Paleontological Journal. 51 (2): 155–160. doi:10.1134/S0031030117020150.
  62. ^ Paul Copper; Jisuo Jin (2017). "Early athyride brachiopod evolution through the Ordovician-Silurian mass extinction and recovery, Anticosti Island, eastern Canada". Journal of Paleontology. 91 (6): 1123–1147. doi:10.1017/jpa.2017.74.
  63. ^ a b Lars E. Holmer; Leonid E. Popov; Mansoureh Ghobadi Pour; Zhiliang Zhang; Zhifei Zhang (2017). "Unusual pitted Ordovician brachiopods from the East Baltic: the significance of coarsely pitted ornamentations in linguliforms". Papers in Palaeontology. 3 (3): 387–399. doi:10.1002/spp2.1080.
  64. ^ a b http://zoobank.org/references/BE5BDD7C-D263-4653-9859-EE6119DD0886
  65. ^ a b c d Shuzhong Shen; Yugan Jin; Yan Zhang; Elizabeth A. Weldon (2017). "Permian brachiopod genera on type species of China". In Jiayu Rong; Yugan Jin; Shuzhong Shen; Renbin Zhan. Phanerozoic brachiopod genera of China. Beijing: Science Press. pp. 651–881.
  66. ^ Adam T. Halamski; Amine Cherif (2017). "Oxfordian brachiopods from the Saïda and Frenda mountains (Tlemcenian Domain, north-western Algeria)". Annales Societatis Geologorum Poloniae. 87 (2): 141–156. doi:10.14241/asgp.2017.006.
  67. ^ Jisuo Jin; Lars E. Holmer (2017). "Pentameroid brachiopod Karlsorus new genus from the upper Wenlock (Silurian) Slite Beds, Gotland, Sweden". Journal of Paleontology. 91 (5): 911–918. doi:10.1017/jpa.2017.46.
  68. ^ a b c Bernard Mottequin; Eric Simon (2017). "New insights on Tournaisian–Visean (Carboniferous, Mississippian) athyridide, orthotetide, rhynchonellide, and strophomenide brachiopods from southern Belgium". Palaeontologia Electronica. 20 (2): Article number 20.2.28A. doi:10.26879/758.
  69. ^ Fengyu Wang; Jing Chen; Xu Dai; Haijun Song (2017). "A new Dienerian (Early Triassic) brachiopod fauna from South China and implications for biotic recovery after the Permian–Triassic extinction". Papers in Palaeontology. 3 (3): 425–439. doi:10.1002/spp2.1083.
  70. ^ a b Tatiana L. Modzalevskaya; Leonid E. Popov; Mansoureh Ghobadi Pour; Michail S. Dufour (2017). "First report on the Early Devonian (Lochkovian) brachiopods from eastern Central Pamirs, Tajikistan". Journal of Asian Earth Sciences. 138: 427–438. Bibcode:2017JAESc.138..427M. doi:10.1016/j.jseaes.2017.02.030.
  71. ^ Yong-Qin Mao; Yuan-Long Zhao; Cheng-Wen Wang; Timothy Topper (2017). "A fresh look at Nisusia Walcott, 1905 from the Cambrian Kaili Formation in Guizhou". Palaeoworld. 26 (1): 12–24. doi:10.1016/j.palwor.2016.03.001.
  72. ^ a b David A.T. Harper; Matthew A. Parkes; Zhan Ren-Bin (2017). "Late Ordovician deep-water brachiopod fauna from Raheen, Waterford Harbour, Ireland". Irish Journal of Earth Sciences. 35: 1–18. doi:10.3318/ijes.2017.35.1.
  73. ^ G.A. Cisterna; A.F. Sterren; O. López Gamundí; M.M. Vergel (2017). "Carboniferous postglacial faunas in the late Serpukhovian–Bashkirian interval of central-western Argentina". Alcheringa: An Australasian Journal of Palaeontology. 41 (3): 413–431. doi:10.1080/03115518.2017.1299795.
  74. ^ Urszula Radwańska (2017). "Selected Oxfordian brachiopods from Zalas (Cracow Upland, Poland)". Acta Geologica Polonica. 67 (3): 423–430. doi:10.1515/agp-2017-0021.
  75. ^ Mohammad-Reza Kebria-Ee Zadeh; Leonid E. Popov; Mansoureh Ghobadi Pour (2017). "A new orthide brachiopod genus from the Middle Ordovician of the Alborz Mountains, Iran". GFF. 139 (4): 327–332. doi:10.1080/11035897.2017.1347197.
  76. ^ Debahuti Mukherjee; Sabyasachi Shome (2017). "Tithonian brachiopods from the Kachchh and Jaisalmer basins, India". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 285 (2): 187–199. doi:10.1127/njgpa/2017/0676.
  77. ^ Jenaro L. García-Alcalde; Zarela Herrera (2017). "Tectogonotoechia rivasi n. sp. A new lower Pragian Celtiberian (Spain) Ancystrorhynchoidea rhynchonellid brachiopod" (PDF). Spanish Journal of Palaeontology. 32 (1): 115–128.
  78. ^ Howard R. Feldman (2017). "Tunethyris blodgetti sp. nov. (Brachiopoda, Terebratulida) from the Middle Triassic of the Makhtesh Ramon, southern Israel". Annales Societatis Geologorum Poloniae. 87 (1): 89–99. doi:10.14241/asgp.2017.004 (inactive 2018-09-11).
  79. ^ M. Mergl; İ. Hoşgör; I. O. Yilmaz; S. Zamora; J. Colmenar (2017). "Divaricate patterns in Cambro-Ordovician obolid brachiopods from Gondwana". Historical Biology: An International Journal of Paleobiology. 30 (7): 1015–1029. doi:10.1080/08912963.2017.1327531.
  80. ^ Shuzhong Shen; Li Qiao; Yan Zhang; Yuanlin Sun; Yugan Jin (2017). "Carboniferous brachiopod genera on type species of China". In Jiayu Rong; Yugan Jin; Shuzhong Shen; Renbin Zhan. Phanerozoic brachiopod genera of China. Beijing: Science Press. pp. 559–649.
  81. ^ Sarah L. Sheffield; Colin D. Sumrall (2017). "Generic revision of the Holocystitidae of North America (Diploporita, Echinodermata) based on universal elemental homology". Journal of Paleontology. 91 (4): 755–766. doi:10.1017/jpa.2016.159.
  82. ^ Ben Thuy; Hans Hagdorn; Andy S. Gale (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic". Geology. 45 (6): 531–534. Bibcode:2017Geo....45..531T. doi:10.1130/G38909.1.
  83. ^ Daniel B. Blake (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic: COMMENT". Geology. 45 (7): e417. Bibcode:2017Geo....45E.417B. doi:10.1130/G39163C.1.
  84. ^ Ben Thuy; Hans Hagdorn; Andy S. Gale (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic: REPLY". Geology. 45 (7): e418. Bibcode:2017Geo....45E.418T. doi:10.1130/G39210Y.1.
  85. ^ Mariusz A. Salamon; Przemysław Gorzelak (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic: COMMENT". Geology. 45 (7): e419. Bibcode:2017Geo....45E.419S. doi:10.1130/G39196C.1.
  86. ^ Ben Thuy (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic: REPLY". Geology. 45 (7): e420. Bibcode:2017Geo....45E.420T. doi:10.1130/G39221Y.1.
  87. ^ Aaron W. Hunter; Kenneth J. McNamara (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic: COMMENT". Geology. 45 (11): e431. doi:10.1130/G39575C.1.
  88. ^ Ben Thuy; Hans H. Hagdorn; Andy S. Gale (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic: REPLY". Geology. 45 (11): e432. doi:10.1130/G39684Y.1.
  89. ^ David F. Wright (2017). "Bayesian estimation of fossil phylogenies and the evolution of early to middle Paleozoic crinoids (Echinodermata)". Journal of Paleontology. 91 (4): 799–814. doi:10.1017/jpa.2016.141.
  90. ^ Selina R. Cole (2017). "Phylogeny and morphologic evolution of the Ordovician Camerata (Class Crinoidea, Phylum Echinodermata)". Journal of Paleontology. 91 (4): 815–828. doi:10.1017/jpa.2016.137.
  91. ^ David F. Wright; William I. Ausich; Selina R. Cole; Mark E. Peter; Elizabeth C. Rhenberg (2017). "Phylogenetic taxonomy and classification of the Crinoidea (Echinodermata)". Journal of Paleontology. 91 (4): 829–846. doi:10.1017/jpa.2016.142.
  92. ^ David F. Wright (2017). "Phenotypic innovation and adaptive constraints in the evolutionary radiation of Palaeozoic crinoids". Scientific Reports. 7 (1): Article number 13745. doi:10.1038/s41598-017-13979-9. PMC 5653864. PMID 29062117.
  93. ^ Elizabeth G. Clark; Bhart-Anjan S. Bhullar; Simon A. F. Darroch; Derek E. G. Briggs (2017). "Water vascular system architecture in an Ordovician ophiuroid". Biology Letters. 13 (12): 20170635. doi:10.1098/rsbl.2017.0635. PMC 5746540. PMID 29212753.
  94. ^ Moe Kato; Tatsuo Oji; Kotaro Shirai (2017). "Paleoecology of echinoderms in cold seep environments revealed by isotope analysis in the Late Cretaceous Western Interior Seaway". PALAIOS. 32 (4): 218–230. doi:10.2110/palo.2016.079.
  95. ^ Aaron W. Hunter; Neal L. Larson; Jamie Brezina (2018). "Comment to Kato et al. (2017), "Paleoecology of echinoderms in cold seep environments revealed by isotope analysis in the Late Cretaceous Western Interior Seaway"". PALAIOS. 33 (6): 282–283. doi:10.2110/palo.2017.071.
  96. ^ Moe Kato; Tatsuo Oji; Kotaro Shirai (2018). "Reply to comment on Kato et al. (2017) "Paleoecology of echinoderms in cold seep environments revealed by isotope analysis in the Late Cretaceous Western Interior Seaway"". PALAIOS. 33 (6): 284–285. doi:10.2110/palo.2018.028.
  97. ^ Mohamed Said M. Ali (2017). "First Record of a New Species of Amblypygus (Echinoidea) from the Middle Miocene of Mersa Matruh, Western Desert, Egypt". Paleontological Research. 21 (1): 44–53. doi:10.2517/2016PR016.
  98. ^ a b c d e f Selina R. Cole; William I. Ausich; Jorge Colmenar; Samuel Zamora (2017). "Filling the Gondwanan gap: paleobiogeographic implications of new crinoids from the Castillejo and Fombuena formations (Middle and Upper Ordovician, Iberian Chains, Spain)". Journal of Paleontology. 91 (4): 715–734. doi:10.1017/jpa.2016.135.
  99. ^ a b c d e f Hans Hess; Ben Thuy (2017). "Extraordinary diversity of feather stars (Echinodermata: Crinoidea: Comatulida) from a Lower Jurassic (Pliensbachian–Toarcian) rock reef of Feuguerolles (Normandy, France)". Swiss Journal of Palaeontology. 136 (2): 301–321. doi:10.1007/s13358-016-0122-5.
  100. ^ a b Daniel B. Blake (2017). "Two new Carboniferous Asteroidea (Echinodermata) of the family Urasterellidae". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 284 (1): 65–73. doi:10.1127/njgpa/2017/0652.
  101. ^ a b c Mohamed Said M. Ali (2017). "Middle Eocene echinoids from Gebel Qarara, Maghagh, Eastern Desert, Egypt". Journal of African Earth Sciences. 133: 46–73. Bibcode:2017JAfES.133...46A. doi:10.1016/j.jafrearsci.2017.04.031.
  102. ^ a b c Timothy A.M. Ewin; Ben Thuy (2017). "Brittle stars from the British Oxford Clay: unexpected ophiuroid diversity on Jurassic sublittoral mud bottoms". Journal of Paleontology. 91 (4): 781–798. doi:10.1017/jpa.2016.162.
  103. ^ Patrick D. McDermott; Christopher R. C. Paul (2017). "Ateleocystites? lansae sp. nov. (Mitrata, Anomalocystitidae) from the Upper Ordovician of South Wales". Geological Journal. 52 (1): 1–13. doi:10.1002/gj.2712.
  104. ^ Bálint Polonkai; Andreas Kroh; Ágnes Görög; Ildikó Selmeczi; Mihály Dunai; Emese Réka Bodor (2017). "First occurrence of echinoid genus Brissus in the Badenian (Middle Miocene) of Hungary and description of Brissus mihalyi n. sp". Földtani Közlöny. 147 (4): 383–398. doi:10.23928/foldt.kozl.2017.147.4.383.
  105. ^ Daniel B. Blake; Stephen K. Donovan; David A.T. Harper (2017). "A new Silurian ophiuroid from the west of Ireland". Irish Journal of Earth Sciences. 35: 57–66. doi:10.3318/ijes.2017.35.57.
  106. ^ Luis E. Silva-Martínez; Alberto Blanco-Piñón; Jesús A. de León-González; Hidalgo Rodríguez-Vela (2017). "New Echinoid (Spatangoida: Toxasterinidae) from the Campanian of Coahuila, Northeastern Mexico". Boletín de la Sociedad Geológica Mexicana. 69 (2): 371–384.
  107. ^ a b Jeffrey R. Thompson; Elizabeth Petsios; David J. Bottjer (2017). "A diverse assemblage of Permian echinoids (Echinodermata, Echinoidea) and implications for character evolution in early crown group echinoids". Journal of Paleontology. 91 (4): 767–780. doi:10.1017/jpa.2016.158.
  108. ^ Jeffrey R. Thompson; Elizabeth Petsios; Eric H. Davidson; Eric M. Erkenbrack; Feng Gao; David J. Bottjer (2015). "Reorganization of sea urchin gene regulatory networks at least 268 million years ago as revealed by oldest fossil cidaroid echinoid". Scientific Reports. 5: Article number 15541. Bibcode:2015NatSR...515541T. doi:10.1038/srep15541. PMC 4614444. PMID 26486232.
  109. ^ Elise Nardin; Bertrand Lefebvre; Oldřich Fatka; Martina Nohejlová; Libor Kašička; Miroslav Šinágl; Michal Szabad (2017). "Evolutionary implications of a new transitional blastozoan echinoderm from the middle Cambrian of the Czech Republic". Journal of Paleontology. 91 (4): 672–684. doi:10.1017/jpa.2016.157.
  110. ^ José Francisco Carrasco (2017). "Primera cita del género Globator (Echinoidea, Eoceno) en España. Nueva especie" (PDF). Batalleria. 25: 8–12.
  111. ^ a b Enric Forner i Valls (2017). "Equinoïdeus nous (Echinodermata: Echinoidea) del Campanià de Moyenne Moulouya, nord est del Marroc". Nemus: Revista de l'Ateneu de Natura. 7: 51–72.
  112. ^ Peter Müller; Gerhard Hahn (2017). "Grigopyrgus n. gen., a new agelacrinitid edrioasteroid genus from the Lower Devonian of the Westerwald: (Echinodermata, Rhenish Slate Mountains, Germany)". Mainzer Geowissenschaftliche Mitteilungen. 45: 93–102.
  113. ^ Derek E. G. Briggs; Derek J. Siveter; David J. Siveter; Mark D. Sutton; Imran A. Rahman (2017). "An edrioasteroid from the Silurian Herefordshire Lagerstätte of England reveals the nature of the water vascular system in an extinct echinoderm". Proceedings of the Royal Society B: Biological Sciences. 284 (1862): 20171189. doi:10.1098/rspb.2017.1189. hdl:10044/1/53015. PMC 5597833. PMID 28904139.
  114. ^ Sarah L. Sheffield; William I. Ausich; Colin D. Sumrall (2017). "Late Ordovician (Hirnantian) diploporitan fauna of Anticosti Island, Quebec, Canada: implications for evolutionary and biogeographic patterns". Canadian Journal of Earth Sciences. 55 (1): 1–7. doi:10.1139/cjes-2017-0160. hdl:1807/80500.
  115. ^ a b c Tony Sadler; Sarah K. Martin; Stephen J. Gallagher (2017). "Three new species of the echinoid genus Monostychia Laube, 1869 from Western Australia". Alcheringa: An Australasian Journal of Palaeontology. 41 (4): 464–473. doi:10.1080/03115518.2017.1282979.
  116. ^ Mike Reich; James Sprinkle; Bertrand Lefebvre; Gertrud E. Rössner; Samuel Zamora (2017). "The first Ordovician cyclocystoid (Echinodermata) from Gondwana and its morphology, paleoecology, taphonomy, and paleogeography". Journal of Paleontology. 91 (4): 735–754. doi:10.1017/jpa.2017.7.
  117. ^ Stephen K. Donovan; Fiona E. Fearnhead (2017). "A Lower Devonian hexacrinitid crinoid (Camerata, Monobathrida) from south-west England". PalZ. 91 (2): 217–222. doi:10.1007/s12542-017-0344-x.
  118. ^ a b Louis G. Zachos (2017). "Paleocene echinoid faunas of the eastern United States". Journal of Paleontology. 91 (5): 1001–1024. doi:10.1017/jpa.2017.22.
  119. ^ a b David F. Wright; Ursula Toom (2017). "New crinoids from the Baltic region (Estonia): fossil tip-dating phylogenetics constrains the origin and Ordovician–Silurian diversification of the Flexibilia (Echinodermata)". Palaeontology. 60 (6): 893–910. doi:10.1111/pala.12324.
  120. ^ S.V. Rozhnov; R.L. Parsley (2017). "A new cornute (Homalozoa: Echinodermata) from the Uppermost Middle Cambrian (Stage 3, Furongian) from northern Iran: its systematics and functional morphology". Paleontological Journal. 51 (5): 500–509. doi:10.1134/S0031030117050100.
  121. ^ a b c Yingyan Mao; William I. Ausich; Yue Li; Jih-Pai Lin; Caihua Lin (2017). "New taxa and phyletic evolution of the Aeronian (Llandovery, Silurian) Petalocrinidae (Echinodermata, Crinoidea) in Guizhou, South China Block". Journal of Paleontology. 91 (3): 477–492. doi:10.1017/jpa.2016.156.
  122. ^ David R. Cordie; Brian J. Witzke (2017). "A New Crinoid Genus from the Middle Devonian of Iowa, USA (Camerata, Melocrinitidae)". Paleontological Research. 21 (1): 7–13. doi:10.2517/2016PR014.
  123. ^ Samuel Zamora; Colin D. Sumrall; Xue-Jian Zhu; Bertrand Lefebvre (2017). "A new stemmed echinoderm from the Furongian of China and the origin of Glyptocystitida (Blastozoa, Echinodermata)". Geological Magazine. 154 (3): 465–475. doi:10.1017/S001675681600011X.
  124. ^ Peter Müller; Gerhard Hahn (2017). "Edrioasteroidea from the Seifen Formation of the Westerwald, Rhenish Slate Mountains (Lower Devonian, Germany), part 2: Sumrallia rseiberti gen. et sp. nov". PalZ. 91 (4): 629–639. doi:10.1007/s12542-017-0356-6.
  125. ^ Loïc Villier; Arnaud Brayard; Kevin G. Bylund; James F. Jenks; Gilles Escarguel; Nicolas Olivier; Daniel A. Stephen; Emmanuelle Vennin; Emmanuel Fara (2017). "Superstesaster promissor gen. et sp. nov., a new starfish (Echinodermata, Asteroidea) from the Early Triassic of Utah, USA, filling a major gap in the phylogeny of asteroids". Journal of Systematic Palaeontology. 16 (5): 395–415. doi:10.1080/14772019.2017.1308972.
  126. ^ Aaron W. Hunter; Kenneth J. McNamara (2017). "Prolonged co-existence of 'archaic' and 'modern' Palaeozoic ophiuroids – evidence from the early Permian, Southern Carnarvon Basin, Western Australia". Journal of Systematic Palaeontology. 16 (11): 891–907. doi:10.1080/14772019.2017.1353549 (inactive 2018-09-11).
  127. ^ Didier Néraudeau; Jean-Pierre Pineau; Jean-Christophe Dudicourt; Patrice Raboeuf (2017). "Ulphaceaster sarthacensis, nouveau genre et nouvelle espèce d'échinide Archiaciidae du Cénomanien (Sarthe, France)". Annales de Paléontologie. 103 (1): 87–91. doi:10.1016/j.annpal.2017.01.002.
  128. ^ Nils Schlüter; Frank Wiese (2017). "Late Cretaceous species of Vologesia (Echinoidea, Cassiduloida) from northern Spain". Zootaxa. 4306 (2): 261–270. doi:10.11646/zootaxa.4306.2.6.
  129. ^ Emilia Jarochowska; Viive Viira; Rein Einasto; Rafał Nawrot; Oskar Bremer; Peep Männik; Axel Munnecke (2017). "Conodonts in Silurian hypersaline environments: Specialized and unexpectedly diverse". Geology. 45 (1): 3–6. Bibcode:2017Geo....45....3J. doi:10.1130/G38492.1.
  130. ^ Muhui Zhang; Haishui Jiang; Mark A. Purnell; Xulong Lai (2017). "Testing hypotheses of element loss and instability in the apparatus composition of complex conodonts: articulated skeletons of Hindeodus". Palaeontology. 60 (4): 595–608. doi:10.1111/pala.12305.
  131. ^ Sachiko Agematsu; Martyn L. Golding; Michael J. Orchard (2018). "Comments on: Testing hypotheses of element loss and instability in the apparatus composition of complex conodonts (Zhang et al.)". Palaeontology. 61 (5): 785–792. doi:10.1111/pala.12372.
  132. ^ Mark A. Purnell; Muhui Zhang; Haishui Jiang; Xulong Lai (2018). "Reconstruction, composition and homology of conodont skeletons: a response to Agematsu et al." (Submitted manuscript). Palaeontology. 61 (5): 793–796. doi:10.1111/pala.12387.
  133. ^ a b c Gustavo G. Voldman; Guillermo L. Albanesi; Gladys Ortega; María Eugenia Giuliano; Carlos Ruben Monaldi (2017). "New conodont taxa and biozones from the Lower Ordovician of the Cordillera Oriental, NW Argentina". Geological Journal. 52 (3): 394–414. doi:10.1002/gj.2766.
  134. ^ a b C. Giles Miller; Alan P. Heward; Angelo Mossoni; Ivan J. Sansom (2017). "Two new early balognathid conodont genera from the Ordovician of Oman and comments on the early evolution of prioniodontid conodonts". Journal of Systematic Palaeontology. 16 (7): 571–593. doi:10.1080/14772019.2017.1314985.
  135. ^ Till Söte; Sven Hartenfels; Ralph Thomas Becker (2017). "Uppermost Famennian stratigraphy and facies development of the Reigern Quarry near Hachen (northern Rhenish Massif, Germany)". Palaeobiodiversity and Palaeoenvironments. 97 (3): 633–654. doi:10.1007/s12549-017-0287-y.
  136. ^ a b c d e f g h i j k l m n Xi-ping Dong; Huaqiao Zhang (2017). "Middle Cambrian through lowermost Ordovician conodonts from Hunan, South China". Journal of Paleontology. 91 (S73): 1–89. doi:10.1017/jpa.2015.43.
  137. ^ a b N. S. Ovnatanova; L. I. Kononova; L. S. Kolesnik; Yu. A. Gatovsky (2017). "Upper Devonian conodonts of northeastern European Russia". Paleontological Journal. 51 (10): 973–1165. doi:10.1134/S003103011710001X.
  138. ^ Fernanda Serra; Nicolás A. Feltes; Miles A. Henderson; Guillermo L. Albanesi (2017). "Darriwilian (Middle Ordovician) conodont biofacies from the Central Precordillera of Argentina". Marine Micropaleontology. 130: 15–28. Bibcode:2017MarMP.130...15S. doi:10.1016/j.marmicro.2016.12.002.
  139. ^ a b c Pablo Plasencia; Ali Murat Kiliç; Aymon Baud; Milan Sudar; Francis Hirsch (2017). "The evolutionary trend of platform-denticulation in Middle Triassic Acuminate Gondolellidae (Conodonta)". Turkish Journal of Zoology. 42 (2): 187–197. doi:10.3906/zoo-1708-20.
  140. ^ a b c Y.D. Sun; X.T. Liu; J.X. Yan; B. Li; B. Chen; D.P.G. Bond; M.M. Joachimski; P.B. Wignall; X. Wang; X.L. Lai (2017). "Permian (Artinskian to Wuchapingian) conodont biostratigraphy in the Tieqiao section, Laibin area, South China". Palaeogeography, Palaeoclimatology, Palaeoecology. 465, Part A: 42–63. doi:10.1016/j.palaeo.2016.10.013.
  141. ^ Felix Lüddecke; Sven Hartenfels; Ralph Thomas Becker (2017). "Conodont biofacies of a monotonous middle Famennian pelagic carbonate succession (Upper Ballberg Quarry, northern Rhenish Massif)". Palaeobiodiversity and Palaeoenvironments. 97 (3): 591–613. doi:10.1007/s12549-017-0288-x.
  142. ^ Thomas J. Suttner; Erika Kido; Andreas W. W. Suttner (2017). "Icriodus marieae, a new icriodontid conodont species from the Middle Devonian". PalZ. 91 (1): 137–144. doi:10.1007/s12542-017-0337-9. PMC 5445598. PMID 28615752.
  143. ^ Nicholas J. Hogancamp; James E. Barrick (2017). "Ungrooved species of Idiognathodus from the lower Gzhelian (Pennsylvanian) Heebner Shale, Midcontinent North America, U.S.A". Micropaleontology. 62 (5): 385–53.
  144. ^ Cassiane Negreiros Cardoso; Javier Sanz-López; Silvia Blanco-Ferrera (2017). "Pennsylvanian conodonts from the Tapajós Group (Amazonas Basin, Brazil)". Geobios. 50 (2): 75–95. doi:10.1016/j.geobios.2017.02.004.
  145. ^ Ke-Yi Hu; Yu-Ping Qi; Qiu-Lai Wang; Tamara I. Nemyrovska; Ji-Tao Chen (2017). "Early Pennsylvanian conodonts from the Luokun section of Luodian, Guizhou, South China". Palaeoworld. 26 (1): 64–82. doi:10.1016/j.palwor.2015.12.003.
  146. ^ Huaibao P. Liu; Stig M. Bergström; Brian J. Witzke; Derek E. G. Briggs; Robert M. McKay; Annalisa Ferretti (2017). "Exceptionally preserved conodont apparatuses with giant elements from the Middle Ordovician Winneshiek Konservat-Lagerstätte, Iowa, USA". Journal of Paleontology. 91 (3): 493–511. doi:10.1017/jpa.2016.155.
  147. ^ a b Nadezhda Izokh; Aleksandr Yazikov (2017). "Discovery of Early Carboniferous conodonts in Northern Kharaulakh Ranges (lower reaches of the Lena River, northeastern Siberia, Arctic Russia)". Revue de Micropaléontologie. 60 (2): 213–232. doi:10.1016/j.revmic.2017.03.001.