2017 in paleontology

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
List of years in paleontology
  • 2014
  • 2015
  • 2016
  • 2017
  • 2018
  • 2019
  • 2020
  • In science
    2014
    2015
    2016
    2017
    2018
    2019
    2020

    Paleontology or palaeontology (from Greek: paleo, "ancient"; ontos, "being"; and logos, "knowledge") is the study of prehistoric life forms on Earth through the examination of plant and animal fossils.[1] This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2017.

    Plants[edit]

    Cnidarians[edit]

    Research[edit]

    New taxa[edit]

    Name Novelty Status Authors Age Unit Location Notes Images

    Acanthophyllum filiforme[8]

    Sp. nov

    Valid

    Coen-Aubert

    Devonian (Givetian)

     Mauritania

    A rugose coral belonging to the family Ptenophyllidae.

    Acanthophyllum sougyi[8]

    Sp. nov

    Valid

    Coen-Aubert

    Devonian (Givetian)

     Mauritania

    A rugose coral belonging to the family Ptenophyllidae.

    Agetolites angullongensis[9]

    Sp. nov

    Valid

    Zhen, Wang & Percival

    Late Ordovician

    Angullong Formation

     Australia

    A tabulate coral.

    Bothrophyllum gorbachevensis[10]

    Sp. nov

    Valid

    Fedorowski

    Carboniferous (Bashkirian)

     Ukraine

    A rugose coral belonging to the family Bothrophyllidae.

    Bothrophyllum kalmyussi[10]

    Sp. nov

    Valid

    Fedorowski

    Carboniferous (Bashkirian)

     Ukraine

    A rugose coral belonging to the family Bothrophyllidae.

    Cambroctoconus koori[11]

    Sp. nov

    Valid

    Peel

    Cambrian Stage 4 or Stage 5

    Henson Gletscher Formation

     Greenland

    A possible member of Octocorallia.

    Charactophyllum mauritanicum[8]

    Sp. nov

    Valid

    Coen-Aubert

    Devonian (Givetian)

     Mauritania

    A rugose coral belonging to the family Disphyllidae.

    Charactophyllum soraufi[8]

    Sp. nov

    Valid

    Coen-Aubert

    Devonian (Givetian)

     Mauritania

    A rugose coral belonging to the family Disphyllidae.

    Dianqianophyllum[12]

    Gen. et sp. nov

    Valid

    Liao & Ma

    Devonian (Givetian)

     China

    A rugose coral. Genus includes new species D. bianqingense.

    Dibunophylloides columnatus[13]

    Sp. nov

    Valid

    Fedorowski

    Carboniferous (Bashkirian)

     Ukraine

    A rugose coral belonging to the family Aulophyllidae.

    Dibunophylloides paulus[13]

    Sp. nov

    Valid

    Fedorowski

    Carboniferous (Bashkirian)

     Ukraine

    A rugose coral belonging to the family Aulophyllidae.

    Dibunophylloides similis[13]

    Sp. nov

    Valid

    Fedorowski

    Carboniferous (Bashkirian)

     Ukraine

    A rugose coral belonging to the family Aulophyllidae.

    Dibunophyllum medium[13]

    Sp. nov

    Valid

    Fedorowski

    Carboniferous (Bashkirian)

     Ukraine

    A rugose coral belonging to the family Aulophyllidae.

    Fungiaphyllia[14]

    Gen. et sp. nov

    Valid

    Melnikova & Roniewicz

    Early Jurassic (Hettangian/SinemurianPliensbachian)

     Afghanistan

    A stony coral belonging to the family Latomeandridae. The type species is Fungiaphyllia communis.

    Gillismilia[15]

    Nom. nov

    Valid

    Lathuilière, Charbonnier & Pacaud

    Early Jurassic (Pliensbachian)

     France

    A coral; a replacement name for Palaeocyathus Alloiteau (1956).

    Guembelastraea dronovi[14]

    Sp. nov

    Valid

    Melnikova & Roniewicz

    Early Jurassic (Hettangian/Sinemurian)

     Afghanistan

    A stony coral belonging to the family Tropiastraeidae, a species of Guembelastraea.

    Lithostrotion termieri[16]

    Sp. nov

    Valid

    Rodríguez & Somerville in Rodríguez, Somerville & Said

    Carboniferous (Viséan)

    Azrou-Khenifra Basin

     Morocco

    A rugose coral belonging to the family Lithostrotionidae.

    Macgeea tourneuri[8]

    Sp. nov

    Valid

    Coen-Aubert

    Devonian (Givetian)

     Mauritania

    A rugose coral belonging to the family Phillipsastreidae.

    Nina[10]

    Gen. et 3 sp. et comb. nov

    Junior homonym

    Fedorowski

    Carboniferous (Serpukhovian and Bashkirian)

     Ukraine

    A rugose coral belonging to the family Bothrophyllidae. The type species is N. donetsiana; genus also includes new species N. dibimitaria and N. magna, as well as "Bothrophyllum" berestovensis Vassilyuk (1960). The generic name is preoccupied by Nina Horsfield (1829).

    Oppelismilia spectabilis[14]

    Sp. nov

    Valid

    Melnikova & Roniewicz

    Early Jurassic (Hettangian/Sinemurian)

     Afghanistan

    A stony coral belonging to the family Oppelismiliidae, a species of Oppelismilia.

    Parepismilia dolichostoma[14]

    Sp. nov

    Valid

    Melnikova & Roniewicz

    Early Jurassic (Hettangian–early Sinemurian)

     Afghanistan

    A stony coral belonging to the family Parepismiliidae, a species of Parepismilia.

    Parepismilia dronovi[14]

    Sp. nov

    Valid

    Melnikova & Roniewicz

    Early Jurassic (Hettangian/Sinemurian)

     Afghanistan

    A stony coral belonging to the family Parepismiliidae, a species of Parepismilia.

    Periplacotrochus[17]

    Gen. et comb. et sp. nov

    Valid

    Cairns

    Late Eocene to middle Miocene

     Australia

    A flabellid coral. Genus includes P. deltoideus (Duncan, 1864), P. corniculatus (Dennant, 1899), P. elongatus (Duncan, 1864), P. pueblensis (Dennant, 1903), P. inflectus (Dennant, 1903) and P. magnus (Dennant, 1904), as well as new species P. cudmorei.

    Petrophyllia niimiensis[18]

    Sp. nov

    Valid

    Niko, Suzuki & Taguchi

    Miocene

    Bihoku Group

     Japan

    A stony coral.

    Qinscyphus[19]

    Gen. et sp. nov

    Valid

    Liu et al.

    Cambrian (Fortunian)

    Kuanchuanpu Formation

     China

    A probable crown jellyfish belonging to the family Olivooidae. The type species is Q. necopinus.

    Rozkowskia lenta[13]

    Sp. nov

    Valid

    Fedorowski

    Carboniferous (Bashkirian)

     Ukraine

    A rugose coral belonging to the family Aulophyllidae.

    Scoliopora hosakai[20]

    Sp. nov

    Valid

    Niko, Ibaraki & Tazawa

    Middle Devonian

     Japan

    A tabulate coral belonging to the order Favositida and the family Alveolitidae.

    Sinaster[21]

    Gen. et sp. nov

    Valid

    Wang et al.

    Early Cambrian

    Kuanchuanpu Formation

     China

    A member of Medusozoa belonging to the family Olivooidae. The type species is S. petalon.

    Stephanophyllia plattenwaldensis[22]

    Sp. nov

    Valid

    Baron-Szabo

    Early Cretaceous (late Aptian to Albian)

    Garschella Formation

     Austria

    A stony coral belonging to the family Micrabaciidae.

    Sterictopathes[23]

    Gen. et sp. nov

    Valid

    Baliński & Sun

    Ordovician (early Floian)

    Fenxiang Formation
    Honghuayuan Formation

     China

    A black coral related to Sinopathes reptans. The type species is S. radicatus.

    Voragoaxum[13]

    Gen. et sp. nov

    Valid

    Fedorowski

    Carboniferous (Bashkirian)

     Ukraine

    A rugose coral belonging to the family Aulophyllidae. The type species is V. cavum.

    Arthropods[edit]

    Bryozoans[edit]

    Research[edit]

    New taxa[edit]

    Name Novelty Status Authors Age Unit Location Notes Images

    Acupipora mexicana[25]

    Sp. nov

    Valid

    Ernst & Vachard

    Carboniferous (middle Pennsylvanian)

     Mexico

    Adeonellopsis sandbergi[26]

    Sp. nov

    Valid

    Di Martino, Taylor & Portell

    Early Miocene

    Chipola Formation

     United States
    ( Florida)

    A cheilostome bryozoan belonging to the family Adeonidae.

    'Akatopora' wilmseni[27]

    Sp. nov

    Valid

    Martha, Niebuhr & Scholz

    Late Cretaceous (mid-late Turonian)

    Strehlen Formation

     Germany

    A cheilostome bryozoan.

    Atactotoechus vaulxensis[28]

    Sp. nov

    Valid

    Ernst et al.

    Carboniferous (Mississippian)

     Belgium

    A bryozoan.

    Bashkirella arnaoense[29]

    Sp. nov

    Valid

    Suárez Andrés & Wyse Jackson

    Devonian (Eifelian)

    Moniello Formation

     Spain

    A member of Fenestrata belonging to the family Chasmatoporidae.

    Bigeyina cantabrica[29]

    Sp. nov

    Valid

    Suárez Andrés & Wyse Jackson

    Devonian (Emsian–early Eifelian)

    Moniello Formation

     Spain

    A member of Fenestrata belonging to the family Semicosciniidae.

    Bigeyina spinosa[29]

    Sp. nov

    Valid

    Suárez Andrés & Wyse Jackson

    Devonian (Emsian–early Eifelian)

    Moniello Formation

     Spain

    A member of Fenestrata belonging to the family Semicosciniidae.

    Bragella[30]

    Gen. et sp. nov

    Valid

    Di Martino et al.

    EoceneOligocene transition

     Tanzania

    A cheilostome bryozoan. Genus includes new species B. pseudofedora.

    Buskia waiinuensis[31]

    Sp. nov

    Valid

    Di Martino et al.

    Pleistocene

    Nukumaru Limestone

     New Zealand

    A member of Ctenostomata belonging to the superfamily Vesicularioidea and the family Buskiidae.

    Cheiloporina clarksvillensis[26]

    Sp. nov

    Valid

    Di Martino, Taylor & Portell

    Early Miocene

    Chipola Formation

     United States
    ( Florida)

    A cheilostome bryozoan belonging to the family Cheiloporinidae.

    Cigclisula solenoides[26]

    Sp. nov

    Valid

    Di Martino, Taylor & Portell

    Early Miocene

    Chipola Formation

     United States
    ( Florida)

    A cheilostome bryozoan belonging to the family Colatooeciidae.

    Coeloclemis zefrehensis[32]

    Sp. nov

    Valid

    Ernst et al.

    Devonian (Frasnian)

    Bahram Formation

     Iran

    A trepostome bryozoan.

    Diplosolen akatjevense[33]

    Sp. nov

    Valid

    Viskova & Pakhnevich

    Middle Jurassic (Callovian)

     Russia

    A bryozoan belonging to the class Stenolaemata and the order Tubuliporida.

    Ditaxipora lakriensis[34]

    Sp. nov

    Valid

    Sonar & Pawar

    Miocene (Burdigalian)

    Chhasra Formation

     India

    A member of the family Catenicellidae.

    Eridopora moravica[35]

    Sp. nov

    Valid

    Tolokonnikova, Kalvoda & Kumpan

    Carboniferous (Tournaisian)

     Czech Republic

    Escharoides joannae[26]

    Sp. nov

    Valid

    Di Martino, Taylor & Portell

    Early Miocene

    Chipola Formation

     United States
    ( Florida)

    A cheilostome bryozoan belonging to the family Romancheinidae.

    Euthyrhombopora tenuis[32]

    Sp. nov

    Valid

    Ernst et al.

    Devonian (Frasnian)

    Bahram Formation

     Iran

    A rhabdomesine cryptostome bryozoan.

    Exechonella minutiperforata[26]

    Sp. nov

    Valid

    Di Martino, Taylor & Portell

    Early Miocene

    Chipola Formation

     United States
    ( Florida)

    A cheilostome bryozoan belonging to the family Exechonellidae.

    Exidmonea baghi[36]

    Sp. nov

    Valid

    Zágoršek, Yazdi & Bahrami

    Miocene

    Qom Formation

     Iran

    A cyclostome bryozoan.

    Fabifenestella almazani[25]

    Sp. nov

    Valid

    Ernst & Vachard

    Carboniferous (middle Pennsylvanian)

     Mexico

    Fenestrapora elegans[29]

    Sp. nov

    Valid

    Suárez Andrés & Wyse Jackson

    Devonian (late Emsian–early Eifelian)

    Moniello Formation

     Spain

    A member of Fenestrata belonging to the family Semicosciniidae.

    Filites robustus[29]

    Sp. nov

    Valid

    Suárez Andrés & Wyse Jackson

    Devonian (Emsian–early Eifelian)

    Moniello Formation

     Spain

    A member of Fenestrata belonging to the family Acanthocladiidae.

    Floridina subantiqua[26]

    Sp. nov

    Valid

    Di Martino, Taylor & Portell

    Early Miocene

    Chipola Formation

     United States
    ( Florida)

    A cheilostome bryozoan belonging to the family Onychocellidae.

    Foratella cervisia[37]

    Sp. nov

    Valid

    Taylor & Martha

    Late Cretaceous (Cenomanian)

    Beer Head Limestone Formation

     United Kingdom

    A cheilostome bryozoan.

    Hagiosynodos simplex[26]

    Sp. nov

    Valid

    Di Martino, Taylor & Portell

    Early Miocene

    Chipola Formation

     United States
    ( Florida)

    A cheilostome bryozoan belonging to the family Cheiloporinidae.

    Heteractis tanzaniensis[30]

    Sp. nov

    Valid

    Di Martino et al.

    EoceneOligocene transition

     Tanzania

    A cheilostome bryozoan.

    Hillmeropora[27]

    Gen. et sp. nov

    Valid

    Martha, Niebuhr & Scholz

    Late Cretaceous (mid-late Turonian)

    Strehlen Formation

     Germany

    A cheilostome bryozoan genus belonging to the family Calloporidae. Type species H. pavonina; genus also includes Membranipora procurrens Brydone, 1929.

    Jablonskipora[38]

    Gen. et sp. nov

    Valid

    Martha & Taylor

    Early Cretaceous (Albian)

    Upper Greensand

     United Kingdom

    A cheilostome bryozoan. The type species is J. kidwellae.

    Kalvariella antiqua[29]

    Sp. nov

    Valid

    Suárez Andrés & Wyse Jackson

    Devonian (Emsian–early Eifelian)

    Moniello Formation

     Spain

    A member of Fenestrata belonging to the family Acanthocladiidae.

    Lacrimula crassa[30]

    Sp. nov

    Valid

    Di Martino et al.

    EoceneOligocene transition

     Tanzania

    A cheilostome bryozoan.

    Lacrimula kilwaensis[30]

    Sp. nov

    Valid

    Di Martino et al.

    EoceneOligocene transition

     Tanzania

    A cheilostome bryozoan.

    Margaretta pentaceratops[26]

    Sp. nov

    Valid

    Di Martino, Taylor & Portell

    Early Miocene

    Chipola Formation

     United States
    ( Florida)

    A cheilostome bryozoan belonging to the family Margarettidae.

    Metrarabdotos aquaeguttum[39]

    Sp. nov

    Valid

    Ramalho, Távora & Zagorsek

    Early Miocene

    Pirabas Formation

     Brazil

    A member of Lepralielloidea belonging to the family Metrarabdotosidae.

    Metrarabdotos capanemensis[39]

    Sp. nov

    Valid

    Ramalho, Távora & Zagorsek

    Early Miocene

    Pirabas Formation

     Brazil

    A member of Lepralielloidea belonging to the family Metrarabdotosidae.

    Metrarabdotos elongatum[39]

    Sp. nov

    Valid

    Ramalho, Távora & Zagorsek

    Early Miocene

    Pirabas Formation

     Brazil

    A member of Lepralielloidea belonging to the family Metrarabdotosidae.

    Microeciella kolomnensis[33]

    Sp. nov

    Valid

    Viskova & Pakhnevich

    Middle Jurassic (Callovian)

     Russia

    A bryozoan belonging to the suborder Tubuliporina and the family Oncousoeciidae.

    Microporella rusti[31]

    Sp. nov

    Valid

    Di Martino et al.

    Pleistocene

    Nukumaru Limestone

     New Zealand

    A member of the family Microporellidae.

    Nellia winstonae[26]

    Sp. nov

    Valid

    Di Martino, Taylor & Portell

    Early Miocene

    Chipola Formation

     United States
    ( Florida)

    A cheilostome bryozoan belonging to the family Quadricellariidae.

    Nevianipora isfahani[36]

    Sp. nov

    Valid

    Zágoršek, Yazdi & Bahrami

    Miocene

    Qom Formation

     Iran

    A cyclostome bryozoan.

    'Onychocella' barbata[27]

    Sp. nov

    Valid

    Martha, Niebuhr & Scholz

    Late Cretaceous (late Cenomanian)

    Dölzschen Formation

     Germany

    A cheilostome bryozoan. Taylor, Martha & Gordon (2018) transferred this species to the genus Kamilocella.[40]

    Onychocella saxoniae[27]

    Sp. nov

    Valid

    Martha, Niebuhr & Scholz

    Late Cretaceous (late Cenomanian)

    Dölzschen Formation

     Germany

    A cheilostome bryozoan.

    Paralicornia interdigitata[26]

    Sp. nov

    Valid

    Di Martino, Taylor & Portell

    Early Miocene

    Chipola Formation

     United States
    ( Florida)

    A cheilostome bryozoan belonging to the family Candidae.

    Paraseptopora geometrica[29]

    Sp. nov

    Valid

    Suárez Andrés & Wyse Jackson

    Devonian (late Emsian–early Eifelian)

    Moniello Formation

     Spain

    A member of Fenestrata belonging to the family Septoporidae.

    Paraseptopora irregularis[29]

    Sp. nov

    Valid

    Suárez Andrés & Wyse Jackson

    Devonian (Emsian–early Eifelian)

    Moniello Formation

     Spain

    A member of Fenestrata belonging to the family Septoporidae.

    Pharopora[41]

    Gen. et sp. nov

    Valid

    Wyse Jackson, Ernst & Suárez Andrés

    Carboniferous (Tournaisian)

    Hook Head Formation

     Ireland

    A member of Cryptostomata belonging to the family Rhabdomesidae. The type species is P. regularis.

    Pleuromucrum epifanioi[26]

    Sp. nov

    Valid

    Di Martino, Taylor & Portell

    Early Miocene

    Chipola Formation

     United States
    ( Florida)

    A cheilostome bryozoan belonging to the family Phidoloporidae.

    Pleuromucrum liowae[26]

    Sp. nov

    Valid

    Di Martino, Taylor & Portell

    Early Miocene

    Chipola Formation

     United States
    ( Florida)

    A cheilostome bryozoan belonging to the family Phidoloporidae.

    Polyascosoecia iranica[36]

    Sp. nov

    Valid

    Zágoršek, Yazdi & Bahrami

    Miocene

    Qom Formation

     Iran

    A cyclostome bryozoan.

    Puellina quadrispinosa[26]

    Sp. nov

    Valid

    Di Martino, Taylor & Portell

    Early Miocene

    Chipola Formation

     United States
    ( Florida)

    A cheilostome bryozoan belonging to the family Cribrilinidae.

    Revalotrypa inopinata[42]

    Sp. nov

    Valid

    Fedorov, Koromyslova & Martha

    Ordovician (Floian)

     Russia

    An esthonioporate bryozoan belonging to the family Revalotrypidae.

    Revalotrypa yugaensis[42]

    Sp. nov

    Valid

    Fedorov, Koromyslova & Martha

    Ordovician (Floian)

     Russia

    An esthonioporate bryozoan belonging to the family Revalotrypidae.

    Schizolepraliella[26]

    Gen. et sp. nov

    Valid

    Di Martino, Taylor & Portell

    Early Miocene

    Chipola Formation

     United States
    ( Florida)

    A Schizoporella-like cheilostome bryozoan of uncertain phylogenetic placement. The type species is S. nancyae.

    Selenaria lyrulata[43]

    Sp. nov

    Valid

    López-Gappa, Pérez & Griffin

    Early Miocene

    Monte León Formation

     Argentina

    A bryozoan belonging to the family Selenariidae.

    Spiniflabellum jacksoni[26]

    Sp. nov

    Valid

    Di Martino, Taylor & Portell

    Early Miocene

    Chipola Formation

     United States
    ( Florida)

    A cheilostome bryozoan belonging to the family Cribrilinidae.

    Steginoporella tiara[44]

    Sp. nov

    Valid

    Gordon, Voje & Taylor

    Early Pleistocene

     New Zealand

    A member of Cheilostomata belonging to the family Steginoporellidae.

    Stylopoma farleyensis[26]

    Sp. nov

    Valid

    Di Martino, Taylor & Portell

    Early Miocene

    Chipola Formation

     United States
    ( Florida)

    A cheilostome bryozoan belonging to the family Schizoporellidae.

    Stylopoma leverhulme[26]

    Sp. nov

    Valid

    Di Martino, Taylor & Portell

    Early Miocene

    Chipola Formation

     United States
    ( Florida)

    A cheilostome bryozoan belonging to the family Schizoporellidae.

    Thalamoporella bitorquata[26]

    Sp. nov

    Valid

    Di Martino, Taylor & Portell

    Early Miocene

    Chipola Formation

     United States
    ( Florida)

    A cheilostome bryozoan belonging to the family Thalamoporellidae.

    Thalamoporella hastigera[26]

    Sp. nov

    Valid

    Di Martino, Taylor & Portell

    Early Miocene

    Chipola Formation

     United States
    ( Florida)

    A cheilostome bryozoan belonging to the family Thalamoporellidae.

    Thalamoporella ogivalis[26]

    Sp. nov

    Valid

    Di Martino, Taylor & Portell

    Early Miocene

    Chipola Formation

     United States
    ( Florida)

    A cheilostome bryozoan belonging to the family Thalamoporellidae.

    Thalamoporella papalis[26]

    Sp. nov

    Valid

    Di Martino, Taylor & Portell

    Early Miocene

    Chipola Formation

     United States
    ( Florida)

    A cheilostome bryozoan belonging to the family Thalamoporellidae.

    Thalamoporella polygonalis[26]

    Sp. nov

    Valid

    Di Martino, Taylor & Portell

    Early Miocene

    Chipola Formation

     United States
    ( Florida)

    A cheilostome bryozoan belonging to the family Thalamoporellidae.

    Trypostega vokesi[26]

    Sp. nov

    Valid

    Di Martino, Taylor & Portell

    Early Miocene

    Chipola Formation

     United States
    ( Florida)

    A cheilostome bryozoan belonging to the family Trypostegidae.

    Turbicellepora giardinai[26]

    Sp. nov

    Valid

    Di Martino, Taylor & Portell

    Early Miocene

    Chipola Formation

     United States
    ( Florida)

    A cheilostome bryozoan belonging to the family Celleporidae.

    Utropora parva[29]

    Sp. nov

    Valid

    Suárez Andrés & Wyse Jackson

    Devonian (Emsian–early Eifelian)

    Moniello Formation

     Spain

    A member of Fenestrata belonging to the family Semicosciniidae.

    Vix scolaroi[26]

    Sp. nov

    Valid

    Di Martino, Taylor & Portell

    Early Miocene

    Chipola Formation

     United States
    ( Florida)

    A cheilostome bryozoan belonging to the family Vicidae.

    Wilbertopora manubriformis[37]

    Sp. nov

    Valid

    Taylor & Martha

    Late Cretaceous (Cenomanian)

    Beer Head Limestone Formation

     United Kingdom

    A cheilostome bryozoan.

    Wilbertopora ostiolatoides[27]

    Sp. nov

    Valid

    Martha, Niebuhr & Scholz

    Late Cretaceous (mid-late Turonian)

    Strehlen Formation

     Germany

    A cheilostome bryozoan.

    Brachiopods[edit]

    Research[edit]

    New taxa[edit]

    Name Novelty Status Authors Age Unit Location Notes Images

    Acrothyra bonnia[47]

    Sp. nov

    Valid

    Skovsted et al.

    Cambrian Stage 4

    Forteau Formation

     Canada
    ( Newfoundland and Labrador)

    A member of Acrotretida belonging to the family Acrotretidae.

    Anarhynchia smithi[48]

    Sp. nov

    Valid

    Pálfy et al.

    Early Jurassic (Pliensbachian)

    Inklin Formation

     Canada
    ( British Columbia)

    Atelelasma longisulcum[49]

    Sp. nov

    Valid

    Liljeroth et al.

    Ordovician

    Dunabrattin Limestone Formation
    Tramore Limestone Formation

     Ireland

    A member of Strophomenata belonging to the order Billingsellida and the family Clitambonitidae.

    Atychorhynchia[50]

    Gen. et sp. nov

    Valid

    Baeza-Carratalá, Reolid & García Joral

    Early Jurassic (late Pliensbachian–early Toarcian)

    Zegrí Formation

     Spain

    A member of Rhynchonellida belonging to the family Norellidae. The type species is A. falsiorigo.

    Avdeevella[51]

    Gen. et sp. nov

    Valid

    Baranov

    Ordovician

     Russia

    The type species is A. mica.

    Bilobia alichovae[52]

    Sp. nov

    Valid

    Madison

    Ordovician (Sandbian)

     Russia
    ( Leningrad Oblast)

    A member of Strophomenida.

    Bittnerithyris[53]

    Gen. nov

    Valid

    Popov & Zakharov

    Early Triassic (Olenekian)

     Russia
    ( Primorsky Krai)

    A member of Terebratulida.

    Bronnothyris danaperensis[54]

    Sp. nov

    Valid

    Bitner & Müller

    Eocene (Priabonian)

     Ukraine

    A member of Terebratulida belonging to the family Megathyrididae.

    Burrirhynchia albiensis[55]

    Sp. nov

    Valid

    Gaspard

    Early Cretaceous (Albian)

     France

    A member of Rhynchonellida belonging to the family Tetrarhynchiidae.

    Colaptomena auduni[49]

    Sp. nov

    Valid

    Liljeroth et al.

    Ordovician

    Tramore Limestone Formation

     Ireland

    A member of Strophomenida belonging to the family Rafinesquinidae.

    Cyrtinaella? houi[56]

    Sp. nov

    Valid

    Lü & Ma

    Devonian (late Frasnian)

     China

    A member of Spiriferinida.

    Cyrtospirifer ainosawensis[57]

    Sp. nov

    Valid

    Tazawa, Inose & Kaneko

    Late Devonian

    Ainosawa Formation

     Japan

    A member of Spiriferida belonging to the family Cyrtospiriferidae.

    Cyrtospirifer choanjiensis[58]

    Sp. nov

    Valid

    Tazawa

    Late Devonian

     Japan

    A member of Spiriferida belonging to the family Cyrtospiriferidae.

    Dactylogonia costellata[49]

    Sp. nov

    Valid

    Liljeroth et al.

    Ordovician

    Dunabrattin Limestone Formation
    Tramore Limestone Formation

     Ireland

    A member of Strophomenida belonging to the family Strophomenidae.

    Dirafinesquina antiqua[59]

    Sp. nov

    Valid

    Popov & Cocks

    Ordovician (Dapingian)

     Iran

    A strophomenoid brachiopod.

    Discinisca suborbicularis[60]

    Sp. nov

    Valid

    Smirnova et al.

    Late Jurassic

     Russia

    Discinisca undata[61]

    Sp. nov

    Valid

    Smirnova in Smirnova et al.

    Late Jurassic

     Russia

    A brachiopod belonging to the family Discinidae, a species of Discinisca.

    Elkanathyris[62]

    Gen. et sp. nov

    Valid

    Copper & Jin

    Silurian (Aeronian)

     Canada
    ( Quebec)

    An athyride brachiopod. The type species is E. pallula.

    Eoporambonites raziabadensis[59]

    Sp. nov

    Valid

    Popov & Cocks

    Ordovician (Dapingian)

     Iran

    A porambonitoid brachiopod.

    Foveola ivari[63]

    Sp. nov

    Valid[64]

    Holmer et al.

    Ordovician (Sandbian)

     Estonia

    A member of Obolidae.

    Gypidula xui[56]

    Sp. nov

    Valid

    Lü & Ma

    Devonian (late Frasnian)

     China

    A member of Pentamerida.

    Hesperorthis leinsterensis[49]

    Sp. nov

    Valid

    Liljeroth et al.

    Ordovician

    Dunabrattin Limestone Formation
    Tramore Limestone Formation

     Ireland

    A member of Orthida belonging to the family Hesperorthidae.

    Hexigtenichonetes[65]

    Gen. et comb. nov

    Valid

    Shen in Shen et al.

    Permian (Guadalupian)

    Miaoling Formation

     China

    A member of Productida belonging to the family Rugosochonetidae. The type species is "Hemichonetes" hemipleura Li & Su in Li et al. (1980); genus also includes "Hemichonetes guangxingensis Li & Su in Li et al. (1980), "Hemichonetes subquadrata Li & Su in Li et al. (1980) and "Hemichonetes yanjiensis Li & Su in Li et al. (1980).

    Hibernobonites[49]

    Gen. et comb. nov

    Valid

    Liljeroth et al.

    Ordovician

    Dunabrattin Limestone Formation
    Tramore Limestone Formation
    Tourmakeady Limestone Formation?

     Ireland

    A member of Pentamerida belonging to the family Porambonitidae. The type species is "Atrypa" filosa M’Coy (1846); genus might also include "Porambonites" dubius Williams & Curry (1985).

    Howellites hibernicus[49]

    Sp. nov

    Valid

    Liljeroth et al.

    Ordovician

    Dunabrattin Limestone Formation
    Tramore Limestone Formation

     Ireland

    A member of Orthida belonging to the family Dalmanellidae.

    Isophragma parallelum[49]

    Sp. nov

    Valid

    Liljeroth et al.

    Ordovician

    Dunabrattin Limestone Formation
    Tramore Limestone Formation

     Ireland

    A member of Strophomenida belonging to the family Plectambonitidae.

    Joania ukrainica[54]

    Sp. nov

    Valid

    Bitner & Müller

    Eocene (Priabonian)

     Ukraine

    A member of Terebratulida belonging to the family Megathyrididae.

    Karadagithyris boullierae[66]

    Sp. nov

    Valid

    Halamski & Cherif

    Late Jurassic (Oxfordian)

    Argiles de Saïda Formation

     Algeria

    A member of Terebratulida belonging to the family Muirwoodellidae.

    Karlsorus[67]

    Gen. et comb. nov

    Valid

    Jin & Holmer

    Silurian (Wenlock)

     Sweden

    A new genus for "Pentamerus" gothlandicus Lebedev (1892).

    Koninckodonta sumuntanensis[50]

    Sp. nov

    Valid

    Baeza-Carratalá, Reolid & García Joral

    Early Jurassic (late Pliensbachian–early Toarcian)

    Zegrí Formation

     Spain

    A member of Athyridida belonging to the family Koninckinidae.

    Kurtothyris[65]

    Nom. nov

    Valid

    Shen in Shen et al.

    Permian (late Cisuralian)

    Chihsia Formation

     China

    A member of Spiriferida belonging to the family Skelidorygmidae; a replacement name for Litothyris Chang (1987). The type species is "Litothyris" anhuiensis Chang (1987).

    Kyrshabaktella diabola[47]

    Sp. nov

    Valid

    Skovsted et al.

    Cambrian Stage 4

    Forteau Formation

     Canada
    ( Newfoundland and Labrador)

    A member of Linguloidea belonging to the family Kyrshabaktellidae.

    Lacunites ivantsovi[63]

    Sp. nov

    Valid[64]

    Holmer et al.

    Ordovician (early Darriwilian)

     Russia

    A paterinid brachiopod.

    Lamellaerhynchia carronensis[55]

    Sp. nov

    Valid

    Gaspard

    Early Cretaceous (Albian)

     France

    A member of Rhynchonellida belonging to the family Cyclothyrididae.

    Leptagonia franca[68]

    Sp. nov

    Valid

    Mottequin & Simon

    Carboniferous (Tournaisian)

    Tournai Formation

     Belgium

    A member of Strophomenoidea belonging to the family Rafinesquinidae.

    Levipugnax? liui[56]

    Sp. nov

    Valid

    Lü & Ma

    Devonian (late Frasnian)

     China

    A member of Rhynchonellida.

    Liaotarimella[65]

    Nom. nov

    Valid

    Shen in Shen et al.

    Permian (Artinskian)

    Wutankule Formation

     China

    A member of Productida belonging to the family Productellidae. A replacement name for Tarimella Chen (2004). The type species is "Tarimella" tarimensis Chen (2004).

    Lichuanorelloides[69]

    Gen. et sp. nov

    Valid

    Wang et al.

    Early Triassic

     China

    Genus includes new species L. lichuanensis.

    Meristella? aksuensis[70]

    Sp. nov

    Valid

    Modzalevskaya et al.

    Devonian (Lochkovian)

     Tajikistan

    Nisusia guizhouensis[71]

    Sp. nov

    Valid

    Mao et al.

    Cambrian

    Kaili Formation
    Qingxudong Formation

     China

    A brachiopod belonging to the subphylum Rhynchonelliformea, order Kutorginida and the family Nisusiidae.

    Nucleospira hannoniae[68]

    Nom. nov

    Valid

    Mottequin & Simon

    Carboniferous (Tournaisian)

    Tournai Formation

     Belgium

    A member of Athyridida belonging to the family Nucleospiridae; a replacement name for Athyris globulina de Koninck (1887).

    Onniella variabilis[72]

    Sp. nov

    Valid

    Harper, Parkes & Zhan

    Ordovician (Katian)

    Raheen Formation

     Ireland

    A dalmanelloid brachiopod belonging to the family Dalmanellidae.

    Ouraniorhynchus[70]

    Gen. et sp. nov

    Valid

    Modzalevskaya et al.

    Devonian (Lochkovian)

     Tajikistan

    A brachiopod. Genus includes new species O. dronovi.

    Permocryptospirifer[65]

    Gen. et comb. nov

    Valid

    Shen & Grunt in Shen et al.

    Permian (late Cisuralian and Guadalupian)

    Chihsia Formation
    Maokou Formation
    Shazipo Formation

     China

    A member of Athyridida belonging to the family Athyrididae. The type species is "Cryptospirifer" omeishanensis Huang (1933); genus also includes "Cryptospirifer" minor Yang (1984) and "Cryptospirifer" shawanensis Jin et al. (1974).

    Piarorhynchella tazawai[53]

    Sp. nov

    Valid

    Popov & Zakharov

    Early Triassic (Olenekian)

     Russia
    ( Primorsky Krai)

    A member of Rhynchonellida.

    Platystrophia tramorensis[49]

    Sp. nov

    Valid

    Liljeroth et al.

    Ordovician

    Tramore Limestone Formation

     Ireland

    A member of Orthida belonging to the family Platystrophiidae.

    Pustulobolus[47]

    Gen. et sp. nov

    Valid

    Skovsted et al.

    Cambrian Stage 3-4

    Forteau Formation

     Canada
    ( Newfoundland and Labrador)

    A member of Linguloidea belonging to the family Eoobolidae. The type species is P. triangulus.

    Qidongia[56]

    Gen. et sp. nov

    Valid

    Lü & Ma

    Devonian (late Frasnian)

     China

    A member of Terebratulida. The type species is Q. tani.

    Rhipidomella discreta[73]

    Sp. nov

    Valid

    Cisterna et al.

    Carboniferous (late SerpukhovianBashkirian)

    El Paso Formation

     Argentina

    A brachiopod belonging to the group Orthida and the family Rhipidomellidae.

    Rioultina zalasensis[74]

    Sp. nov

    Valid

    Radwańska

    Late Jurassic (Oxfordian)

     Poland

    A member of Thecideida belonging to the family Thecidellinidae.

    Sericoidea hibernica[72]

    Sp. nov

    Valid

    Harper, Parkes & Zhan

    Ordovician (Katian)

    Raheen Formation

     Ireland

    A plectambonitoid brachiopod belonging to the family Sowerbyellidae.

    Serratocrista scaldisensis[68]

    Sp. nov

    Valid

    Mottequin & Simon

    Carboniferous (Tournaisian)

    Tournai Formation

     Belgium

    A member of Orthotetida belonging to the family Schuchertellidae.

    Simehorthis[75]

    Gen. et sp. nov

    Valid

    Kebria-Ee Zadeh, Popov & Ghobadi Pour

    Ordovician (Darriwilian)

    Lashkarak Formation

     Iran

    A member of Orthida belonging to the family Hesperorthidae. Genus includes new species S. fascicostellata.

    Somalithyris lakhaparensis[76]

    Sp. nov

    Valid

    Mukherjee & Shome

    Late Jurassic (Tithonian)

     India

    Starnikoviella[51]

    Gen. et sp. nov

    Valid

    Baranov

    Ordovician

     Russia

    The type species is S. settedabanica.

    Tectogonotoechia rivasi[77]

    Sp. nov

    Valid

    García-Alcalde & Herrera

    Devonian (Pragian)

    Nogueras Formation

     Spain

    A member of Rhynchonellida belonging to the superfamily Ancistrorhynchoidea and the family Iberirhynchiidae.

    Thomasaria? baii[56]

    Sp. nov

    Valid

    Lü & Ma

    Devonian (late Frasnian)

     China

    A member of Spiriferida.

    Thomasaria? liangi[56]

    Sp. nov

    Valid

    Lü & Ma

    Devonian (late Frasnian)

     China

    A member of Spiriferida.

    Tunethyris blodgetti[78]

    Sp. nov

    Valid

    Feldman

    Middle Triassic

    Saharonim Formation

     Israel

    A member of Terebratulida belonging to the family Dielasmatidae.

    Westonia mardini[79]

    Sp. nov

    Valid

    Mergl et al.

    Cambrian (Furongian)

    Sosink Formation

     Turkey

    Xiangia[56]

    Gen. et sp. nov

    Junior homonym

    Lü & Ma

    Devonian (late Frasnian)

     China

    A member of Spiriferida. The type species is X. liaoi. The generic name is preoccupied by Xiangia Peng (1987).

    Zhanorthis[59]

    Gen. et sp. nov

    Valid

    Popov & Cocks

    Ordovician (Dapingian)

     Iran

    An orthoid brachiopod. Genus includes new species Z. gerdkuhensis.

    Ziyunospirifer[80]

    Nom. nov

    Valid

    Shen in Shen et al.

    Early Carboniferous

    Zhaojiashan Formation

     China

    A member of Spiriferida belonging to the family Choristitidae; a replacement name for Quizhouspirifer Xian (1982). The type species is "Quizhouspirifer" ziyunensis Xian (1982).

    Molluscs[edit]

    Echinoderms[edit]

    Research[edit]

    New taxa[edit]

    Name Novelty Status Authors Age Unit Location Notes Images

    Amblypygus matruhensis[97]

    Sp. nov

    Valid

    Ali

    Middle Miocene

     Egypt

    A sea urchin.

    Ambonacrinus[98]

    Gen. et sp. nov

    Valid

    Cole et al.

    Ordovician (Katian)

    Fombuena Formation

     Spain

    A diplobathrid camerate crinoid. Genus includes new species A. decorus.

    Andymetra toarcensis[99]

    Sp. nov

    Valid

    Hess & Thuy

    Early Jurassic

     France

    A comatulid crinoid.

    Anthroosasterias[100]

    Gen. et sp. nov

    Valid

    Blake

    Carboniferous

    Gilmore City Formation

     United States
    ( Iowa)

    A starfish belonging to the family Urasterellidae. Genus includes new species A. mikrotero.

    Antillaster farisi[101]

    Sp. nov

    Valid

    Ali

    Middle Eocene

     Egypt

    A sea urchin.

    Aspidophiura? seren[102]

    Sp. nov

    Valid

    Ewin & Thuy

    Jurassic

    Oxford Clay Formation

     United Kingdom

    A brittle star.

    Ateleocystites? lansae[103]

    Sp. nov

    Valid

    McDermott & Paul

    Ordovician (Katian)

    Slade and Redhill Beds

     United Kingdom

    A mitrate belonging to the family Anomalocystitidae, possibly a species of Ateleocystites.

    Brissus mihalyi[104]

    Sp. nov.

    Valid

    Polonkai et al.

    Middle Miocene

    Leitha Limestone Formation

     Hungary

    A heart urchin belonging to the family Brissidae.

    Crepidosoma doylei[105]

    Sp. nov

    Valid

    Blake, Donovan & Harper

    Silurian (Telychian)

    Kilbride Formation

     Ireland

    A brittle star belonging to the group Oegophiurida and the family Encrinasteridae.

    Dalicrinus[98]

    Gen. et sp. nov

    Valid

    Cole et al.

    Ordovician (Katian)

    Fombuena Formation

     Spain

    A diplobathrid camerate crinoid. Genus includes new species D. hammanni.

    Diplodetus brisenoi[106]

    Sp. nov

    Valid

    Silva-Martínez et al.

    Late Cretaceous (early Campanian)

    Austin Formation

     Mexico

    A heart urchin belonging to the family Brissidae.

    Echinocyamus belali[101]

    Sp. nov

    Valid

    Ali

    Middle Eocene

     Egypt

    A sea urchin.

    Enakomusium whymanae[102]

    Sp. nov

    Valid

    Ewin & Thuy

    Jurassic

    Oxford Clay Formation

     United Kingdom

    A brittle star.

    Eopatelliocrinus hispaniensis[98]

    Sp. nov

    Valid

    Cole et al.

    Ordovician (Katian)

    Fombuena Formation

     Spain

    A monobathrid camerate crinoid.

    Eotiaris guadalupensis[107]

    Sp. nov

    Valid

    Thompson in Thompson, Petsios & Bottjer

    Permian (Capitanian)

    Bell Canyon Formation

     United States
    ( Texas)

    A sea urchin. The name first appeared in the publication of Thompson et al. (2015);[108] however, it was published in an online only journal Scientific Reports and it was not registered with ZooBank, making it invalid until it was validated by Thompson, Petsios & Bottjer (2017).[107]

    Felbabkacystis[109]

    Gen. et sp. nov

    Valid

    Nardin et al.

    Cambrian (Drumian)

    Jince Formation

     Czech Republic

    A transitional form between calyx-bearing and theca-bearing blastozoans. Genus includes new species F. luckae.

    Fombuenacrinus[98]

    Gen. et sp. nov

    Valid

    Cole et al.

    Ordovician (Katian)

    Fombuena Formation

     Spain

    A diplobathrid camerate crinoid. Genus includes new species F. nodulus.

    Forcipicrinus[99]

    Gen. et sp. nov

    Valid

    Hess & Thuy

    Early Jurassic

     France

    An isocrinid crinoid. Genus includes new species F. normannicus.

    Globator roselli[110]

    Sp. nov

    Valid

    Carrasco

    Eocene

     Spain

    A sea urchin related to members of the genus Conulus.

    Goniopygus emmae[111]

    Sp. nov

    Valid

    Forner i Valls

    Late Cretaceous (Campanian)

     Morocco

    A sea urchin belonging to the group Arbacioida and the family Acropeltidae.

    Grigopyrgus[112]

    Gen. et comb. nov

    Valid

    Müller & Hahn

    Early Devonian

     Germany

    A member of Edrioasteroidea belonging to the family Agelacrinitidae; a new genus for "Agelacrinites" curvatus Grigo (1995).

    Goyacrinus[98]

    Gen. et sp. nov

    Valid

    Cole et al.

    Ordovician (Katian)

    Fombuena Formation

     Spain

    A diplobathrid camerate crinoid. Genus includes new species G. gutierrezi.

    Heropyrgus[113]

    Gen. et sp. nov

    Valid

    Briggs et al.

    Silurian

    Herefordshire Lagerstätte

     United Kingdom

    A rhenopyrgid edrioasteroid. The type species is H. disterminus.

    Holocystites salmoensis[114]

    Sp. nov

    Valid

    Sheffield, Ausich & Sumrall

    Ordovician (Hirnantian)

    Ellis Bay Formation

     Canada
    ( Quebec)

    A member of Diploporita belonging to the group Sphaeronitida and the family Holocystitidae.

    Metalia lindaae[101]

    Sp. nov

    Valid

    Ali

    Middle Eocene

     Egypt

    A sea urchin.

    Monostychia alanrixi[115]

    Sp. nov

    Valid

    Sadler, Martin & Gallagher

    Miocene

    Colville Sandstone

     Australia

    A sea urchin.

    Monostychia macnamarai[115]

    Sp. nov

    Valid

    Sadler, Martin & Gallagher

    Miocene

    Colville Sandstone

     Australia

    A sea urchin.

    Monostychia robertirwini[115]

    Sp. nov

    Valid

    Sadler, Martin & Gallagher

    Miocene

    Colville Sandstone

     Australia

    A sea urchin.

    Moroccodiscus[116]

    Gen. et sp. nov

    Valid

    Reich et al.

    Ordovician (Darriwilian)

    Taddrist Formation

     Morocco

    A cyclocystoid echinoderm. Genus includes new species M. smithi.

    Oehlerticrinus peachi[117]

    Sp. nov

    Valid

    Donovan & Fearnhead

    Early Devonian

    Looe Basin

     United Kingdom

    A crinoid belonging to the group Monobathrida and the family Hexacrinitidae.

    Ophiotitanos smithi[102]

    Sp. nov

    Valid

    Ewin & Thuy

    Jurassic

    Oxford Clay Formation

     United Kingdom

    A brittle star.

    Ova rancoca[118]

    Sp. nov

    Valid

    Zachos

    Paleocene (Thanetian)

    Vincentown Formation

     United States
    ( New Jersey)

    A sea urchin.

    Paerticrinus[119]

    Gen. et sp. nov

    Valid

    Wright & Toom

    Silurian (Rhuddanian)

     Estonia

    A crinoid. Genus includes new species P. arvosus.

    Palaeocomaster structus[99]

    Sp. nov

    Valid

    Hess & Thuy

    Early Jurassic

     France

    A comatulid crinoid.

    Persiacarpos[120]

    Gen. et sp. nov

    Valid

    Rozhnov & Parsley

    Cambrian

    Mila Formation

     Iran

    A member of Cornuta. Genus includes new species P. jefferiesi.

    Petalobrissus ossoi[111]

    Sp. nov

    Valid

    Forner i Valls

    Late Cretaceous (Campanian)

     Morocco

    A sea urchin belonging to the group Cassiduloida and the family Faujasidae.

    Petalocrinus stenopetalus[121]

    Sp. nov

    Valid

    Mao et al.

    Silurian (Aeronian)

     China

    A crinoid belonging to the family Petalocrinidae.

    Picassocrinus[98]

    Gen. et sp. nov

    Valid

    Cole et al.

    Ordovician (Katian)

    Fombuena Formation

     Spain

    A cladid crinoid. Genus includes new species P. villasi.

    Ronsocrinus[122]

    Gen. et sp. nov

    Valid

    Cordie & Witzke

    Devonian (Givetian)

     United States
    ( Iowa)

    A camerate crinoid belonging to the family Melocrinitidae. Genus includes new species R. rabia.

    Salenia palmyra[118]

    Sp. nov

    Valid

    Zachos

    Paleocene (Danian)

    Clayton Formation

     United States
    ( Alabama
     Georgia (U.S. state))

    A sea urchin.

    Sanducystis[123]

    Gen. et sp. nov

    Valid

    Zamora et al.

    Cambrian (Furongian)

    Sandu Formation

     China

    A stemmed echinoderm. The type species is S. sinensis.

    Singillatimetra truncata[99]

    Sp. nov

    Valid

    Hess & Thuy

    Early Jurassic

     France

    An isocrinid crinoid.

    Solanocrinites jagti[99]

    Sp. nov

    Valid

    Hess & Thuy

    Early Jurassic

     France

    A comatulid crinoid.

    Spinimetra[99]

    Gen. et sp. nov

    Valid

    Hess & Thuy

    Early Jurassic

     France

    A comatulid crinoid. Genus includes new species S. chesnieri.

    Spirocrinus circularis[121]

    Sp. nov

    Valid

    Mao et al.

    Silurian (Aeronian)

     China

    A crinoid belonging to the family Petalocrinidae.

    Spirocrinus dextrosus[121]

    Sp. nov

    Valid

    Mao et al.

    Silurian (Aeronian)

     China

    A crinoid belonging to the family Petalocrinidae.

    Staurasterias[100]

    Gen. et sp. nov

    Valid

    Blake

    Carboniferous

    Keokuk Formation

     United States
    ( Indiana)

    A starfish belonging to the family Urasterellidae. Genus includes new species S. elegans.

    Sumrallia[124]

    Gen. et sp. nov

    Valid

    Müller & Hahn

    Early Devonian

    Seifen Formation

     Germany

    A member of Edrioasteroidea. Genus includes new species S. rseiberti.

    Superstesaster[125]

    Gen. et sp. nov

    Valid

    Villier et al.

    Early Triassic

     United States
    ( Utah)

    A starfish. Genus includes new species S. promissor.

    Teleosaster[126]

    Gen. et sp. nov

    Valid

    Hunter & McNamara

    Permian (Kungurian)

    Cundlego Formation

     Australia

    A brittle star. Genus includes new species T. creasyi.

    Tintinnabulicrinus[119]

    Gen. et sp. nov

    Valid

    Wright & Toom

    Ordovician (Katian)

     Estonia

    A crinoid. Genus includes new species T. estoniensis.

    Ulphaceaster[127]

    Gen. et sp. nov

    Valid

    Néraudeau et al.

    Late Cretaceous (Cenomanian)

     France

    A sea urchin belonging to the family Archiaciidae. Genus includes new species U. sarthacensis.

    Vologesia rollingstones[128]

    Sp. nov

    Valid

    Schlüter & Wiese

    Late Cretaceous (early Campanian)

     Spain

    A sea urchin belonging to the family Echinolampadidae.

    Conodonts[edit]

    Research[edit]

    • A study on the conodont assemblage from the Silurian (Homerian) Rootsiküla Formation (Estonia), interpreted as occurring in the evaporite-bearing strata, and on the conodont diversity in various environments, is published by Jarochowska et al. (2017).[129]
    • Articulated skeletal remains of Hindeodus parvus, providing direct evidence of the number and arrangement of elements in the apparatus, are described from the Lower Triassic of China by Zhang et al. (2017).[130][131][132]

    New taxa[edit]

    Name Novelty Status Authors Age Unit Location Notes Images

    Acodus zeballus[133]

    Sp. nov

    Valid

    Voldman & Albanesi in Voldman et al.

    Early Ordovician

     Argentina

    Aldridgeognathus[134]

    Gen. et sp. nov

    Valid

    Miller et al.

    Ordovician (Darriwilian)

    Amdeh Formation

     Oman

    A member of Balognathidae. Genus includes new species A. manniki.

    Bispathodus ultimus corradinii[135]

    Subsp. nov

    Valid

    Söte, Hartenfels & Becker

    Devonian (Famennian)

     Germany

    Coelocerodontus hunanensis[136]

    Sp. nov

    Valid

    Dong & Zhang

    Cambrian (Furongian)

    Panjiazui Formation

     China

    An euconodont.

    Ctenopolygnathus parallelus[137]

    Sp. nov

    Valid

    Ovnatanova et al.

    Late Devonian

     Russia

    Fahraeusodus jachalensis[138]

    Sp. nov

    Valid

    Feltes & Albanesi in Serra et al.

    Ordovician (Darriwilian)

    Gualcamayo Formation
    Las Aguaditas Formation
    Las Chacritas Formation
    San Juan Formation

     Argentina

    Furnishina wangcunensis[136]

    Sp. nov

    Valid

    Dong & Zhang

    Cambrian (Furongian)

    Bitiao Formation

     China

    A member of Paraconodontida.

    Gothodus vetus[133]

    Sp. nov

    Valid

    Voldman & Albanesi in Voldman et al.

    Early Ordovician

     Argentina

    Guexispathodus[139]

    Gen. et comb. nov

    Valid

    Plasencia et al.

    Middle Triassic

    Mukheiris Formation
    Saharonim Formation

     Israel
     Jordan

    A member of the family Gondolellidae. The type species is "Neospathodus" shagami Benjamini & Chepstow-Lusty (1986); genus also includes "Pseudofurnishius" siyalaensis Sadeddin & Kozur (1992).

    Gullodus tieqiaoensis[140]

    Sp. nov

    Valid

    Sun et al.

    Permian

     China

    Icriodus ballbergensis[141]

    Sp. nov

    Valid

    Lüddecke, Hartenfels & Becker

    Devonian (Famennian)

     Germany

    Icriodus marieae[142]

    Sp. nov

    Valid

    Suttner, Kido & Suttner

    Middle Devonian

    Valentin Formation

     Austria
     France
     Germany

    Idiognathodus boardmani[143]

    Sp. nov

    Valid

    Hogancamp & Barrick

    Carboniferous (Gzhelian)

    Heebner Shale

     United States

    Idiognathodus itaitubensis[144]

    Sp. nov

    Valid

    Cardoso, Sanz-López & Blanco-Ferrera

    Carboniferous (Pennsylvanian)

    Tapajós Group

     Brazil

    Idiognathoides luokunensis[145]

    Sp. nov

    Valid

    Hu & Qi in Hu et al.

    Carboniferous (Bashkirian)

     China

    Iowagnathus[146]

    Gen. et sp. nov

    Valid

    Liu et al.

    Ordovician (Whiterock Stage)

    Winneshiek Konservat-Lagerstätte

     United States
    ( Iowa)

    Genus includes new species I. grandis.

    Kirilella[139]

    Gen. et comb. nov

    Valid

    Plasencia et al.

    Middle Triassic

     Austria
     Canada
     China
     Egypt
     Hungary
     Israel
     Italy
     Japan
     Jordan
     Russia
     Spain
     United States

    A member of the family Gondolellidae. The type species is "Polygnathus" mungoensis Diebel (1956); genus also includes "Tardogondolella" diebeli Kozur & Mostler (1971), "Epigondolella" mostleri Kozur in Kozur & Mock (1972) and "Metapolygnathus" longobardicus Kovács (1983).

    Laiwugnathus hunanensis[136]

    Sp. nov

    Valid

    Dong & Zhang

    Cambrian (Drumian)

    Huaqiao Formation

     China

    A member of Paraconodontida.

    Laiwugnathus transitans[136]

    Sp. nov

    Valid

    Dong & Zhang

    Cambrian (Guzhangian and Paibian)

    Chefu Formation

     China

    A member of Paraconodontida.

    Lenathodus[147]

    Gen. et sp. nov

    Valid

    Izokh in Izokh & Yazikov

    Early Carboniferous

     Russia

    Genus includes new species L. bakharevi.

    Lugnathus[136]

    Gen. et sp. nov

    Valid

    Dong & Zhang

    Cambrian Stage 10 and Early Ordovician (Tremadocian)

    Panjiazui Formation

     China

    A member of Paraconodontida. Genus includes new species L. hunanensis.

    Marquezella[139]

    Gen. et comb. nov

    Valid

    Plasencia et al.

    Middle Triassic

     Austria
     Bulgaria
     China
     France
     Greece
     Hungary
     India
     Italy
     Japan
     Russia
     Slovakia
     Slovenia
     Spain

    A member of the family Gondolellidae. The type species is "Gladigondolella" truempyi Hirsch (1971); genus also includes "Polygnathus" japonicus Hayashi (1968).

    Mayrodus[148]

    Gen. et sp. nov

    Valid

    Zhang, Jowett & Barnes

    Silurian (Sheinwoodian)

    Cape Phillips Formation

     Canada
    ( Nunavut)

    A conodont of uncertain phylogenetic placement. The type species is M. melchini.

    Miaognathus[136]

    Gen. et sp. nov

    Valid

    Dong & Zhang

    Cambrian Stage 10

    Shenjiawan Formation

     China

    A member of Paraconodontida. Genus includes new species M. multicostatus.

    Millerodontus[136]

    Gen. et sp. nov

    Valid

    Dong & Zhang

    Cambrian (Furongian)

    Shenjiawan Formation

     China

    An euconodont. Genus includes new species M. intermedius.

    Mosherella praebudaensis[149]

    Sp. nov

    Valid

    Chen & Lukeneder

    Late Triassic (Carnian)

    Kasimlar Formation

     Turkey

    Neopolygnathus communis yazikovi[147]

    Subsp. nov

    Valid

    Izokh in Izokh & Yazikov

    Early Carboniferous

     Russia

    Norigondolella carlae[150]

    Sp. nov

    In press

    Rigo et al.

    Late Triassic (Carnian)

    Scillato Formation

     Austria
     Italy
     Turkey

    A member of Ozarkodinida.

    Omanognathus[134]

    Gen. et sp. nov

    Valid

    Miller et al.

    Ordovician (Darriwilian)

    Amdeh Formation

     Oman

    A member of Balognathidae. Genus includes new species O. daiqaensis.

    Palmatolepis spallettae[151]

    Nom. nov

    Valid

    Klapper et al.

    Devonian (Frasnian)

     Canada
    ( Ontario)

    A replacement name for Palmatolepis nodosa Klapper et al. (2004).

    Polygnathus masonae[137]

    Sp. nov

    Valid

    Ovnatanova et al.

    Late Devonian

     Russia

    Polygnathus postvogesi[152]

    Sp. nov

    Valid

    Plotitsyn & Zhuravlev

    Carboniferous (Tournaisian)

     Russia

    Prosagittodontus compressus[136]

    Sp. nov

    Valid

    Dong & Zhang

    Cambrian (Guzhangian and Paibian)

    Chefu Formation

     China

    A member of Paraconodontida.

    Pseudohindeodus elliptica[140]

    Sp. nov

    Valid

    Sun et al.

    Permian

     China

    Quadralella wanlanensis[153]

    Sp. nov

    Valid

    Zhang et al.

    Triassic

     China

    Quadralella yongyueensis[153]

    Sp. nov

    Valid

    Zhang et al.

    Triassic

     China

    Siphonodella carinata[154]

    Sp. nov

    Valid

    Zhuravlev

    Carboniferous (Tournaisian)

    Idzhid Formation

     Russia
    ( Komi Republic)

    Siphonodella kalvodai[155]

    Sp. nov

    Valid

    Kaiser, Kumpan & Cígler

    Carboniferous (Tournaisian)

    Líšeň Formation

     Czech Republic
     Tajikistan

    A member of Ozarkodinida belonging to the family Elictognathidae.

    Sweetognathus asymmetrica[140]

    Sp. nov

    Valid

    Sun et al.

    Permian

     China

    Tujiagnathus[136]

    Gen. et sp. nov

    Valid

    Dong & Zhang

    Cambrian (Furongian)

    Bitiao Formation

     China

    An euconodont. Genus includes new species T. gracilis.

    Vjalovognathus carinatus[156]

    Sp. nov

    Valid

    Wang et al.

    Permian (Changhsingian)

     China
     India

    Wangcunella[136]

    Gen. et sp. nov

    Valid

    Dong & Zhang

    Cambrian (Furongian)

    Bitiao Formation

     China

    An euconodont. Genus includes new species W. conicus.

    Wangcunognathus[136]

    Gen. et sp. nov

    Valid

    Dong & Zhang

    Cambrian (Paibian)

    Bitiao Formation

     China

    A member of Paraconodontida. Genus includes new species W. elegans.

    Westergaardodina dimorpha[136]

    Sp. nov

    Valid

    Dong & Zhang

    Cambrian (Paibian)

    Bitiao Formation

     China

    A member of Paraconodontida.

    Westergaardodina gigantea[136]

    Sp. nov

    Valid

    Dong & Zhang

    Cambrian (Guzhangian)

    Chefu Formation

     China

    A member of Paraconodontida.

    Westergaardodina sola[136]

    Sp. nov

    Valid

    Dong & Zhang

    Cambrian (Guzhangian)

    Chefu Formation

     China

    A member of Paraconodontida.

    Zentagnathus[133]

    Gen. et comb. nov

    Valid

    Voldman & Albanesi in Voldman et al.

    Early Ordovician

     Argentina

    A new genus for "Trapezognathus" primitivus Voldman, Albanesi & Zeballo in Voldman et al. (2013); genus also includes "Trapezognathus" argentinensis Rao et al. (1994)

    Fishes[edit]

    Amphibians[edit]

    Research[edit]

    • A study on the evolution of eye size in early tetrapods and in fish belonging to the lineage that gave rise to tetrapods, as well as on the impact of the eye size on the eye performance while viewing objects through water and through air is published by MacIver et al. (2017).[157]
    • A study on the influence of habitat traits on the persistence length of living and fossil amphibian species is published by Tietje & Rödel (2017).[158]
    • A study on the development of the vertebral intercentrum and pleurocentrum in fossil amphibians is published by Danto et al. (2017).[159]
    • A study on the probable function of the interpterygoid vacuities (holes in the palate) in temnospondyls as the site of muscle attachment is published by Witzmann & Werneburg (2017).[160]
    • A study on the earliest larval development in temnospondyls, as indicated by specimens from the Permian (Sakmarian) lake sediments near Obermoschel (Saar–Nahe Basin, Germany), is published by Werneburg (2017).[161]
    • A study on the histology of the small palatal plates and their denticles in a Permian dissorophoid temnospondyl from the Dolese Brothers Limestone Quarry near Richards Spur (Oklahoma, United States) is published by Gee, Haridy & Reisz (2017).[162]
    • Taxonomic revision of all described rhinesuchids and a study on the phylogenetic relationships of members of Rhinesuchidae is published by Marsicano et al. (2017), who transfer the species "Rhinesuchus" capensis Haughton (1925) to the genus Rhinesuchoides.[163]
    • New specimen of the rhinesuchid Australerpeton cosgriffi (a skull and mandible) is described from the Permian Rio do Rasto Formation (Brazil) by Azevedo, Vega & Soares (2017).[164]
    • A description of the anatomy of the braincase and middle ear regions of an exceptionally well-preserved skull of Stanocephalosaurus amenasensis from the Triassic of Algeria is published by Arbez, Dahoumane & Steyer (2017).[165]
    • A study on the anatomy of the skulls of metoposaurid species Metoposaurus krasiejowensis and Apachesaurus gregorii, as well as its implications for establishing whether metoposaurids were active or ambush predators is published by Fortuny, Marcé-Nogué & Konietzko-Meier (2017).[166]
    • An analysis of the microanatomy and histology of metoposaurid vertebra from the Petrified Forest National Park is published by Gee, Parker & Marsh (2017), who interpret Apachesaurus gregorii as more likely to be an early ontogenetic stage of a large metoposaurid, such as Koskinonodon perfectus rather than a distinct species.[167]
    • A juvenile specimen of Koskinonodon perfectus is described from the Norian Petrified Forest Member of the Late Triassic Chinle Formation (Arizona, United States) by Gee & Parker (2017).[168]
    • A study on the physiology (especially metabolic rate, body temperature, breathing, feeding, digestion, osmoregulation and excretion) of Archegosaurus decheni is published by Witzmann & Brainerd (2017).[169]
    • A study on the histology of the dermal skull roof bones in Kokartus honorarius is published by Skutschas & Boitsova (2017).[170]
    • Fossilized soft tissues preserved with the type specimen of the salamander Phosphotriton sigei are described by Tissier, Rage & Laurin (2017).[171]
    • A study on the bite force in extant Cranwell's horned frog (Ceratophrys cranwelli) and its implications for estimating the bite force in the Late Cretaceous species Beelzebufo ampinga is published by Lappin et al. (2017).[172]
    • A study on the morphology of the skull of Lethiscus stocki and on the phylogenetic relationships of early tetrapods, recovering lepospondyls as a polyphyletic group, is published by Pardo et al. (2017).[173]

    New taxa[edit]

    Temnospondyls[edit]

    Name Novelty Status Authors Age Unit Location Notes Images

    Aphaneramma gavialimimus[174]

    Sp. nov

    Valid

    Fortuny et al.

    Early Triassic (Olenekian)

     Madagascar

    Chinlestegophis[175]

    Gen. et sp. nov

    Valid

    Pardo, Small & Huttenlocker

    Late Triassic

    Chinle Formation

     United States
    ( Colorado)

    A member of Stereospondyli, possibly a stem-caecilian. The type species is C. jenkinsi.

    Cyclotosaurus naraserluki[176]

    Sp. nov

    Valid

    Marzola et al.

    Late Triassic

    Fleming Fjord Formation

     Greenland

    Tomeia[177]

    Gen. et sp. nov

    Valid

    Eltink, Stock Da-Rosa, & Dias-da-Silva

    Early Triassic

    Sanga do Cabral Formation

     Brazil

    A capitosaur.

    Lissamphibians[edit]

    Name Novelty Status Authors Age Unit Location Notes Images

    Chachaiphrynus[178]

    Gen. et sp. nov

    Valid

    Nicoli

    Oligocene

     Argentina

    A member of Odontophrynidae. The type species is C. lynchi.

    Genibatrachus[179]

    Gen. et sp. nov

    Valid

    Gao & Chen

    Early Cretaceous

    Guanghua (upper part of Longjiang) Formation

     China

    A crown-group frog. The type species is G. baoshanensis.

    Sanshuibatrachus[180]

    Gen. et sp. nov

    Valid

    Wang, Roček & Dong

    Early Eocene

     China

    A pelobatoid frog of uncertain phylogenetic placement. Genus includes new species S. sinensis.

    Other amphibians[edit]

    Name Novelty Status Authors Age Unit Location Notes Images

    Spathicephalus marsdeni[181]

    Sp. nov

    Valid

    Smithson et al.

    Carboniferous (Viséan)

    Anstruther Formation

     United Kingdom

    A member of the supefamily Baphetoidea.

    Yumenerpeton[182]

    Gen. et sp. nov

    Valid

    Jiang, Ji & Mo

    Middle Permian

    Xidagou Formation

     China

    A bystrowianid chroniosuchian. The type species is Y. yangi.

    Lepidosaurs[edit]

    Rhynchocephalians[edit]

    Research[edit]

    New taxa[edit]

    Name Novelty Status Authors Age Unit Location Notes Images

    Deltadectes[186]

    Gen. et sp. nov

    Valid

    Whiteside, Duffin & Furrer

    Late Triassic

      Switzerland

    A basal member of Rhynchocephalia. The type species is D. elvetica.

    Gephyrosaurus evansae[187]

    Sp. nov

    Valid

    Whiteside & Duffin

    Late Triassic (Rhaetian)

     United Kingdom

    Penegephyrosaurus[187]

    Gen. et sp. nov

    Valid

    Whiteside & Duffin

    Late Triassic (Rhaetian)

     United Kingdom

    A member of the family Gephyrosauridae. The type species is P. curtiscoppi.

    Vadasaurus[188]

    Gen. et sp. nov

    Bever & Norell

    Late Jurassic (Kimmeridgian)

    Solnhofen Limestone

     Germany

    A relative of pleurosaurids. The type species is V. herzogi.

    Lizards and snakes[edit]

    Research[edit]

    • A study comparing inner ear morphology of Dinilysia patagonica and extant lizards and snakes is published by Palci et al. (2017).[189]
    • An overview of the discoveries of Mesozoic lizards from Brazil is published by Simões et al. (2017).[190]
    • A study on the origins of the Australian fauna of lizards and snakes is published by Oliver & Hugall (2017).[191]
    • A study on the nomenclature and phylogenetic relationships of the lizard species assigned to the genus Necrosaurus is published by Georgalis (2017), who assigns the species Necrosaurus cayluxi and Melanosauroides giganteus to the genus Palaeovaranus and names a new family Palaeovaranidae.[192]
    • A study on the anatomy and phylogenetic relationships of Eichstaettisaurus schroederi and Ardeosaurus digitatellus is published by Simões et al. (2017).[193]
    • A redescription of the anatomy of the holotype specimen of the teiid species Callopistes bicuspidatus from the late Miocene–early Pliocene of Argentina is published by Brizuela & Albino (2017).[194]
    • An almost complete skull and a few associated postcranial bones of the lacertid Dracaenosaurus croizeti are described from the Oligocene locality of Cournon (south-central France) by Čerňanský et al. (2017).[195]
    • A description of the anatomy of the postcranial skeleton of the putative stem-amphisbaenian Slavoia darevskii and a study on its implications for the evolution of the postcranial skeleton of amphisbaenians is published by Tałanda (2017).[196]
    • Description of a new specimen of Geiseltaliellus maarius from the Eocene Messel pit (Germany), preserving details of the squamation, is published by Smith (2017).[197]
    • A study testing whether extant anole species adapted to similar ecological niches have similar semicircular canal morphologies, as well as a reconstruction of the vestibular system in five Miocene anoles from the Dominican Republic and a study on their ecology is published by Dickson et al. (2017).[198]
    • An autotomized tail of a shinisaurid is described from the Eocene Messel pit (Germany) by Smith (2017).[199]
    • Fossils of a monitor lizard are described from the middle Pleistocene of Greece by Georgalis, Villa & Delfino (2017), representing the most recent known record of the family Varanidae from Europe.[200]
    • A study on the phylogenetic relationships of members of Mosasauroidea is published by Simões et al. (2017).[201]
    • A study on the robustness of the hypotheses about mosasauroid phylogenetic relationships and a reevaluation of the dataset from the study of Simões et al. (2017) is published by Madzia & Cau (2017).[202]
    • A revision of mosasauroids from the Upper Cretaceous marine sediments associated with Gondwanan landmasses is published by Jiménez-Huidobro, Simões & Caldwell (2017).[203]
    • A redescription of Mosasaurus hoffmannii based on examination of many specimens is published by Street & Caldwell (2017), who also provide emended diagnoses for both the genus Mosasaurus and its type species M. hoffmannii.[204]
    • A study on the presence of ligamentous tooth attachment in mosasaurs and in fossil and modern snakes is published by LeBlanc, Lamoureux & Caldwell (2017).[205]
    • A pachyostotic marine squamate specimen belonging to the family Pachyophiidae, consisting of 29 vertebrae, is described from the Upper Cretaceous (Turonian) of Bosnia and Herzegovina by Đurić et al. (2017).[206]
    • An overview of the snake fossil record from Brazil is published by Onary, Fachini & Hsiou (2017).[207]
    • A redescription of the type material of Gigantophis garstini, a reevaluation of referred material from North Africa and Pakistan, and a study on the phylogenetic relationships of Gigantophis and other madtsoiids is published by Rio & Mannion (2017).[208]
    • Snake fossils, including the first record of an indigenous member of the genus Pantherophis in West Indies and the first reported member of the genus Nerodia in the fossil record of West Indies, are described from the late Pleistocene of the Bahamas by Mead & Steadman (2017).[209]
    • A large viperine snake assigned to the genus Macrovipera is reported from the early Vallesian of Romania by Codrea et al. (2017), representing the first occurrence of this genus in the late Miocene of eastern Romania.[210]

    New taxa[edit]

    Name Novelty Status Authors Age Unit Location Notes Images

    Gaimanophis powelli[211]

    Sp. nov

    Valid

    Albino

    Late Miocene

    India Muerta Formation

     Argentina

    A boa.

    Kaikaifilu[212]

    Gen. et sp. nov

    Valid

    Otero et al.

    Late Cretaceous (late Maastrichtian)

    Lopez de Bertodano Formation

     Antarctica

    A mosasaur. The type species is K. hervei.

    Magnuviator[213]

    Gen. et sp. nov

    Valid

    DeMar et al.

    Late Cretaceous (Campanian)

    Two Medicine Formation

     United States
    ( Montana)

    A member of Iguanomorpha (the group containing crown and stem-iguanians) related to Saichangurvel davidsoni and Temujinia ellisoni. The type species is M. ovimonsensis.

    Norisophis[214]

    Gen. et sp. nov

    Valid

    Klein et al.

    Cretaceous

    Kem Kem Beds

     Morocco

    A stem-snake. The type species is N. begaa.

    Oardasaurus[215]

    Gen. et sp. nov

    Valid

    Codrea, Venczel & Solomon

    Late Cretaceous (Maastrichtian)

     Romania

    A member of Teiioidea, possibly a relative of Barbatteius vremiri. Genus includes new species O. glyphis.

    Pholidoscelis turukaeraensis[216]

    Sp. nov

    Valid

    Bochaton et al.

    Late Pleistocene and Holocene

     France
    (Marie-Galante Island)

    A member of Teiidae.

    Schoenesmahl[217]

    Gen. et sp. nov

    Valid

    Conrad

    Late Jurassic (Tithonian)

    Solnhofen Limestone

     Germany

    A relative of Ardeosaurus found in the abdominal cavity of the holotype specimen of Compsognathus longipes. The type species is S. dyspepsia.

    Stefanikia[218]

    Gen. et sp. nov

    Valid

    Čerňanský & Smith

    Eocene

    Messel pit

     Germany

    A lizard related to Eolacerta and the wall lizards. The type species is S. siderea.

    Varanus mokrensis[219]

    Sp. nov

    Valid

    Ivanov et al.

    Early Miocene

     Czech Republic

    A monitor lizard.

    Yabeinosaurus bicuspidens[220]

    Sp. nov

    Valid

    Dong, Wang & Evans

    Early Cretaceous

    Yixian Formation

     China

    Yabeinosaurus robustus[220]

    Sp. nov

    Valid

    Dong, Wang & Evans

    Early Cretaceous

     China

    Zilantophis[221]

    Gen. et sp. nov

    Valid

    Jasinski & Moscato

    Late Hemphillian

    Gray Fossil Site

     United States
    ( Tennessee)

    A colubrid snake. Genus includes new species Z. schuberti.

    Ichthyosauromorphs[edit]

    Research[edit]

    New taxa[edit]

    Name Novelty Status Authors Age Unit Location Notes Images

    Gengasaurus[228]

    Gen. et sp. nov

    Valid

    Paparella et al.

    Late Jurassic

     Italy

    A member of Ophthalmosauridae. The type species is G. nicosiai.

    Keilhauia[229]

    Gen. et sp. nov

    Valid

    Delsett et al.

    Early Cretaceous (early Berriasian)

    Agardhfjellet Formation

     Norway

    A member of Ophthalmosauridae. The type species is K. nui.

    Protoichthyosaurus applebyi[230]

    Sp. nov

    Valid

    Lomax, Massare & Mistry

    Early Jurassic (Hettangian)

     United Kingdom

    Sauropterygians[edit]

    Research[edit]

    New taxa[edit]

    Name Novelty Status Authors Age Unit Location Notes Images

    Acostasaurus[252]

    Gen. et sp. nov

    Valid

    Gómez-Pérez & Noè

    Early Cretaceous (Barremian)

    Paja Formation

     Colombia

    A member of the family Pliosauridae. Genus includes new species A. pavachoquensis.

    Hispaniasaurus[253]

    Gen. et sp. nov

    Valid

    Marquez-Aliaga et al.

    Middle Triassic (Ladinian)

    Cañete Formation

     Spain

    A marine reptile with nothosauroid affinities. The type species is H. cranioelongatus.

    Lagenanectes[254]

    Gen. et sp. nov

    Valid

    Sachs, Hornung & Kear

    Early Cretaceous (probably late Hauterivian)

     Germany

    A member of Elasmosauridae. The type species is L. richterae.

    Luskhan[255]

    Gen. et sp. nov

    Valid

    Fischer et al.

    Early Cretaceous

     Russia

    A member of Pliosauridae. The type species is L. itilensis.

    Mauriciosaurus[256]

    Gen. et sp. nov

    Valid

    Frey et al.

    Late Cretaceous

    Aguas Nuevas Formation

     Mexico

    A member of Polycotylidae. The type species is M. fernandezi.

    Nakonanectes[257]

    Gen. et sp. nov

    Valid

    Serratos, Druckenmiller & Benson

    Late Cretaceous (early Maastrichtian)

    Bearpaw Shale

     United States
    ( Montana)

    A member of Elasmosauridae. The type species is N. bradti.

    Rhaeticosaurus[258]

    Gen. et sp. nov

    Wintrich et al.

    Late Triassic (Rhaetian)

    Exter Formation

     Germany

    An early plesiosaur, possibly a basal member of Pliosauridae. The type species is R. mertensi.

    Thaumatodracon[259]

    Gen. et sp. nov

    Valid

    Smith & Araújo

    Early Jurassic (Sinemurian)

     United Kingdom

    A member of the family Rhomaleosauridae. The type species is T. wiedenrothi.

    Turtles[edit]

    Research[edit]

    New taxa[edit]

    Name Novelty Status Authors Age Unit Location Notes Images

    Andrewsemys[290]

    Gen. et comb. nov

    Valid

    Pérez-García

    Late Eocene and early Oligocene

     Egypt

    A member of the family Podocnemididae belonging to the subfamily Erymnochelyinae; a new genus for "Stereogenys" libyca Andrews (1903).

    Apalone amorense[291]

    Sp. nov

    Valid

    Valdes, Bourque & Vitek

    Miocene (Clarendonian)

    Alachua Formation

     United States
    ( Florida)

    A species of Apalone.

    Cabindachelys[292]

    Gen. et sp. nov

    Valid

    Myers et al.

    Early Paleocene

     Angola

    A stem-cheloniid. The type species is C. landanensis.

    Chelonoidis marcanoi[293]

    Sp. nov

    Valid

    Turvey et al.

    Late Quaternary

     Dominican Republic

    A tortoise, a species of Chelonoidis.

    Eocenochelus[294]

    Gen. et comb. et 2 sp. nov

    Valid

    Pérez-García, de Lapparent de Broin & Murelaga

    Eocene (middle Ypresian to Priabonian)

     Belgium[295]
     France
     Spain
     United Kingdom[296]

    A member of Podocnemididae belonging to the subfamily Erymnochelyinae. The type species is "Erymnochelys" eremberti Broin (1977); genus also includes new species E. lacombianus and E. farresi.

    Lutemys[297]

    Gen. et sp. nov

    Valid

    Lyson, Joyce & Sertich

    Late Cretaceous (Campanian)

    Kaiparowits Formation

     United States
    ( Utah)

    A stem-kinosternoid. Genus includes new species L. warreni.

    Mendozachelys[298]

    Gen. et sp. nov

    Valid

    De la Fuente et al.

    Late Cretaceous (late Campanian–early Maastrichtian)

    Loncoche Formation

     Argentina

    A member of Chelidae. The type species is M. wichmanni.

    Perochelys hengshanensis[299]

    Sp. nov

    Valid

    Brinkman, Rabi & Zhao

    Early Cretaceous

    Hengshan Formation

     China

    A pan-trionychid.

    Petrochelys[300]

    Gen. et comb. nov

    Valid

    Vitek et al.

    Early Cretaceous (Albian)

     Kyrgyzstan

    A member of Trionychidae; a new genus for "Trionyx" kyrgyzensis Nessov (1995).

    Plesiochelys bigleri[301]

    Sp. nov

    Valid

    Püntener, Anquetin & Billon-Bruyat

    Late Jurassic (Kimmeridgian)

    Reuchenette Formation

      Switzerland

    A member of the family Plesiochelyidae.

    Rionegrochelys[302]

    Gen. et sp. nov

    Valid

    De la Fuente, Maniel & Jannello in De La Fuente et al.

    Late Cretaceous

    Plottier Formation

     Argentina

    A relative of members of the family Chelidae. The type species is R. caldieroi.

    “Trionyx” onomatoplokos[303]

    Nom. nov

    Valid

    Georgalis & Joyce

    Late Cretaceous (Santonian–early Campanian)

    Bostobe Svita

     Kazakhstan

    A member of Pan-Trionychidae of uncertain phylogenetic placement; a replacement name for Palaeotrionyx riabinini Kuznetsov & Chkhikvadze (1987).

    Archosauriformes[edit]

    Archosaurs[edit]

    Other archosauriforms[edit]

    Other reptiles[edit]

    Research[edit]

    New taxa[edit]

    Name Novelty Status Authors Age Unit Location Notes Images

    Avicranium[325]

    Gen. et sp. nov

    Pritchard & Nesbitt

    Late Triassic (late Norian or Rhaetian)

    Chinle Formation

     United States
    ( New Mexico)

    A member of the family Drepanosauridae. The type species is A. renestoi.

    Pectodens[326]

    Gen. et sp. nov

    Valid

    Li et al.

    Middle Triassic (Anisian)

    Guanling Formation

     China

    A long-necked archosauromorph reptile of uncertain phylogenetic placement, possibly a member of Protorosauria. The type species is P. zhenyuensis.

    Shringasaurus[327]

    Gen. et sp. nov

    Valid

    Sengupta, Ezcurra & Bandyopadhyay

    Middle Triassic (Anisian)

    Denwa Formation

     India

    An archosauromorph reptile belonging to the group Allokotosauria and the family Azendohsauridae. The type species is S. indicus.

    Synapsids[edit]

    Non-mammalian synapsids[edit]

    Research[edit]

    New taxa[edit]

    Name Novelty Status Authors Age Unit Location Notes Images

    Alemoatherium[358]

    Gen. et sp. nov

    Valid

    Martinelli et al.

    Late Triassic (late Carnian)

    Santa Maria Formation

     Brazil

    A cynodont belonging to the group Prozostrodontia. The type species is A. huebneri.

    Aleodon cromptoni[359]

    Sp. nov

    Valid

    Martinelli et al.

    Triassic (Ladinian—early Carnian)

     Brazil
     Namibia?

    A cynodont belonging to the family Chiniquodontidae.

    Bulbasaurus[360]

    Gen. et sp. nov

    Valid

    Kammerer & Smith

    Late Permian

    Teekloof Formation

     South Africa

    A dicynodont belonging to the family Geikiidae. The type species is B. phylloxyron.

    Dalongkoua[361]

    Gen. et sp. nov

    Valid

    Liu & Abdala

    Late Permian

    Guodikeng Formation

     China

    A therocephalian. The type species is D. fuae.

    Microwhaitsia[362]

    Gen. et sp. nov

    Valid

    Huttenlocker & Smith

    Permian (Wuchiapingian)

    Teekloof Formation

     South Africa

    A whaitsiid therocephalian. The type species is M. mendrezi.

    Nuurtherium[363]

    Gen. et sp. nov

    Valid

    Velazco, Buczek & Novacek

    Late Jurassic

    Ulan Malgait Sequence

     Mongolia

    A tritylodontid cynodont. The type species is N. baruunensis.

    Ophidostoma[362]

    Gen. et sp. nov

    Valid

    Huttenlocker & Smith

    Permian (Wuchiapingian)

    Teekloof Formation

     South Africa

    A whaitsioid therocephalian of uncertain phylogenetic placement. The type species is O. tatarinovi.

    Parasuminia[364]

    Gen. et sp. nov

    Valid

    Kurkin

    Permian (Severodvinian)

     Russia

    An anomodont belonging to the family Galeopidae. Genus includes new species P. ivakhnenkoi.

    Scalenodon ribeiroae[365]

    Sp. nov

    Valid

    Melo, Martinelli & Soares

    Triassic

    Santa Maria Supersequence

     Brazil

    A traversodontid cynodont.

    Shartegodon[363]

    Gen. et sp. nov

    Valid

    Velazco, Buczek & Novacek

    Late Jurassic

    Ulan Malgait Sequence

     Mongolia

    A tritylodontid cynodont. The type species is S. altai.

    Shiguaignathus[366]

    Gen. et sp. nov

    Valid

    Liu & Abdala

    Late Permian

    Naobaogou Formation

     China

    An akidnognathid therocephalian. The type species is S. wangi.

    Mammals[edit]

    Other animals[edit]

    Research[edit]

    New taxa[edit]

    Name Novelty Status Authors Age Unit Location Notes Images

    Acoelia discontinua[388]

    Sp. nov

    Valid

    Wu

    Permian (Changhsingian)

     China

    A calcareous sponge belonging to the order Inozoa and the family Acoeliidae.

    Aeroretiolites[389]

    Gen. et sp. nov

    Valid

    Melchin, Lenz & Kozłowska

    Silurian

     Canada

    A graptolite. Genus includes new species A. cancellatus.

    Aladraco[390]

    Nom. et sp. nov

    Valid

    Geyer

    Cambrian

    Jbel Wawrmast Formation
    Tannenknock Formation

     Germany
     Morocco

    A member of Hyolitha; a replacement name for Oxyprymna Kiderlen (1933). Genus includes A. schloppensis (Wurm, 1925) and a new species A. ougnatensis.

    Allonnia erjiensis[391]

    Sp. nov

    Valid

    Yun, Zhang & Li

    Cambrian

    Chengjiang Lagerstätte

     China

    A chancelloriid.

    Andiprion[392]

    Gen. et sp. nov

    Valid

    Hints et al.

    Ordovician (Dapingian)

     Argentina

    A polychaete described on the basis of scolecodonts. Genus includes new species A. paxtonae.

    Angulosuspongia[393][394]

    Gen. et sp. nov

    Valid

    Yang et al.

    Cambrian Stage 5

    Kaili Formation

     China

    A sponge belonging to the order Verongida and the family Vauxiidae. Genus includes new species A. sinensis.

    Ankalodous[395]

    Gen. et sp. nov

    Valid

    Shu et al.

    Cambrian Series 3

    Qiongzhusi (Chiungchussu) Formation

     China

    An arrow worm. The type species is A. sericus.

    Archaeochionelasmus[396]

    Gen. et sp. nov

    Valid

    Kočí et al.

    Late Cretaceous (Cenomanian)

    Bohemian Cretaceous Basin

     Czech Republic

    An animal of uncertain phylogenetic placement. Originally interpreted as a barnacle belonging to the group Balanomorpha and the superfamily Chionelasmatoidea; Gale & Skelton (2018) considered it to be a rudist bivalve instead.[397] Genus includes new species A. nekvasilovae.

    Biskolites[398]

    Gen. et sp. nov

    Valid

    Valent, Fatka & Marek

    Cambrian (Drumian)

    Buchava Formation

     Czech Republic

    A member of Hyolitha. Genus includes new species B. iactans.

    Capinatator[399]

    Gen. et sp. nov

    Valid

    Briggs & Caron

    Cambrian

    Burgess Shale

     Canada
    ( British Columbia)

    An arrow worm. The type species is C. praetermissus.

    Caryosyntrips camurus[382]

    Sp. nov

    Valid

    Pates & Daley

    Cambrian

    Burgess Shale
    Langston Formation
    Valdemiedes Formation?

     Canada
    ( British Columbia)
     United States
    ( Utah)
     Spain?

    A member of Radiodonta.

    Caryosyntrips durus[382]

    Sp. nov

    Valid

    Pates & Daley

    Cambrian

    Wheeler Shale

     United States
    ( Utah)

    A member of Radiodonta.

    Cloudina ningqiangensis[400]

    Sp. nov

    Valid

    Cai et al.

    Late Ediacaran

     China

    Cloudina xuanjiangpingensis[400]

    Sp. nov

    Valid

    Cai et al.

    Late Ediacaran

     China

    Conchicolites rossicus[401]

    Sp. nov

    Valid

    Vinn & Madison

    Ordovician (Katian)

     Russia

    A member of Cornulitida belonging to the family Cornulitidae.

    Conciliospongia[402]

    Gen. et sp. nov

    Botting, Zhang & Muir

    Late Ordovician

    Wenchang Formation

     China

    A stem-demosponge of uncertain phylogenetic placement. The type species is C. anjiensis.

    Corallistes campanensis[403]

    Sp. nov

    Valid

    Świerczewska-Gładysz

    Late Cretaceous (early Campanian)

     Poland

    A lithistid demosponge belonging to the family Corallistidae.

    Cretacimermis aphidophilus[404]

    Sp. nov

    Valid

    Poinar

    Late Cretaceous (Cenomanian)

    Burmese amber

     Myanmar

    A nematode belonging to the family Mermithidae.

    Eolorica[405]

    Gen. et sp. nov

    Valid

    Harvey & Butterfield

    Cambrian (Furongian)

    Deadwood Formation

     Canada
    ( Saskatchewan)

    A member of the total group of Loricifera. The type species is E. deadwoodensis.

    Eorograptus spirifer[389]

    Sp. nov

    Valid

    Melchin, Lenz & Kozłowska

    Silurian

     Canada

    A graptolite.

    Feiyanella[406]

    Gen. et sp. nov

    Valid

    Han et al.

    Earliest Cambrian

    Kuanchuanpu Formation

     China

    A Cloudina-like tubular microfossil. The type species is F. manica.

    Geoditesia jordaniensis[407]

    Sp. nov

    Valid

    Ungureanu, Ahmad & Farouk

    Middle Jurassic (Callovian)

     Jordan

    A sponge.

    Glomerula gemmellaroi[408]

    Sp. nov

    Valid

    Sanfilippo in Sanfilippo et al.

    Permian

    “Pietra di Salomone” Limestone

     Italy

    A polychaete belonging to the family Sabellidae, a species of Glomerula.

    Guettardiscyphia zitti[409]

    Sp. nov

    Valid

    Vodrážka

    Late Cretaceous (Turonian)

    Bílá Hora Formation

     Czech Republic

    A hexactinellid sponge belonging to the family Cribrospongiidae.

    Inquicus[410]

    Gen. et sp. nov

    Valid

    Cong et al.

    Early Cambrian

    Chengjiang Lagerstätte

     China

    A tiny worm infecting members of the genera Cricocosmia and Mafangscolex. Genus includes new species I. fellatus.

    Keretsa[411]

    Gen. et sp. nov

    Valid

    Ivantsov

    Late Precambrian

    Zimnie Gory Formation

     Russia
    ( Arkhangelsk Oblast)

    An early eumetazoan, showing similarities to the arthropod species Naraoia longicaudata. The type species is K. brutoni.

    Labechia yeongwolense[412]

    Sp. nov

    Valid

    Jeon et al.

    Ordovician (Darriwilian)

    Yeongheung Formation

     South Korea

    A stromatoporoid.

    Lepidocoleus kuangguoduni[413]

    Sp. nov

    Valid

    Gügel et al.

    Devonian (Eifelian)

    Nandan Formation

     China

    A machaeridian.

    ‘Linevitus’ guizhouensis[414]

    Sp. nov

    Valid

    Sun et al.

    Cambrian Stage 4

    Balang Formation

     China

    A member of Hyolitha.

    Microdictyon cuneum[415]

    Sp. nov

    Valid

    Wotte & Sundberg

    Cambrian

     United States
    ( Nevada)

    A lobopodian.

    Microdictyon montezumaensis[415]

    Sp. nov

    Valid

    Wotte & Sundberg

    Cambrian

     United States
    ( Nevada)

    A lobopodian.

    Mughanniyyum[407]

    Gen. et sp. nov

    Valid

    Ungureanu, Ahmad & Farouk

    Middle Jurassic (Callovian)

     Jordan

    A sponge. Genus includes new species M. hanium.

    Multiconotubus[400]

    Gen. et sp. nov

    Valid

    Cai et al.

    Late Ediacaran

     China

    A Cloudina-like fossil. Genus includes new species M. chinensis.

    Neophrissospongia kacperskii[403]

    Sp. nov

    Valid

    Świerczewska-Gładysz

    Late Cretaceous (early Campanian)

     Poland

    A lithistid demosponge belonging to the family Corallistidae.

    Orthrozanclus elongata[416]

    Sp. nov

    Zhao & Smith in Zhao et al.

    Cambrian Stage 3

    Maotianshan Shales

     China

    Ovatiovermis[417]

    Gen. et sp. nov

    Valid

    Caron & Aria

    Cambrian

    Burgess Shale

     Canada
    ( British Columbia)

    A lobopodian belonging to the family Luolishaniidae. The type species is O. cribratus.

    Pachinion canaliculatum[403]

    Sp. nov

    Valid

    Świerczewska-Gładysz

    Late Cretaceous (early Campanian)

     Poland

    A lithistid demosponge belonging to the family Corallistidae.

    Plumulites lamonti[418]

    Sp. nov

    Valid

    Candela & Crighton

    Silurian (Telychian)

    Wether Law Linn Formation

     United Kingdom

    A machaeridian.

    Propomatoceros permianus[408]

    Sp. nov

    Valid

    Sanfilippo in Sanfilippo et al.

    Permian

    “Pietra di Salomone” Limestone

     Italy

    A polychaete belonging to the family Serpulidae, a species of Propomatoceros.

    Pseudoretiolites hyrichus[389]

    Sp. nov

    Valid

    Melchin, Lenz & Kozłowska

    Silurian

     Canada

    A graptolite.

    Pyrgopolon (Septenaria) cenomanensis[419]

    Sp. nov

    Valid

    Kočí, Jäger & Morel

    Late Cretaceous (Cenomanian)

     France

    A polychaete belonging to the family Serpulidae.

    Pyrgopolon (Turbinia?) gaiae[408]

    Sp. nov

    Valid

    Sanfilippo in Sanfilippo et al.

    Permian

    “Pietra di Salomone” Limestone

     Italy

    A polychaete belonging to the family Serpulidae, a species of Pyrgopolon.

    Radiofibrosclera[388]

    Gen. et sp. nov

    Valid

    Wu

    Permian (Changhsingian)

     China

    A sclerosponge. The type species is R. laibinensis.

    Ratcliffespongia arivechensis[420]

    Sp. nov

    Valid

    Beresi et al.

    Cambrian Series 3

     Mexico

    A reticulosan sponge of uncertain phylogenetic placement.

    Saccorhytus[421]

    Gen. et sp. nov

    Valid

    Han et al.

    Earliest Cambrian

     China

    An early deuterostome related to vetulicolians and vetulocystids. The type species is S. coronarius.

    “Serpula” distefanoi[408]

    Sp. nov

    Valid

    Sanfilippo in Sanfilippo et al.

    Permian

    “Pietra di Salomone” Limestone

     Italy

    A polychaete belonging to the family Serpulidae.

    Serpula? pseudoserpentina[419]

    Sp. nov

    Valid

    Kočí, Jäger & Morel

    Late Cretaceous (Cenomanian)

     France

    A polychaete belonging to the family Serpulidae.

    Silicunculus saaqqutit[422]

    Sp. nov

    Valid

    Peel

    Cambrian Series 3

     Greenland

    A sponge.

    Singuuriqia[423]

    Gen. et sp. nov

    Valid

    Peel

    Cambrian Stage 3

    Sirius Passet Lagerstätte

     Greenland

    A member of Priapulida. Genus includes new species S. simoni.

    Siphusauctum lloydguntheri[424]

    Sp. nov

    Valid

    Kimmig, Strotz & Lieberman

    Cambrian Stage 5

    Spence Shale

     United States
    ( Utah)

    Tauricornicaris[380]

    Gen. et 2 sp. nov

    Valid[425]

    Zeng et al.

    Early Cambrian

    Chengjiang Lagerstätte

     China

    A member of Radiodonta, possibly a member of Hurdiidae. Genus includes new species T. latizonae and T. oxygonae.

    Thoracospongia lacrimiformis[422]

    Sp. nov

    Valid

    Peel

    Cambrian Series 3

     Greenland

    A sponge.

    Tianzhushanella tolli[426]

    Sp. nov

    Valid

    Kouchinsky et al.

    Cambrian

    Medvezhya Formation

     Russia

    A member of Tianzhushanellidae (a group of animals of uncertain phylogenetic placement, possibly stem-brachiopods).

    Valospongia sonorensis[420]

    Sp. nov

    Valid

    Beresi et al.

    Cambrian Series 3

     Mexico

    A reticulosan sponge of uncertain phylogenetic placement.

    Vittatusivermis[427]

    Gen. et sp. nov

    Zhang et al.

    Cambrian (Fortunian)

    Yuhucun Formation

     China

    A worm-like organism, possibly a member of Bilateria of uncertain phylogenetic placement. The type species is V. annularius.

    Websteroprion[428]

    Gen. et sp. nov

    Valid

    Eriksson, Parry & Rudkin

    Devonian (late Emsian-early Eifelian)

    Kwataboahegan Formation

     Canada
    ( Ontario)

    An eunicidan polychaete of uncertain phylogenetic placement. The type species is W. armstrongi.

    Other organisms[edit]

    Research[edit]

    New taxa[edit]

    Name Novelty Status Authors Age Unit Location Notes Images

    Acadialithus[444]

    Gen. et 2 sp. nov

    Valid

    Howe

    Late Jurassic (Tithonian)

     Bulgaria
    Offshore eastern Newfoundland, Canada
    Offshore in the eastern Gulf of Mexico
    Offshore of the northeast coast of the United States

    A nannofossil. Genus includes new species A. dennei and A. valentinei.

    Adendorfia[445]

    Gen. et sp. nov

    Valid

    Worobiec et al.

    Miocene

     Germany

    A fungus, probably a member of Chaetomiaceae. Genus includes new species A. miocenica.

    Alpinoschwagerina nagatoensis[446]

    Sp. nov

    Valid

    Kobayashi

    Permian (Asselian)

    Akiyoshi Limestone Group

     Japan

    A foraminifer belonging to the group Fusulinida.

    Amsassia argentina[447]

    Sp. nov

    Valid

    Carrera, Astini & Gomez

    Early Ordovician

    La Silla Formation

     Argentina

    A coral-like organism of uncertain phylogenetic placement.

    Asterina indodeightonii[448]

    Sp. nov

    Valid

    Vishnu et al.

    Mid-Miocene to early Pleistocene

     India

    A fungus, a species of Asterina.

    Asterina mioconsobrina[448]

    Sp. nov

    Valid

    Vishnu et al.

    Mid-Miocene to early Pleistocene

     India

    A fungus, a species of Asterina.

    Asterina miosphaerelloides[448]

    Sp. nov

    Valid

    Vishnu et al.

    Mid-Miocene to early Pleistocene

     India

    A fungus, a species of Asterina.

    Asterina neocombreticola[448]

    Sp. nov

    Valid

    Vishnu et al.

    Mid-Miocene to early Pleistocene

     India

    A fungus, a species of Asterina.

    Asterina neoelaeocarpi[448]

    Sp. nov

    Valid

    Vishnu et al.

    Mid-Miocene to early Pleistocene

     India

    A fungus, a species of Asterina.

    Asterina presaracae[448]

    Sp. nov

    Valid

    Vishnu et al.

    Mid-Miocene to early Pleistocene

     India

    A fungus, a species of Asterina.

    Baculogypsinella[449]

    Gen. et sp. nov

    Valid

    Matsumaru

    Eocene

     Philippines

    A foraminifer. Genus includes new species B. eocenica.

    Blastanosphaira[450]

    Gen. et sp. nov

    Valid

    Javaux & Knoll

    Mesoproterozoic

    Mainoru Formation

     Australia

    A possible eukaryotic microorganism of uncertain phylogenetic placement. The type species is B. kokkoda.

    Bonniea makrokurtos[451]

    Sp. nov

    Valid

    Cohen, Irvine & Strauss

    Tonian

    Callison Lake Formation

     Canada
    ( Yukon)

    A vase-shaped microfossil.

    Braarudosphaera pseudobatilliformis[452]

    Sp. nov

    Valid

    Alves, Lima & Shimabukuro

    Early Cretaceous (Aptian)

     Brazil

    A haptophyte belonging to the family Braarudosphaeraceae.

    Carbonoschwagerina nipponica[446]

    Sp. nov

    Valid

    Kobayashi

    Carboniferous (Kasimovian and Gzhelian)

    Akiyoshi Limestone Group

     Japan

    A foraminifer belonging to the group Fusulinida.

    Cephalothecoidomyces[445]

    Gen. et sp. nov

    Valid

    Worobiec et al.

    Neogene

     Germany
     Poland

    A fungus, probably a member of Cephalothecaceae. Genus includes new species C. neogenicus.

    Chiphragmalithus muzylevii[453]

    Sp. nov

    Valid

    Musatov

    Eocene (Ypresian)

     Russia

    A haptophyte.

    Cobios[454]

    Gen. et sp. nov

    Valid

    Du et al.

    Ediacaran

    Doushantuo Formation

     China

    A red alga. The type species is Cobios rubo.

    Curviacus[455]

    Gen. et sp. nov

    Valid

    Shen et al.

    Ediacaran

    Dengying Formation

     China

    A benthic modular organism consisting of serially arranged and crescent-shaped chambers. Genus includes new species C. ediacaranus.

    Cyanonema grandis[456]

    Sp. nov

    Valid

    Shi & Feng in Shi et al.

    Early Mesoproterozoic

    Gaoyuzhuang Formation

     China

    A member of Cyanobacteria belonging to the group Nostocales.

    Cycliocyrillium rootsi[451]

    Sp. nov

    Valid

    Cohen, Irvine & Strauss

    Tonian

    Callison Lake Formation

     Canada
    ( Yukon)

    A vase-shaped microfossil.

    Dalongicaepa[457]

    Gen. et sp. et comb. nov

    Valid

    Xiao & Suzuki in Xiao, Suzuki & He

    Late Permian

    Upper Dalong Formation

     China
     Thailand

    A radiolarian belonging to the group Spumellaria and the family Spongotortilispinidae. The type species is D. bipolaris; genus also includes "Pseudospongoprunum" fontainei Sashida in Sashida et al. (2000).

    Denaricion[458]

    Gen. et sp. nov

    Valid

    Bengtson in Bengtson et al.

    ~1.6 billion years ago

     India

    An organism of uncertain phylogenetic placement, might be an alga or prokaryote. Genus includes new species D. mendax.

    Devisphaera[459]

    Gen. et sp. nov

    Valid

    Tang et al.

    Late Mesoproterozoic – early Neoproterozoic

    Madhubani Group

     India

    An organic-walled microfossil. Genus includes new species D. corallis.

    Discusphyton[460]

    Gen. et sp. nov

    Valid

    Wang, Wang & Du

    Ediacaran

    Doushantuo Formation

     China

    A macroalga of uncertain phylogenetic placement. Genus includes new species D. whenghuiensis.

    Fissumella[461]

    Gen. et sp. nov

    Valid

    Cruz-Abad et al.

    Early Cretaceous (Albian)

     Italy

    A foraminifer. Genus includes new species F. motolae.

    Flabelloperforata[462]

    Gen. et sp. nov

    Valid

    Schlagintweit & Rashidi

    Late Cretaceous (Maastrichtian)

    Tarbur Formation

     Iran

    A foraminifer belonging to the group Loftusiida, possibly a member of the family Biokovinidae. Genus includes new species F. tarburensis.

    Gigantosphaeridium floccosum[463]

    Sp. nov

    Valid

    Agić, Moczydłowska & Yin

    Early Mesoproterozoic

    Ruyang Group

     China

    A microfossil.

    Gondwanagaricites[464][465]

    Gen. et sp. nov

    Valid

    Heads, Miller & Crane

    Early Cretaceous (Aptian)

    Crato Formation

     Brazil

    A gilled mushroom. Genus includes new species G. magnificus.

    Hagenococcus[466]

    Gen. et sp. nov

    Valid

    Krings et al.

    Early Devonian

    Rhynie chert

     United Kingdom

    A microorganism of uncertain phylogenetic placement, most likely an alga with affinities to the Chlorophyta or Streptophyta. Genus includes new species H. aggregatus.

    Haplophragmoides arcticus[467]

    Sp. nov

    Valid

    Kaminski, Waskowska & Chan

    Middle Pleistocene

    Arctic Ocean
    (Lomonosov Ridge)

    A foraminifer.

    Jigulites titanicus[446]

    Sp. nov

    Valid

    Kobayashi

    Carboniferous (Gzhelian) and Permian (Asselian)

    Akiyoshi Limestone Group

     Japan

    A foraminifer belonging to the group Fusulinida.

    Limeta[468]

    Gen. et sp. nov

    Valid

    Morais, Fairchild & Lahr in Morais et al.

    Neoproterozoic

    Urucum Formation

     Brazil

    A vase-shaped microfossil. Genus includes new species L. lageniformis.

    Montiparus minensis[446]

    Sp. nov

    Valid

    Kobayashi

    Carboniferous (Kasimovian)

    Akiyoshi Limestone Group

     Japan

    A foraminifer belonging to the group Fusulinida.

    Nannoconus troelsenii[452]

    Sp. nov

    Valid

    Alves, Lima & Shimabukuro

    Early Cretaceous (Aptian)

     Brazil

    A haptophyte belonging to the family Nannoconaceae.

    Oscillatoriopsis gigas[456]

    Sp. nov

    Valid

    Shi & Feng in Shi et al.

    Early Mesoproterozoic

    Gaoyuzhuang Formation

     China

    A member of Cyanobacteria belonging to the group Oscillatoriales.

    Palaeoamphora[468]

    Gen. et sp. nov

    Valid

    Morais, Fairchild & Lahr in Morais et al.

    Neoproterozoic

    Urucum Formation

     Brazil

    A vase-shaped microfossil. Genus includes new species P. urucumense.

    Palaeostromatus[469]

    Gen. et sp. nov

    Valid

    Dentzien-Dias, Poinar & Francischini

    Permian (Guadalupian)

    Rio do Rasto Formation

     Brazil

    An actinomycete. Genus includes new species P. diairetus.

    Paleohaimatus[470]

    Gen. et sp. nov

    Valid

    Poinar

    Eocene-Miocene

    El Mamey Formation
    (Dominican amber)

     Dominican Republic

    A member of Apicomplexa belonging to the group Piroplasmida. Genus includes new species P. calabresi.

    Parastaffelloides kanmerai[446]

    Sp. nov

    Valid

    Kobayashi

    Carboniferous (Moscovian)

    Akiyoshi Limestone Group

     Japan

    A foraminifer belonging to the group Fusulinida.

    Pentadinium darmirae[471]

    Sp. nov

    Valid

    Slimani & Ţabără in Ţabără et al.

    Paleocene (Danian)

    Izvor Formation
    Runcu Formation

     Romania

    A dinoflagellate belonging to the group Gonyaulacales and the family Gonyaulacaceae.

    Persiella[462]

    Gen. et sp. nov

    Valid

    Schlagintweit & Rashidi

    Late Cretaceous (Maastrichtian)

    Tarbur Formation

     Iran

    A foraminifer belonging to the group Loftusiida, possibly a member of the family Spirocyclinidae. Genus includes new species P. pseudolituus.

    Pocillithus crucifer[472]

    Sp. nov

    Valid

    Lees, Bown & Young

    Late Cretaceous (Turonian)

     Tanzania

    A haptophyte belonging to the family Papposphaeraceae.

    Pocillithus macleodii[472]

    Sp. nov

    Valid

    Lees, Bown & Young

    Late Cretaceous (Turonian)

     Tanzania

    A haptophyte belonging to the family Papposphaeraceae.

    Quasifusulinoides grandis[446]

    Sp. nov

    Valid

    Kobayashi

    Carboniferous (Kasimovian)

    Akiyoshi Limestone Group

     Japan

    A foraminifer belonging to the group Fusulinida.

    Rafatazmia[458]

    Gen. et sp. nov

    Valid

    Bengtson in Bengtson et al.

    ~1.6 billion years ago

     India

    An alga of uncertain phylogenetic placement. Genus includes new species R. chitrakootensis.

    Ramathallus[458]

    Gen. et sp. nov

    Valid

    Sallstedt in Bengtson et al.

    ~1.6 billion years ago

     India

    A possible stem-florideophycean red algae. Genus includes new species R. lobatus.

    Schwagerina wakatakeyamensis[446]

    Sp. nov

    Valid

    Kobayashi

    Permian (Asselian)

    Akiyoshi Limestone Group

     Japan

    A foraminifer belonging to the group Fusulinida.

    Schwagerina watanabei[446]

    Sp. nov

    Valid

    Kobayashi

    Permian (Asselian)

    Akiyoshi Limestone Group

     Japan

    A foraminifer belonging to the group Fusulinida.

    Spearlithus[473]

    Gen. et 12 sp. nov

    Valid

    Da Gama

    Pleistocene

     Dominican Republic

    A calcareous nannofossil of uncertain phylogenetic placement.

    Staffella subsphaerica[446]

    Sp. nov

    Valid

    Kobayashi

    Carboniferous (Kasimovian and Gzhelian)

    Akiyoshi Limestone Group

     Japan

    A foraminifer belonging to the group Fusulinida.

    Stradnerlithus? haynesiae[472]

    Sp. nov

    Valid

    Lees, Bown & Young

    Late Cretaceous (Turonian)

     Tanzania

    A haptophyte belonging to the order Stephanolithiales and the family Stephanolithiaceae.

    Stradnerlithus wendleri[472]

    Sp. nov

    Valid

    Lees, Bown & Young

    Late Cretaceous (Turonian)

     Tanzania

    A haptophyte belonging to the order Stephanolithiales and the family Stephanolithiaceae.

    Suraqalatia[474]

    Gen. et sp. nov

    Valid

    Görmüş, Ameen Lawa & Al Nuaimy

    Late Cretaceous (Maastrichtian)

     Iraq

    A foraminifer belonging to the family Dicyclinidae. Genus includes new species S. brasieri.

    Synaptomitus[475]

    Gen. et sp. nov

    Valid

    Poinar

    Eocene to Miocene

    Dominican amber

     Dominican Republic

    Originally described as a fungus belonging to the group Basidiomycota,[475] but this interpretation was challenged by Selosse et al. (2017).[476] Genus includes new species S. orchiphilus.

    Syracosphaera antiqua[472]

    Sp. nov

    Valid

    Bown, Lees & Young

    Late Cretaceous (Turonian)

     Tanzania

    A haptophyte belonging to the order Syracosphaerales and the family Syracosphaeraceae.

    Syracosphaera repagula[472]

    Sp. nov

    Valid

    Bown, Lees & Young

    Late Cretaceous (Turonian)

     Tanzania

    A haptophyte belonging to the order Syracosphaerales and the family Syracosphaeraceae.

    Tarburina[477]

    Gen. et sp. nov

    Valid

    Schlagintweit, Rashidi & Barani

    Late Cretaceous (late Maastrichtian)

    Tarbur Formation

     Iran

    A foraminifer. Genus includes new species T. zagrosiana.

    Taruma[468]

    Gen. et sp. nov

    Valid

    Morais, Fairchild & Lahr in Morais et al.

    Neoproterozoic

    Urucum Formation

     Brazil

    A vase-shaped microfossil. Genus includes new species T. rata.

    Tortolithus foramen[472]

    Sp. nov

    Valid

    Lees, Bown & Young

    Late Cretaceous (Turonian)

     Tanzania

    A haptophyte of uncertain phylogenetic placement.

    Veteronostocale grandis[456]

    Sp. nov

    Valid

    Shi & Feng in Shi et al.

    Early Mesoproterozoic

    Gaoyuzhuang Formation

     China

    A member of Cyanobacteria belonging to the group Nostocales.

    Windipila[478]

    Gen. et sp. nov

    Valid

    Krings & Harper

    Early Devonian

    Windyfield chert

     United Kingdom

    A fungus described on the basis of a reproductive unit. Genus includes new species W. spinifera.

    Xiaohongyuia[479]

    Gen. et sp. nov

    Valid

    Shi & Feng in Shi et al.

    Late Paleoproterozoic

    Dahongyu Formation

     China

    A probable eukaryotic microfossil. Genus includes new species X. sinica.

    General paleontology[edit]

    Research related to paleontology that either does not concern any of the groups of the organisms listed above, or concerns multiple groups.

    • A study on the links between changes in the composition of exposed continental crust and oxygenation of the atmosphere in the Precambrian is published by Smit & Mezger (2017).[480]
    • A study evaluating whether mass extinction events over the last 500 million year were caused by astronomical phenomena is published by Erlykin et al. (2017).[481]
    • A study on the water column geochemistry of the Yangtze Sea during the Ediacaran-Cambrian transition and its implications for the relationship between ocean oxygenation and Early Cambrian animal diversification is published by Zhang et al. (2017).[482]
    • A study on the links between the expansion of siliceous sponges and seawater oxygenation during the Ediacaran–Cambrian transition is published by Tatzel et al. (2017).[483]
    • A study on the factors influencing marine invertebrate diversity dynamics through the Phanerozoic is published by Cermeño et al. (2017).[484]
    • Edwards et al. (2017) identify a strong temporal link between the rising atmospheric oxygen levels and the Great Ordovician Biodiversification Event.[485]
    • A study on the impact of the drawdown of atmospheric carbon dioxide (caused by burial of organic carbon leading to the formation of coal) on the climate around the Carboniferous/Permian boundary is published by Feulner (2017).[486]
    • A comprehensive reconstruction of the Permian (Lopingian) Bletterbach Biota (Italy) and a review of other best-known Lopingian terrestrial associations containing both vertebrate and plant remains is published by Bernardi et al. (2017).[487]
    • A study on the causal connection between the Siberian Traps large igneous province magmatism and Permian–Triassic extinction event, identifying the initial emplacement pulse as likely to have triggered mass extinction, is published by Burgess, Muirhead & Bowring (2017).[488]
    • Viglietti, Rubidge & Smith (2017) review the tectonic setting of the Late Permian Karoo Basin (South Africa), provide an updated basin development model, and interpret their findings as indicating that the climatic changes associated with the Permian–Triassic extinction event were occurring much lower in the stratigraphy (and thus earlier) than previously documented.[489]
    • A study on the impact of the magmatic activity associated with the Central Atlantic magmatic province on the Triassic–Jurassic extinction event is published by Davies et al. (2017).[490]
    • A study on the volcanic activity at the end of the Triassic as indicated by mercury concentrations in sediments from around the world is published by Percival et al. (2017).[491]
    • A study on the oxygen levels in Earth’s oceans during and after the Triassic–Jurassic extinction event as indicated by uranium isotopes in shallow-marine limestones in the Lombardy Basin (northern Italy) is published by Jost et al. (2017).[492]
    • A high-resolution stratigraphic chart for terrestrial Late Cretaceous units of North America and a study on the stratigraphic ranges of North American dinosaurs is published by Fowler (2017).[493]
    • A study on the impact that large amounts of soot injected into the atmosphere during the Cretaceous–Paleogene extinction event (probably caused by global wildfires) had on the climate is published by Bardeen et al. (2017).[494]
    • A study estimating the decrease of the air temperature and the duration of the climate cooling caused by Chicxulub impact at the end of the Cretaceous is published by Brugger, Feulner & Petri (2017).[495]
    • A study on the volume of the climate-active gases released from sedimentary rocks as a result of the Chicxulub impact, as well as on their effect on the global climate, is published by Artemieva, Morgan & Expedition 364 Science Party (2017).[496]
    • Kaiho & Oshima (2017) calculate the amounts of stratospheric soot and sulfate formed by a virtual asteroid impact at various global locations, and conclude that the Cretaceous–Paleogene extinction event was caused by the Chicxulub impact happening at the hydrocarbon-rich, sulfate-dominated area on the Earth’s surface, and that an impact at a low–medium hydrocarbon area on Earth would be unlikely to cause mass extinction.[497]
    • A study on the data sets of molluscan fossils from the Cretaceous–Paleogene of the Seymour Island (Antarctica) is published by Tobin (2017), who identifies possible evidence of two separate extinction events, one prior to the Cretaceous–Paleogene boundary, and one simultaneous with the bolide impact at the Cretaceous–Paleogene boundary.[498]
    • A study on the behavioral and ecological diversification of animals that colonized land as indicated by trace fossils is published by Minter et al. (2017).[499]
    • A study on the age of the Cowie Harbour Fish Bed (Scotland, United Kingdom), containing fish and arthropod fossils (including the millipede Pneumodesmus newmani), is published by Suarez et al. (2017).[500]
    • A study on the preservation of skin and keratinous integumentary structures in tetrapod fossils through time is published by Eliason et al. (2017).[501]
    • A study on the differences between the tetrapod faunas at different latitudes during the early and middle Permian, as well as their implications for establishing whether the Olson's Extinction was a genuine event, is published by Brocklehurst et al. (2017).[502]
    • A study on the non-flying terrestrial tetrapod species richness through the Mesozoic and early Palaeogene is published by Close et al. (2017).[503]
    • A study on the evolution of the shape of brain and skull roof during the transition from early reptiles through archosauromorphs, including nonavian dinosaurs, to birds is published by Fabbri et al. (2017).[504]
    • A study on the structure and vulnerability of the food web in marine vertebrate assemblages prior to the Cretaceous–Paleogene extinction event as indicated by calcium isotope data from plesiosaurs and mosasaurs is published by Martin et al. (2017).[505]
    • Qvarnström et al. (2017) reconstruct fossil inclusions in two coprolites (produced by an insectivorous animal and a large aquatic predator) from the Late Triassic locality of Krasiejów (Poland) using propagation phase-contrast synchrotron microtomography.[506]
    • A study on the fossil inclusions in coprolite fragments (produced by medium to large-sized carnivores, possibly therocephalian therapsids or early archosauriforms) recovered from the Late Permian locality of Vyazniki (Russia) is published by Bajdek et al. (2017).[507]
    • A new tetrapod assemblage from the lowermost levels of the Triassic Chañares Formation (Argentina), dominated by fossils of Tarjadia ruthae, dicynodonts and cynodonts, and also including fossils of other pseudosuchians and rhynchosaurs, is described by Ezcurra et al. (2017), who also reinterpret Tarjadia ruthae and Archeopelta arborensis as erpetosuchid archosaurs.[508]
    • A study on the cosmopolitanism of terrestrial amniote faunas in the aftermath of the Permian–Triassic extinction event and Triassic–Jurassic extinction event is published by Button et al. (2017).[509]
    • Frese et al. (2017) determine the mineral and elemental composition of a range of fossils from the Talbragar fossil site (Australia) and their rock matrices using ultraviolet light-induced fluorescence/photoluminescence, X-ray fluorescence and X-ray diffractometry, and use those techniques to reveal anatomical details of animals and plants fossils that weren't discernible otherwise.[510]
    • A study on changes of the size of fossil marine shells and predatory drill holes in those shells during the Phanerozoic, as well as their implications for changes of predator-prey size ratio throughout the Phanerozoic, is published by Klompmaker et al. (2017).[511]
    • A study on the glacial development and environmental changes in the Aurora Subglacial Basin (Antarctica) throughout the Cenozoic based on geophysical and geological evidence is published by Gulick et al. (2017).[512]
    • A study on the onset duration of the Paleocene–Eocene Thermal Maximum is published by Kirtland Turner et al. (2017).[513]
    • A study on the relationship between volcanic activity in the North Atlantic Igneous Province and the Paleocene–Eocene Thermal Maximum is published by Gutjahr et al. (2017).[514]
    • A study on the environment in the area corresponding to the present-day Amazon basin in the Miocene as indicated by data from the shark and ray fossils from the Pirabas Formation (Brazil) is published by Aguilera et al. (2017).[515]
    • A study on the impact of the Messinian salinity crisis on Mediterranean magmatism is published by Sternai et al. (2017).[516]
    • A study on the changes of ice sheets volume and sea level during the late Pliocene is published by de Boer et al. (2017).[517]
    • Pimiento et al. (2017) identify a previously unrecognized extinction event among marine megafauna at the end of the Pliocene.[518]
    • A study on the aridity in eastern Africa over the past 4.4 million years as indicated by oxygen isotope ratios in fossil herbivore tooth enamel, and on its implications for inferring the role of climate in shaping early hominin environments, is published by Blumenthal et al. (2017).[519]
    • Tierney, deMenocal & Zander (2017) reconstruct temperature and aridity in the Horn of Africa region spanning the past 200,000 years.[520]
    • A vertebrate fauna from the Pleistocene and Holocene of Sumba (Indonesia) is described by Turvey et al. (2017).[521]
    • A study on the modified mammalian bones from the Plio–Pleistocene of Ethiopia is published by Sahle, El Zaatari & White (2017), who interpret the marks on some of these bones as more likely to be produced by crocodiles than by hominids using stone tools.[522]
    • Hagstrum et al. (2017) report impact-related microspherules and elevated platinum concentrations found in fine-grained sediments retained within Late Pleistocene bison and mammoth skull fragments from Alaska and Yukon, and interpret the findings as evidence of repeated airbursts and ground/ice impacts associated with multiple episodes of cosmic impact.[523]
    • A study on changes in landscape moisture in the rangelands in Europe, Siberia and the Americas during the late Pleistocene as indicated by data from the bones of megaherbivores is published by Rabanus-Wallace et al. (2017).[524]

    References[edit]

    1. ^ Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN 9780070887398. OCLC 46769716. 
    2. ^ Qiang Ou; Jian Han; Zhifei Zhang; Degan Shu; Ge Sun; Georg Mayer (2017). "Three Cambrian fossils assembled into an extinct body plan of cnidarian affinity". Proceedings of the National Academy of Sciences of the United States of America. 114 (33): 8835–8840. doi:10.1073/pnas.1701650114. PMC 5565419Freely accessible. PMID 28760981. 
    3. ^ Baichuan Duan; Xi-Ping Dong; Luis Porras; Kelly Vargas; John A. Cunningham; Philip C. J. Donoghue (2017). "The early Cambrian fossil embryo Pseudooides is a direct-developing cnidarian, not an early ecdysozoan". Proceedings of the Royal Society B: Biological Sciences. 284 (1869): 20172188. doi:10.1098/rspb.2017.2188. PMC 5745419Freely accessible. PMID 29237861. 
    4. ^ Aaron D. Sappenfield; Lidya G. Tarhan; Mary L. Droser (2017). "Earth's oldest jellyfish strandings: a unique taphonomic window or just another day at the beach?". Geological Magazine. 154 (4): 859–874. doi:10.1017/S0016756816000443. 
    5. ^ Jerzy Dzik; Andrzej Baliński; Yuanlin Sun (2017). "The origin of tetraradial symmetry in cnidarians". Lethaia. 50 (2): 306–321. doi:10.1111/let.12199. 
    6. ^ Guangxu Wang; Renbin Zhan; Bing Huang; Ian G. Percival (2017). "Coral faunal turnover through the Ordovician–Silurian transition in South China and its global implications for carbonate stratigraphy and macroevolution". Geological Magazine. 154 (4): 829–836. doi:10.1017/S0016756816000406. 
    7. ^ Chiara Tornabene; Rowan C. Martindale; Xingchen T. Wang; Morgan F. Schaller (2017). "Detecting Photosymbiosis in Fossil Scleractinian Corals". Scientific Reports. 7: Article number 9465. doi:10.1038/s41598-017-09008-4. PMC 5572714Freely accessible. PMID 28842582. 
    8. ^ a b c d e Marie Coen-Aubert (2017). "Givetian rugose corals from the Zemmour in Mauritania". Geologica Belgica. 20 (3–4): 161–180. doi:10.20341/gb.2017.009. 
    9. ^ Yong Yi Zhen; Guangxu Wang; Ian G. Percival (2017). "Conodonts and tabulate corals from the Upper Ordovician Angullong Formation of central New South Wales, Australia". Alcheringa: an Australasian Journal of Palaeontology. 41 (2): 141–168. doi:10.1080/03115518.2016.1185869. 
    10. ^ a b c Jerzy Fedorowski (2017). "Early Bashkirian Rugosa (Anthozoa) from the Donets Basin (Ukraine). Part 5. The Family Bothrophyllidae Fomichev, 1953". Acta Geologica Polonica. 67 (2): 249–298. Bibcode:2017AcGeP..67..249F. doi:10.1515/agp-2017-0013. 
    11. ^ John S. Peel (2017). "A problematic cnidarian (Cambroctoconus; Octocorallia?) from the Cambrian (Series 2–3) of Laurentia". Journal of Paleontology. 91 (5): 871–882. doi:10.1017/jpa.2017.49. 
    12. ^ Wei-hua Liao; Xue-ping Ma (2017). "Devonian corals from Zhaotong, NE Yunnan (2)——Givetian rugose corals". Acta Palaeontologica Sinica. 56 (1): 68–81. 
    13. ^ a b c d e f Jerzy Fedorowski (2017). "Early Bashkirian Rugosa (Anthozoa) from the Donets Basin (Ukraine). Part 6. The Family Aulophyllidae Dybowski, 1873". Acta Geologica Polonica. 67 (4): 459–514. doi:10.1515/agp-2017-0028. 
    14. ^ a b c d e Galina K. Melnikova; Ewa Roniewicz (2017). "Early Jurassic corals with dominating solitary growth forms from the Kasamurg Mountains, Central Asia". Palaeoworld. 26 (1): 124–148. doi:10.1016/j.palwor.2016.01.001. 
    15. ^ Bernard Lathuilière; Sylvain Charbonnier; Jean-Michel Pacaud (2017). "Nomenclatural and taxonomic acts and remarks for the revision of Jurassic corals" (PDF). Zitteliana. 89: 133–150. ISBN 978-3-946705-00-0. 
    16. ^ Sergio Rodríguez; Ian D. Somerville; Ismail Said (2017). "New species of the rugose coral genus Lithostrotion Fleming in the upper Viséan from the Azrou-Khenifra Basin (Morocco)" (PDF). Spanish Journal of Palaeontology. 32 (1): 27–34. 
    17. ^ Stephen D. Cairns (2017). "New azooxanthellate genus of Scleractinia (Flabellidae) from the Australian Cenozoic". Journal of Paleontology. 91 (3): 407–416. doi:10.1017/jpa.2016.83. 
    18. ^ Shuji Niko; Shigeyuki Suzuki; Eiji Taguchi (2017). "Petrophyllia niimiensis, a new Miocene species of scleractinian coral from the Bihoku Group in Niimi City, Okayama Prefecture, Southwest Japan". Bulletin of the Akiyoshi-dai Museum of Natural History. 52: 5–9. 
    19. ^ Yunhuan Liu; Tiequan Shao; Huaqiao Zhang; Qi Wang; Yanan Zhang; Cheng Chen; Yongchun Liang; Jiaqi Xue (2017). "A new scyphozoan from the Cambrian Fortunian Stage of South China". Palaeontology. 60 (4): 511–518. doi:10.1111/pala.12306. 
    20. ^ Shuji Niko; Yousuke Ibaraki; Jun-ichi Tazawa (2017). "Middle Devonian tabulate corals from the Kotaki area, Niigata Prefecture, central Japan". Science reports of Niigata University. (Geology). 32: 25–31. 
    21. ^ Xing Wang; Jian Han; Jean Vannier; Qiang Ou; Xiaoguang Yang; Kentaro Uesugi; Osamu Sasaki; Tsuyoshi Komiya (2017). "Anatomy and affinities of a new 535-million-year-old medusozoan from the Kuanchuanpu Formation, South China". Palaeontology. 60 (6): 853–867. doi:10.1111/pala.12320. 
    22. ^ Rosemarie Christine Baron-Szabo (2017). "Scleractinian corals from the upper Aptian–Albian of the Garschella Formation of central Europe (western Austria; eastern Switzerland): The Albian" (PDF). Jahrbuch der Geologischen Bundesanstalt. 157 (1–4): 241–260. 
    23. ^ Andrzej Baliński; Yuanlin Sun (2017). "Early Ordovician black corals from China". Bulletin of Geosciences. 92 (1): 1–12. doi:10.3140/bull.geosci.1632. 
    24. ^ Marcus M. Key, Jr.; Matúš Hyžný; Erfan Khosravi; Natália Hudáčková; Ninon Robin; Majid Mirzaie Ataabadi (2017). "Bryozoan epibiosis on fossil crabs: a rare occurrence from the Miocene of Iran". PALAIOS. 32 (8): 491–505. Bibcode:2017Palai..32..491K. doi:10.2110/palo.2017.040. 
    25. ^ a b Andrej Ernst; Daniel Vachard (2017). "Middle Pennsylvanian bryozoans of Cerros de Tule, Sonora, Mexico". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 285 (1): 11–38. doi:10.1127/njgpa/2017/0660. 
    26. ^ a b c d e f g h i j k l m n o p q r s t u v w x y Emanuela Di Martino; Paul D. Taylor; Roger W. Portell (2017). "Bryozoans from the lower Miocene Chipola Formation, Calhoun County, Florida, USA". Bulletin of the Florida Museum of Natural History. 53 (4): 97–200. 
    27. ^ a b c d e Silviu O. Martha; Birgit Niebuhr; Joachim Scholz (2017). "Cheilostome Bryozoen" (PDF). Geologica Saxonica. 62: 11–52. 
    28. ^ Andrej Ernst; Zoya Tolokonnikova; Edouard Poty; Bernard Mottequin (2017). "A bryozoan fauna from the Mississippian (Tournaisian and Viséan) of Belgium". Geobios. 50 (2): 105–121. doi:10.1016/j.geobios.2017.02.002. 
    29. ^ a b c d e f g h i Juan Luis Suárez Andrés; Patrick N. Wyse Jackson (2017). "Fenestrate Bryozoa of the Moniello Formation (Lower-Middle Devonian, NW Spain)". Bulletin of Geosciences. 92 (2): 153–183. doi:10.3140/bull.geosci.1668. 
    30. ^ a b c d Emanuela Di Martino; Paul D. Taylor; Laura J. Cotton; Paul N. Pearson (2017). "First bryozoan fauna from the Eocene–Oligocene transition in Tanzania". Journal of Systematic Palaeontology. 16 (3): 225–243. doi:10.1080/14772019.2017.1284163. 
    31. ^ a b Emanuela Di Martino; Paul D. Taylor; Dennis P. Gordon; Lee Hsiang Liow (2017). "New bryozoan species from the Pleistocene of the Wanganui Basin, North Island, New Zealand". European Journal of Taxonomy. 345 (345): 1–15. doi:10.5852/ejt.2017.345. 
    32. ^ a b Andrej Ernst; Peter Königshof; Ali Bahrami; Mehdi Yazdi; Iliana Boncheva (2017). "A Late Devonian (Frasnian) bryozoan fauna from central Iran". Palaeobiodiversity and Palaeoenvironments. 97 (3): 541–552. doi:10.1007/s12549-016-0269-5. 
    33. ^ a b L. A. Viskova; A. V. Pakhnevich (2017). "Bryozoan (Stenolaemata) records from the upper Callovian (Middle Jurassic) of the Moscow region". Paleontological Journal. 51 (3): 258–263. doi:10.1134/S0031030117030121. 
    34. ^ M. A. Sonar; R. V. Pawar (2017). "Some fossil species of catenicellid and schizoporelloid bryozoans from the Cenozoic sediments of western Kachchh, Gujarat, India". Journal of the Palaeontological Society of India. 62 (1): 31–38. 
    35. ^ Zoya Tolokonnikova; Jiří Kalvoda; Tomáš Kumpan (2017). "An early Tournaisian (Mississippian) bryozoan fauna from the Moravian Karst (Rhenohercynian Zone, Czech Republic)". Geobios. 50 (4): 341–348. doi:10.1016/j.geobios.2017.06.006. 
    36. ^ a b c Kamil Zágoršek; Mehdi Yazdi; Ali Bahrami (2017). "Cenozoic cyclostomatous bryozoans from the Qom Formation (Chahriseh area northeast of Isfahan, central Iran)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 283 (1): 109–118. doi:10.1127/njgpa/2017/0631. 
    37. ^ a b Paul D. Taylor; Silviu O. Martha (2017). "Cenomanian cheilostome bryozoans from Devon, England". Annales de Paléontologie. 103 (1): 19–31. doi:10.1016/j.annpal.2016.11.002. 
    38. ^ Silviu O. Martha; Paul D. Taylor (2017). "The oldest erect cheilostome bryozoan: Jablonskipora gen. nov. from the upper Albian of south-west England". Papers in Palaeontology. 4 (1): 55–66. doi:10.1002/spp2.1097. 
    39. ^ a b c Laís V. Ramalho; Vladimir A. Távora; Kamil Zagorsek (2017). "New records of the Bryozoan Metrarabdotos from the Pirabas Formation (Lower Miocene), Pará State, Brazil". Palaeontologia Electronica. 20 (2): Article number 20.2.32A. doi:10.26879/704. 
    40. ^ Paul D. Taylor; Silviu O. Martha; Dennis P. Gordon (2018). "Synopsis of 'onychocellid' cheilostome bryozoan genera". Journal of Natural History. 52 (25–26): 1657–1721. doi:10.1080/00222933.2018.1481235. 
    41. ^ Patrick N. Wyse Jackson; Andrej Ernst; Juan L. Suárez Andrés (2017). "Articulation in the Family Rhabdomesidae (Cryptostomata: Bryozoa) from the Mississippian of Ireland". Irish Journal of Earth Sciences. 35: 35–44. doi:10.3318/ijes.2017.35.35. 
    42. ^ a b Petr V. Fedorov; Anna V. Koromyslova; Silviu O. Martha (2017). "The oldest bryozoans of Baltoscandia from the lowermost Floian (Ordovician) of north-western Russia: two new rare, small and simple species of Revalotrypidae". PalZ. 91 (3): 353–373. doi:10.1007/s12542-017-0351-y. 
    43. ^ Juan López-Gappa; Leandro Martín Pérez; Miguel Griffin (2017). "First record of a fossil selenariid bryozoan in South America". Alcheringa: an Australasian Journal of Palaeontology. 41 (3): 365–368. doi:10.1080/03115518.2017.1283054. 
    44. ^ Dennis P. Gordon; Kjetil L. Voje; Paul D. Taylor (2017). "Living and fossil Steginoporellidae (Bryozoa: Cheilostomata) from New Zealand". Zootaxa. 4350 (2): 345–362. doi:10.11646/zootaxa.4350.2.9. PMID 29245558. 
    45. ^ Seth Finnegan; Christian M. Ø. Rasmussen; David A. T. Harper (2017). "Identifying the most surprising victims of mass extinction events: an example using Late Ordovician brachiopods". Biology Letters. 13 (9): 20170400. doi:10.1098/rsbl.2017.0400. PMC 5627174Freely accessible. PMID 28954854. 
    46. ^ Claudio Garbelli; Lucia Angiolini; Shu-zhong Shen (2017). "Biomineralization and global change: A new perspective for understanding the end-Permian extinction". Geology. 45 (1): 19–22. doi:10.1130/G38430.1. 
    47. ^ a b c C.B. Skovsted; I. Knight; U. Balthasar; W.D. Boyce (2017). "Depth related brachiopod faunas from the lower Cambrian Forteau Formation of southern Labrador and western Newfoundland, Canada". Palaeontologia Electronica. 20 (3): Article number 20.3.54A. doi:10.26879/775. 
    48. ^ József Pálfy; Zsófia Kovács; Gregory D. Price; Attila Vörös; Gary G. Johannson (2017). "A new occurrence of the Early Jurassic brachiopod Anarhynchia from the Canadian Cordillera confirms its membership in chemosynthesis-based ecosystems". Canadian Journal of Earth Sciences. 54 (12): 1179–1193. doi:10.1139/cjes-2017-0179. 
    49. ^ a b c d e f g h Maria Liljeroth; David A. T. Harper; Hilary Carlisle; Arne T. Nielsen (2017). Fossils and Strata, Number 62, Ordovician rhynchonelliformean brachiopods from Co. Waterford, SE Ireland: palaeobiogeography of the Leinster Terrane. Wiley-Blackwell. pp. 1–164. ISBN 978-1-119-41255-7. 
    50. ^ a b José F. Baeza-Carratalá; Matías Reolid; Fernando García Joral (2017). "New deep-water brachiopod resilient assemblage from the South-Iberian Palaeomargin (Western Tethys) and its significance for the brachiopod adaptive strategies around the Early Toarcian Mass Extinction Event". Bulletin of Geosciences. 92 (2): 233–256. doi:10.3140/bull.geosci.1631. 
    51. ^ a b V. V. Baranov (2017). "New brachiopods from the Ordovician of northeastern Russia". Paleontological Journal. 51 (1): 47–52. doi:10.1134/S0031030117010038. 
    52. ^ A. A. Madison (2017). "To the revision of the Upper Ordovician Bilobia Cooper (Strophomenida, Brachiopoda)". Paleontological Journal. 51 (4): 368–373. doi:10.1134/S0031030117040062. 
    53. ^ a b A. M. Popov; Yu. D. Zakharov (2017). "Olenekian brachiopods from the Kamenushka River basin, South Primorye: New data on the brachiopod recovery after the end-Permian mass extinction". Paleontological Journal. 51 (7): 735–745. doi:10.1134/S0031030117070085. 
    54. ^ a b Maria Aleksandra Bitner; Arnold Müller (2017). "Late Eocene (Priabonian) brachiopod fauna from Dnipropetrovsk, eastern Ukraine". Bulletin of Geosciences. 92 (2): 211–231. doi:10.3140/bull.geosci.1661. 
    55. ^ a b Danièle Gaspard (2017). "Deux nouvelles espèces de brachiopodes rhynchonelliformes de l'Albien stratotypique (Bassin de Paris) – mise au point". Annales de Paléontologie. 103 (2): 93–100. doi:10.1016/j.annpal.2017.04.004. 
    56. ^ a b c d e f g Dan Lü; Xue-Ping Ma (2017). "Small-sized brachiopods from the Upper Frasnian (Devonian) of central Hunan, China". Palaeoworld. 26 (3): 456–478. doi:10.1016/j.palwor.2017.01.005. 
    57. ^ Jun-ichi Tazawa; Hiroaki Inose; Naotomo Kaneko (2017). "Cyrtospirifer ainosawensis sp. nov., from the Upper Devonian Ainosawa Formation, Soma, Abukuma Mountains, northeastern Japan". The Journal of the Geological Society of Japan. 123 (8): 653–656. doi:10.5575/geosoc.2017.0011. 
    58. ^ Jun-ichi Tazawa (2017). "Discovery of Cyrtospirifer (Late Devonian Brachiopoda) from Choanji in the South Kitakami Belt, northeastern Japan". The Journal of the Geological Society of Japan. 123 (2): 101–105. doi:10.5575/geosoc.2016.0059. 
    59. ^ a b c L.E. Popov; L.R.M. Cocks (2017). "The World's second oldest strophomenoid-dominated benthic assemblage in the first Dapingian (Middle Ordovician) brachiopod fauna identified from Iran". Journal of Asian Earth Sciences. 140: 1–12. Bibcode:2017JAESc.140....1P. doi:10.1016/j.jseaes.2017.03.007. 
    60. ^ T.N. Smirnova; G.T. Ushatinskaya; E.A. Zhegallo; I.V. Panchenko (2017). "Shell microstructure of Discinisca suborbicularis sp. nov. (Brachiopoda, Lingulata) from the Upper Jurassic of Western Siberia". Paleontological Journal. 51 (5): 480–490. doi:10.1134/S0031030117050124. 
    61. ^ T. N. Smirnova; G. T. Ushatinskaya; E. A. Zhegallo; I. V. Panchenko (2017). "First records of brachiopods of the family Discinidae (Class Lingulata) from the Upper Jurassic of West Siberia". Paleontological Journal. 51 (2): 155–160. doi:10.1134/S0031030117020150. 
    62. ^ Paul Copper; Jisuo Jin (2017). "Early athyride brachiopod evolution through the Ordovician-Silurian mass extinction and recovery, Anticosti Island, eastern Canada". Journal of Paleontology. 91 (6): 1123–1147. doi:10.1017/jpa.2017.74. 
    63. ^ a b Lars E. Holmer; Leonid E. Popov; Mansoureh Ghobadi Pour; Zhiliang Zhang; Zhifei Zhang (2017). "Unusual pitted Ordovician brachiopods from the East Baltic: the significance of coarsely pitted ornamentations in linguliforms". Papers in Palaeontology. 3 (3): 387–399. doi:10.1002/spp2.1080. 
    64. ^ a b http://zoobank.org/references/BE5BDD7C-D263-4653-9859-EE6119DD0886
    65. ^ a b c d Shuzhong Shen; Yugan Jin; Yan Zhang; Elizabeth A. Weldon (2017). "Permian brachiopod genera on type species of China". In Jiayu Rong; Yugan Jin; Shuzhong Shen; Renbin Zhan. Phanerozoic brachiopod genera of China. Beijing: Science Press. pp. 651–881. 
    66. ^ Adam T. Halamski; Amine Cherif (2017). "Oxfordian brachiopods from the Saïda and Frenda mountains (Tlemcenian Domain, north-western Algeria)". Annales Societatis Geologorum Poloniae. 87 (2): 141–156. doi:10.14241/asgp.2017.006. 
    67. ^ Jisuo Jin; Lars E. Holmer (2017). "Pentameroid brachiopod Karlsorus new genus from the upper Wenlock (Silurian) Slite Beds, Gotland, Sweden". Journal of Paleontology. 91 (5): 911–918. doi:10.1017/jpa.2017.46. 
    68. ^ a b c Bernard Mottequin; Eric Simon (2017). "New insights on Tournaisian–Visean (Carboniferous, Mississippian) athyridide, orthotetide, rhynchonellide, and strophomenide brachiopods from southern Belgium". Palaeontologia Electronica. 20 (2): Article number 20.2.28A. doi:10.26879/758. 
    69. ^ Fengyu Wang; Jing Chen; Xu Dai; Haijun Song (2017). "A new Dienerian (Early Triassic) brachiopod fauna from South China and implications for biotic recovery after the Permian–Triassic extinction". Papers in Palaeontology. 3 (3): 425–439. doi:10.1002/spp2.1083. 
    70. ^ a b Tatiana L. Modzalevskaya; Leonid E. Popov; Mansoureh Ghobadi Pour; Michail S. Dufour (2017). "First report on the Early Devonian (Lochkovian) brachiopods from eastern Central Pamirs, Tajikistan". Journal of Asian Earth Sciences. 138: 427–438. Bibcode:2017JAESc.138..427M. doi:10.1016/j.jseaes.2017.02.030. 
    71. ^ Yong-Qin Mao; Yuan-Long Zhao; Cheng-Wen Wang; Timothy Topper (2017). "A fresh look at Nisusia Walcott, 1905 from the Cambrian Kaili Formation in Guizhou". Palaeoworld. 26 (1): 12–24. doi:10.1016/j.palwor.2016.03.001. 
    72. ^ a b David A.T. Harper; Matthew A. Parkes; Zhan Ren-Bin (2017). "Late Ordovician deep-water brachiopod fauna from Raheen, Waterford Harbour, Ireland". Irish Journal of Earth Sciences. 35: 1–18. doi:10.3318/ijes.2017.35.1. 
    73. ^ G.A. Cisterna; A.F. Sterren; O. López Gamundí; M.M. Vergel (2017). "Carboniferous postglacial faunas in the late Serpukhovian–Bashkirian interval of central-western Argentina". Alcheringa: an Australasian Journal of Palaeontology. 41 (3): 413–431. doi:10.1080/03115518.2017.1299795. 
    74. ^ Urszula Radwańska (2017). "Selected Oxfordian brachiopods from Zalas (Cracow Upland, Poland)". Acta Geologica Polonica. 67 (3): 423–430. doi:10.1515/agp-2017-0021. 
    75. ^ Mohammad-Reza Kebria-Ee Zadeh; Leonid E. Popov; Mansoureh Ghobadi Pour (2017). "A new orthide brachiopod genus from the Middle Ordovician of the Alborz Mountains, Iran". GFF. 139 (4): 327–332. doi:10.1080/11035897.2017.1347197. 
    76. ^ Debahuti Mukherjee; Sabyasachi Shome (2017). "Tithonian brachiopods from the Kachchh and Jaisalmer basins, India". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 285 (2): 187–199. doi:10.1127/njgpa/2017/0676. 
    77. ^ Jenaro L. García-Alcalde; Zarela Herrera (2017). "Tectogonotoechia rivasi n. sp. A new lower Pragian Celtiberian (Spain) Ancystrorhynchoidea rhynchonellid brachiopod" (PDF). Spanish Journal of Palaeontology. 32 (1): 115–128. 
    78. ^ Howard R. Feldman (2017). "Tunethyris blodgetti sp. nov. (Brachiopoda, Terebratulida) from the Middle Triassic of the Makhtesh Ramon, southern Israel". Annales Societatis Geologorum Poloniae. 87 (1): 89–99. doi:10.14241/asgp.2017.004 (inactive 2017-10-04). 
    79. ^ M. Mergl; İ. Hoşgör; I. O. Yilmaz; S. Zamora; J. Colmenar (2017). "Divaricate patterns in Cambro-Ordovician obolid brachiopods from Gondwana". Historical Biology: An International Journal of Paleobiology. Online edition: 1. doi:10.1080/08912963.2017.1327531. 
    80. ^ Shuzhong Shen; Li Qiao; Yan Zhang; Yuanlin Sun; Yugan Jin (2017). "Carboniferous brachiopod genera on type species of China". In Jiayu Rong; Yugan Jin; Shuzhong Shen; Renbin Zhan. Phanerozoic brachiopod genera of China. Beijing: Science Press. pp. 559–649. 
    81. ^ Sarah L. Sheffield; Colin D. Sumrall (2017). "Generic revision of the Holocystitidae of North America (Diploporita, Echinodermata) based on universal elemental homology". Journal of Paleontology. 91 (4): 755–766. doi:10.1017/jpa.2016.159. 
    82. ^ Ben Thuy; Hans Hagdorn; Andy S. Gale (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic". Geology. 45 (6): 531–534. Bibcode:2017Geo....45..531T. doi:10.1130/G38909.1. 
    83. ^ Daniel B. Blake (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic: COMMENT". Geology. 45 (7): e417. Bibcode:2017Geo....45E.417B. doi:10.1130/G39163C.1. 
    84. ^ Ben Thuy; Hans Hagdorn; Andy S. Gale (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic: REPLY". Geology. 45 (7): e418. Bibcode:2017Geo....45E.418T. doi:10.1130/G39210Y.1. 
    85. ^ Mariusz A. Salamon; Przemysław Gorzelak (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic: COMMENT". Geology. 45 (7): e419. Bibcode:2017Geo....45E.419S. doi:10.1130/G39196C.1. 
    86. ^ Ben Thuy (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic: REPLY". Geology. 45 (7): e420. Bibcode:2017Geo....45E.420T. doi:10.1130/G39221Y.1. 
    87. ^ Aaron W. Hunter; Kenneth J. McNamara (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic: COMMENT". Geology. 45 (11): e431. doi:10.1130/G39575C.1. 
    88. ^ Ben Thuy; Hans H. Hagdorn; Andy S. Gale (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic: REPLY". Geology. 45 (11): e432. doi:10.1130/G39684Y.1. 
    89. ^ David F. Wright (2017). "Bayesian estimation of fossil phylogenies and the evolution of early to middle Paleozoic crinoids (Echinodermata)". Journal of Paleontology. 91 (4): 799–814. doi:10.1017/jpa.2016.141. 
    90. ^ Selina R. Cole (2017). "Phylogeny and morphologic evolution of the Ordovician Camerata (Class Crinoidea, Phylum Echinodermata)". Journal of Paleontology. 91 (4): 815–828. doi:10.1017/jpa.2016.137. 
    91. ^ David F. Wright; William I. Ausich; Selina R. Cole; Mark E. Peter; Elizabeth C. Rhenberg (2017). "Phylogenetic taxonomy and classification of the Crinoidea (Echinodermata)". Journal of Paleontology. 91 (4): 829–846. doi:10.1017/jpa.2016.142. 
    92. ^ David F. Wright (2017). "Phenotypic innovation and adaptive constraints in the evolutionary radiation of Palaeozoic crinoids". Scientific Reports. 7: Article number 13745. doi:10.1038/s41598-017-13979-9. PMC 5653864Freely accessible. PMID 29062117. 
    93. ^ Elizabeth G. Clark; Bhart-Anjan S. Bhullar; Simon A. F. Darroch; Derek E. G. Briggs (2017). "Water vascular system architecture in an Ordovician ophiuroid". Biology Letters. 13 (12): 20170635. doi:10.1098/rsbl.2017.0635. PMC 5746540Freely accessible. PMID 29212753. 
    94. ^ Moe Kato; Tatsuo Oji; Kotaro Shirai (2017). "Paleoecology of echinoderms in cold seep environments revealed by isotope analysis in the Late Cretaceous Western Interior Seaway". Palaios. 32 (4): 218–230. doi:10.2110/palo.2016.079. 
    95. ^ Aaron W. Hunter; Neal L. Larson; Jamie Brezina (2018). "Comment to Kato et al. (2017), "Paleoecology of echinoderms in cold seep environments revealed by isotope analysis in the Late Cretaceous Western Interior Seaway"". Palaios. 33 (6): 282–283. doi:10.2110/palo.2017.071. 
    96. ^ Moe Kato; Tatsuo Oji; Kotaro Shirai (2018). "Reply to comment on Kato et al. (2017) "Paleoecology of echinoderms in cold seep environments revealed by isotope analysis in the Late Cretaceous Western Interior Seaway"". Palaios. 33 (6): 284–285. doi:10.2110/palo.2018.028. 
    97. ^ Mohamed Said M. Ali (2017). "First Record of a New Species of Amblypygus (Echinoidea) from the Middle Miocene of Mersa Matruh, Western Desert, Egypt". Paleontological Research. 21 (1): 44–53. doi:10.2517/2016PR016. 
    98. ^ a b c d e f Selina R. Cole; William I. Ausich; Jorge Colmenar; Samuel Zamora (2017). "Filling the Gondwanan gap: paleobiogeographic implications of new crinoids from the Castillejo and Fombuena formations (Middle and Upper Ordovician, Iberian Chains, Spain)". Journal of Paleontology. 91 (4): 715–734. doi:10.1017/jpa.2016.135. 
    99. ^ a b c d e f Hans Hess; Ben Thuy (2017). "Extraordinary diversity of feather stars (Echinodermata: Crinoidea: Comatulida) from a Lower Jurassic (Pliensbachian–Toarcian) rock reef of Feuguerolles (Normandy, France)". Swiss Journal of Palaeontology. 136 (2): 301–321. doi:10.1007/s13358-016-0122-5. 
    100. ^ a b Daniel B. Blake (2017). "Two new Carboniferous Asteroidea (Echinodermata) of the family Urasterellidae". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 284 (1): 65–73. doi:10.1127/njgpa/2017/0652. 
    101. ^ a b c Mohamed Said M. Ali (2017). "Middle Eocene echinoids from Gebel Qarara, Maghagh, Eastern Desert, Egypt". Journal of African Earth Sciences. 133: 46–73. Bibcode:2017JAfES.133...46A. doi:10.1016/j.jafrearsci.2017.04.031. 
    102. ^ a b c Timothy A.M. Ewin; Ben Thuy (2017). "Brittle stars from the British Oxford Clay: unexpected ophiuroid diversity on Jurassic sublittoral mud bottoms". Journal of Paleontology. 91 (4): 781–798. doi:10.1017/jpa.2016.162. 
    103. ^ Patrick D. McDermott; Christopher R. C. Paul (2017). "Ateleocystites? lansae sp. nov. (Mitrata, Anomalocystitidae) from the Upper Ordovician of South Wales". Geological Journal. 52 (1): 1–13. doi:10.1002/gj.2712. 
    104. ^ Bálint Polonkai; Andreas Kroh; Ágnes Görög; Ildikó Selmeczi; Mihály Dunai; Emese Réka Bodor (2017). "First occurrence of echinoid genus Brissus in the Badenian (Middle Miocene) of Hungary and description of Brissus mihalyi n. sp". Földtani közlöny. 147 (4): 383–398. doi:10.23928/foldt.kozl.2017.147.4.383. 
    105. ^ Daniel B. Blake; Stephen K. Donovan; David A.T. Harper (2017). "A new Silurian ophiuroid from the west of Ireland". Irish Journal of Earth Sciences. 35: 57–66. doi:10.3318/ijes.2017.35.57. 
    106. ^ Luis E. Silva-Martínez; Alberto Blanco-Piñón; Jesús A. de León-González; Hidalgo Rodríguez-Vela (2017). "New Echinoid (Spatangoida: Toxasterinidae) from the Campanian of Coahuila, Northeastern Mexico". Boletín de la Sociedad Geológica Mexicana. 69 (2): 371–384. 
    107. ^ a b Jeffrey R. Thompson; Elizabeth Petsios; David J. Bottjer (2017). "A diverse assemblage of Permian echinoids (Echinodermata, Echinoidea) and implications for character evolution in early crown group echinoids". Journal of Paleontology. 91 (4): 767–780. doi:10.1017/jpa.2016.158. 
    108. ^ Jeffrey R. Thompson; Elizabeth Petsios; Eric H. Davidson; Eric M. Erkenbrack; Feng Gao; David J. Bottjer (2015). "Reorganization of sea urchin gene regulatory networks at least 268 million years ago as revealed by oldest fossil cidaroid echinoid". Scientific Reports. 5: Article number 15541. Bibcode:2015NatSR...515541T. doi:10.1038/srep15541. PMC 4614444Freely accessible. PMID 26486232. 
    109. ^ Elise Nardin; Bertrand Lefebvre; Oldřich Fatka; Martina Nohejlová; Libor Kašička; Miroslav Šinágl; Michal Szabad (2017). "Evolutionary implications of a new transitional blastozoan echinoderm from the middle Cambrian of the Czech Republic". Journal of Paleontology. 91 (4): 672–684. doi:10.1017/jpa.2016.157. 
    110. ^ José Francisco Carrasco (2017). "Primera cita del género Globator (Echinoidea, Eoceno) en España. Nueva especie" (PDF). Batalleria. 25: 8–12. 
    111. ^ a b Enric Forner i Valls (2017). "Equinoïdeus nous (Echinodermata: Echinoidea) del Campanià de Moyenne Moulouya, nord est del Marroc". Nemus: revista de l'Ateneu de Natura. 7: 51–72. 
    112. ^ Peter Müller; Gerhard Hahn (2017). "Grigopyrgus n. gen., a new agelacrinitid edrioasteroid genus from the Lower Devonian of the Westerwald: (Echinodermata, Rhenish Slate Mountains, Germany)". Mainzer Geowissenschaftliche Mitteilungen. 45: 93–102. 
    113. ^ Derek E. G. Briggs; Derek J. Siveter; David J. Siveter; Mark D. Sutton; Imran A. Rahman (2017). "An edrioasteroid from the Silurian Herefordshire Lagerstätte of England reveals the nature of the water vascular system in an extinct echinoderm". Proceedings of the Royal Society B: Biological Sciences. 284 (1862): 20171189. doi:10.1098/rspb.2017.1189. PMC 5597833Freely accessible. PMID 28904139. 
    114. ^ Sarah L. Sheffield; William I. Ausich; Colin D. Sumrall (2017). "Late Ordovician (Hirnantian) diploporitan fauna of Anticosti Island, Quebec, Canada: implications for evolutionary and biogeographic patterns". Canadian Journal of Earth Sciences. 55 (1): 1–7. doi:10.1139/cjes-2017-0160. 
    115. ^ a b c Tony Sadler; Sarah K. Martin; Stephen J. Gallagher (2017). "Three new species of the echinoid genus Monostychia Laube, 1869 from Western Australia". Alcheringa: an Australasian Journal of Palaeontology. 41 (4): 464–473. doi:10.1080/03115518.2017.1282979. 
    116. ^ Mike Reich; James Sprinkle; Bertrand Lefebvre; Gertrud E. Rössner; Samuel Zamora (2017). "The first Ordovician cyclocystoid (Echinodermata) from Gondwana and its morphology, paleoecology, taphonomy, and paleogeography". Journal of Paleontology. 91 (4): 735–754. doi:10.1017/jpa.2017.7. 
    117. ^ Stephen K. Donovan; Fiona E. Fearnhead (2017). "A Lower Devonian hexacrinitid crinoid (Camerata, Monobathrida) from south-west England". PalZ. 91 (2): 217–222. doi:10.1007/s12542-017-0344-x. 
    118. ^ a b Louis G. Zachos (2017). "Paleocene echinoid faunas of the eastern United States". Journal of Paleontology. 91 (5): 1001–1024. doi:10.1017/jpa.2017.22. 
    119. ^ a b David F. Wright; Ursula Toom (2017). "New crinoids from the Baltic region (Estonia): fossil tip-dating phylogenetics constrains the origin and Ordovician–Silurian diversification of the Flexibilia (Echinodermata)". Palaeontology. 60 (6): 893–910. doi:10.1111/pala.12324. 
    120. ^ S.V. Rozhnov; R.L. Parsley (2017). "A new cornute (Homalozoa: Echinodermata) from the Uppermost Middle Cambrian (Stage 3, Furongian) from northern Iran: its systematics and functional morphology". Paleontological Journal. 51 (5): 500–509. doi:10.1134/S0031030117050100. 
    121. ^ a b c Yingyan Mao; William I. Ausich; Yue Li; Jih-Pai Lin; Caihua Lin (2017). "New taxa and phyletic evolution of the Aeronian (Llandovery, Silurian) Petalocrinidae (Echinodermata, Crinoidea) in Guizhou, South China Block". Journal of Paleontology. 91 (3): 477–492. doi:10.1017/jpa.2016.156. 
    122. ^ David R. Cordie; Brian J. Witzke (2017). "A New Crinoid Genus from the Middle Devonian of Iowa, USA (Camerata, Melocrinitidae)". Paleontological Research. 21 (1): 7–13. doi:10.2517/2016PR014. 
    123. ^ Samuel Zamora; Colin D. Sumrall; Xue-Jian Zhu; Bertrand Lefebvre (2017). "A new stemmed echinoderm from the Furongian of China and the origin of Glyptocystitida (Blastozoa, Echinodermata)". Geological Magazine. 154 (3): 465–475. doi:10.1017/S001675681600011X. 
    124. ^ Peter Müller; Gerhard Hahn (2017). "Edrioasteroidea from the Seifen Formation of the Westerwald, Rhenish Slate Mountains (Lower Devonian, Germany), part 2: Sumrallia rseiberti gen. et sp. nov". PalZ. 91 (4): 629–639. doi:10.1007/s12542-017-0356-6. 
    125. ^ Loïc Villier; Arnaud Brayard; Kevin G. Bylund; James F. Jenks; Gilles Escarguel; Nicolas Olivier; Daniel A. Stephen; Emmanuelle Vennin; Emmanuel Fara (2017). "Superstesaster promissor gen. et sp. nov., a new starfish (Echinodermata, Asteroidea) from the Early Triassic of Utah, USA, filling a major gap in the phylogeny of asteroids". Journal of Systematic Palaeontology. 16 (5): 395–415. doi:10.1080/14772019.2017.1308972. 
    126. ^ Aaron W. Hunter; Kenneth J. McNamara (2017). "Prolonged co-existence of 'archaic' and 'modern' Palaeozoic ophiuroids – evidence from the early Permian, Southern Carnarvon Basin, Western Australia". Journal of Systematic Palaeontology. 16 (11): 891–907. doi:10.1080/14772019.2017.1353549. 
    127. ^ Didier Néraudeau; Jean-Pierre Pineau; Jean-Christophe Dudicourt; Patrice Raboeuf (2017). "Ulphaceaster sarthacensis, nouveau genre et nouvelle espèce d'échinide Archiaciidae du Cénomanien (Sarthe, France)". Annales de Paléontologie. 103 (1): 87–91. doi:10.1016/j.annpal.2017.01.002. 
    128. ^ Nils Schlüter; Frank Wiese (2017). "Late Cretaceous species of Vologesia (Echinoidea, Cassiduloida) from northern Spain". Zootaxa. 4306 (2): 261–270. doi:10.11646/zootaxa.4306.2.6. 
    129. ^ Emilia Jarochowska; Viive Viira; Rein Einasto; Rafał Nawrot; Oskar Bremer; Peep Männik; Axel Munnecke (2017). "Conodonts in Silurian hypersaline environments: Specialized and unexpectedly diverse". Geology. 45 (1): 3–6. Bibcode:2017Geo....45....3J. doi:10.1130/G38492.1. 
    130. ^ Muhui Zhang; Haishui Jiang; Mark A. Purnell; Xulong Lai (2017). "Testing hypotheses of element loss and instability in the apparatus composition of complex conodonts: articulated skeletons of Hindeodus". Palaeontology. 60 (4): 595–608. doi:10.1111/pala.12305. 
    131. ^ Sachiko Agematsu; Martyn L. Golding; Michael J. Orchard (2018). "Comments on: Testing hypotheses of element loss and instability in the apparatus composition of complex conodonts (Zhang et al.)". Palaeontology. in press. doi:10.1111/pala.12372. 
    132. ^ Mark A. Purnell; Muhui Zhang; Haishui Jiang; Xulong Lai (2018). "Reconstruction, composition and homology of conodont skeletons: a response to Agematsu et al.". Palaeontology. in press. doi:10.1111/pala.12387. 
    133. ^ a b c Gustavo G. Voldman; Guillermo L. Albanesi; Gladys Ortega; María Eugenia Giuliano; Carlos Ruben Monaldi (2017). "New conodont taxa and biozones from the Lower Ordovician of the Cordillera Oriental, NW Argentina". Geological Journal. 52 (3): 394–414. doi:10.1002/gj.2766. 
    134. ^ a b C. Giles Miller; Alan P. Heward; Angelo Mossoni; Ivan J. Sansom (2017). "Two new early balognathid conodont genera from the Ordovician of Oman and comments on the early evolution of prioniodontid conodonts". Journal of Systematic Palaeontology. 16 (7): 571–593. doi:10.1080/14772019.2017.1314985. 
    135. ^ Till Söte; Sven Hartenfels; Ralph Thomas Becker (2017). "Uppermost Famennian stratigraphy and facies development of the Reigern Quarry near Hachen (northern Rhenish Massif, Germany)". Palaeobiodiversity and Palaeoenvironments. 97 (3): 633–654. doi:10.1007/s12549-017-0287-y. 
    136. ^ a b c d e f g h i j k l m n Xi-ping Dong; Huaqiao Zhang (2017). "Middle Cambrian through lowermost Ordovician conodonts from Hunan, South China". Journal of Paleontology. 91 (S73): 1–89. doi:10.1017/jpa.2015.43. 
    137. ^ a b N. S. Ovnatanova; L. I. Kononova; L. S. Kolesnik; Yu. A. Gatovsky (2017). "Upper Devonian conodonts of northeastern European Russia". Paleontological Journal. 51 (10): 973–1165. doi:10.1134/S003103011710001X. 
    138. ^ Fernanda Serra; Nicolás A. Feltes; Miles A. Henderson; Guillermo L. Albanesi (2017). "Darriwilian (Middle Ordovician) conodont biofacies from the Central Precordillera of Argentina". Marine Micropaleontology. 130: 15–28. Bibcode:2017MarMP.130...15S. doi:10.1016/j.marmicro.2016.12.002. 
    139. ^ a b c Pablo Plasencia; Ali Murat Kiliç; Aymon Baud; Milan Sudar; Francis Hirsch (2017). "The evolutionary trend of platform-denticulation in Middle Triassic Acuminate Gondolellidae (Conodonta)". Turkish Journal of Zoology. 42 (2): 187–197. doi:10.3906/zoo-1708-20. 
    140. ^ a b c Y.D. Sun; X.T. Liu; J.X. Yan; B. Li; B. Chen; D.P.G. Bond; M.M. Joachimski; P.B. Wignall; X. Wang; X.L. Lai (2017). "Permian (Artinskian to Wuchapingian) conodont biostratigraphy in the Tieqiao section, Laibin area, South China". Palaeogeography, Palaeoclimatology, Palaeoecology. 465, Part A: 42–63. doi:10.1016/j.palaeo.2016.10.013. 
    141. ^ Felix Lüddecke; Sven Hartenfels; Ralph Thomas Becker (2017). "Conodont biofacies of a monotonous middle Famennian pelagic carbonate succession (Upper Ballberg Quarry, northern Rhenish Massif)". Palaeobiodiversity and Palaeoenvironments. 97 (3): 591–613. doi:10.1007/s12549-017-0288-x. 
    142. ^ Thomas J. Suttner; Erika Kido; Andreas W. W. Suttner (2017). "Icriodus marieae, a new icriodontid conodont species from the Middle Devonian". PalZ. 91 (1): 137–144. doi:10.1007/s12542-017-0337-9. PMC 5445598Freely accessible. PMID 28615752. 
    143. ^ Nicholas J. Hogancamp; James E. Barrick (2017). "Ungrooved species of Idiognathodus from the lower Gzhelian (Pennsylvanian) Heebner Shale, Midcontinent North America, U.S.A." Micropaleontology. 62 (5): 385–53. 
    144. ^ Cassiane Negreiros Cardoso; Javier Sanz-López; Silvia Blanco-Ferrera (2017). "Pennsylvanian conodonts from the Tapajós Group (Amazonas Basin, Brazil)". Geobios. 50 (2): 75–95. doi:10.1016/j.geobios.2017.02.004. 
    145. ^ Ke-Yi Hu; Yu-Ping Qi; Qiu-Lai Wang; Tamara I. Nemyrovska; Ji-Tao Chen (2017). "Early Pennsylvanian conodonts from the Luokun section of Luodian, Guizhou, South China". Palaeoworld. 26 (1): 64–82. doi:10.1016/j.palwor.2015.12.003. 
    146. ^ Huaibao P. Liu; Stig M. Bergström; Brian J. Witzke; Derek E. G. Briggs; Robert M. McKay; Annalisa Ferretti (2017). "Exceptionally preserved conodont apparatuses with giant elements from the Middle Ordovician Winneshiek Konservat-Lagerstätte, Iowa, USA". Journal of Paleontology. 91 (3): 493–511. doi:10.1017/jpa.2016.155. 
    147. ^ a b Nadezhda Izokh; Aleksandr Yazikov (2017). "Discovery of Early Carboniferous conodonts in Northern Kharaulakh Ranges (lower reaches of the Lena River, northeastern Siberia, Arctic Russia)". Revue de Micropaléontologie. 60 (2): 213–232. doi:10.1016/j.revmic.2017.03.001. 
    148. ^ Shunxin Zhang; David M.S. Jowett; Christopher R. Barnes (2017). "Hirnantian (Ordovician) through Wenlock (Silurian) conodont biostratigraphy, bioevents, and integration with graptolite biozones, Cape Phillips Formation slope facies, Cornwallis Island, Canadian Arctic Islands". Canadian Journal of Earth Sciences. 54 (9): 936–960. doi:10.1139/cjes-2017-0023. 
    149. ^ Yanlong Chen; Alexander Lukeneder (2017). "Late Triassic (Julian) conodont biostratigraphy of a transition from reefal limestones to deep-water environments on the Cimmerian terranes (Taurus Mountains, southern Turkey)". Papers in Palaeontology. 3 (3): 441–460. doi:10.1002/spp2.1082. 
    150. ^ Manuel Rigo; Michele Mazza; Viktor Karádi; Alda Nicora (2017). "New Upper Triassic Conodont Biozonation of the Tethyan Realm". In Lawrence H. Tanner. The Late Triassic World. Earth in a Time of Transition. Springer. pp. 189–235. doi:10.1007/978-3-319-68009-5_6. ISBN 978-3-319-68008-8. 
    151. ^ Gilbert Klapper; Thomas T. Uyeno; Derek K. Armstrong; Peter G. Telford (2017). "Palmatolepis spallettae, new name for a Frasnian conodont species". Journal of Paleontology. 91 (3): 578. doi:10.1017/jpa.2017.21. 
    152. ^ A. N. Plotitsyn; A. V. Zhuravlev (2017). "A new species of the conodont genus Polygnathus from the Tournaisian of the northern Urals, Chernyshev Ridge and Pai-Khoi". Paleontological Journal. 51 (3): 304–307. doi:10.1134/S0031030117030091. 
    153. ^ a b Z.T. Zhang; Y.D. Sun; X.L. Lai; M.M. Joachimski; P.B. Wignall (2017). "Early Carnian conodont fauna at Yongyue, Zhenfeng area and its implication for Ladinian-Carnian subdivision in Guizhou, South China". Palaeogeography, Palaeoclimatology, Palaeoecology. 486: 142–157. doi:10.1016/j.palaeo.2017.02.011. 
    154. ^ Andrey V. Zhuravlev (2017). "A new species of the conodont genus Siphonodella Branson & Mehl (late Tournaisian)". Estonian Journal of Earth Sciences. 66 (4): 188–192. doi:10.3176/earth.2017.15. 
    155. ^ Sandra I. Kaiser; Tomáš Kumpan; Vojtěch Cígler (2017). "New unornamented siphonodellids (Conodonta) of the lower Tournaisian from the Rhenish Massif and Moravian Karst (Germany and Czech Republic)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 286 (1): 1–33. doi:10.1127/njgpa/2017/0684.