Solar eclipse of June 10, 2021
Solar eclipse of June 10, 2021 | |
---|---|
Type of eclipse | |
Nature | Annular |
Gamma | 0.9152 |
Magnitude | 0.9435 |
Maximum eclipse | |
Duration | 231 s (3 min 51 s) |
Coordinates | 80°48′N 66°48′W / 80.8°N 66.8°W |
Max. width of band | 527 km (327 mi) |
Times (UTC) | |
Greatest eclipse | 10:43:07 |
References | |
Saros | 147 (23 of 80) |
Catalog # (SE5000) | 9555 |
An annular solar eclipse will occur on Thursday, June 10, 2021. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
This eclipse is notable for the fact that the path of annularity will pass over North Pole, it's the only such eclipse in 21st century.[1]
While the eclipse is visible primarily in northern Canada, in Greenland and in north-east of Russian Far East, in the northeastern United States and Canada, the sun will be partially eclipsed at sunrise, which will be between 5 and 6 A.M. (EDT)
Images
Related eclipses
Eclipses of 2021
- A total lunar eclipse on May 26.
- An annular solar eclipse on June 10.
- A partial lunar eclipse on November 19.
- A total solar eclipse on December 4.
Tzolkinex
- Preceded: Solar eclipse of April 29, 2014
- Followed: Solar eclipse of July 22, 2028
Half-Saros cycle
- Preceded: Lunar eclipse of June 4, 2012
- Followed: Lunar eclipse of June 15, 2030
Tritos
- Preceded: Solar eclipse of July 11, 2010
- Followed: Solar eclipse of May 9, 2032
Solar Saros 147
- Preceded: Solar eclipse of May 31, 2003
- Followed: Solar eclipse of June 21, 2039
Inex
- Preceded: Solar eclipse of June 30, 1992
- Followed: Solar eclipse of May 20, 2050
Triad
- Preceded: Solar eclipse of August 10, 1934
- Followed: Solar eclipse of April 11, 2108
Solar eclipses of 2018–2021
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[2]
The partial solar eclipses on February 15, 2018 and August 11, 2018 occur in the previous lunar year eclipse set.
Solar eclipse series sets from 2018 to 2021 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
117 Partial in Melbourne, Australia |
July 13, 2018 Partial |
−1.35423 | 122 Partial in Nakhodka, Russia |
January 6, 2019 Partial |
1.14174 | |
127 Totality in La Serena, Chile |
July 2, 2019 Total |
−0.64656 | 132 Annularity in Jaffna, Sri Lanka |
December 26, 2019 Annular |
0.41351 | |
137 Annularity in Beigang, Yunlin, Taiwan |
June 21, 2020 Annular |
0.12090 | 142 Totality in Gorbea, Chile |
December 14, 2020 Total |
−0.29394 | |
147 Partial in Halifax, Canada |
June 10, 2021 Annular |
0.91516 | 152 From HMS Protector off South Georgia |
December 4, 2021 Total |
−0.95261 |
Saros 147
This eclipse is a part of Saros series 147, repeating every 18 years, 11 days, and containing 80 events. The series started with a partial solar eclipse on October 12, 1624. It contains annular eclipses from May 31, 2003 through July 31, 2706. There are no hybrid or total eclipses in this set. The series ends at member 80 as a partial eclipse on February 24, 3049. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity will be produced by member 38 at 9 minutes, 41 seconds on November 21, 2291. All eclipses in this series occur at the Moon’s ascending node of orbit.[3]
Series members 11–32 occur between 1801 and 2200: | ||
---|---|---|
11 | 12 | 13 |
January 30, 1805 |
February 11, 1823 |
February 21, 1841 |
14 | 15 | 16 |
March 4, 1859 |
March 15, 1877 |
March 26, 1895 |
17 | 18 | 19 |
April 6, 1913 |
April 18, 1931 |
April 28, 1949 |
20 | 21 | 22 |
May 9, 1967 |
May 19, 1985 |
May 31, 2003 |
23 | 24 | 25 |
June 10, 2021 |
June 21, 2039 |
July 1, 2057 |
26 | 27 | 28 |
July 13, 2075 |
July 23, 2093 |
August 4, 2111 |
29 | 30 | 31 |
August 15, 2129 |
August 26, 2147 |
September 5, 2165 |
32 | ||
September 16, 2183 |
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings. In the 19th century:
• Solar Saros 140: Total Solar Eclipse of 1818 Oct 29
• Solar Saros 141: Annular Solar Eclipse of 1847 Oct 09
• Solar Saros 142: Total Solar Eclipse of 1876 Sep 17
Inex series members between 1901 and 2100: | ||
---|---|---|
August 30, 1905 (Saros 143) |
August 10, 1934 (Saros 144) |
July 20, 1963 (Saros 145) |
June 30, 1992 (Saros 146) |
June 10, 2021 (Saros 147) |
May 20, 2050 (Saros 148) |
May 1, 2079 (Saros 149) |
In the 22nd century:
Solar Saros 150: Partial Solar Eclipse of 2108 Apr 11
Solar Saros 151: Annular Solar Eclipse of 2137 Mar 21
Solar Saros 152: Total Solar Eclipse of 2166 Mar 02
Solar Saros 153: Annular Solar Eclipse of 2195 Feb 10
Metonic series
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
20 eclipse events between June 10, 1964 and August 21, 2036 | ||||
---|---|---|---|---|
June 10–11 | March 28–29 | January 14–16 | November 3 | August 21–22 |
117 | 119 | 121 | 123 | 125 |
June 10, 1964 |
March 28, 1968 |
January 16, 1972 |
November 3, 1975 |
August 22, 1979 |
127 | 129 | 131 | 133 | 135 |
June 11, 1983 |
March 29, 1987 |
January 15, 1991 |
November 3, 1994 |
August 22, 1998 |
137 | 139 | 141 | 143 | 145 |
June 10, 2002 |
March 29, 2006 |
January 15, 2010 |
November 3, 2013 |
August 21, 2017 |
147 | 149 | 151 | 153 | 155 |
June 10, 2021 |
March 29, 2025 |
January 14, 2029 |
November 3, 2032 |
August 21, 2036 |
Notes
- ^ JavaScript Solar Eclipse Explorer - Europe (Latitude: 90° 00' 00" N Longitude: 0° 00' 00" W). NASA
- ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- ^ "NASA - Catalog of Solar Eclipses of Saros 147". eclipse.gsfc.nasa.gov.
References
- solar-eclipse.de: The annular solar eclipse of 06/10/2021
- Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC