Jump to content

4G

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by ABACA (talk | contribs) at 19:59, 27 March 2014 (Undid revision 601529719 by 209.191.212.218 (talk) error?). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

4G, short for fourth generation, is the fourth generation of mobile telecommunications technology succeeding 3G. A 4G system, in addition to usual voice and other services of 3G system, provides mobile ultra-broadband Internet access, for example to laptops with USB wireless modems, to smartphones, and to other mobile devices. Even though 4G is a successor technology of 3G, there can be signification issues on 3G network to upgrade to 4G as many of them were not built on forward compatibility. Conceivable applications include amended mobile web access, IP telephony, gaming services, high-definition mobile TV, video conferencing, 3D television, and cloud computing.

Two 4G candidate systems are commercially deployed: the Mobile WiMAX standard (first used in South Korea in 2006), and the first-release Long Term Evolution (LTE) standard (in Oslo, Norway and Stockholm, Sweden since 2009). It has however been debated if these first-release versions should be considered to be 4G or not, as discussed in the technical definition section below.

In the United States, Sprint (previously Clearwire) has deployed Mobile WiMAX networks since 2008, and MetroPCS was the first operator to offer LTE service in 2010. USB wireless modems have been available since the start, while WiMAX smartphones have been available since 2010, and LTE smartphones since 2011. Equipment made for different continents is not always compatible, because of different frequency bands. Mobile WiMAX is currently (April 2012) not available for the European market.

Technical understanding

In March 2008, the International Telecommunications Union-Radio communications sector (ITU-R) specified a set of requirements for 4G standards, named the International Mobile Telecommunications Advanced (IMT-Advanced) specification, setting peak speed requirements for 4G service at 100 megabits per second (Mbit/s) for high mobility communication (such as from trains and cars) and 1 gigabit per second (Gbit/s) for low mobility communication (such as pedestrians and stationary users).

Since the first-release versions of Mobile WiMAX and LTE support much less than 1 Gbit/s peak bit rate, they are not fully IMT-Advanced compliant, but are often branded 4G by service providers. On December 6, 2010, ITU-R recognized that these two technologies, as well as other beyond-3G technologies that do not fulfill the IMT-Advanced requirements, could nevertheless be considered "4G", provided they represent forerunners to IMT-Advanced compliant versions and "a substantial level of improvement in performance and capabilities with respect to the initial third generation systems now deployed".

Mobile WiMAX Release 2 (also known as WirelessMAN-Advanced or IEEE 802.16m') and LTE Advanced (LTE-A) are IMT-Advanced compliant backwards compatible versions of the above two systems, standardized during the spring 2011,[citation needed] and promising speeds in the order of 1 Gbit/s. Services are expected in 2013.

As opposed to earlier generations, a 4G system does not support traditional circuit-switched telephony service, but all-Internet Protocol (IP) based communication such as IP telephony. As seen below, the spread spectrum radio technology used in 3G systems, is abandoned in all 4G candidate systems and replaced by OFDMA multi-carrier transmission and other frequency-domain equalization (FDE) schemes, making it possible to transfer very high bit rates despite extensive multi-path radio propagation (echoes). The peak bit rate is further improved by smart antenna arrays for multiple-input multiple-output (MIMO) communications.

The term "generation" used to name successive evolutions of radio networks in general is arbitrary. There are several interpretations, and no official definition has been made despite the consensus behind ITU-R's labels. From ITU-R's point of view, 4G is equivalent to IMT-Advanced which has specific performance requirements as explained below. According to operators, a generation of network refers to the deployment of a new non-backward-compatible technology. The end user expects the next generation of network to provide better performance and connectivity than the previous generation. Meanwhile, GSM, UMTS and LTE networks coexist; and end-users will only receive the benefit of the new generation architecture when they simultaneously: use an access device compatible with the new infrastructure, are within range of the new infrastructure, and pay the provider for access to that new infrastructure.

Background

The nomenclature of the generations generally refers to a change in the fundamental nature of the service, non-backwards-compatible transmission technology, higher peak bit rates, new frequency bands, wider channel frequency bandwidth in Hertz, and higher capacity for many simultaneous data transfers (higher system spectral efficiency in bit/second/Hertz/site).

New mobile generations have appeared about every ten years since the first move from 1981 analog (1G) to digital (2G) transmission in 1992. This was followed, in 2001, by 3G multi-media support, spread spectrum transmission and at least 200 kbit/s peak bit rate, in 2011/2012 expected to be followed by "real" 4G, which refers to all-Internet Protocol (IP) packet-switched networks giving mobile ultra-broadband (gigabit speed) access.

While the ITU has adopted recommendations for technologies that would be used for future global communications, they do not actually perform the standardization or development work themselves, instead relying on the work of other standards bodies such as IEEE, The WiMAX Forum and 3GPP.

In mid-1990s, the ITU-R standardization organization released the IMT-2000 requirements as a framework for what standards should be considered 3G systems, requiring 200 kbit/s peak bit rate. In 2008, ITU-R specified the IMT-Advanced (International Mobile Telecommunications Advanced) requirements for 4G systems.

The fastest 3G-based standard in the UMTS family is the HSPA+ standard, which is commercially available since 2009 and offers 28 Mbit/s downstream (22 Mbit/s upstream) without MIMO, i.e. only with one antenna, and in 2011 accelerated up to 42 Mbit/s peak bit rate downstream using either DC-HSPA+ (simultaneous use of two 5 MHz UMTS carrier)[1] or 2x2 MIMO. In theory speeds up to 672 Mbit/s is possible, but has not been deployed yet. The fastest 3G-based standard in the CDMA2000 family is the EV-DO Rev. B, which is available since 2010 and offers 15.67 Mbit/s downstream.[citation needed]

IMT-Advanced requirements

This article uses 4G to refer to IMT-Advanced (International Mobile Telecommunications Advanced), as defined by ITU-R. An IMT-Advanced cellular system must fulfill the following requirements:[2]

  • Be based on an all-IP packet switched network.
  • Have peak data rates of up to approximately 100 Mbit/s for high mobility such as mobile access and up to approximately 1 Gbit/s for low mobility such as nomadic/local wireless access.
  • Be able to dynamically share and use the network resources to support more simultaneous users per cell.
  • Using scalable channel bandwidths of 5–20 MHz, optionally up to 40 MHz.[3][4]
  • Have peak link spectral efficiency of 15 bit/s/Hz in the downlink, and 6.75 bit/s/Hz in the uplink (meaning that 1 Gbit/s in the downlink should be possible over less than 67 MHz bandwidth).
  • System spectral efficiency of up to 3 bit/s/Hz/cell in the downlink and 2.25 bit/s/Hz/cell for indoor usage.[3]
  • Smooth handovers across heterogeneous networks.
  • The ability to offer high quality of service for next generation multimedia support.

In September 2009, the technology proposals were submitted to the International Telecommunication Union (ITU) as 4G candidates.[5] Basically all proposals are based on two technologies:

Implementations of Mobile WiMAX and first-release LTE are largely considered a stopgap solution that will offer a considerable boost until WiMAX 2 (based on the 802.16m spec) and LTE Advanced are deployed. The latter's standard versions were ratified in spring 2011, but are still far from being implemented.[2]

The first set of 3GPP requirements on LTE Advanced was approved in June 2008.[6] LTE Advanced was to be standardized in 2010 as part of Release 10 of the 3GPP specification. LTE Advanced will be based on the existing LTE specification Release 10 and will not be defined as a new specification series. A summary of the technologies that have been studied as the basis for LTE Advanced is included in a technical report.[7]

Some sources consider first-release LTE and Mobile WiMAX implementations as pre-4G or near-4G, as they do not fully comply with the planned requirements of 1 Gbit/s for stationary reception and 100 Mbit/s for mobile.[citation needed]

Confusion has been caused by some mobile carriers who have launched products advertised as 4G but which according to some sources are pre-4G versions, [citation needed] commonly referred to as '3.9G', [citation needed] which do not follow the ITU-R defined principles for 4G standards, [citation needed] but today can be called 4G according to ITU-R .[citation needed] A common argument for branding 3.9G systems as new-generation is that they use different frequency bands from 3G technologies ;[citation needed] that they are based on a new radio-interface paradigm ;[citation needed] and that the standards are not backwards compatible with 3G, [citation needed] whilst some of the standards are forwards compatible with IMT-2000 compliant versions of the same standards.[citation needed]

System standards

IMT-2000 compliant 4G standards

Recently, ITU-R Working Party 5D approved two industry-developed technologies (LTE Advanced and WirelessMAN-Advanced)[8] for inclusion in the ITU’s International Mobile Telecommunications Advanced program (IMT-Advanced program), which is focused on global communication systems that would be available several years from now.

LTE Advanced

See also: 3GPP Long Term Evolution (LTE) below

LTE Advanced (Long Term Evolution Advanced) is a candidate for IMT-Advanced standard, formally submitted by the 3GPP organization to ITU-T in the fall 2009, and expected to be released in 2013. The target of 3GPP LTE Advanced is to reach and surpass the ITU requirements.[9] LTE Advanced is essentially an enhancement to LTE. It is not a new technology, but rather an improvement on the existing LTE network. This upgrade path makes it more cost effective for vendors to offer LTE and then upgrade to LTE Advanced which is similar to the upgrade from WCDMA to HSPA. LTE and LTE Advanced will also make use of additional spectrums and multiplexing to allow it to achieve higher data speeds. Coordinated Multi-point Transmission will also allow more system capacity to help handle the enhanced data speeds. Release 10 of LTE is expected to achieve the IMT Advanced speeds. Release 8 currently supports up to 300 Mbit/s of download speeds which is still short of the IMT-Advanced standards.[10]

Data speeds of LTE Advanced
LTE Advanced
Peak download 1 Gbit/s
Peak upload 500 Mbit/s

IEEE 802.16m or WirelessMAN-Advanced

The IEEE 802.16m or WirelessMAN-Advanced evolution of 802.16e is under development, with the objective to fulfill the IMT-Advanced criteria of 1 Gbit/s for stationary reception and 100 Mbit/s for mobile reception.[11]

Forerunner versions

3GPP Long Term Evolution (LTE)

See also: LTE Advanced above
Telia-branded Samsung LTE modem

The pre-4G 3GPP Long Term Evolution (LTE) technology is often branded "4G-LTE", but the first LTE release does not fully comply with the IMT-Advanced requirements. LTE has a theoretical net bit rate capacity of up to 100 Mbit/s in the downlink and 50 Mbit/s in the uplink if a 20 MHz channel is used — and more if multiple-input multiple-output (MIMO), i.e. antenna arrays, are used.

The physical radio interface was at an early stage named High Speed OFDM Packet Access (HSOPA), now named Evolved UMTS Terrestrial Radio Access (E-UTRA). The first LTE USB dongles do not support any other radio interface.

The world's first publicly available LTE service was opened in the two Scandinavian capitals, Stockholm (Ericsson and Nokia Siemens Networks systems) and Oslo (a Huawei system) on December 14, 2009, and branded 4G. The user terminals were manufactured by Samsung.[12] As of Nov 2012, the five publicly available LTE services in the United States are provided by MetroPCS,[13] Verizon Wireless,[14] AT&T Mobility, U.S. Cellular,[15] Sprint,[16] and T-Mobile US.[17]

T-Mobile Hungary launched a public beta test (called friendly user test) on 7 October 2011, and has offered commercial 4G LTE services since 1 January 2012.[citation needed]

In South Korea, SK Telecom and LG U+ have enabled access to LTE service since 1 July 2011 for data devices, slated to go nationwide by 2012.[18] KT Telecom closed its 2G service by March 2012, and complete the nationwide LTE service in the same frequency around 1.8 GHz by June 2012.

In the United Kingdom, LTE services were launched by EE in October 2012,[19] and by O2 and Vodafone in August 2013.[20]

Data speeds of LTE
LTE
Peak download 100 Mbit/s
Peak upload 50 Mbit/s

Mobile WiMAX (IEEE 802.16e)

The Mobile WiMAX (IEEE 802.16e-2005) mobile wireless broadband access (MWBA) standard (also known as WiBro in South Korea) is sometimes branded 4G, and offers peak data rates of 128 Mbit/s downlink and 56 Mbit/s uplink over 20 MHz wide channels .[citation needed]

In June 2006, the world's first commercial mobile WiMAX service was opened by KT in Seoul, South Korea.[21]

Sprint has begun using Mobile WiMAX, as of 29 September 2008, branding it as a "4G" network even though the current version does not fulfil the IMT Advanced requirements on 4G systems.[22]

In Russia, Belarus and Nicaragua WiMax broadband internet access is offered by a Russian company Scartel, and is also branded 4G, Yota.

Data speeds of WiMAX
WiMAX
Peak download 128 Mbit/s
Peak upload 56 Mbit/s

TD-LTE for China market

Just when Long-Term Evolution (LTE) and WiMax are vigorously promoting in the global telecommunications industry, the former (LTE) is also the most powerful 4G mobile communications leading technology, and quickly occupied the Chinese market. TD-LTE, one of the two variants of the LTE air interface technologies, is not yet mature, but many domestic and international wireless carriers one after another turn to TD-LTE.

IBM's data show that 67% of the operators are considering LTE, because this is the main source of their future market. The above news also confirmed this statement of IBM. While only 8% of the operators are considering the use of WiMAX. WiMax can provide the fastest network transmission to its customers on the market, but still could challenge LTE.

TD-LTE is not the first 4G wireless mobile broadband network data standard, but it is China's 4G standard that was amended and published by China's largest telecom operator - China Mobile. After a series of field trials, is expected to be released into the commercial phase in the next two years. Ulf Ewaldsson, Ericsson's vice president said: "the Chinese Ministry of Industry and China Mobile in the fourth quarter of this year will hold a large-scale field test, by then, Ericsson will help the hand." But viewing from the current development trend, whether this standard advocated by China Mobile will be widely recognized by the international market is still debatable.

Discontinued candidate systems

UMB (formerly EV-DO Rev. C)

UMB (Ultra Mobile Broadband) was the brand name for a discontinued 4G project within the 3GPP2 standardization group to improve the CDMA2000 mobile phone standard for next generation applications and requirements. In November 2008, Qualcomm, UMB's lead sponsor, announced it was ending development of the technology, favouring LTE instead.[23] The objective was to achieve data speeds over 275 Mbit/s downstream and over 75 Mbit/s upstream.

Flash-OFDM

At an early stage the Flash-OFDM system was expected to be further developed into a 4G standard.

iBurst and MBWA (IEEE 802.20) systems

The iBurst system (or HC-SDMA, High Capacity Spatial Division Multiple Access) was at an early stage considered to be a 4G predecessor. It was later further developed into the Mobile Broadband Wireless Access (MBWA) system, also known as IEEE 802.20.

Data rate comparison

The following table shows a comparison of the 4G candidate systems as well as other competing technologies.

Comparison of mobile Internet access methods
Common
name
Family Primary use Radio tech Downstream
(Mbit/s)
Upstream
(Mbit/s)
Notes
HSPA+ 3GPP Mobile Internet CDMA/TDMA/FDD
MIMO
21
42
84
672
5.8
11.5
22
168
HSPA+ is widely deployed. Revision 11 of the 3GPP states that HSPA+ is expected to have a throughput capacity of 672 Mbit/s.
LTE 3GPP Mobile Internet OFDMA/TDMA/MIMO/SC-FDMA/for LTE-FDD/for LTE-TDD 100 Cat3
150 Cat4
300 Cat5
25065 Cat17
1658 Cat19
(in 20 MHz FDD) [24]
50 Cat3/4
75 Cat5
2119 Cat17
13563 Cat19
(in 20 MHz FDD)[24]
LTE-Advanced Pro offers rates in excess of 3 Gbit/s to mobile users.
WiMax rel 1 802.16 WirelessMAN MIMO-SOFDMA 37 (10 MHz TDD) 17 (10 MHz TDD) With 2x2 MIMO.[25]
WiMax rel 1.5 802.16-2009 WirelessMAN MIMO-SOFDMA 83 (20 MHz TDD)
141 (2x20 MHz FDD)
46 (20 MHz TDD)
138 (2x20 MHz FDD)
With 2x2 MIMO.Enhanced with 20 MHz channels in 802.16-2009[25]
WiMAX rel 2.0 802.16m WirelessMAN MIMO-SOFDMA 2x2 MIMO
110 (20 MHz TDD)
183 (2x20 MHz FDD)
4x4 MIMO
219 (20 MHz TDD)
365 (2x20 MHz FDD)
2x2 MIMO
70 (20 MHz TDD)
188 (2x20 MHz FDD)
4x4 MIMO
140 (20 MHz TDD)
376 (2x20 MHz FDD)
Also, low mobility users can aggregate multiple channels to get a download throughput of up to 1 Gbit/s[25]
Flash-OFDM Flash-OFDM Mobile Internet
mobility up to 200 mph (350 km/h)
Flash-OFDM 5.3
10.6
15.9
1.8
3.6
5.4
Mobile range 30 km (18 miles)
Extended range 55 km (34 miles)
HIPERMAN HIPERMAN Mobile Internet OFDM 56.9
Wi-Fi 802.11
(11ax)
Wireless LAN OFDM/OFDMA/CSMA/MIMO/MU-MIMO/Half duplex 9600 Wi-Fi 6

Antenna, RF front end enhancements and minor protocol timer tweaks have helped deploy long range P2P networks compromising on radial coverage, throughput and/or spectra efficiency (310 km & 382 km)

iBurst 802.20 Mobile Internet HC-SDMA/TDD/MIMO 95 36 Cell Radius: 3–12 km
Speed: 250 km/h
Spectral Efficiency: 13 bits/s/Hz/cell
Spectrum Reuse Factor: "1"
EDGE Evolution GSM Mobile Internet TDMA/FDD 1.6 0.5 3GPP Release 7
UMTS W-CDMA
HSPA (HSDPA+HSUPA)
3GPP Mobile Internet CDMA/FDD

CDMA/FDD/MIMO
0.384
14.4
0.384
5.76
HSDPA is widely deployed. Typical downlink rates today 2 Mbit/s, ~200 kbit/s uplink; HSPA+ downlink up to 56 Mbit/s.
UMTS-TDD 3GPP Mobile Internet CDMA/TDD 16 Reported speeds according to IPWireless using 16QAM modulation similar to HSDPA+HSUPA
EV-DO Rel. 0
EV-DO Rev.A
EV-DO Rev.B
3GPP2 Mobile Internet CDMA/FDD 2.45
3.1
4.9xN
0.15
1.8
1.8xN
Rev B note: N is the number of 1.25 MHz carriers used. EV-DO is not designed for voice, and requires a fallback to 1xRTT when a voice call is placed or received.

Notes: All speeds are theoretical maximums and will vary by a number of factors, including the use of external antennas, distance from the tower and the ground speed (e.g. communications on a train may be poorer than when standing still). Usually the bandwidth is shared between several terminals. The performance of each technology is determined by a number of constraints, including the spectral efficiency of the technology, the cell sizes used, and the amount of spectrum available.

For more comparison tables, see bit rate progress trends, comparison of mobile phone standards, spectral efficiency comparison table and OFDM system comparison table.


Principal technologies in all candidate systems

Key features

The following key features can be observed in all suggested 4G technologies:

  • Physical layer transmission techniques are as follows:[26]
    • MIMO: To attain ultra high spectral efficiency by means of spatial processing including multi-antenna and multi-user MIMO
    • Frequency-domain-equalization, for example multi-carrier modulation (OFDM) in the downlink or single-carrier frequency-domain-equalization (SC-FDE) in the uplink: To exploit the frequency selective channel property without complex equalization
    • Frequency-domain statistical multiplexing, for example (OFDMA) or (single-carrier FDMA) (SC-FDMA, a.k.a. linearly precoded OFDMA, LP-OFDMA) in the uplink: Variable bit rate by assigning different sub-channels to different users based on the channel conditions
    • Turbo principle error-correcting codes: To minimize the required SNR at the reception side
  • Channel-dependent scheduling: To use the time-varying channel
  • Link adaptation: Adaptive modulation and error-correcting codes
  • Mobile-IP utilized for mobility
  • IP-based femtocells (home nodes connected to fixed Internet broadband infrastructure)

As opposed to earlier generations, 4G systems do not support circuit switched telephony. IEEE 802.20, UMB and OFDM standards[27] lack soft-handover support, also known as cooperative relaying.

Multiplexing and access schemes

Recently, new access schemes like Orthogonal FDMA (OFDMA), Single Carrier FDMA (SC-FDMA), Interleaved FDMA, and Multi-carrier CDMA (MC-CDMA) are gaining more importance for the next generation systems. These are based on efficient FFT algorithms and frequency domain equalization, resulting in a lower number of multiplications per second. They also make it possible to control the bandwidth and form the spectrum in a flexible way. However, they require advanced dynamic channel allocation and adaptive traffic scheduling.

WiMax is using OFDMA in the downlink and in the uplink. For the LTE (telecommunication), OFDMA is used for the downlink; by contrast, Single-carrier FDMA is used for the uplink since OFDMA contributes more to the PAPR related issues and results in nonlinear operation of amplifiers. IFDMA provides less power fluctuation and thus requires energy-inefficient linear amplifiers. Similarly, MC-CDMA is in the proposal for the IEEE 802.20 standard. These access schemes offer the same efficiencies as older technologies like CDMA. Apart from this, scalability and higher data rates can be achieved.

The other important advantage of the above-mentioned access techniques is that they require less complexity for equalization at the receiver. This is an added advantage especially in the MIMO environments since the spatial multiplexing transmission of MIMO systems inherently require high complexity equalization at the receiver.

In addition to improvements in these multiplexing systems, improved modulation techniques are being used. Whereas earlier standards largely used Phase-shift keying, more efficient systems such as 64QAM are being proposed for use with the 3GPP Long Term Evolution standards.

IPv6 support

Unlike 3G, which is based on two parallel infrastructures consisting of circuit switched and packet switched network nodes, 4G will be based on packet switching only. This will require low-latency data transmission.

By the time that 4G was deployed, the process of IPv4 address exhaustion was expected to be in its final stages. Therefore, in the context of 4G, IPv6 is essential to support a large number of wireless-enabled devices. By increasing the number of IP addresses available, IPv6 removes the need for network address translation (NAT), a method of sharing a limited number of addresses among a larger group of devices, although NAT will still be required to communicate with devices that are on existing IPv4 networks.

As of June 2009, Verizon has posted specifications that require any 4G devices on its network to support IPv6.[28]

Advanced antenna systems

The performance of radio communications depends on an antenna system, termed smart or intelligent antenna. Recently, multiple antenna technologies are emerging to achieve the goal of 4G systems such as high rate, high reliability, and long range communications. In the early 1990s, to cater for the growing data rate needs of data communication, many transmission schemes were proposed. One technology, spatial multiplexing, gained importance for its bandwidth conservation and power efficiency. Spatial multiplexing involves deploying multiple antennas at the transmitter and at the receiver. Independent streams can then be transmitted simultaneously from all the antennas. This technology, called MIMO (as a branch of intelligent antenna), multiplies the base data rate by (the smaller of) the number of transmit antennas or the number of receive antennas. Apart from this, the reliability in transmitting high speed data in the fading channel can be improved by using more antennas at the transmitter or at the receiver. This is called transmit or receive diversity. Both transmit/receive diversity and transmit spatial multiplexing are categorized into the space-time coding techniques, which does not necessarily require the channel knowledge at the transmitter. The other category is closed-loop multiple antenna technologies, which require channel knowledge at the transmitter.

Open-wireless Architecture and Software-defined radio (SDR)

One of the key technologies for 4G and beyond is called Open Wireless Architecture (OWA), supporting multiple wireless air interfaces in an open architecture platform.

SDR is one form of open wireless architecture (OWA). Since 4G is a collection of wireless standards, the final form of a 4G device will constitute various standards. This can be efficiently realized using SDR technology, which is categorized to the area of the radio convergence.

History of 4G and pre-4G technologies

The 4G system was originally envisioned by the Defense Advanced Research Projects Agency (DARPA).[citation needed] The DARPA selected the distributed architecture and end-to-end Internet protocol (IP), and believed at an early stage in peer-to-peer networking in which every mobile device would be both a transceiver and a router for other devices in the network, eliminating the spoke-and-hub weakness of 2G and 3G cellular systems.[29][page needed] Since the 2.5G GPRS system, cellular systems have provided dual infrastructures: packet switched nodes for data services, and circuit switched nodes for voice calls. In 4G systems, the circuit-switched infrastructure is abandoned and only a packet-switched network is provided, while 2.5G and 3G systems require both packet-switched and circuit-switched network nodes, i.e. two infrastructures in parallel. This means that in 4G, traditional voice calls are replaced by IP telephony.

  • In 2002, the strategic vision for 4G—which ITU designated as IMT-Advanced—was laid out.
  • In 2005, OFDMA transmission technology is chosen as candidate for the HSOPA downlink, later renamed 3GPP Long Term Evolution (LTE) air interface E-UTRA.
  • In November 2005, KT demonstrated mobile WiMAX service in Busan, South Korea.[30]
  • In April 2006, KT started the world's first commercial mobile WiMAX service in Seoul, South Korea.[31]
  • In mid-2006, Sprint announced that it would invest about US$5 billion in a WiMAX technology buildout over the next few years[32] ($7.56 billion in real terms[33]). Since that time Sprint has faced many setbacks that have resulted in steep quarterly losses. On 7 May 2008, Sprint, Imagine, Google, Intel, Comcast, Bright House, and Time Warner announced a pooling of an average of 120 MHz of spectrum; Sprint merged its Xohm WiMAX division with Clearwire to form a company which will take the name "Clear".
  • In February 2007, the Japanese company NTT DoCoMo tested a 4G communication system prototype with 4×4 MIMO called VSF-OFCDM at 100 Mbit/s while moving, and 1 Gbit/s while stationary. NTT DoCoMo completed a trial in which they reached a maximum packet transmission rate of approximately 5 Gbit/s in the downlink with 12×12 MIMO using a 100 MHz frequency bandwidth while moving at 10 km/h,[34] and is planning on releasing the first commercial network in 2010.
  • In September 2007, NTT Docomo demonstrated e-UTRA data rates of 200 Mbit/s with power consumption below 100 mW during the test.[35]
  • In January 2008, a U.S. Federal Communications Commission (FCC) spectrum auction for the 700 MHz former analog TV frequencies began. As a result, the biggest share of the spectrum went to Verizon Wireless and the next biggest to AT&T.[36] Both of these companies have stated their intention of supporting LTE.
  • In January 2008, EU commissioner Viviane Reding suggested re-allocation of 500–800 MHz spectrum for wireless communication, including WiMAX.[37]
  • On 15 February 2008, Skyworks Solutions released a front-end module for e-UTRAN.[38][39][40]
  • In November 2008, ITU-R established the detailed performance requirements of IMT-Advanced, by issuing a Circular Letter calling for candidate Radio Access Technologies (RATs) for IMT-Advanced.[41]
  • In April 2008, just after receiving the circular letter, the 3GPP organized a workshop on IMT-Advanced where it was decided that LTE Advanced, an evolution of current LTE standard, will meet or even exceed IMT-Advanced requirements following the ITU-R agenda.
  • In April 2008, LG and Nortel demonstrated e-UTRA data rates of 50 Mbit/s while travelling at 110 km/h.[42]
  • On 12 November 2008, HTC announced the first WiMAX-enabled mobile phone, the Max 4G[43]
  • In 15 December 2008, San Miguel Corporation, the largest food and beverage conglomerate in southeast Asia, has signed a memorandum of understanding with Qatar Telecom QSC (Qtel) to build wireless broadband and mobile communications projects in the Philippines. The joint-venture formed wi-tribe Philippines, which offers 4G in the country.[44] Around the same time Globe Telecom rolled out the first WiMAX service in the Philippines.
  • On 3 March 2009, Lithuania's LRTC announcing the first operational "4G" mobile WiMAX network in Baltic states.[45]
  • In December 2009, Sprint began advertising "4G" service in selected cities in the United States, despite average download speeds of only 3–6 Mbit/s with peak speeds of 10 Mbit/s (not available in all markets).[46]
  • On 14 December 2009, the first commercial LTE deployment was in the Scandinavian capitals Stockholm and Oslo by the Swedish-Finnish network operator TeliaSonera and its Norwegian brandname NetCom (Norway). TeliaSonera branded the network "4G". The modem devices on offer were manufactured by Samsung (dongle GT-B3710), and the network infrastructure created by Huawei (in Oslo) and Ericsson (in Stockholm). TeliaSonera plans to roll out nationwide LTE across Sweden, Norway and Finland.[47][48] TeliaSonera used spectral bandwidth of 10 MHz, and single-in-single-out, which should provide physical layer net bitrates of up to 50 Mbit/s downlink and 25 Mbit/s in the uplink. Introductory tests showed a TCP throughput of 42.8 Mbit/s downlink and 5.3 Mbit/s uplink in Stockholm.[49]
  • On 25 February 2010, Estonia's EMT opened LTE "4G" network working in test regime.[50]
  • On 4 June 2010, Sprint released the first WiMAX smartphone in the US, the HTC Evo 4G.[51]
  • In July 2010, Uzbekistan's MTS deployed LTE in Tashkent.[52]
  • On 25 August 2010, Latvia's LMT opened LTE "4G" network working in test regime 50% of territory.
  • On November 4, 2010, the Samsung Galaxy Craft offered by MetroPCS is the first commercially available LTE smartphone[53]
  • On 6 December 2010, at the ITU World Radiocommunication Seminar 2010, the ITU stated that LTE, WiMax and similar "evolved 3G technologies" could be considered "4G".[54]
  • On 12 December 2010, VivaCell-MTS launches in Armenia a 4G/LTE commercial test network with a live demo conducted in Yerevan.[55]
  • On 28 April 2011, Lithuania's Omnitel opened a LTE "4G" network working in the 5 largest cities.[56]
  • In September 2011, all three Saudi telecom companies STC, Mobily and Zain announced that they will offer 4G LTE for USB modem dongles, with further development for phones by 2013.[57]
  • In 2011, Argentina's Claro launched a 4G HSPA+ network in the country.
  • In 2011, Thailand's Truemove-H launched a 4G HSPA+ network with nation-wide availability.
  • On March 17, 2011, the HTC Thunderbolt offered by Verizon in the U.S. was the second LTE smartphone to be sold commercially.[58][59]
  • On 31 January 2012, Thailand's AIS and its subsidiaries DPC under cooperation with CAT Telecom for 1800 MHz frequency band and TOT for 2300 MHz frequency band launched the first field trial LTE in Thailand with authorization from NBTC.[60]
  • In February 2012, Ericsson demonstrated mobile-TV over LTE, utilizing the new eMBMS service (enhanced Multimedia Broadcast Multicast Service).[61]
  • On 10 April 2012, Bharti Airtel launched 4G LTE in Kolkata, first in India.[62]
  • On 20 May 2012, Azerbaijan's biggest mobile operator Azercell launched 4G LTE.[63]
  • On 10 October 2012, Vodacom (Vodafone South Africa) became the first operator in South Africa to launch a commercial LTE service.
  • In December 2012, Telcel launches in Mexico the 4G LTE network in 9 major cities
  • In Kazakhstan, 4G LTE was launched on December 26, 2012 in the entire territory in the frequency bands 1865-1885/1760 - 1780 MHz for the urban population and in 794-799/835-840 MHz for those sparsely populated

Deployment plans

Afghanistan

Telecom giant Etisalat Afghanistan, the first telecom company to launch 3.75G services in Afghanistan on 19th Feb, 2013 announced the commencement of test of its Long-term Evolution (LTE) 4G mobile network.

Africa

Safaricom, a telecommunication company in Kenya, began its setup of a 4G network in October 2010 after the now retired Kenya Tourist Board Chairman, Michael Joseph, regarded their 3G network as a white elephant. Huawei was given the contract and the network is set to go fully commercial by the end of Q1 of 2011 but was yet to establish the network by the end of 2012.

Australia

Telstra announced on 15 February 2011, that it intends to upgrade its current Next G network to 4G with Long Term Evolution (LTE) technology in the central business districts of all Australian capital cities and selected regional centers by the end of 2011.[64]

Telstra launched the country's first 4G network (FD-LTE) in September 2011 claiming "2–100 Mbps" speeds and announced an "aggressive" expansion of that network in 2012.[65][66]

Telstra will use a mixture of 10 MHz and 15 MHz bandwidth in the 1800 MHz band.

Optus have established a 4G (FD-LTE) network using 10 MHz (out of 15 MHz available) bandwidth in the 1800 MHz band and added the 2.3 GHz band for 4G TD-LTE after acquiring Vivid Wireless in 2012.[67]

Vodafone Australia have indicated their roll out of 4G FD-LTE will use 20 MHz bandwidth and initially support Cat 3 devices at launch, then quickly move to support Cat 4 devices.

Australian Communications and Media Authority (ACMA) will auction 700 MHz "digital dividend" and 2600 MHz spectrum for the provision of 4G FD-LTE services in April 2013. Telstra and Optus are expected to participate in both, while Vodafone has stated it will only participate in the 2600 MHz auction.

On 19 December 2013 Optus claims to set up the world's first TD-LTE Advanced carrier aggregation network. The company achieved a throughput of 520 Mbit/s, by combining four 20 MHz channels of the 2300 MHz spectrum band into 80 MHz.[68][69]

Austria

In August 2009 Huawei and T-Mobile introduced Europe's largest trial LTE network. Both companies set up 60 cells in Innsbruck which are since July 2009 in service.[70]

In June 2010 A1 Telekom Austria tested LTE with its partner Huawei in Vienna.[71]

On October 18, 2010, the allocation procedure for 2600 MHz frequency band was completed.[72] The following figure shows the current allocation for this frequency band:[73][74]

Frequency E-UTRA Band Bandwidth Type of LTE A1 Telekom Austria T-Mobile Austria Orange Austria* Hutchison 3
2600 MHz VII (7)
XXXVIII (38)
2×70 MHz
1×50 MHz
FDD
TDD
2x20 MHz
1x25 MHz
2x20 MHz
-
2x10 MHz
-
2x20 MHz
1x25 MHz
  • *License holder formerly Orange Austria, now Hutchison Drei Austria GmbH

A1 Telekom Austria started the first commercial (FDD-)LTE service in Austria on 19 October 2010. Iniatially A1 Telekom Austria covered Vienna with 49 eNodeB's and St. Pölten with 3 eNodeB's.[75]

On 28 July 2011, T-Mobile Austria launched commercial LTE service in Vienna, Linz, Graz and Innsbruck.[76]

After A1 Telekom Austria and T-Mobile Austria started their LTE service Austria's smallest operator 3 introduced LTE commercially on the 18th of November 2011.[77]

In March 2012, A1 Telekom Austria integrated Circuit-switched fallback (CSFB) and launched the first LTE Smartphone (HTC Velocity 4G) for the Austrian market.[75]

At the end of November 2012, A1 Telekom Austria claims to reach 30% of the Austrian population with its LTE network. At this time, according to a press release, 800 EnodeB's were used.[78]

At the beginning of July 2013, A1 Telekom Austria announced that the company has switched on their 1000th eNodeB.[79]

At the beginning of September, Bregenz, Dornbirn and Lustenau are covered by A1 Telekom Austria LTE.[80]

On 7 October 2013, T-Mobile Austria started LTE service for Smartphones. The company also announced plans for further LTE coverage. Until the end of 2013 parts of the city Bregenz, Klagenfurt, Salzburg and St. Pölten will be covered with LTE.[81]

On October 21, 2013, the multiband spectrum auction was completed. The following figure shows the current allocation for this frequency band:[82]

Frequency E-UTRA Band Bandwidth Type of LTE A1 Telekom Austria T-Mobile Austria Hutchison 3
800 MHz XX (20) 2×30 MHz FDD 2x20 MHz 2x10 MHz -
900 MHz VIII (8) 2×35 MHz FDD 2x15 MHz 2x15 MHz 2x5 MHz
1800 MHz III (3) 2×75 MHz FDD 2x35 MHz 2x20 MHz 2x20 MHz

At the end of November 2013, Huchtison 3 and T-Mobile Austria intent to appeal auction results.[83][84]

On 4 December 2013, according to A1 Telekom Austria Klosterneuburg is covered with LTE.[85]

International LTE Roaming: 19. December 2013, A1 Telekom Austria is the first Austrian operator which introduced LTE Roaming. The company signed a roaming agreement with Swisscom following by further countries (planned: Brazil, Canada, Croatia, Germany, Italy, The Netherlands, New Zealand, Romania, Slovenia, South Africa, South Korea, Spain, United Kingdom, United States) in 2014. If Customers of A1 Telekom Austria want use LTE abroad they need either a LTE package or one of their new A1 Go! contract plans, launched in December 2013.[86]

On 28 January 2014, A1 announced commercial service for LTE 800 MHz on more than 200 sites. Austrians largest mobile operator covers currently 45% of the population with LTE. The company plans to cover more than 50% of the population until the end of 2014.[87][88]

On 11 March 2014, T-Mobile announced top LTE transmission speed raises to 150 Mbit/s.[89]

Belgium

On 28 June 2011, Belgium's largest telecom operator Belgacom announced the roll out of the country's first 4G network.[90] On 3 July 2012 it confirmed the outroll in 5 major cities and announced the commercial launch to take place before the end of 2012.[91]

Brazil

On 27 April 2012, Brazil’s telecoms regulator Agência Nacional de Telecomunicações (Anatel) announced that the 6 host cities for the 2013 Confederations Cup to be held there will be the first to have their networks upgraded to 4G.[92]

Canada

Telus and Bell Canada, the major Canadian cdmaOne and EV-DO carriers, have announced that they will be cooperating towards building a fourth generation (4G) LTE wireless broadband network in Canada. As a transitional measure, they are implementing 3G UMTS network that went live in November 2009.[93] Bell Canada's 4G network now covers 97% of the population as of December 2013.[94]

Fiji

Vodafone Fiji started category 3 LTE service (1800 MHz - Band 3) at the beginning of December 2013.[95][96]

France

On 22 November 2012, Orange launched the first 4G business plan in Marseille, Lyon, Lille and Nantes. Then, on 29 November 2012, SFR launched 4G in Lyon, extending to Montpellier. It was the first 4G commercial launch in France.

Germany

After the multiband spectrum auction (12.04. - 20.05.2010[97]) the frequency allocation in Germany is as follows:

Frequency E-UTRA Band Bandwidth Type of LTE Telekom Vodafone Telefónica O2 E-Plus Gruppe
800 MHz XX (20) 2×30 MHz FDD 2x10 MHz 2x10 MHz 2x10 MHz -
1800 MHz III (3) 2×25 MHz FDD 2x15 MHz - - 2x10 MHz
2600 MHz VII (7)
XXXVIII (38)
2×70 MHz
1×50 MHz
FDD
TDD
2x20 MHz
1x5 MHz
2x20 MHz
1x25 MHz
2x20 MHz
1x10 MHz
2x10 MHz
1x10 MHz

1 December 2010, Vodafone started LTE by using 800 MHz frequency.[98]

5 April 2011, Deutsche Telekom launched LTE service on 800 MHz.[99]

1 June 2011, Deutsche Telekom started LTE service on 1800 MHz in Cologne.[99]

1 July 2011, o2 offers LTE on 800 MHz which is available in several rural communities, including Oberreichenbach in the Black Forest or Zscherben in Saxony-Anhalt.[100]

24 April 2012, Deutsche Telekom announced LTE for Bonn, Hamburg, Leipzig and Munich.[101]

3 July 2012, Deutsche Telekom announced LTE service for the following cities in Baden-Württemberg: Freiburg, Friedrichshafen, Heidelberg, Heilbronn, Karlsruhe, Mannheim, Pforzheim. Berlin. Bremen. Hesse: Darmstadt, Hanau, Ludwigshafen. Lower Saxony: Braunschweig, Celle, Hildesheim, Oldenburg. North Rhine-Westphalia: Gütersloh, Paderborn, Velbert. Rhineland-Palatinate: Kaiserslautern, Mainz. Saxony: Halle (Saale). Schleswig-Holstein: Neumünster. Thuringia: Erfurt and Gera.[102]

7 February 2013, o2 claimed to do the world's first handovers of voice calls from LTE to UMTS under realistic conditions.[103]

2 July 2013, o2 added LTE service in Duisburg, Essen and Hamburg.[104]

5 September 2013, Deutsche Telekom announced LTE category 4 with download speed of 150 Mbit/s at the IFA. LTE category 4 or LTE+, so called by Deutsche Telekom, is available in areas which are covered by the 1800 MHz frequency.[105]

15 November 2013, Telefónica and Vodafone have announced that they are testing LTE-Advanced in the German cities of Munich and Dresden.[106]

20 February 2014, Deutsche Telekom announced 580 Mbit/s data speed during LTE-A trials in Alzey.[107]

5 March 2014, E-Plus started commercial LTE service with 1800 MHz in Berlin, Nuremberg and Leipzig.[108]

10 March 2014, at the CeBIT in Hannover Deutsche Telekom announced the launch of LTE-A with 300 Mbit/s for Q3 in 2014.[109]

Greenland

TELE Greenland started LTE service (800 MHz - Band 20) at the beginning of December 2013.[110]

India

Bharti Airtel launched India's first 4G service, using TD-LTE technology, in Kolkata on April 10, 2012.[111] Fourteen months prior to the official launch in Kolkata, a group consisting of China Mobile, Bharti Airtel and SoftBank Mobile came together, called Global TD-LTE Initiative (GTI) in Barcelona, Spain and they signed the commitment towards TD-LTE standards for the Asian region. It must be noted that Airtel's 4G network does not support mainstream 4G phones[112] such as Apple iPhone 5/5s, Samsung Galaxy Note 3, Samsung Galaxy S4 and others.

  • Airtel 4G services are available in Kolkata, Bangalore, Pune and Chandigarh region (The Tricity or Chandigarh region consists of a major city Chandigarh, Mohali and Panchkula).
  • RIL is launching 4G services through its subsidiary, Jio Infocomm. RIL 4G services are currently available only in Jamnagar, where it is testing the new TD-LTE technology. RIL 4G rollout is planned to start in Delhi, Mumbai and Kolkata and expand to cover 700 cities, including 100 high-priority markets.
  • Bharti Airtel is launching 4G services in Delhi by Jan 2014[113]
  • Airtel launched 4G on mobiles in Bangalore, thus becoming the first in India to offer such a service on 14th Feb, 2014

India uses the TD LTE frequency #40 (2.3 GHz), Apple iPhone 5s supports the TD LTE 40 band.

Indonesia

During APEC meeting on October 1–8, 2013 in Bali, Telkomsel will conduct 4G LTE network trial. Telkomsel 4G LTE network will operate at 1800 MHz frequency. As part of the program it will sell "simPATI LTE Trial Edition" prepaid SIM card.[114]

Since November 2013, PT Internux, with brand Bolt 4G, has commercialized LTE 4G service using TDD-LTE. Initially, Bolt 4G is only available on 2300 MHz covering Jakarta and the surrounding cities.[115]

Ireland

In May 2005, Digiweb, an Irish wired and wireless broadband company, announced that they had received a mobile communications license from the Irish telecoms regulator ComReg. This service will be issued the mobile code 088 in Ireland and will be used for the provision of 4G mobile communications.[116][117] Digiweb launched a mobile broadband network using FLASH-OFDM technology at 872 MHz.

On November 15, 2012 the Commission for Communications Regulation (ComReg) announced the results of its multi-band spectrum auction.[118] This auction awarded spectrum rights of use in the 800 MHz, 900 MHz and 1800 MHz bands in Ireland from 2013 to 2030. The winners of spectrum were Three Ireland, Meteor, O2 Ireland and Vodafone. All of the winning bidders in the auction have indicated that they intend to move rapidly to deploy advanced services.[119]

Frequency E-UTRA Band Bandwidth Type of LTE Vodafone Ireland Telefónica Ireland Meteor Hutchison 3
800 MHz XX (20) 2×30 MHz FDD 2x10 MHz 2x10 MHz 2x10 MHz -
900 MHz VIII (8) 2×35 MHz FDD 2x10 MHz 2x10 MHz 2x10 MHz 2x5 MHz
1800 MHz III (3) 2×75 MHz FDD 2x25 MHz 2x15 MHz 2x15 MHz 2x20 MHz

Eircom launched their 4G network through Meteor and eMobile on 26 September 2013.[120]

On 14 October, Vodafone started their 4G offer (mobile broadband only) in six cities (Dublin, Cork, Limerick, Galway, Waterford and Kilkenny) and 23 towns (Carlow, Tralee, Wexford, Middleton, Carrigaline, Mallow, Killarney, Enniscorthy, Dungarvan, New Ross, Kenmare, Tullow, Kanturk, Bagnelstown, Thomastown, Millstreet, Bunclody, Newmarket, Dunmanway, Lismore, Rosslare Harbour, Rosslare Strand and Killorglin) across the country.[121]

On 9 December, Vodafone switches on 4G for Smartphones and turned 4G service in eight additional towns (Ballincollig, Carrigtohill, Cloyne, Cobh, Enniscorthy, Fermoy, Gorey, Kinsale) on.[122]

On 27 January 2014, Three launched their 4G network in Dublin, Cork, Galway, Limerick, Wexford and Waterford.

Italy

Since the first half of December 2012, all of Italy's ISP have been offering or have plans to offer 4G services in some cities:

  • TIM: Rome, Milan, Torino, Naples, Ancona, Brindisi, Baldissero Torinese, Bari, Bormio, Catanzaro, Cortina D'Ampezzo, Courmayeur, Canazei, Carano, Casavatore, Cavalese, Como, Crispano, Forlì, Frattamaggiore, Frattaminore, Genoa, Madonna Di Campiglio, Montoggio, Novate Milanese, Noventa Padovana, Orbassano, Padova, Palermo, Perugia, Pisa, Pozzuoli, Prato, Predazzo, San Mauro Torinese, Selva Di Val Gardena, Sesto San Giovanni, Taranto, Trento, Tesero, Treviso, Udine, Vicenza, Villabate.
  • Vodafone: Rome, Milan, Torino, Naples, Alassio, Alghero, Barano d'Ischia, Bergamo, Bologna, Cagliari, Capri, Catania, Cervia, Cortina d'Ampezzo, Forte dei Marmi, Gallipoli, Genoa, Giardini di Naxos, Golfo Aranci, Ischia, Ivrea, La Maddalena, Livorno, Milazzo, Modena, Padova, Palermo, Palau, Pietra Ligure, Pietrasanta, Pisa, Porto Cervo - Arzachena, Porto Pollo, Reggio Calabria, Riccione, San Teodoro, Santa Margherita Ligure, Scalea, Serrara Fontana, Sorrento, Taranto, Trento, Venice, Verona, Vieste, Villasimius.
  • 3 Italia: Rome, Milan, Acuto.
  • Wind: 4G services will be available in the second half of 2013.

Kazakhstan

By the end of 2012, the national telecommunication operator JSC Kazakhtelecom launched 4G services in both Astana and Almaty. It is expected that by the end of 2013 the service will be available across the whole country.[citation needed]

Malta

4G technology was introduced in Malta by Vodafone on the 9th of October 2013.[123]

Middle East

In mid September 2011, [2] Mobily of Saudi Arabia, announced their 4G LTE networks to be ready after months of testing and evaluations.

In July 2012, Oman's Omantel launched 4G LTE commercially.[124]

In December 2012, UAE's Etisalat announced the commercial launch of 4G LTE services covering over 70% of country's urban areas.[citation needed] As of May, 2013 only few areas have been covered.[citation needed]

In 2012, Alfa and Touch in Lebanon, announced their 4G LTE networks to be ready after months of testing and evaluations. And 4G LTE was officially launched in April 2013.[citation needed]

In February 2013, Oman's Nawras launched 4G LTE commercially.[125][126]

In April 2013, Qtel, (now called Ooredoo) is set to launch its 4G LTE commercially in Qatar.[127]

The Netherlands

After the multiband spectrum auction in Q4-2012 KPN announced that the deployment of 4G services would start in February 2013 and that nationwide coverage will be available in Q1 2014.[128]

Vodafone has launched the 4G network in August 2013,[129] while T-Mobile announced only a roll-out in Q4 of 2013.[130] Tele2 will launch their network probably in the same time as T-Mobile, because they are using site/antenna-sharing.

As of Q1 2014, KPN will be the first network provider that has deployed a nationwide 4G network in the Netherlands.[131] Expectations are that both KPN and Vodafone will reach nationwide coverage in 2014. T-Mobile and Tele2, being lower-budget providers, will probably never reach a nationwide coverage, as is the case with their existing 2G and 3G networks. Tele2 will stay a MVNO (i.e., Tele2 will buy network capacity) on the T-Mobile network for 2G/3G Services and a MVNO on the KPN network for 2G/3G Business Services (previously Versatel).[132]

Network operator ZUM's plans remain unknown; only a small 2.6 GHz LTE network would be required to meet regulatory requirements. [citation needed]

After the multiband spectrum auction the frequency allocation in the Netherlands is as follows:[133]

Frequency E-UTRA Band Bandwidth Type of LTE KPN Vodafone T-Mobile Tele2 ZUM
800 MHz XX (20) 2x30 MHz FDD 2x10 MHz 2x10 MHz 2x10 MHz
900 MHz VIII (8) 2x35 MHz FDD 2x10 MHz 2x10 MHz 2x15 MHz
1800 MHz III (3) 2x70 MHz FDD 2x20 MHz 2x20 MHz 2x30 MHz
1900 MHz XXXIII (33) 1x35 MHz TDD 1x5 MHz 1x5.4 MHz 1x24.6 MHz
2100 MHz I (1) 2x59,4 MHz FDD 2x19.8 MHz 2x19.6 MHz 2x20 MHz
2600 MHz VII (7)
XXXVIII (38)
2x65 MHz
2x65 MHz
FDD
TDD
2×10 MHz
1×30 MHz
2x10 MHz
-
2x5 MHz
1x25 MHz
2x20 MHz
1x5 MHz
2x20 MHz
-

International LTE Roaming: On 16 February KPN announced LTE Roaming agreement with Orange in Frange and Telenor in Norway. Following by operators in the US, the UK, Russia, Japan, Spain, Austria, Switzerland, Poland and Saudi Arabia later this month. Brazil and China are scheduled to be included in March, Germany, Hong Kong, Croatia and Slovenia will be added in April, and Denmark, Canada and Finland will be included in June.[134][135]

New Zealand

In New Zealand, the first 4G network was introduced in parts of Auckland by Vodafone NZ on 28 February 2013. Coverage has since expanded to parts of Palmerston North, Wellington, Wanaka, Queenstown, Christchurch, Taupo, and New Plymouth.[136]

A small village by Lake Brunner on the West Coast with only 250 people, Moana, got 4G broadband in May 2013. This is part of a test of rural broadband services in the 700 MHz range.[137]

Both Vodafone and Telecom NZ's 4G Network operate on 1800 bandwidth.
As of 15 January 2014, Telecom has 4G coverage in Wellington, Christchurch, Auckland, Whitianga and Whangamata. [citation needed]

2degrees has also announced its plans to launch a 4G service in 2014 after securing an overdraft of NZD165million from the Bank of New Zealand in June 2013.[138]

Pakistan

On 27 March 2011, Telenor Pakistan started upgrading its network for 4G operations.[139] In 2013, Telenor announced that it is ready to launch country's first 3G network.[140] On July 7, 2013, the Government of Pakistan announced the auction of 3G/4G operators in Pakistan[141] on 3 October 2013 which due to some current political conditions in the country could not be accomplished yet. Soon, the Government of Pakistan will auction the 3G/4G licenses and Pakistan will get 3G HSPA/4G LTE within the first quarter of 2014 i.e. between January and April.[142]

Philippines

As part of its massive network upgrade, Globe[143] has launched its 4th Generation Long-Term Evolution (4G LTE) network for mobile and broadband. To date, Globe has completed over 2,700 4G LTE network sites, with the number expected to rise to over 4000 by the end of 2012.

In September, Globe launched its 4G LTE network covering key commercial as well as residential areas in Makati, with more sites following shortly in Manila, Cebu, Davao, and other select regions. As more key activations are completed in the coming months, Globe subscribers will soon enjoy best-in-class mobile and broadband services across the Philippines.[citation needed]

SMART Communications was the first to roll out the fastest 4G LTE in the country (Philippines). Over 900 sites served nationwide with partner establishments.[citation needed]

Poland

On 31 August 2011, Plus (Polkomtel) launched 4G commercially in Poland. The download speed was up to 100 Mbit/s, while upload speed was up to 50 Mbit/s. On 25 October 2012, download speed was increased to 150 Mbit/s. It uses 1800 MHz spectrum.[citation needed]

Romania

On 31 October 2012, Vodafone has launched 4G tests.[144] Now 4G connectivity is available in several cities: Otopeni, Constanta, Galati, Craiova, Brasov, Bacau, Iasi, Cluj-Napoca, Arad and Timisoara.[145]

Russian Federation

Several national cell operators have launched LTE networks in 2012.

Scandinavia

TeliaSonera started deploying LTE (branded "4G") in Stockholm and Oslo November 2009 (as seen above), and in several Swedish, Norwegian, and Finnish cities during 2010. In June 2010, Swedish television companies used 4G to broadcast live television from the Swedish Crown Princess’s wedding.[146]

Slovakia

After the multiband spectrum auction[147] the frequency allocation in Slovakia is as follows:

Frequency E-UTRA Band Bandwidth Type of LTE Orange Slovak Telekom Telefónica Slovakia SWAN
800 MHz XX (20) 2×30 MHz FDD 2x10 MHz 2x10 MHz 2x10 MHz -
1800 MHz III (3) 2×20.4 MHz FDD 2x4.8 MHz - 2x0.6 MHz 2x15 MHz
2600 MHz VII (7)
XXXVIII (38)
2×70 MHz
1×50 MHz
FDD
TDD
2x30 MHz
-
2x40 MHz
1x50 MHz
-
-
-
-

Spain

On May 9, 2013, Yoigo announced its service, which will use the 1800 MHz band and offer speeds up to 100Mbit/s, and will first be launched in Madrid on July 19.[148]

On May 13, Orange Espana announced it will launch its 4G network on 8 July, simultaneously in six of the country's largest cities: Madrid, Barcelona, Valencia, Seville, Malaga and Murcia. A further nine cities — Bilbao, Zaragoza, Alicante, Cordoba, La Coruña, Valladolid and Vigo on the mainland, Palma de Mallorca in the Balearic Islands and Las Palmas in the Canary Islands — will be live by the end of 2013.[149]

Since 30 May 2013, 4G is available in Spain thanks to Vodafone 4G. According to the company, services will use 1800Mhz and 2600 MHz spectrum and will offer download speeds of up to 150Mbit/s and upload speeds of 50Mbit/s.[150]

On week 9, 2014, during the Mobile World Congress in Barcelona Vodafone tested LTE-A with speed of 540 Mbit/s.[151]

On 7 March 2014, Vodafone announced LTE service for Burgos.[152]

On 11 March 2012, Vodafone announced LTE service for Castilla La Mancha.[153]

On 12 March 2014, Vodafone announced LTE service for Logroño.[154][155]

South Korea

On July 7, 2008, South Korea announced plans to spend 60 billion won, or US$58,000,000, on developing 4G and even 5G technologies, with the goal of having the highest mobile phone market share by 2012, and the hope of becoming an international standard.[156]

Sri Lanka

On December 30, 2012, Dialog Broadband Networks launched Sri Lanka's first fixed TD-LTE service.[157]
On April 2, 2013, Dialog Axiata launched South Asia's first FD-LTE service in Sri Lanka.[158]
On June 2, 2013, Mobitel launched FD-LTE service in Sri Lanka.[159]

Switzerland

In September 2010, Swisscom tested LTE in Grenchen by using the 2.6 GHz frequency (E-UTRA Band 7).[160] In December 2011 after the LTE field experiment in Grenchen has become a success the company used the 1.8 GHz frequency (E-UTRA Band 3) for further testing in Grindelwald, Gstaad, Leukerbad, Montana, Saas-Fee and St. Moritz/Celerina.[161]

After the multiband spectrum auction (06.02. - 22.02.2012[162]) the frequency allocation in Switzerland is as follows:

Frequency E-UTRA Band Bandwidth Type of LTE Swisscom Sunrise Orange
800 MHz XX (20) 2×30 MHz FDD 2x10 MHz 2x10 MHz 2x10 MHz
900 MHz VIII (8) 2×35 MHz FDD 2x15 MHz 2x15 MHz 2x5 MHz
1800 MHz III (3) 2×75 MHz FDD 2x30 MHz 2x20 MHz 2x25 MHz
2100 MHz I (1) 2×60 MHz FDD 2x30 MHz 2x10 MHz 2x20 MHz
2600 MHz VII (7)
XXXVIII (38)
2×70 MHz
1×50 MHz
FDD
TDD
2x20 MHz
1x45 MHz
2x25 MHz
-
2x20 MHz
-

Swisscom announced on 29 November 2012, commercial service of its category 3 LTE network with maximum speed of 100 Mbit/s.[163] The following frequency range is in service for LTE. 800 MHz, 1800 MHz and 2600 MHz. (E-UTRA Bands 20, 3 und 7) In May 2013 Swisscom upgraded its LTE network from category 3 to category 4. As of the upgrade the maximum speed has become 150 Mbit/s.[164]

Orange started LTE on 28 May 2013. The second largest operator was the first who introduced prepaid LTE in Switerland. The following frequency range is in service for LTE. 800 MHz, 1800 MHz and 2600 MHz. (E-UTRA Bands 20, 3 und 7) Orange LTE offers up to 100 Mbit/s. The company will upgrade the maximum speed up to 150 Mbit/s at the end of 2013.[165]

International LTE Roaming: Swisscom is the first European operator which offers international LTE Roaming. Since the 21 of June 2013 customers of Swisscom are able to use LTE network of the South Korean operators SK Telecom and KT. According to Swisscom Canada (Rogers) and Hong Kong (SmarTone) are the next countries where customers of the former state-owned company will be able to use LTE roaming.[166]

Sunrise was the last operator in Switerland who introduced LTE. Commercial service is available as of 19 June 2013. The smallest operator in Switzerland offers speed up to 100 Mbit/s. In 2013 Sunrise is using only the 1800 MHz frequency for LTE service. (E-UTRA Band 3) The operator will use other frequency bands (800 MHz and 2600 MHz - E-UTRA Bands 7 and 20) in the future as well.[167] Prepaid customers of Sunrise are able to use LTE with maximum network speed - even MVNO customer.[168]

Since the beginning of July 2013 Swisscom prepaid customers are able to enter the LTE network. Maximum speed depends on the subscribed plan.[164]

On 19 November 2013, Orange and UPC Cablecom announced a new partnership. Over the next two years, UPC Cablecom will connect more than 1,000 4G masts with top bandwidths of between 1 and 10 Gbit/s.[169][170]

At the end of November 2013, Swisscom added new LTE Roaming partners in Asia (Japan: Softbank, Philippines: Globe Telecom, Singapore: M1), Europe (France: Bouygues Telecom) and the Middle East (Saudi Arabia: Mobily).[171][172]

On 19 December 2013, Swisscom added new LTE Roaming partners in Asia (Hong Kong: China Mobile HK and PCCW) and Europe (Austria: A1). At this time Swisscom covers nine countries and twelve foreign LTE networks.[172][173]

On 22 January 2014, Swisscom added new LTE Roaming partner in Russia (MegaFon).[172][174]

On 29 January 2014, Sunrise announced 300 Mbit/s LTE trials by using LTE-A carrier aggregation. Commercial service is planned for Q3 2014.[175]

On 17 Februar 2014, Swisscom added new roaming partners (Canada: Telus, France: SFR, Hong Kong: Huchison 3, Norway: Telenor, USA: AT&T) to their LTE roaming list. The company also mentioned an upcoming Russia operator (MTS) for 3. March 2014.[172]

Thailand

Thailand National Broadcasting & Telecommunications Commission (NBTC) has earmarked 1.8 GHz and 2.3 GHz spectrum for 4G services. The 1.8 GHz will be available for auction around the 4th quarter of 2014 when the license for GSM service on the spectrum will expire. The 2.3 GHz spectrum is currently held by TOT Corp, a state enterprise. Negotiation on refarming part of the band is ongoing.[citation needed]

Truemove-H has launched Thailand's first commercial 4G LTE service on 8 May 2013 using 2100 MHz Band I.[176]

Turkmenistan

On 18 September 2013, the national telecommunication operator TM Cell launched 4G services in Turkmenistan.[177]

United Kingdom

In 2009 O2 (a subsidiary of Telefónica Europe) used Slough for testing the 4G network, with Huawei installing LTE technology in six masts across the town to allow testing of HD video conferencing and mobile PlayStation games.[178] On February 29, 2012, UK Broadband launched the first commercial 4G LTE service in the UK in the London Borough of Southwark.[179] In October 2012, MVNO, Abica Limited, announced they were to trial 4G LTE services for high speed M2M applications.

On August 21, 2012, the United Kingdom's regulator Ofcom allowed EE, the owner of the Orange and T-Mobile networks, to use its existing spectrum in the 1,800 MHz band to launch fourth-generation (4G) mobile services.[180] As part of Ofcom's approval of the company's roll-out of 4G it was announced on August 22 that 3 had acquired part of EE's 1,800 MHz spectrum for part of their own 4G network.[181] The 4G service from EE was announced on September 11, 2012 and launched on October 30, initially in 11 cities.[182][183] The network aims to cover 70% of the UK by 2013 and 98% by 2014.[184]

On November 12, 2012 Ofcom published final regulations and a timetable[185] for the 4G mobile spectrum auction. It also launched a new 4G consumer page,[186] providing information on the upcoming auction and the consumer benefits that new services will deliver. Ofcom auctioned off the UK-wide 4G spectrum previously used by the country's analogue television signals in the 800 MHz band as well as in the 2,600 MHz band.[187] On 20 February 2013, the winners of the 4G spectrum auction were announced by Ofcom.[188] The four major networks, EE, O2, Vodafone and 3, were awarded spectrum along with Niche Spectrum Ventures Ltd (a subsidiary of BT Group plc).

On July 9, 2013, Ofcom announced that mobile network operators would be allowed to repurpose their existing 2G and 3G spectrum, specifically in the 900, 1,800 and 2,100 MHz bands, for 4G services.[189]

Both O2 and Vodafone launched their 4G networks on August 29, 2013.[190][191] The 3 network launched their 4G service in December 2013, initially it was only available to a selected few thousand customers in London preceding a nationwide rollout in 2014.[192][193]

International LTE Roaming: AT&T signed LTE roaming agreement with EE on the 17th of December 2013.[194] EE announced further LTE roaming agreements with Orange in France and Spain on March 2014. Customers of EE will access the LTE networks of both operators immediately. The company also announced in a press release that it will extend its 4G coverage across major roaming destination including the USA, Italy, Germany, Switzerland and the Netherlands by the Summer.[195][196]

United States

On September 20, 2007, Verizon Wireless announced plans for a joint effort with the Vodafone Group to transition its networks to the 4G standard LTE. On December 9, 2008, Verizon Wireless announced their intentions to build and roll out an LTE network by the end of 2009. Since then, Verizon Wireless has said that they will start their roll out by the end of 2010.

Sprint offers a 3G/4G connection plan, currently[when?] available in select cities in the United States.[46] It delivers rates up to 10 Mbit/s. Sprint has also launched an LTE network in early 2012.[197]

Verizon Wireless has announced[when?] that it plans to augment its CDMA2000-based EV-DO 3G network in the United States with LTE, and is supposed to complete a rollout of 175 cities by the end of 2011, two thirds of the US population by mid-2012, and cover[citation needed] the existing 3G network by the end of 2013.[198] AT&T, along with Verizon Wireless, has chosen to migrate toward LTE from 2G/GSM and 3G/HSPA by 2011.[199]

Sprint had deployed WiMAX technology which it has labeled 4G as of October 2008. It was the first US carrier to offer a WiMAX phone.[200]

The U.S. FCC is exploring[when?] the possibility of deployment and operation of a nationwide 4G public safety network which would allow first responders to seamlessly communicate between agencies and across geographies, regardless of devices. In June 2010 the FCC released a comprehensive white paper which indicates that the 10 MHz of dedicated spectrum currently allocated from the 1700 MHz spectrum for public safety will provide adequate capacity and performance necessary for normal communications as well as serious emergency situations.[201]

International LTE Roaming: AT&T signed LTE roaming agreement with EE on the 17th of December 2013.[194]

Beyond 4G research

A major issue in 4G systems is to make the high bit rates available in a larger portion of the cell, especially to users in an exposed position in between several base stations. In current research, this issue is addressed by macro-diversity techniques, also known as group cooperative relay, and also by Beam-Division Multiple Access (BDMA).[202]

Pervasive networks are an amorphous and at present entirely hypothetical concept where the user can be simultaneously connected to several wireless access technologies and can seamlessly move between them (See vertical handoff, IEEE 802.21). These access technologies can be Wi-Fi, UMTS, EDGE, or any other future access technology. Included in this concept is also smart-radio (also known as cognitive radio) technology to efficiently manage spectrum use and transmission power as well as the use of mesh routing protocols to create a pervasive network.

See also

References

  1. ^ 62 commercial networks support DC-HSPA+, drives HSPA investments LteWorld February 7, 2012
  2. ^ a b Vilches, J. (2010, April 29). Everything you need to know about 4G Wireless Technology. TechSpot.
  3. ^ a b ITU-R, Report M.2134, Requirements related to technical performance for IMT-Advanced radio interface(s), Approved in Nov 2008
  4. ^ Moray Rumney, "IMT-Advanced: 4G Wireless Takes Shape in an Olympic Year", Agilent Measurement Journal, September 2008
  5. ^ Nomor Research Newsletter: The way of LTE towards 4G
  6. ^ "3GPP specification: Requirements for further advancements for E-UTRA (LTE Advanced)". 3GPP. Retrieved August 21, 2013.
  7. ^ "3GPP Technical Report: Feasibility study for Further Advancements for E-UTRA (LTE Advanced)". 3GPP. Retrieved August 21, 2013.
  8. ^ "ITU paves way for next-generation 4G mobile technologies" (press release). ITU. October 21, 2010Template:Inconsistent citations {{cite journal}}: Cite journal requires |journal= (help)CS1 maint: postscript (link)
  9. ^ Parkvall, Stefan; Dahlman, Erik; Furuskär, Anders; Jading, Ylva; Olsson, Magnus; Wänstedt, Stefan; Zangi, Kambiz (September 21–24, 2008). LTE Advanced – Evolving LTE towards IMT-Advanced (PDF). Vehicular Technology Conference Fall 2008. Stockholm: Ericsson Research. Retrieved November 26, 2010. {{cite conference}}: External link in |publisher= (help)
  10. ^ Parkvall, Stefan; Astely, David (April 2009). "The evolution of LTE toward LTE Advanced". Journal of Communications. 4 (3): 146–54. doi:10.4304/jcm.4.3.146-154.
  11. ^ [1] The Draft IEEE 802.16m System Description Document, 2008-04-20
  12. ^ "Light Reading Mobile - 4G/LTE — Ericsson, Samsung Make LTE Connection — Telecom News Analysis". Unstrung.com. Retrieved March 24, 2010.
  13. ^ "MetroPCS Launches First 4G LTE Services in the United States and Unveils World's First Commercially Available 4G LTE Phone". MetroPCS IR. September 21, 2010. Retrieved April 8, 2011.
  14. ^ Jason Hiner (January 12, 2011). "How AT&T and T-Mobile conjured 4G networks out of thin air". TechRepublic. Retrieved April 5, 2011.
  15. ^ Brian Bennet (April 5, 2012). "Meet U.S. Cellular's first 4G LTE phone: Samsung Galaxy S Aviator". CNet. Retrieved April 11, 2012.
  16. ^ "Sprint 4G LTE Launching in 5 Cities July 15". PC Magazine. June 27, 2012. Retrieved November 3, 2012.
  17. ^ "We have you covered like nobody else". T-Mobile USA. April 6, 2013. Retrieved April 6, 2013.
  18. ^ "SK Telecom and LG U+ launch LTE in Seoul, fellow South Koreans seethe with envy". July 5, 2011. Retrieved July 13, 2011.
  19. ^ "EE launches Superfast 4G and Fibre for UK consumers and businesses today". EE. October 30, 2012. Retrieved August 29, 2013.
  20. ^ Miller, Joe (August 29, 2013). "Vodafone and O2 begin limited roll-out of 4G networks". BBC News. Retrieved August 29, 2013.
  21. ^ Shukla, Anuradha (October 10, 2011). "Super-Fast 4G Wireless Service Launching in South Korea". Asia-Pacific Business and Technology Report. Retrieved November 24, 2011.
  22. ^ "Sprint announces seven new WiMAX markets, says 'Let AT&T and Verizon yak about maps and 3G coverage'". Engadget. March 23, 2010. Archived from the original on March 25, 2010. Retrieved April 8, 2010. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  23. ^ Qualcomm halts UMB project, Reuters, November 13th, 2008
  24. ^ a b "LTE". 3GPP web site. 2009. Retrieved August 20, 2011.
  25. ^ a b c "WiMAX and the IEEE 802.16m Air Interface Standard" (PDF). WiMax Forum. April 4, 2010. Retrieved February 7, 2012.
  26. ^ G. Fettweis, E. Zimmermann, H. Bonneville, W. Schott, K. Gosse, M. de Courville (2004). "High Throughput WLAN/WPAN" (PDF). WWRF.{{cite web}}: CS1 maint: multiple names: authors list (link)
  27. ^ "4G standards that lack cooperative relaying".
  28. ^ Morr, Derek (June 9, 2009). "Verizon mandates IPv6 support for next-gen cell phones". Retrieved June 10, 2009.
  29. ^ Zheng, P; Peterson, L; Davie, B; Farrel, A (2009). "Wireless Networking Complete". Morgan KaufmannTemplate:Inconsistent citations {{cite journal}}: Cite journal requires |journal= (help)CS1 maint: postscript (link)
  30. ^ "KT Launches Commercial WiBro Services in Korea". WiMAX Forum. November 15, 2005. Archived from the original on May 29, 2010. Retrieved June 23, 2010. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  31. ^ "KT's Experience In Development Projects". March 2011.
  32. ^ "4G Mobile Broadband". Sprint. Archived from the original on February 22, 2008. Retrieved March 12, 2008.
  33. ^ 1634–1699: McCusker, J. J. (1997). How Much Is That in Real Money? A Historical Price Index for Use as a Deflator of Money Values in the Economy of the United States: Addenda et Corrigenda (PDF). American Antiquarian Society. 1700–1799: McCusker, J. J. (1992). How Much Is That in Real Money? A Historical Price Index for Use as a Deflator of Money Values in the Economy of the United States (PDF). American Antiquarian Society. 1800–present: Federal Reserve Bank of Minneapolis. "Consumer Price Index (estimate) 1800–". Retrieved February 29, 2024.
  34. ^ "DoCoMo Achieves 5 Gbit/s Data Speed". NTT DoCoMo Press. February 9, 2007.
  35. ^ Reynolds, Melanie (September 14, 2007). "NTT DoCoMo develops low power chip for 3G LTE handsets". Electronics Weekly. Retrieved April 8, 2010.
  36. ^ "Auctions Schedule". FCC. Archived from the original on January 24, 2008. Retrieved January 8, 2008. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  37. ^ "European Commission proposes TV spectrum for WiMax". zdnetasia.com. Archived from the original on December 14, 2007. Retrieved January 8, 2008. {{cite news}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  38. ^ "Skyworks Rolls Out Front-End Module for 3.9G Wireless Applications. (Skyworks Solutions Inc.)" (free registration required). Wireless News. February 14, 2008. Retrieved September 14, 2008.
  39. ^ "Wireless News Briefs — February 15, 2008". WirelessWeek. February 15, 2008. Retrieved September 14, 2008.
  40. ^ "Skyworks Introduces Industry's First Front-End Module for 3.9G Wireless Applications". Skyworks press release. Free with registration. 11 FEB 2008. Retrieved 2008-09-14. {{cite news}}: Check date values in: |date= (help)
  41. ^ ITU-R Report M.2134, “Requirements related to technical performance for IMT-Advanced radio interface(s),” November 2008.
  42. ^ Nortel and LG Electronics Demo LTE at CTIA and with High Vehicle Speeds :: Wireless-Watch Community (Access through web.archive.org)
  43. ^ "Scartel and HTC Launch World's First Integrated GSM/WiMAX Handset" (Press release). HTC Corporation. November 12, 2008. Retrieved March 1, 2011.
  44. ^ San Miguel and Qatar Telecom Sign MOU San Miguel Corporation, December 15, 2008
  45. ^ "LRTC to Launch Lithuania's First Mobile WiMAX 4G Internet Service" (Press release). WiMAX Forum. March 3, 2009. Retrieved November 26, 2010.
  46. ^ a b "4G Coverage and Speeds". Sprint. Retrieved November 26, 2010.
  47. ^ "Teliasonera First To Offer 4G Mobile Services". The Wall Street Journal. December 14, 2009. {{cite news}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help) [dead link]
  48. ^ NetCom.no - NetCom 4G (in English)
  49. ^ Daily Mobile Blog
  50. ^ Neudorf, Raigo (February 25, 2010). "EMT avas 4G testvõrgu" (in Estonian). E24.ee. Retrieved November 26, 2010.{{cite web}}: CS1 maint: unrecognized language (link)
  51. ^ Anand Lal Shimpi (June 28, 2010). "The Sprint HTC EVO 4G Review". AnandTech. Retrieved March 19, 2011. {{cite web}}: Italic or bold markup not allowed in: |publisher= (help)
  52. ^ МТS kompaniyasi O’zbekistonda 4G tarmog’i ishga tushirilishini e’lon qiladi (in Uzbek)
  53. ^ MetroPCS.
  54. ^ "ITU World Radiocommunication Seminar highlights future communication technologies". International Telecommunication Union.
  55. ^ VivaCell-MTS launches in Armenia 4G/LTE
  56. ^ ""Omnitel" skelbia pirmoji Lietuvoje pradėjusi tiekti 4G LTE ryšio paslaugas" (in Lithuanian). delfi.lt. April 28, 2011. Retrieved April 28, 2011.
  57. ^ "Mobily Announces 4G LTE Service in Saudi Arabia (STC and Zain too)". SaudiMac. Retrieved September 26, 2011.
  58. ^ "Verizon launches its first LTE handset". Telegeography.com. March 16, 2011. Retrieved July 31, 2012.
  59. ^ "HTC ThunderBolt is officially Verizon's first LTE handset, come March 17th". Phonearena.com. Retrieved July 31, 2012.
  60. ^ "4G Thailand : First 4G field trial of Thailand". AIS. Retrieved January 31, 2012.
  61. ^ "demonstrates Broadcast Video/TV over LTE". Ericsson. Retrieved July 31, 2012.
  62. ^ "Bharti Airtel launches India's first 4G service". The Times Of India. April 10, 2012.
  63. ^ 1st news (May 24, 2012). "Azercell объявил о запуске 4G". 1NEWS.AZ. Retrieved July 31, 2012.{{cite web}}: CS1 maint: numeric names: authors list (link)
  64. ^ Telstra to launch 4G mobile broadband network by end 2011 Telstra, February 15, 2011
  65. ^ Colley, Andrew (August 29, 2012). "Telstra's 4G plan to reach 14 million". The Australian. Retrieved August 21, 2013.
  66. ^ "4G Network - Mobile Phones & Plans". Telstra. Retrieved October 30, 2012.
  67. ^ "Optus to build faster 4G network with acquisition of Vividwireless". Optus. February 20, 2012. Retrieved August 21, 2013.
  68. ^ "Optus introduces world's first TD-LTE Advanced carrier aggregation network". Optus. December 19, 2013. Retrieved December 30, 2013.
  69. ^ "Optus tests TD-LTE Advanced carrier aggregation". Telecoms.com. December 19, 2013. Retrieved December 30, 2013.
  70. ^ "T-Mobile Austria betreibt Europas größtes LTE-Netz in Innsbruck" (in German). teltarif.de. August 24, 2009. Retrieved December 8, 2013.
  71. ^ "LTE, die nächste Mobilfunkgeneration, live im A1 Netz" (in German). A1 Telekom Austria. June 29, 2010. Retrieved December 8, 2013.
  72. ^ "2.6 GHz frequency auction completed – Revenues total EUR 39,5 million". RTR. September 20, 2010. Retrieved December 8, 2013.
  73. ^ "2600 MHz paired Spectrum". RTR. October 18, 2010. Retrieved December 8, 2013.
  74. ^ "2600 MHz unpaired Spectrum". RTR. October 18, 2010. Retrieved December 8, 2013.
  75. ^ a b "A1 Telekom Austria startet LTE in der Bundeshauptstadt Wien" (in German). A1 Telekom Austria. October 19, 2010. Retrieved December 8, 2013.
  76. ^ "T-Mobile verspricht mobiles Internet mit bis zu 100 Mbit/s" (in German). Der Standard. July 28, 2011. Retrieved December 8, 2013.
  77. ^ "Drei startet den LTE-Turbo" (in German). Futurezone. November 16, 2011. Retrieved December 8, 2013.
  78. ^ "A1 erreicht bereits jeden dritten Österreicher mit LTE" (in German). A1 Telekom Austria. November 26, 2012. Retrieved December 8, 2013.
  79. ^ "1.000 4G/LTE Stationen im Netz von A1: Mobilfunknetz der 4. Generation wächst" (in German). A1 Telekom Austria. August 7, 2010. Retrieved December 8, 2013.
  80. ^ "A1 erweitert Glasfasernetz und Mobilfunknetz der vierten Generation im Großraum Bregenz" (in German). A1 Telekom Austria. September 4, 2013. Retrieved December 8, 2013.
  81. ^ "T-MOBILE BRINGT LTE AUF SMARTPHONES" (in German). T-Mobile Austria. October 7, 2013. Retrieved December 8, 2013.
  82. ^ "Multiband Auction 800/900/1800 MHz (2013) - Auction Results". RTR. October 21, 2013. Retrieved December 8, 2013.
  83. ^ "T-Mobile Austria confirms intent to appeal auction results". Telecoms.com. November 28, 2013. Retrieved December 8, 2013.
  84. ^ "H3G to spearhead Austrian spectrum appeal". TeleGeography. November 28, 2013. Retrieved December 8, 2013.
  85. ^ "A1 erweitert Glasfasernetz und Mobilfunknetz der vierten Generation im Großraum Klosterneuburg" (in German). A1 Telekom Austria. December 4, 2013. Retrieved December 8, 2013.
  86. ^ "A1 ermöglicht als erster Mobilfunkbetreiber Österreichs 4G/LTE Nutzung im Ausland" (in German). A1 Telekom Austria. December 19, 2013. Retrieved December 20, 2013.
  87. ^ "A1 startet LTE 800 High-Speed Mobilfunknetz am Stadtrand und im ländlichen Bereich" (in German). A1. January 28, 2014. Retrieved January 29, 2014.
  88. ^ "Multiband Auction 800/900/1800 MHz (2013) - Results 800 MHz". Austrian Regulatory Authority for Broadcasting and Telecommunications (RTR). Retrieved January 29, 2014.
  89. ^ "T-Mobile Austria raises top LTE transmission speed to 150Mbps". TeleGeography. March 11, 2014. Retrieved March 13, 2014.
  90. ^ Roll-out of the first 4G network in Belgium and strategic partnership with Fon
  91. ^ Belgacom extends 4G network in five more cities
  92. ^ Anatel will begin reviewing 4G tender proposals and reveal auction date on 5 June
  93. ^ TELUS (October 10, 2008). "Next Generation Network Evolution". TELUS.
  94. ^ BELL (December 4, 2013). "Bell - LTE". BELL.
  95. ^ "Vodafone Fiji's 4G network goes live". TeleGeography. December 5, 2013. Retrieved December 7, 2013.
  96. ^ "FAQ's - 4G". Vodafone Fiji. Retrieved December 29, 2013.
  97. ^ "Frequenzvergabeverfahren 2010" (in German). Bundesnetzagentur. May 20, 2010. Retrieved December 8, 2013.
  98. ^ "Vodafone: Ab 1. Dezember LTE-Surfstick mit Vertrag für 1 Euro" (in German). teltarif.de. November 30, 2010. Retrieved March 3, 2014.
  99. ^ a b "Das ist LTE" (in German). Deutsche Telekom. Retrieved March 3, 2014.
  100. ^ "O2 LTE für Zuhause". Telefónica. May 30, 2011. Retrieved March 3, 2014.
  101. ^ "LTE für Bonn, Hamburg, Leipzig und München" (in German). April 24, 2012. Retrieved March 11, 2014.
  102. ^ "Deutsche Telekom bringt LTE in den Freistaat Thüringen" (in German). July 3, 2012. Retrieved March 11, 2014.
  103. ^ "Telefónica Deutschland: World's first handovers of voice calls from LTE to UMTS under realistic conditions". Telefónica. February 7, 2013. Retrieved March 3, 2014.
  104. ^ "O2 LTE 4G all over Germany: Starting July 2, all high speed areas are on air". Telefónica. June 7, 2013. Retrieved March 3, 2014.
  105. ^ "LTE+: Network turbo with up to 150 Mbit/s". September 5, 2013. Retrieved March 11, 2014.
  106. ^ "Telefonica und Vodafone testen LTE-Advanced". heise online. November 15, 2013. Retrieved November 15, 2013.
  107. ^ "LTE-Bestmarke: Telekom überträgt 580 MBit/s in einem Live-Netz" (in German). Deutsche Telekom. February 20, 2014. Retrieved February 20, 2014.
  108. ^ "LTE bei E-Plus für alle ohne Aufpreis: Am Mittwoch geht's los" (in German). teltarif.de. March 3, 2014. Retrieved March 3, 2014.
  109. ^ "Deutsche Telekom: Ab Sommer bis zu 300 MBit/s über LTE" (in German). teltarif.de. March 10, 2014. Retrieved March 11, 2014.
  110. ^ "Tele Greenland to roll out 4G LTE on 1 December". TeleGeography. November 29, 2013. Retrieved November 30, 2013.
  111. ^ "Airtel launches 4G in Kolkata — The Times of India". The Times Of India.
  112. ^ "4G remains a pipedream in India as LTE faces major hurdles". Economic Times.
  113. ^ "Bharti Airtel to launch 4G in Delhi soon". Economic Times. August 13, 2013. Retrieved November 27, 2013.
  114. ^ "Telkomsel to serve 2013 APEC meeting with its 4g LTE trial network". Retrieved October 3, 2013.
  115. ^ "Indonesia finally gets a taste of 4G". Retrieved 20 Nopember 2013. {{cite news}}: Check date values in: |accessdate= (help)
  116. ^ Press Release: Digiweb Mobile Takes 088
  117. ^ RTÉ News article: Ireland gets new mobile phone provider
  118. ^ "ComReg Announces Results of its Multi-Band Spectrum Auction" (PDF). comreg.ie. Retrieved November 15, 2012.
  119. ^ "ComReg reveals 4G auction results - €450m instant windfall for Irish Govt". www.siliconrepublic.com. Retrieved November 15, 2012.
  120. ^ "Ireland's first 4G phone service goes live". RTÉ. Retrieved September 26, 2013.
  121. ^ "Vodafone Ireland 4G Mobile Broadband Goes Live". Vodafone Ireland. October 14, 2013. Retrieved December 23, 2013.
  122. ^ "Vodafone Switches on 4G for Smartphones in 6 Cities & 31 Towns across Ireland". Vodafone Ireland. December 9, 2013. Retrieved December 22, 2013.
  123. ^ Times of Malta. "Vodafone rolls out 4G broadband". Times of Malta.
  124. ^ "Omantel launches Oman's first 4G LTE mobile broadband network". Muscat Daily. July 15, 2012. Retrieved February 12, 2014.
  125. ^ "Life gets even faster with the launch of 4G". Nawras. February 17, 2013. Retrieved August 21, 2013.
  126. ^ "4G". Nawras. Retrieved August 21, 2013.
  127. ^ "Ooredoo Announces 4G LTE Commercial Launch for April". Marhaba. March 14, 2013. Retrieved August 21, 2013.
  128. ^ "KPN versnelt 4G-uitrol in Nederland". KPN.
  129. ^ V o dafone verhoogt snelheid mobiel internet voor álle klanten
  130. ^ T-Mobile komt in september met meer 4G info
  131. ^ "KPN accelerates 4G roll-out in The Netherlands". KPN.
  132. ^ "Tele2 Stays MVNO for 2G/3G on T-Mobile network (Dutch Article)".
  133. ^ "Dutch multiband spectrum auction ends with four winners". Teleccompaper. Retrieved December 30, 2012.
  134. ^ Template:Cite web=http://www.telegeography.com/products/commsupdate/articles/2014/02/19/kpn-expands-4g-coverage-at-home-and-abroad/
  135. ^ Template:Cite web=http://corporate.kpn.com/kpn-actueel/nieuwsberichten-1/ons-4g-netwerk-wordt-steeds-groter.htm
  136. ^ 4G is Live now | LTE Network | Vodafone NZ
  137. ^ "Small, rural NZ town gets 4G". 3 News NZ. May 25, 2013.
  138. ^ Tom Pullar-Strecker (June 18, 2013). "2degrees to roll out 4G - industries - business". Stuff.co.nz. Retrieved November 27, 2013.
  139. ^ Telenor Pakistan Infrastructure Upgrade Project
  140. ^ Baloch, Farooq (May 5, 2013). "A step ahead: Telenor Pakistan already gearing up for the 4G era". The Express Tribune. Retrieved November 27, 2013.
  141. ^ 4G Licence in Pakistan
  142. ^ Hanif Khalid (October 9, 2013). "'Pakistan to launch 3G in first quarter of 2014'". The News. Retrieved November 27, 2013.
  143. ^ http://network.globe.com.ph/fourG/index
  144. ^ "Vodafone permite testarea tehnologiei LTE/4G in 17 magazine din 10 orase din Romania/Internet la viteze de pana la 75 Mbit/s poate fi incercat pe modem USB, tableta si hotspot mobil ;— hotnews.ro". hotnews.ro.
  145. ^ Vodafone Romania covering map
  146. ^ "Hartă acoperire internet și voce" (in Romanian). Vodafone. Retrieved August 21, 2013.
  147. ^ "Výsledky elektronickej aukcie" (in Slovak). Telekomunikačný úrad SR. January 8, 2014. Retrieved January 9, 2014.
  148. ^ "Spain to get first 4G mobile network in July". zdnet.com. May 9, 2013. Retrieved June 5, 2013. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  149. ^ "Orange trumps rival Yoigo to launch first Spanish 4G network". zdnet.com. May 13, 2013. Retrieved June 5, 2013. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  150. ^ "Vodafone wins Spain's 4G race with surprise launch in seven cities". zdnet.com. May 28, 2013. Retrieved June 5, 2013. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  151. ^ "MWC: Vodafone Spain demonstrates 540Mbps using FDD/TDD-LTE CA setup". TeleGeography. March 1, 2014. Retrieved March 1, 2014.
  152. ^ "Vodafone lanza 4G en Burgos" (in Spanish). Vodafone. March 7, 2014. Retrieved March 13, 2014.
  153. ^ "Vodafone lanza 4G en toda Castilla La Mancha" (in Spanish). Vodafone. March 11, 2014. Retrieved March 13, 2014.
  154. ^ "Vodafone lanza 4G en Logroño" (in Spanish). Vodafone. March 12, 2014. Retrieved March 13, 2014.
  155. ^ "Vodafone Spain brings LTE service to Logrono". Telecompaper. March 13, 2014. Retrieved March 13, 2014.
  156. ^ "Korea to Begin Developing 5G". unwiredview.com. July 8, 2008. Archived from the original on March 27, 2010. Retrieved April 8, 2010. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  157. ^ Dialog launches first fixed 4G-LTE service in Sri Lanka
  158. ^ Dialog Launches First Mobile 4G-LTE Service
  159. ^ Mobitel Launches Mobile 4G-LTE Service
  160. ^ "Swisscom demonstrates 4G mobile communications technology LTE in Grenchen". Swisscom. October 7, 2010. Retrieved July 14, 2013.
  161. ^ "LTE pilot project in seven tourist regions starting today". Swisscom. December 8, 2011. Retrieved July 14, 2013.
  162. ^ "Orange, Sunrise and Swisscom purchase mobile radio frequencies at auction". OFCOM. February 23, 2012. Retrieved July 14, 2013.
  163. ^ "Swisscom launches Switzerland's first 4G/LTE network". Swisscom. November 28, 2012. Retrieved July 14, 2013.
  164. ^ a b "Swisscom customers can now surf even faster on the 4G/LTE network". Swisscom. May 23, 2013. Retrieved July 14, 2013.
  165. ^ "Orange übernimmt die Marktführerschaft bei 4G, lanciert weitere Service Excellence Initiativen und erzielt ein solides Quartalsergebnis" (PDF). Orange. May 28, 2013. Retrieved July 14, 2013.
  166. ^ "4G/LTE roaming for Swisscom customers". Swisscom. June 20, 2013. Retrieved July 14, 2013.
  167. ^ "Sunrise LTE FAQ". Sunrise. Retrieved December 1, 2013.
  168. ^ "4G/LTE: Mobiles Highspeed Internet für alle Sunrise Kunden". Sunrise. June 19, 2013. Retrieved July 14, 2013.
  169. ^ "Orange looking to fibre optic in the further expansion of its 4G capacities" (PDF). Orange. November 19, 2013. Retrieved December 1, 2013.
  170. ^ "upc cablecom to connect mobile phone masts for Orange" (PDF). UPC Cablecom. November 19, 2013. Retrieved December 1, 2013.
  171. ^ "Fast data connections now also available while holidaying in France". Swisscom. November 26, 2013. Retrieved December 1, 2013.
  172. ^ a b c d "List of LTE Roaming partners" (PDF). Swisscom. November 25, 2013. Retrieved December 1, 2013.
  173. ^ "Swisscom bietet 4G/LTE-Roaming ab heute in Österreich und damit nun in neun Ländern an, darunter Frankreich, Japan, Hongkong und Singapur" (in German). Swisscom. December 19, 2013. Retrieved December 19, 2013.
  174. ^ "Pünktlich zu den Olympischen Spielen in Sotchi: Mit Swisscom Roaming über 4G/LTE neu auch in Russland und damit in insgesamt zehn Ländern" (in German). Swisscom. January 22, 2014. Retrieved January 23, 2014.
  175. ^ "Das Sunrise LTE-Mobilfunknetz wird noch schneller" (PDF) (in German). Sunrise. January 29, 2014. Retrieved January 30, 2014.
  176. ^ "True Move H – The First To Offer LTE Service On 2100 MHz In Thailand While Reinforcing Its Leadership As The Largest 3G Operator,". http://www.thaipr.net/. May 10, 2013. Retrieved December 19, 2013. {{cite web}}: External link in |publisher= (help)
  177. ^ TMCELL starts to connect the subscribers to the LTE network
  178. ^ Neate, Rupert (December 12, 2009). "Slough accepts the call to be 4G mobile phone trailblazer". The Daily Telegraph. London. Archived from the original on April 2, 2010. Retrieved April 8, 2010. {{cite news}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  179. ^ "4G LTE Network From UK Broadband Goes Live In London | TechWeekEurope UK". Techweekeurope.co.uk. February 29, 2012. Retrieved July 31, 2012.
  180. ^ 4G Given Go Ahead for UK
  181. ^ "Everything Everywhere sells services to 3 allowing for 4G". SourcingFocus.Com. SourcingFocus.Com. Retrieved September 9, 2012.
  182. ^ "EE to launch 4G mobile services in 16 UK cities in 2012". BBC News. September 11, 2012. Retrieved August 22, 2013.
  183. ^ Tripathi, Shruti (September 11, 2012). "EE by gum! 4G (almost!) launches. Q&A with the man making it happen | Features". LondonlovesBusiness.com. Retrieved October 30, 2012.
  184. ^ Tripathi, Shruti. "It's live! EE launches superfast 4G mobile network in 10 cities | News". LondonlovesBusiness.com. Retrieved October 30, 2012.
  185. ^ "Ofcom finalises 4G auction rules". ofcom.org.uk. Retrieved November 12, 2012.
  186. ^ "4G". ofcom.org.uk. Retrieved November 12, 2012.
  187. ^ Warman, Matt (May 13, 2012). "4G mobile phone launch 'before Christmas'". The Daily Telegraph. London. Retrieved May 14, 2012.
  188. ^ "Ofcom announces winners of the 4G mobile auction". Ofcom. February 20, 2013. Retrieved February 20, 2013.
  189. ^ Jackson, Mark (July 9, 2013). "Ofcom UK Open 900MHz, 1800MHz and 2100MHz to 4G Mobile Broadband". ISPreview. Retrieved August 30, 2013.
  190. ^ Kelion, Leo (August 1, 2013). "O2 4G mobile network launch date announced for the UK". BBC News. Retrieved August 22, 2013.
  191. ^ "Vodafone announces 4G launch in UK". BBC News. August 7, 2013. Retrieved August 22, 2013.
  192. ^ "Three UK Delays 4G Mobile Broadband Launch to Q4 2013". March 27, 2013. Retrieved August 22, 2013.
  193. ^ Woods, Ben (August 28, 2013). "Three finally unveils 4G rollout plans: The stage is now set for UK's 4G future". The Next Web. Retrieved August 28, 2013.
  194. ^ a b "AT&T signs LTE roaming agreement with EE". http://www.telecoms.com/. December 17, 2013. Retrieved December 20, 2013. {{cite web}}: External link in |publisher= (help)
  195. ^ "EE CUSTOMERS TO BENEFIT FROM SUPERFAST 4G IN FRANCE AND SPAIN". EE. March 13, 2014. Retrieved March 13, 2014.
  196. ^ "EE signs 4G roaming agreements in France, Spain". Telecompaper. March 13, 2014. Retrieved March 13, 2014.
  197. ^ Cheng, Roger (September 27, 2011). "Sprint to launch own 4G LTE network in early 2012 (scoop) | Mobile — CNET News". News.cnet.com. Retrieved July 31, 2012.
  198. ^ "America's Most Reliable Network". Verizon Wireless. Retrieved August 21, 2013.
  199. ^ "AT&T, Verizon, Vodafone to share same 4G network". Electronista. September 21, 2007. Retrieved April 8, 2010.
  200. ^ "World's First 3G/4G Android Phone, HTC EVO™ 4G, Coming this Summer Exclusively from Sprint" (Press release). Sprint. March 23, 2010. Retrieved November 26, 2010.
  201. ^ FCC White Paper. "The Public Safety Nationwide Interoperable Broadband Network, A New Model For Capacity, Performance and Cost", June 2010.
  202. ^ IT R&D program of MKE/IITA: 2008-F-004-01 “5G mobile communication systems based on beam-division multiple access and relays with group cooperation”.


Preceded by Mobile Telephony Generations Succeeded by