Solar eclipse of March 29, 2025
Solar eclipse of March 29, 2025 | |
---|---|
Type of eclipse | |
Nature | Partial |
Gamma | 1.0405 |
Magnitude | 0.9376 |
Maximum eclipse | |
Coordinates | 61°06′N 77°06′W / 61.1°N 77.1°W |
Times (UTC) | |
Greatest eclipse | 10:48:36 |
References | |
Saros | 149 (21 of 71) |
Catalog # (SE5000) | 9563 |
A partial solar eclipse will occur at the Moon’s ascending node of orbit on Saturday, March 29, 2025,[1] with a magnitude of 0.9376. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial eclipse will be visible for parts of the northeastern United States, eastern Canada, Greenland, Europe, Northwest Africa, and northwestern Russia.
Images
[edit]Eclipse details
[edit]Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[2]
Event | Time (UTC) |
---|---|
First penumbral external contact | 2025 March 29 at 08:51:52.5 UTC |
Greatest eclipse | 2025 March 29 at 10:48:36.1 UTC |
Ecliptic conjunction | 2025 March 29 at 10:58:59.4 UTC |
Equatorial conjunction | 2025 March 29 at 11:47:27.0 UTC |
Last penumbral external contact | 2025 March 29 at 12:44:54.0 UTC |
Parameter | Value |
---|---|
Eclipse magnitude | 0.93760 |
Eclipse obscuration | 0.93057 |
Gamma | 1.04053 |
Sun right ascension | 00h33m03.1s |
Sun declination | +03°33'55.0" |
Sun semi-diameter | 16'01.1" |
Sun equatorial horizontal parallax | 08.8" |
Moon right ascension | 00h31m00.8s |
Moon declination | +04°29'34.1" |
Moon aemi-diameter | 16'39.4" |
Moon equatorial horizontal parallax | 1°01'07.8" |
ΔT | 71.9 s |
Eclipse season
[edit]This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
March 14 Descending node (full moon) |
March 29 Ascending node (new moon) |
---|---|
Total lunar eclipse Lunar Saros 123 |
Partial solar eclipse Solar Saros 149 |
Related eclipses
[edit]Eclipses in 2025
[edit]- A total lunar eclipse on March 14.
- A partial solar eclipse on March 29.
- A total lunar eclipse on September 7.
- A partial solar eclipse on September 21.
Metonic
[edit]- Preceded by: Solar eclipse of June 10, 2021
- Followed by: Solar eclipse of January 14, 2029
Tzolkinex
[edit]- Preceded by: Solar eclipse of February 15, 2018
- Followed by: Solar eclipse of May 9, 2032
Half-Saros
[edit]- Preceded by: Lunar eclipse of March 23, 2016
- Followed by: Lunar eclipse of April 3, 2034
Tritos
[edit]- Preceded by: Solar eclipse of April 29, 2014
- Followed by: Solar eclipse of February 27, 2036
Solar Saros 149
[edit]- Preceded by: Solar eclipse of March 19, 2007
- Followed by: Solar eclipse of April 9, 2043
Inex
[edit]- Preceded by: Solar eclipse of April 17, 1996
- Followed by: Solar eclipse of March 9, 2054
Triad
[edit]- Preceded by: Solar eclipse of May 29, 1938
- Followed by: Solar eclipse of January 29, 2112
Solar eclipses of 2022–2025
[edit]This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]
Solar eclipse series sets from 2022 to 2025 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
119 Partial in CTIO, Chile |
April 30, 2022 Partial |
−1.19008 | 124 Partial from Saratov, Russia |
October 25, 2022 Partial |
1.07014 | |
129 Partial in Magetan, Indonesia |
April 20, 2023 Hybrid |
−0.39515 | 134 Annularity in Hobbs, NM, USA |
October 14, 2023 Annular |
0.37534 | |
139 Totality in Dallas, TX, USA |
April 8, 2024 Total |
0.34314 | 144 Annularity in Santa Cruz Province, Argentina |
October 2, 2024 Annular |
−0.35087 | |
149 | March 29, 2025 Partial |
1.04053 | 154 | September 21, 2025 Partial |
−1.06509 |
Saros 149
[edit]This eclipse is a part of Saros series 149, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on August 21, 1664. It contains total eclipses from April 9, 2043 through October 2, 2331; hybrid eclipses from October 13, 2349 through November 3, 2385; and annular eclipses from November 15, 2403 through July 13, 2800. The series ends at member 71 as a partial eclipse on September 28, 2926. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality will be produced by member 31 at 4 minutes, 10 seconds on July 17, 2205, and the longest duration of annularity will be produced by member 62 at 5 minutes, 6 seconds on June 21, 2764. All eclipses in this series occur at the Moon’s ascending node of orbit.[4]
Series members 9–30 occur between 1801 and 2200: | ||
---|---|---|
9 | 10 | 11 |
November 18, 1808 |
November 29, 1826 |
December 9, 1844 |
12 | 13 | 14 |
December 21, 1862 |
December 31, 1880 |
January 11, 1899 |
15 | 16 | 17 |
January 23, 1917 |
February 3, 1935 |
February 14, 1953 |
18 | 19 | 20 |
February 25, 1971 |
March 7, 1989 |
March 19, 2007 |
21 | 22 | 23 |
March 29, 2025 |
April 9, 2043 |
April 20, 2061 |
24 | 25 | 26 |
May 1, 2079 |
May 11, 2097 |
May 24, 2115 |
27 | 28 | 29 |
June 3, 2133 |
June 14, 2151 |
June 25, 2169 |
30 | ||
July 6, 2187 |
Metonic series
[edit]The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
20 eclipse events between June 10, 1964 and August 21, 2036 | ||||
---|---|---|---|---|
June 10–11 | March 28–29 | January 14–16 | November 3 | August 21–22 |
117 | 119 | 121 | 123 | 125 |
June 10, 1964 |
March 28, 1968 |
January 16, 1972 |
November 3, 1975 |
August 22, 1979 |
127 | 129 | 131 | 133 | 135 |
June 11, 1983 |
March 29, 1987 |
January 15, 1991 |
November 3, 1994 |
August 22, 1998 |
137 | 139 | 141 | 143 | 145 |
June 10, 2002 |
March 29, 2006 |
January 15, 2010 |
November 3, 2013 |
August 21, 2017 |
147 | 149 | 151 | 153 | 155 |
June 10, 2021 |
March 29, 2025 |
January 14, 2029 |
November 3, 2032 |
August 21, 2036 |
Tritos series
[edit]This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
The partial solar eclipses on December 18, 2188 (part of Saros 164) and November 18, 2199 (part of Saros 165) are also a part of this series but are not included in the table below.
Series members between 1801 and 2134 | ||||
---|---|---|---|---|
December 10, 1806 (Saros 129) |
November 9, 1817 (Saros 130) |
October 9, 1828 (Saros 131) |
September 7, 1839 (Saros 132) |
August 7, 1850 (Saros 133) |
July 8, 1861 (Saros 134) |
June 6, 1872 (Saros 135) |
May 6, 1883 (Saros 136) |
April 6, 1894 (Saros 137) |
March 6, 1905 (Saros 138) |
February 3, 1916 (Saros 139) |
January 3, 1927 (Saros 140) |
December 2, 1937 (Saros 141) |
November 1, 1948 (Saros 142) |
October 2, 1959 (Saros 143) |
August 31, 1970 (Saros 144) |
July 31, 1981 (Saros 145) |
June 30, 1992 (Saros 146) |
May 31, 2003 (Saros 147) |
April 29, 2014 (Saros 148) |
March 29, 2025 (Saros 149) |
February 27, 2036 (Saros 150) |
January 26, 2047 (Saros 151) |
December 26, 2057 (Saros 152) |
November 24, 2068 (Saros 153) |
October 24, 2079 (Saros 154) |
September 23, 2090 (Saros 155) |
August 24, 2101 (Saros 156) |
July 23, 2112 (Saros 157) |
June 23, 2123 (Saros 158) |
May 23, 2134 (Saros 159) |
Inex series
[edit]This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
August 16, 1822 (Saros 142) |
July 28, 1851 (Saros 143) |
July 7, 1880 (Saros 144) |
June 17, 1909 (Saros 145) |
May 29, 1938 (Saros 146) |
May 9, 1967 (Saros 147) |
April 17, 1996 (Saros 148) |
March 29, 2025 (Saros 149) |
March 9, 2054 (Saros 150) |
February 16, 2083 (Saros 151) |
January 29, 2112 (Saros 152) |
January 8, 2141 (Saros 153) |
December 18, 2169 (Saros 154) |
November 28, 2198 (Saros 155) |
See also
[edit]References
[edit]- ^ "March 29, 2025 Partial Solar Eclipse". timeanddate. Retrieved 13 August 2024.
- ^ "Partial Solar Eclipse of 2025 Mar 29". EclipseWise.com. Retrieved 13 August 2024.
- ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- ^ "NASA - Catalog of Solar Eclipses of Saros 149". eclipse.gsfc.nasa.gov.
External links
[edit]- Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC