2019 in paleobotany
| |||
---|---|---|---|
+... |
This article records new taxa of fossil plants that are scheduled to be described during the year 2019, as well as other significant discoveries and events related to paleobotany that are scheduled to occur in the year 2019.
Flowering plants
Aquifoliales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Nom. nov |
Valid |
Doweld |
A holly; a replacement name for Ilex denticulata von Heer (1857). |
|||||
Nom. nov |
Valid |
Doweld |
A holly; a replacement name for Ilex integrifolia Baikovskaja (1956). |
|||||
Nom. nov |
Valid |
Doweld |
A holly; a replacement name for Ilex undulata Boulay (1887). |
|||||
Nom. nov |
Valid |
Doweld |
A holly; a replacement name for Ilex longifolia Friedrich (1884). |
|||||
Nom. nov |
Valid |
Doweld |
A holly; a replacement name for Ilex acuminata Saporta (1865). |
|||||
Nom. nov |
Valid |
Doweld |
A holly; a replacement name for Ilex acuminata Becker (1960). |
|||||
Nom. nov |
Valid |
Doweld |
A holly; a replacement name for Ilex microdonta Saporta (1865). |
|||||
Nom. nov |
Valid |
Doweld |
A holly; a replacement name for Ilex macrophylla von Heer (1869). |
|||||
Sp. nov |
Valid |
Doweld |
A holly; a replacement name for the previously invalidly published Ilex ohashii Huzioka (1963), lacking holotype designation when published. |
Arecales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Khan, Mandal & Bera |
Late Cretaceous (late Maastrichtian) – early Paleocene (Danian) |
A permineralized palm stem. |
||||
Sp. nov |
Valid |
Su & Zhou in Su et al. |
Lunpola Basin |
A member of the family Arecaceae belonging to the subfamily Coryphoideae. |
||||
Sp. nov |
Valid |
Grímsson & Zetter in Grímsson et al. |
Late Oligocene |
A species of Sclerosperma. |
||||
Sp. nov |
Valid |
Grímsson & Zetter in Grímsson et al. |
Late Oligocene |
A species of Sclerosperma. |
||||
Sp. nov |
Valid |
Winterscheid |
Köln Formation |
A member of the family Arecaceae belonging to the tribe Calameae. |
||||
Sp. nov |
Valid |
Winterscheid |
Köln Formation |
A member of the family Arecaceae belonging to the tribe Calameae. |
||||
Sp. nov |
Valid |
Vallati & De Sosa Tomas in Vallati, De Sosa Tomas & Casal |
A member of Arecaceae described on the basis of fossil pollen grains. Announced in 2019; the final version of the article naming it was published in 2020. |
Alismatales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Sender et al. |
A member or a relative of the family Araceae. |
|||||
Gen. et sp. nov |
Valid |
Sender et al. |
A member or a relative of the family Araceae. Genus includes new species T. bogneri. |
Asterales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Cichoreacidites? igapoensis[8] |
Sp. nov |
Valid |
D'Apolito et al. |
Pliocene–Pleistocene |
Fossil pollen of a member of the genus Pacourina or Vernonia. |
Brassicales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Conran et al. |
Early Miocene |
A member of the family Akaniaceae. |
Caryophyllales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Farooqui, Ray & Garg |
A species of Basella. |
Chloranthales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (late Barremian-early Aptian) |
Almargem Formation |
||||
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (late Aptian–early Albian) |
A member of the family Chloranthaceae. Genus includes new species H. crystallifera. |
||||
Sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (late Barremian-early Aptian) |
Almargem Formation |
Cornales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Atkinson, Martínez & Crepet |
Crossosomatales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Hernández-Damián, Cevallos-Ferriz & Huerta-Vergara |
A species of Staphylea. |
|||||
Sp. nov |
Valid |
Huegele & Manchester |
Probably late Eocene |
A species of Turpinia. |
Dioscoreales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Mehrotra & Shukla |
Early Eocene |
A species of Dioscorea. |
||||
Sp. nov |
Valid |
Kvaček |
Most Formation |
A species of Dioscorea. |
Ericales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Valid |
Smith & Manchester |
A member of Vaccinioideae. Genus includes new species J. benewahensis. |
|||||
Sp. nov |
Valid |
D'Apolito et al. |
Pliocene–Pleistocene |
Fossil pollen of a flowering plant, possibly a member of the genus Myrsine. |
||||
Sp. nov |
Valid |
Huegele & Manchester |
Probably late Eocene |
A species of Symplocos. |
||||
Sp. nov |
Valid |
Huegele & Manchester |
Probably late Eocene |
A species of Symplocos. |
||||
Sp. nov |
Valid |
Huegele & Manchester |
Probably late Eocene |
A species of Symplocos. |
||||
Sp. nov |
Valid |
Huegele & Manchester |
Probably late Eocene |
A species of Symplocos. |
||||
Sp. nov |
Valid |
Huegele & Manchester |
Probably late Eocene |
A species of Symplocos. |
||||
Sp. nov |
Valid |
Huegele & Manchester |
Probably late Eocene |
A species of Symplocos. |
||||
Sp. nov |
Valid |
Huegele & Manchester |
Probably late Eocene |
A species of Symplocos. |
Fabales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Herendeen & Herrera |
A species of Arcoa. |
|||||
Sp. nov |
Valid |
Akkemik |
A relative of redbuds described on the basis of fossil wood. |
|||||
Sp. nov |
Valid |
Worobiec in Worobiec & Worobiec |
A species of Gleditsia. |
|||||
Sp. nov |
Valid |
Shukla, Singh & Mehrotra |
Early Eocene |
Naredi Formation |
A member of the family Fabaceae belonging to the subfamily Detarioideae. |
|||
Sp. nov |
Valid |
Worobiec in Worobiec & Worobiec |
Fossil leaflets resembling leaflets of extant and fossil members of Fabaceae. |
|||||
Sp. nov |
Valid |
Akkemik in Akkemik, Akkılıç & Güngör |
Early Miocene |
|||||
Sp. nov |
Valid |
Wang et al. |
A species of Ormosia. |
|||||
Gen. et 2 sp. nov |
Valid |
Pérez-Lara & Estrada-Ruiz in Pérez-Lara, Estrada-Ruiz & Castañeda-Posadas |
A member of the family Fabaceae belonging to the subfamily Cercidoideae or Dialioideae. Genus includes new species T. cristalliferum and T. eocenica. |
Fagales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Wilf et al. |
A species of Castanopsis. |
|||||
Sp. nov |
Valid |
Vanner |
A member of the family Casuarinaceae described on the basis of fossil wood. |
|||||
Sp. nov |
Valid |
Huegele & Manchester |
Probably late Eocene |
A species of Engelhardia. |
||||
Sp. nov |
Valid |
Akkemik in Akkemik, Akkılıç & Güngör |
Early Miocene |
|||||
Sp. nov |
Valid |
Liu et al. |
Early Oligocene |
An oak |
Gentianales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Woodcock, Meyer & Prado |
A species of Calycophyllum. |
|||||
Psilatriporites aspidatus[8] |
Sp. nov |
Valid |
D'Apolito et al. |
Pliocene–Pleistocene |
Fossil pollen of a member of the genus Faramea. |
Icacinales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Del Rio, Stull & De Franceschi |
Early Eocene |
A member of the family Icacinaceae. |
||||
Sp. nov |
Valid |
Del Rio, Thomas & De Franceschi |
Late Paleocene |
A member of the family Icacinaceae. |
||||
Sp. nov |
Valid |
Del Rio, Thomas & De Franceschi |
Late Paleocene |
A member of the family Icacinaceae. |
||||
Sp. nov |
Valid |
Del Rio, Stull & De Franceschi |
Early Eocene |
A member of the family Icacinaceae. |
||||
Sp. nov |
Valid |
Del Rio, Thomas & De Franceschi |
Late Paleocene |
A member of the family Icacinaceae. |
||||
Sp. nov |
Valid |
Del Rio, Thomas & De Franceschi |
Late Paleocene |
A member of the family Icacinaceae. |
||||
Sp. nov |
Valid |
Del Rio, Thomas & De Franceschi |
Late Paleocene |
A member of the family Icacinaceae. |
Laurales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Pérez-Lara, Estrada-Ruiz & Castañeda-Posadas |
A member of Lauraceae. |
|||||
Sp. nov |
Valid |
Akkemik in Akkemik, Akkılıç & Güngör |
Early Miocene |
|||||
Sp. nov |
Valid |
Wang & Sun in Wang et al. |
Fotan Group |
A member of Lauraceae described on the basis of fossil leaves. |
||||
Sp. nov |
Valid |
Wang & Sun in Wang et al. |
Fotan Group |
A member of Lauraceae described on the basis of fossil leaves. |
||||
Sp. nov |
Valid |
Wang & Sun in Wang et al. |
Fotan Group |
A member of Lauraceae described on the basis of fossil leaves. |
||||
Sp. nov |
Valid |
Wang & Sun in Wang et al. |
Fotan Group |
A member of Lauraceae described on the basis of fossil leaves. |
||||
Sp. nov |
Valid |
Wang & Sun in Wang et al. |
Fotan Group |
A member of Lauraceae described on the basis of fossil leaves. |
||||
Sp. nov |
Valid |
Ruiz, Brea & Pujana in Ruiz et al. |
Salamanca Formation |
A member of the family Lauraceae. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020. |
||||
Gen. et sp. nov |
Valid |
Ruiz, Brea & Pujana in Ruiz et al. |
Salamanca Formation |
A member of Laurales of uncertain phylogenetic placement. Genus includes new species P. scalariforme. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020. |
Magnoliales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Li et al. |
Late Oligocene |
A member of the family Annonaceae. |
||||
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (late Aptian-early Albian or older) |
Genus includes new species R. rugosa. |
||||
Gen. et 9 sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (late Barremian-early Albian) |
Genus includes new species S. antiqua, S. parva, S. elongata, S. tenuitesta, S. communis, S. crassitesta, S. grossa, S. undata and S. reticulata. |
Malpighiales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Wang et al. |
Fotan Group |
A species of Calophyllum. |
||||
Gen. et sp. nov |
Valid |
Srivastava, Miller & Baas |
A wood morphospecies with features of Achariaceae and Salicaceae. Type species includes new species E. seoniensis. |
|||||
Sp. nov |
Valid |
Wang et al. |
Middle Miocene |
Fotan Group |
A species of Garcinia. |
|||
Gen. et sp. nov |
Valid |
Centeno-González, Porras-Múzquiz & Estrada-Ruiz |
Late Cretaceous (late Campanian) |
A possible member of Violaceae. Genus includes new species M. elizondoa. |
||||
Nom. nov |
Valid |
Sachse |
A species of Populus; a replacement name for Juglans heerii Ettingshausen (1853). |
Malvales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Woodcock, Meyer & Prado |
A species of Ceiba. |
|||||
Sp. nov |
Valid |
Woodcock, Meyer & Prado |
Piedra Chamana Fossil Forest |
A species of Ceiba. |
||||
Sp. nov |
Valid |
Biswas, Khan & Bera |
Late Miocene |
A member of the family Dipterocarpaceae. |
||||
Sp. nov |
Valid |
Woodcock, Meyer & Prado |
Piedra Chamana Fossil Forest |
A species of Grewia. |
||||
Sp. nov |
Valid |
Woodcock, Meyer & Prado |
Piedra Chamana Fossil Forest |
A member of the family Malvaceae. |
||||
Sp. nov |
Valid |
Woodcock, Meyer & Prado |
Piedra Chamana Fossil Forest |
A species of Luehea. |
||||
Sp. nov |
Valid |
Woodcock, Meyer & Prado |
Piedra Chamana Fossil Forest |
A species of Muntingia. |
||||
Sp. nov |
Valid |
Woodcock, Meyer & Prado |
Piedra Chamana Fossil Forest |
A species of Ochroma. |
||||
Sp. nov |
Valid |
Woodcock, Meyer & Prado |
Piedra Chamana Fossil Forest |
A species of Sterculia. |
||||
Sp. nov |
Valid |
Woodcock, Meyer & Prado |
Piedra Chamana Fossil Forest |
Myrtales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Valid |
Woodcock, Meyer & Prado |
A member of the family Melastomataceae. Genus includes new species M. eocenica. |
|||||
Sp. nov |
Valid |
Ruiz, Brea & Pujana in Ruiz et al. |
Salamanca Formation |
A member of the family Myrtaceae. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020. |
Nymphaeales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Valid |
Gee & Taylor |
A member of Nymphaeaceae. Genus includes new species N. engelhardtii. |
Oxalidales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Pujana & Ruiz |
Eocene–Oligocene |
Río Turbio Formation |
A member of the family Cunoniaceae. |
|||
Sp. nov |
Valid |
Poinar & Chambers |
A probable member of Cunoniaceae. |
Piperales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (late Barremian-early Aptian) |
Almargem Formation |
Genus includes new species A. nudus. |
|||
Sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (late Barremian-early Aptian) |
Almargem Formation |
||||
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (late Barremian-early Aptian) |
Almargem Formation |
Genus includes new species B. striata. |
|||
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (late Barremian-early Aptian) |
Almargem Formation |
Genus includes new species D. brevicolpites. |
|||
Gen. et 3 sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (late Barremian-early Aptian) |
Almargem Formation |
Genus includes new species G. rugosa, G. inaequalis and G. punctata. |
Poales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Srivastava et al. |
Late Oligocene |
A bamboo. |
||||
Sp. nov |
Valid |
Srivastava et al. |
Late Oligocene |
A bamboo. |
||||
Sp. nov |
Valid |
Srivastava et al. |
A bamboo. |
|||||
Sp. nov |
Valid |
Srivastava et al. |
A bamboo. |
|||||
Sp. nov |
Valid |
Liang in Lu et al. |
Early Miocene |
A species of Scirpus. |
Proteales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Huegele & Manchester |
Probably late Eocene |
A species of Meliosma. |
||||
Sp. nov |
Valid |
Sun et al. |
A species of Platanus. |
|||||
Sp. nov |
Valid |
Pujana & Ruiz |
Eocene–Oligocene |
Río Turbio Formation |
Rosales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Jia, Su & Zhou in Jia et al. |
Late Oligocene |
A member of Ulmaceae. |
||||
Gen. et comb. nov |
Valid |
Doweld |
A member of Rhamnaceae; a new genus for "Ilex" pseudostenophylla Lesquereux (1883). |
|||||
Sp. nov |
Valid |
Akkemik in Akkemik, Akkılıç & Güngör |
Early Miocene |
|||||
Sp. nov |
Valid |
Wong, Dilcher & Uemura |
A species of Pteroceltis. |
|||||
Sp. nov |
Valid |
Wong, Dilcher & Uemura |
A species of Pteroceltis. |
|||||
Nom. nov |
Valid |
Doweld |
A species of Rubus; a replacement name for Rubus mucronatus Palamarev (1987). |
|||||
Nom. nov |
Valid |
Doweld |
A species of Rubus; a replacement name for Rubus ellipticus Pavlyutkin (2005). |
|||||
Sp. nov |
Valid |
Lott, Manchester & Corbett |
An elm. |
Sapindales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Liu, Su & Zhou in Liu et al. |
Lunpola Basin |
A species of Ailanthus. |
||||
Sp. nov |
Valid |
Herrera et al. |
Early Miocene |
A species of Antrocaryon. |
||||
Sp. nov |
Valid |
Woodcock, Meyer & Prado |
A species of Dodonaea. |
|||||
Sp. nov |
Valid |
Herrera et al. |
Early Miocene |
A species of Dracontomelon. |
||||
Sp. nov |
Valid |
Jiang et al. |
Late Oligocene |
Lunpola Basin |
A species of Koelreuteria. |
|||
Sp. nov |
Valid |
Tosal, Sanjuan & Martín-Closas |
Early Oligocene |
A sumac. |
||||
Sp. nov |
Valid |
Flynn, DeVore & Pigg |
Early Eocene |
A sumac. |
||||
Sp. nov |
Valid |
Flynn, DeVore & Pigg |
Early Eocene |
A sumac. |
||||
Sp. nov |
Valid |
Flynn, DeVore & Pigg |
Early Eocene |
A sumac. |
||||
Sp. nov |
Valid |
Herrera et al. |
Early Miocene |
A species of Spondias. |
||||
Sp. nov |
Valid |
Woodcock, Meyer & Prado |
Piedra Chamana Fossil Forest |
A species of Zanthoxylum. |
Saxifragales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Maslova et al. |
A species of Liquidambar. |
Vitales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Huegele & Manchester |
Probably late Eocene |
A species of Yua. |
Other angiosperms
Name | Novelty | Status | Authors | Type locality | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (late Barremian-early Aptian) |
Almargem Formation |
A flowering plant with affinities to Austrobaileyales or Nymphaeales. Genus includes new species A. operculatum. |
|||
Gen. et comb. nov |
Valid |
Bhowal & Sheikh ex Manchester, Ramteke, Kapgate & Smith |
A fossil fruit of a flowering plant of uncertain affinities; a new genus for "Grewia" mohgaoensis Paradkar & Dixit (1984). |
|||||
Sp. nov |
Valid |
Smith et al. |
Early Paleogene |
An angiosperm pollen species. |
||||
Gen. et sp. nov |
Valid |
Manchester & Lott |
Early to middle Eocene |
A fossil fruit of a member of Rosopsida of uncertain phylogenetic placement. Genus includes new species B. sprungerorum. |
||||
Gen. et comb. nov |
Valid |
Doweld |
A flowering plant of uncertain phylogenetic placement, described on the basis of fossil leaves; a new genus for "Celastrinites" artocarpidioides Lesquereux (1878). |
|||||
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (late Barremian-early Aptian) |
Almargem Formation |
A flowering plant of uncertain phylogenetic placement. Genus includes new species C. compactus. |
|||
Gen. et sp. nov |
Valid |
Coiffard, Kardjilov et Bernardes-de-Oliveira in Coiffard et al. |
A crown monocot of uncertain phylogenetic placement. Genus includes new species C. bognerianum. |
|||||
Sp. nov |
Valid |
Herman in Herman et al. |
Derevyannye Gory Formation |
A flowering plant described on the basis of fossil leaves. |
||||
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (late Barremian-early Aptian) |
Almargem Formation |
A non-eudicot flowering plant of uncertain affinity. Genus includes new species D. pusilla. |
|||
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (late Barremian-early Aptian) |
Almargem Formation |
A non-eudicot flowering plant of uncertain affinity. Genus includes new species D. portugallica. |
|||
Gen. et sp. nov |
Valid |
Poinar & Chambers |
A flowering plant of uncertain phylogenetic placement, possibly a relative of members of Laurales, especially Southern Hemisphere families allied with the Monimiaceae. Genus includes new species D. robertae. |
|||||
Gen. et 3 sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (late Barremian-early Aptian) |
Almargem Formation |
A non-eudicot flowering plant of uncertain affinity. Genus includes new species E. brevicolumella, E. longicolumella and E. intermedia. |
|||
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (late Barremian-early Aptian) |
Almargem Formation |
A non-eudicot flowering plant of uncertain affinity. Genus includes new species E. lusitanicus. |
|||
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (late Barremian-early Aptian) |
Almargem Formation |
A non-eudicot flowering plant of uncertain affinity. Genus includes new species E. parva. |
|||
Nom. nov |
Valid |
A flowering plant of uncertain phylogenetic placement; a replacement name for Diaphoranthus Poinar (2018). |
||||||
Sp. nov |
Valid |
Smith et al. |
Early Paleogene |
An angiosperm pollen species. |
||||
Sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (late Barremian-early Aptian) |
Almargem Formation |
A flowering plant with affinities to Austrobaileyales or Nymphaeales. |
|||
Gen. et sp. nov |
Valid |
Chin et al. |
A flowering plant of uncertain phylogenetic placement (possibly a member of Ericales), described on the basis of fossil wood. Genus includes new species H. zuniense. |
|||||
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (late Barremian-early Aptian) |
Almargem Formation |
An eudicot of uncertain phylogenetic placement, possibly related to Paisia. Genus includes new species I. vermiculata. |
|||
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (late Barremian-early Aptian) |
Almargem Formation |
A non-eudicot flowering plant of uncertain affinity. Genus includes new species J. portugallica. |
|||
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (late Barremian-early Aptian) |
Almargem Formation |
A non-eudicot flowering plant of uncertain affinity. Genus includes new species K. longicolpites. |
|||
Sp. nov |
Valid |
D'Apolito et al. |
Pliocene–Pleistocene |
Fossil pollen of a flowering plant. |
||||
Sp. nov |
Valid |
D'Apolito et al. |
Pliocene–Pleistocene |
Fossil pollen of Symmeria paniculata. |
||||
Sp. nov |
Valid |
D'Apolito et al. |
Pliocene–Pleistocene |
Fossil pollen of a flowering plant (possibly a member of the family Marcgraviaceae). |
||||
Sp. nov |
Valid |
Tang, Su & Zhou in Tang et al. |
A fossil fruit with unknown modern affinities. |
|||||
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (late Barremian-early Aptian) |
Almargem Formation |
An eudicot of uncertain phylogenetic placement. Genus includes new species M. irregularis. |
|||
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (late Barremian-early Aptian) |
Almargem Formation |
An eudicot of uncertain phylogenetic placement. Genus includes new species N. brevicolpites. |
|||
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (late Barremian-early Aptian) |
Almargem Formation |
A non-eudicot flowering plant of uncertain affinity. Genus includes new species P. simplex. |
|||
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (late Barremian-early Aptian) |
Almargem Formation |
A flowering plant of uncertain phylogenetic placement, possibly related to Magnoliales. Genus includes new species R. lusitanicus. |
|||
Rhoipites? basicus[8] |
Sp. nov |
Valid |
D'Apolito et al. |
Pliocene–Pleistocene |
Fossil pollen of a flowering plant. |
|||
Rhoipites manausensis[8] |
Sp. nov |
Valid |
D'Apolito et al. |
Pliocene–Pleistocene |
Fossil pollen of a member of the genus Schefflera. |
|||
Rhoipites minuticirculus[8] |
Sp. nov |
Valid |
D'Apolito et al. |
Pliocene–Pleistocene |
Fossil pollen of a flowering plant. |
|||
Rhoipites negroensis[8] |
Sp. nov |
Valid |
D'Apolito et al. |
Pliocene–Pleistocene |
Fossil pollen of a flowering plant. |
|||
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (late Barremian-early Aptian) |
Almargem Formation |
An eudicot of uncertain phylogenetic placement. Genus includes new species S. punctata. |
|||
Gen. et sp. nov |
Valid |
Boura & Saulnier in Boura et al. |
A vesselless angiosperm fossil wood of uncertain affinity. Genus includes new species S. winteroides. |
|||||
Gen. et 2 sp. nov |
Valid |
Poinar & Chambers |
A flowering plant of uncertain phylogenetic placement. Genus includes new species S. monostyla and S. grammogyna. |
|||||
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (late Barremian-early Aptian) |
Almargem Formation |
A non-eudicot flowering plant of uncertain affinity. Genus includes new species T. hughesii. |
|||
Gen. et sp. nov |
Valid |
Wheeler in Wheeler, Brown & Koch |
Late Paleocene |
A dicotyledonous flowering plant of uncertain phylogenetic placement, described on the basis of fossil wood. Genus includes new species U. raynoldsii. |
||||
Gen. et sp. nov |
Valid |
Chin et al. |
A flowering plant of uncertain phylogenetic placement, described on the basis of fossil wood. Genus includes new species V. cretaceum. |
|||||
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (late Barremian-early Aptian) |
Almargem Formation |
A flowering plant of uncertain phylogenetic placement, possibly related to Chloranthales. Genus includes new species V. elliptica. |
|||
Gen. et sp. nov |
Valid |
Poinar & Chambers |
A flowering plant of uncertain phylogenetic placement, possibly a member of Laurales. Genus includes new species Z. aetheus. |
Pinales
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Cevallos-Ferriz, Ríos-Santos & Lozano-García |
A fir. |
|||||
Sp. nov |
Valid |
Ríos-Santos & Cevallos-Ferriz |
||||||
Sp. nov |
Valid |
Ríos-Santos & Cevallos-Ferriz |
||||||
Sp. nov |
In press |
Chinnappa, Rajanikanth & Pauline Sabina |
A member of the family Araucariaceae. |
|||||
Sp. nov |
Valid |
Ríos-Santos & Cevallos-Ferriz |
||||||
Sp. nov |
Valid |
Hill et al. |
A species of Araucaria. |
|||||
Sp. nov |
Valid |
Hill et al. |
A species of Araucaria. |
|||||
Sp. nov |
Valid |
Hill et al. |
A species of Araucaria. |
|||||
Sp. nov |
Valid |
Kvaček in Kvaček et al. |
A species of Araucaria. |
|||||
Gen. et sp. nov |
Valid |
Nunes et al. |
A member of Cupressaceae. Genus includes new species A. barcinense. |
|||||
Sp. nov |
Valid |
Contreras et al. |
A member of the family Cupressaceae. |
|||||
Sp. nov |
Valid |
Carrizo et al. |
Early Cretaceous (early Hauterivian/early Barremian) |
Springhill Formation |
Probably a member of the family Araucariaceae. |
|||
Sp. nov |
Valid |
Paull et al. |
Middle Miocene |
A species of Callitris. |
||||
Sp. nov |
Valid |
Zhang et al. |
Middle Miocene |
A species of Cephalotaxus. |
||||
Sp. nov |
Valid |
Akkemik |
A member of the family Cupressaceae described on the basis of fossil wood. |
|||||
Sp. nov |
Valid |
Barral et al. |
A member of the family Cheirolepidiaceae. |
|||||
Gen. et sp. nov |
Valid |
Andruchow-Colombo, Wilf & Escapa |
Early Eocene |
La Huitrera Formation |
A member of the family Podocarpaceae related to the genus Phyllocladus. Genus includes new species H. laubenfelsii. |
|||
Gen. et sp. nov |
Valid |
Andruchow-Colombo et al. |
A member of the family Podocarpaceae. Genus includes new species K. salamanquensis. |
|||||
Sp. nov |
Valid |
Cui et al. |
A member of the family Cupressaceae. |
|||||
Sp. nov |
Valid |
Wei et al. |
Sunjiagou Formation |
A conifer wood. |
||||
Sp. nov |
Valid |
An et al. |
A pine. |
|||||
Sp. nov |
Valid |
Mantzouka & Sakala in Mantzouka et al. |
Early Miocene |
A member of the family Pinaceae described on the basis of fossil wood. |
||||
Sp. nov |
Valid |
Chinnappa, Kavali & Rajanikanth |
A member of Cupressaceae, possibly related to Taxodium. |
|||||
Sp. nov |
Valid |
Correa et al. |
||||||
Sp. nov |
Valid |
Mays & Cantrill |
A member of Cupressaceae. |
|||||
Sp. nov |
Valid |
Domogatskaya & Herman |
A member of the family Pinaceae. |
|||||
Sp. nov |
Valid |
Ríos-Santos & Cevallos-Ferriz |
A conifer described on the basis of fossil wood. |
Other seed plants
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Wan, Yang & Wang |
Late Permian or Early Triassic |
A silicified gymnospermous root. |
||||
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (late Aptian-early Albian) |
Figueira da Foz Formation |
A seed plant belonging to the informal grouping Bennettitales-Erdtmanithecales-Gnetales. Genus includes new species A. lustanicum. |
|||
Gen. et comb. nov |
Valid |
Anderson et al. |
A seed fern. Genus includes "Umkomasia" uniramia Axsmith et al. (2000). |
|||||
Sp. nov |
Valid |
Hill et al. |
Early Eocene |
|||||
Gen. et 2 sp. nov |
Valid |
Kustatscher, Visscher & van Konijnenburg-van Cittert |
Bellerophon Formation |
A possible member of Czekanowskiales. Genus includes new species B. kerpiana and B. cortianensis. |
||||
Sp. nov |
Valid |
Šimůnek |
A member of Cordaitales. |
|||||
Sp. nov |
Valid |
Šimůnek |
A member of Cordaitales. |
|||||
Sp. nov |
Valid |
Šimůnek |
A member of Cordaitales. |
|||||
Sp. nov |
Valid |
Šimůnek |
A member of Cordaitales. |
|||||
Sp. nov |
Valid |
Šimůnek |
A member of Cordaitales. |
|||||
Gen. et sp. nov |
Valid |
Blomenkemper, Abu Hamad & Bomfleur |
Late Permian |
An enigmatic type of gymnosperm leaf. Genus includes new species C. sarlaccophora. |
||||
Gen. et sp. nov |
Valid |
Correia et al. |
Douro Basin |
A seed fern belonging to the group Medullosales. Genus includes new species D. alvarezii. |
||||
Sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (Aptian or early Albian) |
A seed plant belonging to the informal grouping Bennettitales-Erdtmanithecales-Gnetales. |
||||
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
A seed plant belonging to the informal grouping Caytoniales-Umkomasiales-Petriellales. Genus includes new species G. virginiense. |
|||||
Sp. nov |
Valid |
McLoughlin & Mays in McLoughlin, Maksimenko & Mays |
||||||
Gen. et sp. nov |
Valid |
Scott et al. |
An ovule adapted for wind dispersal and for deterring herbivory. Genus includes new species H. rothwellii. |
|||||
Gen. et sp. nov |
Valid |
McLoughlin & Mays in McLoughlin, Maksimenko & Mays |
A glossopterid seed. Genus includes new species I. ovatum. |
|||||
Gen. et comb. nov |
Valid |
Anderson et al. |
A seed fern. Genus includes "Umkomasia" franconica Kirchner & Müller (1992). |
|||||
Sp. nov |
Valid |
Elgorriaga, Escapa & Cúneo |
||||||
Gen. et 2 sp. nov |
Valid |
Friis, Crane & Pedersen |
Early Cretaceous (late Aptian-Albian) |
Figueira da Foz Formation |
A seed plant belonging to the informal grouping Bennettitales-Erdtmanithecales-Gnetales. Genus includes new species L. stenosperma and L. parva. |
|||
Gen. et comb. nov |
Valid |
Anderson et al. |
A seed fern. Genus includes "Pteruchus" septentrionalis Kirchner & Müller (1992). |
|||||
Gen. et sp. nov |
Valid |
Karasev et al. |
A member of Voltziales. Genus includes new species M. krassilovii. |
|||||
Nom. nov |
Valid |
Degani-Schmidt & Guerra-Sommer |
Early Permian |
A member of Cordaitales; a replacement name for Rufloria gondwanensis Guerra-Sommer (1989). |
||||
Sp. nov |
Valid |
Pšenička, Zodrow & Bek |
Sydney Coalfield |
Reproductive male organ of a seed fern, possibly a member of the family Parispermaceae. |
||||
Sp. nov |
Valid |
Wan, Yang & Wang |
A silicified gymnospermous fossil wood. |
|||||
Sp. nov |
Valid |
Dong et al. |
||||||
Sp. nov |
Valid |
Carrizo, Lafuente Diaz & Del Fueyo |
A member of Bennettitales. |
|||||
Sp. nov |
Valid |
Lafuente Diaz et al. |
A member of Bennettitales. |
|||||
Gen. et sp. nov |
Valid |
Friis, Crane & Pedersen |
A seed plant belonging to the informal grouping Bennettitales-Erdtmanithecales-Gnetales. Genus includes new species R. foveata. |
|||||
Sp. nov |
Valid |
Elgorriaga, Escapa & Cúneo |
Lonco Trapial Formation |
A member of Caytoniales. |
||||
Sp. nov |
Valid |
Wan, Yang & Wang |
||||||
Sp. nov |
Valid |
Yamada & Nishida in Yamada et al. |
A cycad. |
|||||
Thodaya[96] |
Gen. et sp. nov |
Junior homonym |
Friis, Crane & Pedersen |
A seed plant belonging to the informal grouping Bennettitales-Erdtmanithecales-Gnetales. Genus includes new species T. sykesiae. The generic name is preoccupied by Thodaya Compton. |
||||
Sp. nov |
Valid |
Dong et al. |
||||||
Sp. nov |
Valid |
Shi et al. |
||||||
Sp. nov |
Valid |
Shi et al. |
||||||
Gen. et sp. nov |
Valid |
Backer, Bomfleur & Kerp |
Lower Shihhotse Formation |
A member of Cordaitales. Genus includes new species W. microphylla. |
||||
Sp. nov |
Valid |
Yang et al. |
Xuanwei Formation |
A conifer stem. |
||||
Gen. et sp. nov |
Valid |
Liu, Hou & Wang |
A reproductive organ of a seed plant of uncertain phylogenetic placement. Genus includes new species Z. mira. |
Other plants
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Barattolo, Ionesi & Ţibuleac |
Middle Miocene |
A green alga belonging to the family Polyphysaceae, a species of Acetabularia. |
||||
Sp. nov |
Valid |
Pšenička et al. |
A zygopterid fern. |
|||||
Gen. et comb. nov |
Valid |
Granier in Granier & Lethiers |
A green alga belonging to the family Polyphysaceae; a new genus for "Actinoporella" sulcata von Alth (1882). |
|||||
Sp. nov |
Valid |
Cascales-Miñana et al. |
Early Devonian |
A spore taxon. |
||||
Sp. nov |
Valid |
Tiss et al. |
A green alga belonging to the group Charophyta. |
|||||
Sp. nov |
Valid |
Jud, De Benedetti, Gandolfo & Hermsen |
A species of Azolla. |
|||||
Sp. nov |
Valid |
Granier & Bucur |
A green alga belonging to the family Dasycladaceae. |
|||||
Gen. et comb. nov |
Valid |
Sadowski et al. |
Europe (Baltic Sea region) |
A plant of uncertain phylogenetic placement, probably a fern; a new genus for "Pecopteris" humboldtiana. |
||||
Sp. nov |
Valid |
Feng, D’Rozario & Zhang |
A member of Lepidodendrales belonging to the family Flemingitaceae. |
|||||
Gen. et sp. nov |
Valid |
X.H.Zhao ex Doweld |
Late Permian |
Longtan Formation |
A marattialean fern. Genus includes new species B. notocathaysica Doweld. |
|||
Sp. nov |
Valid |
Sun et al. |
A member of Sphenophyllales. |
|||||
Sp. nov |
Valid |
LoDuca |
A green alga belonging to the group Bryopsidales. |
|||||
Sp. nov |
Valid |
LoDuca |
A green alga belonging to the group Bryopsidales. |
|||||
Sp. nov |
Valid |
Vachard in Krainer, Vachard & Schaffhauser |
A green alga belonging to the group Bryopsidales and the family Anchicodiaceae. |
|||||
Sp. nov |
Valid |
Tanrattana, Meyer-Berthaud & Decombeix |
||||||
Cingulatisporites oligodistalis[8] |
Sp. nov |
Valid |
D'Apolito et al. |
Pliocene–Pleistocene |
Fossil spore. |
|||
Sp. nov |
In press |
Santamarina in Santamarina et al. |
Spores of a member of Filicopsida of uncertain phylogenetic placement. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020. |
|||||
Sp. nov |
In press |
Santamarina in Santamarina et al. |
Spores of a member of Filicopsida of uncertain phylogenetic placement. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020. |
|||||
Concavissimisporites varzeanus[8] |
Sp. nov |
Valid |
D'Apolito et al. |
Pliocene–Pleistocene |
Fossil spore. |
|||
Sp. nov |
Valid |
Zhang, Liu & Liang |
||||||
Sp. nov |
Valid |
Sun & Sun in Sun et al. |
||||||
Sp. nov |
Valid |
Rashidi & Schlagintweit in Schlagintweit et al. |
A green alga belonging to the family Dasycladaceae. |
|||||
Sp. nov |
Valid |
Rashidi & Schlagintweit |
A green alga belonging to the group Dasycladales. |
|||||
Echinatisporis parviechinatus[8] |
Sp. nov |
Valid |
D'Apolito et al. |
Pliocene–Pleistocene |
Fossil spore. |
|||
Echinosporis conicus[8] |
Sp. nov |
Valid |
D'Apolito et al. |
Pliocene–Pleistocene |
Fossil spore. |
|||
Gen. et comb. nov |
Valid |
Vachard in Krainer, Vachard & Schaffhauser |
A green alga belonging to the group Dasycladales and the family Seletonellaceae. A new genus for "Epimastopora" alpina Kochansky & Herak (1960) and several other species formerly assigned to the genera Epimastopora and Pseudoepimastopora. |
|||||
Gen. et sp. nov |
Valid |
Lundgren et al. |
Early Permian |
Río Genoa Formation |
A member of Marattiales. Genus includes new species F. apokalyptika. |
|||
Sp. nov |
Valid |
Álvarez-Vázquez |
A member of Filicopsida. |
|||||
Gen. et sp. nov |
Wang et al. |
A member of Isoetales belonging to the group Dichostrobiles. Genus includes new species G. micrum. |
||||||
Sp. nov |
Valid |
Golovneva & Grabovskiy |
Late Cretaceous (Santonian–early Campanian) |
A member of the family Dipteridaceae. |
||||
Gen. et sp. nov |
Valid |
Regalado et al. |
A fern belonging to the family Pteridaceae. Genus includes new species H. cheilanthoides. |
|||||
Gen. et sp. nov |
Valid |
Bippus et al. |
A moss, possibly related to the family Polytrichaceae or Timmiellaceae. Genus includes new species H. patagonica. |
|||||
Gen. et sp. nov |
Valid |
Bickner & Tomescu |
An early euphyllophyte. Genus includes new species J. triloba. |
|||||
Gen. et comb. nov |
Valid |
Doweld |
A marattialean fern; a new genus for "Acitheca" gigantea Esaulova. |
|||||
Gen. et sp. nov |
Valid |
Mamontov in Mamontov & Ignatov |
A liverwort belonging to the group Marchantiidae. Genus includes new species K. monosolenioides. |
|||||
Gen. et sp. nov |
Valid |
Ignatov in Mamontov & Ignatov |
A form genus of dispersed moss capsules. Genus includes new species K. taylorioides. |
|||||
Gen. et sp. nov |
Valid |
Barbacka & Kustatscher in Barbacka et al. |
A plant of uncertain phylogenetic placement, showing similarities to thalloid liverworts with raised vegetative bodies and to the fern family Hymenophyllaceae. Genus includes new species L. tenellum. |
|||||
Gen. et sp. nov |
Valid |
Bickner & Tomescu |
An early euphyllophyte. Genus includes new species L. tetrarcha. |
|||||
Sp. nov |
Valid |
Hermsen |
A species of Marsilea. |
|||||
Gen. et sp. nov |
Valid |
Sun & Li in Wang et al. |
A member of Equisetales. Genus includes new species N. liaoningensis. |
|||||
Gen. et sp. nov |
Valid |
Decombeix, Galtier, McLoughlin & Meyer-Berthaud in Decombeix et al. |
A vascular plant belonging to the group Lignophytia, of uncertain phylogenetic placement within the latter group. Genus includes new species N. australiana. |
|||||
Sp. nov |
Valid |
Opluštil, Pšenička & Bek |
||||||
Sp. nov |
Valid |
Bazhenova & Bazhenov |
A species of Osmundastrum. |
|||||
Sp. nov |
Valid |
Kaulfuss et al. |
Early Miocene |
A member of the family Polypodiaceae. |
||||
Sp. nov |
Valid |
Wainman et al. |
Late Jurassic (late Kimmeridgian–early Tithonian) |
Surat Basin |
A colonial alga belonging to the group Chlorophyta. |
|||
Gen. et sp. nov |
Valid |
Mamontov, Katagiri & Borovich in Mamontov & Ignatov |
A thalloid bryophyte. Genus includes new species P. squarrosus. |
|||||
Gen. et comb. nov |
Valid |
Barattolo, Ionesi & Ţibuleac |
A green alga belonging to the family Polyphysaceae. Genus includes "Chalmasia" morelleti Pokorný (1948), "Halicoryne" carpatica Mišík (1987) and "Acicularia" valeti Segonzac (1970). |
|||||
Sp. nov |
Valid |
Barbacka & Kustatscher in Barbacka, Kustatscher & Bodor |
A fern belonging to the family Matoniaceae. |
|||||
Sp. nov |
In press |
Santamarina in Santamarina et al. |
Spores of a member of Bryophyta of uncertain phylogenetic placement, possibly of sphagnaceous affinity. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020. |
|||||
Sp. nov |
Valid |
R.H.Wagner ex Doweld |
Late Carboniferous |
A marattialean fern. |
||||
Sp. nov |
Valid |
Doweld |
Late Carboniferous (Kasimovian) |
A marattialean fern. |
||||
Polypodiisporites serratus[8] |
Sp. nov |
Valid |
D'Apolito et al. |
Pliocene–Pleistocene |
Fossil spore of a member of the family Polypodiaceae. |
|||
Polypodiisporites timidus[8] |
Sp. nov |
Valid |
D'Apolito et al. |
Pliocene–Pleistocene |
Fossil spore of a member of the family Polypodiaceae. |
|||
Sp. nov |
Valid |
Tiss et al. |
A green alga belonging to the group Charophyta. |
|||||
Sp. nov |
Valid |
Rashidi & Schlagintweit |
A green alga belonging to the group Dasycladales and to the family Triploporellaceae. |
|||||
Sp. nov |
Valid |
Li & Sun in Li et al. |
Xishanyao Formation |
A liverwort belonging to the family Ricciaceae. |
||||
Gen. et sp. nov |
Valid |
Prestianni & Gess |
A member of Sphenophyllales. Genus includes new species R. hilleri. |
|||||
Gen. et sp. nov |
Valid |
He et al. |
Late Permian |
Xuanwei Formation |
A fern belonging to the group Marattiales. Genus includes new species R. pecopteroides. |
|||
Sp. nov |
Valid |
Berry & Gensel |
Campo Chico Formation |
A member of Zosterophyllopsida. |
||||
Sp. nov |
Valid |
Li et al. |
||||||
Sp. nov |
Valid |
Doweld |
A marattialean fern. |
|||||
Sp. nov |
Valid |
Ignatov et al. |
Late Eocene |
|||||
Gen. et sp. nov |
Valid |
Bickner & Tomescu |
An early euphyllophyte. Genus includes new species S. ambigua. |
|||||
Gen. et sp. nov |
Valid |
Bickner & Tomescu |
An early euphyllophyte. Genus includes new species T. quebecana. |
|||||
Sp. nov |
Valid |
Wang et al. |
A plant of uncertain phylogenetic placement, probably a liverwort. |
|||||
Sp. nov |
Valid |
He & Wang |
A member of Osmundales belonging to the extinct family Guaireaceae. |
|||||
Gen. et sp. nov |
Valid |
Pšenička, Sakala & Kraft in Kraft et al. |
Late Silurian |
Prague Basin |
A large early land plant. Genus includes new species T. grandis. |
|||
Sp. nov |
Valid |
Rashidi & Schlagintweit |
A green alga belonging to the family Polyphysaceae. |
|||||
Verrucatotriletes laesuraverrucatus[8] |
Sp. nov |
Valid |
D'Apolito et al. |
Pliocene–Pleistocene |
Fossil spore. |
|||
Verrucatotriletes tortus[8] |
Sp. nov |
Valid |
D'Apolito et al. |
Pliocene–Pleistocene |
Fossil spore. |
General research
- Description of fossils of filamentous green algae from the Early Devonian Rhynie chert (Scotland) is published by Wellman, Graham & Lewis (2019).[169]
- Cretaceous alga Falsolikanella campanensis, originally assigned to the tribe Diploporeae within the green alga order Dasycladales, is transferred to the genus Actinoporella within the tribe Acetabularieae, family Polyphysaceae by Barattolo et al. (2019).[170]
- A study on the impact of the Cretaceous–Paleogene extinction event on European charophytes is published by Vicente, Csiki-Sava & Martín-Closas (2019).[171]
- The oldest known trilete spore assemblages reported so far are described from the Sandbian successions from Motala (central Sweden) by Rubinstein & Vajda (2019).[172]
- A study on the composition and distribution of dispersed spore assemblages from Middle Devonian deposits of northern Spain, and on their implications for inferring the nature of the Kačák Event, is published by Askew & Wellman (2019).[173]
- A study on the morphology of the spore taxon Lagenoisporites magnus from the Carboniferous (Tournaisian) Toregua Formation (Bolivia) is published by Quetglas, Macluf & di Pasquo (2019).[174]
- A review of research concerning early evolution of land plants during the Ordovician is published by Servais et al. (2019).[175]
- A study on carbon isotope data from stratigraphic sections at Germany Valley (West Virginia) and Union Furnace (Pennsylvania) in the Central Appalachian Basin, evaluating its implications for the knowledge of change in atmospheric oxygen levels during the late Ordovician and its possible relationship with early diversification of land plants, is published by Adiatma et al. (2019).[176]
- A study on the stable carbon isotopic composition of 190 fossil specimens belonging to 12 genera of Devonian and Early Carboniferous land plants is published by Wan et al. (2019).[177]
- A study on the early evolution of vascular plants is published by Cascales‐Miñana et al. (2019).[178]
- A study on the evolution of early vascular plants is published by Crepet & Niklas (2019).[179]
- A study on the fine‐scale structure and the chemistry of the tracheids of the earliest known woody plant Armoricaphyton chateaupannense is published by Strullu‐Derrien et al. (2019).[180]
- A study on diversity and functions of lycopsid reproductive structures through time, based on data from extant and fossil taxa, is published by Bonacorsi & Leslie (2019).[181]
- Redescription of the morphology of sterile and fertile structures of the Devonian lycopsid Kossoviella timanica is published by Orlova et al. (2019).[182]
- A study on the ultrastructure of the spore wall in the Carboniferous lycopsid Oxroadia gracilis is published by Taylor (2019).[183]
- A slab containing rooting systems which probably belonged to rhizomorphic lycopsids is reported from the Lower Permian Abo Formation (New Mexico, United States) by Hetherington et al. (2019).[184]
- A study on the anatomy and affinities of Cheirostrobus pettycurensis is published by Neregato & Hilton (2019), who report the discovery of spores conforming to the species Retusotriletes incohatus associated with fossils of Cheirostrobus, representing the first discovery of Retusotriletes-type spores reported in situ within sphenophytes.[185]
- A study on the anatomy and affinities of silicified stems of Sphenophyllum from the Tournaisian deposits in the Montagne Noire region of France and in the Saalfeld area in Germany is published by Terreaux de Felice, Decombeix & Galtier (2019).[186]
- Fossils assigned to the genus Equisetum are reported from a new fossil plant assemblage of late Eocene or early Oligocene age from central Queensland (Australia) by Rozefelds et al. (2019), representing the first evidence of this genus from the Cenozoic of Australia and the most recent fossil record of this genus from Australia.[187]
- A study on the evolutionary history of horsetails, based on genetic data and fossil record, is published by Clark, Puttick & Donoghue (2019), who report evidence indicative of two successive whole-genome duplication events occurring during the Carboniferous and Triassic rather than in association with the Cretaceous–Paleogene extinction event.[188]
- A study aiming to determine links between volcanic activity in the Central Atlantic magmatic province, elevated concentrations of mercury in marine and terrestrial sediments and abnormalities of fossil fern spores across the Triassic-Jurassic boundary in southern Scandinavia and northern Germany is published by Lindström et al. (2019).[189]
- A study on the fossil record of fern spores at the Cretaceous-Paleogene boundary, on the viability of fern spores, and on their implications for the knowledge of the duration of the impact winter at the Cretaceous-Paleogene boundary is published by Berry (2019).[190]
- A study on the molecular structural characteristics of organic remains of a fern belonging to the family Osmundaceae from the Early Jurassic Korsaröd site in southern Sweden is published by Qu et al. (2019).[191]
- A study on anatomy and growth of large specimens of the fossil fern species Weichselia reticulata from the Barremian La Huérguina Formation (Spain) is published by Blanco-Moreno et al. (2019).[192]
- A study on the morphological characters of 42 fossil species of Dicksoniaceae from China, and on their implications for the taxonomy of the fossil members of this group, is published by Xin et al. (2019).[193]
- Fossil occurrences of members of the genus Christella are reported from the late Paleocene of Liuqu, southern Tibet and middle Miocene of the Jinggu Basin in western Yunnan (China) by Xu et al. (2019), who transfer the species "Cyclosorus" nervosus Tao (1988) to the genus Christella.[194]
- A study on the fossils of Glossopteris from the Permian succession of eastern India, aiming to identify the molecular signatures of solvent-extractable and non-extractable organic matter, will be published by Tewari et al. (2019).[195]
- A study on the diversity trends of Glossopteris flora from the Barakar, Raniganj, and Panchet formations of Tatapani–Ramkola Coalfield (India) is published by Saxena et al. (2019).[196]
- A study on the architecture of the ovuliferous reproductive organs of Permian glossopterids is published by Mcloughlin & Prevec (2019).[197]
- A study on the pinnule and stomatal morphology of extant and fossil members of the genera Bowenia and Eobowenia, and on its implications for the knowledge of adaptations of fossil plants to different environments, is published by Hill, Hill & Watling (2019).[198]
- Seed of the ginkgoalean Yimaia capituliformis with damage interpreted as likely oviposition lesions inflicted by a kalligrammatid lacewing is described from the Middle Jurassic Jiulongshan Formation (China) by Meng et al. (2019).[199]
- A study on the phytogeographic history of ten conifer genera that are endemic to East Asia, based on fossil data from humid temperate forests in the Japanese Islands and Korean Peninsula, is published by Yabe et al. (2019).[200]
- A study on the evolution of male and female cone sizes in members of the family Araucariaceae, as indicated by data from extant and fossil members of this family, is published by Gleiser et al. (2019).[201]
- Five fossil foliage specimens of Calocedrus lantenoisi, representing one of the earliest records of the genus Calocedrus worldwide, are described from the Oligocene Shangcun Formation of the Maoming Basin (Guangdong Province, South China) by Wu et al. (2019).[202]
- Leaves including cuticles and ovuliferous cones of members of the genus Metasequoia are described from the middle Miocene of Zhenyuan, Yunnan (Southwest China) by Wang et al. (2019), comprising the southernmost fossil record of this genus worldwide.[203]
- A review of the fossil record of woods which might have affinities with Taxaceae, and a study on the palaeobiogeographical history of this family, is published by Philippe et al. (2019).[204]
- Putative Cretaceous siliceous sponge Siphonia bovista is reinterpreted as an internal mould of the cone-like plant fossil Dammarites albens by Niebuhr (2019).[205]
- A review of epidermal features of bennettites, comparing them with analogous features in living taxa and aiming to identify homologous character states, is published by Rudall & Bateman (2019).[206]
- The first fossil record of a cycad seedling found in close association with a leaf flush of an adult cycad plant of the same species (Dioonopsis praespinulosa) is reported from the Palaeocene (Danian) Castle Rock flora in the Denver Basin (Colorado, United States) by Erdei et al. (2019).[207]
- A review of the paleobotanical evidence of the age and early history of the flowering plants is published by Coiro, Doyle & Hilton (2019).[208]
- A study aiming to establish when the flowering plants originated is published by Li et al. (2019).[209]
- Presence of endothelium (a specialized seed tissue that develops from the inner epidermis of the inner integument) is reported in several different kinds of flowering plant seeds (including in the lineage leading to extant Chloranthaceae) from the Early Cretaceous of eastern North America and Portugal by Friis, Crane & Pedersen (2019).[210]
- A study on the phylogenetic relationships of palm fruit fossils from the Cretaceous–Paleogene (Maastrichtian–Danian) Deccan Intertrappean Beds (India) is published by Matsunaga et al. (2019), who interpret these fossils as representing a crown group member of palm subtribe Hyphaeninae (tribe Borasseae, subfamily Coryphoideae) related to extant genera Satranala and Bismarckia.[211]
- Fossil fruits of members of the genera Fragaria and Rubus are reported from the Pliocene outrcrops in the Heqing Basin (China) by Huang et al. (2019).[212]
- Description of alder leaf and infructescence fossils from the Upper Eocene Lawula Formation (Qinghai–Tibetan Plateau) is published by Xu, Su & Zhou (2019).[213]
- A study on the morphology, paleoecology, historical biogeography and phylogenetic relationships of fossil pollen of members of Malvaceae belonging to the species Rhoipites guianensis and Malvacipolloides maristellae, and on its implications for inferring the impact of Cenozoic geological processes (including the uplift of the Andes) on members of Malvaceae living in northern South America, is published by Hoorn et al. (2019).[214]
- A study aiming to determine the location of refugia of two North American species of hickories during the Last Glacial Maximum on the basis of genomic data is published by Bemmels, Knowles & Dick (2019).[215]
- A study on functional leaf traits of the Eocene-Miocene taxa Rhodomyrtophyllum reticulosum (family Myrtaceae) and Platanus neptuni (family Platanaceae), evaluating whether leaf traits of these taxa reflect environmental conditions including climate, is published by Moraweck et al. (2019).[216]
- A study on the morphology and phylogenetic relationships of Eocene fruits belonging to the species Mastixicarpum crassum and Eomastixia bilocularis is published by Manchester & Collinson (2019).[217]
- Seeds of Eurya stigmosa are reported from the Early Pleistocene lacustrine and fluvial sediments of Porto da Cruz, Madeira by Góis-Marques et al. (2019).[218]
- A study on the putative cycad "Zamia" australis from the Miocene Ñirihuau Formation (Argentina) is published by Passalia, Caviglia & Vera (2019), who reinterpret the fossil specimens as flowering plant leaves, and transfer this species to the genus Lithraea.[219]
- New method for reconstructing water transport properties of fossil wood is proposed by Tanrattana et al. (2019).[220]
- Signatures of Devonian (Famennian) forests and soils preserved in black shales in the southernmost Appalachian Basin (Chattanooga Shale; Alabama, United States) are presented by Lu et al. (2019).[221]
- A study on reproductive structures of Devonian plants and on their implications for the knowledge of large-scale patterns of reproductive evolution over the Devonian is published by Bonacorsi & Leslie (2019).[222]
- Revision of a fossil plant assemblage from the Carboniferous site in San Juan Province, Argentina known as Retamito or Río del Agua is published by Correa & Césari (2019).[223]
- A study on the stratigraphic ranges and diversities of plant taxa from the upper Permian (Lopingian) to the Middle Triassic is published by Nowak, Schneebeli-Hermann & Kustatscher (2019), who interpret their findings as indicating that the extinction of land plants during the Permian–Triassic extinction event was much less severe than previously thought.[224]
- A study on the timing of the collapse of the Permian Glossopteris flora from the Sydney Basin (Australia) is published by Fielding et al. (2019).[225]
- New fossil flora dominated by cuticles of Dicroidium is reported from the Middle Triassic (Anisian) Mukheiris Formation (Jordan) by Abu Hamad et al. (2019).[226]
- A study on changes of land vegetation resulting from the Toarcian oceanic anoxic event is published by Slater et al. (2019).[227]
- Plant disseminules are documented from four Middle Jurassic to Lower Cretaceous lacustrine Lagerstätten in China and Australia by McLoughlin & Pott (2019).[228]
- A study comparing the Jurassic floras of the Ayuquila Basin and the Otlaltepec Basin (Mexico) and evaluating their implications for the knowledge of the Jurassic environments of these basins is published by Velasco-de León et al. (2019).[229]
- A study on phototropism in extant trees from Beijing and Jilin Provinces and fossil tree trunks from the Jurassic Tiaojishan and Tuchengzi formations in Liaoning and Beijing regions (China), and on its implications for inferring the history of the rotation of the North China Block, is published by Jiang et al. (2019).[230]
- A study on the link between climatic changes and changes plant distribution in South America during the Early Cretaceous, as indicated by palynological data from the Aptian of the Sergipe Basin (Brazil), is published by Carvalho et al. (2019).[231]
- A study on the frequency and diversity of damage types caused by insect oviposition in plants from the Upper Triassic Yangcaogou Formation, Middle Jurassic Jiulongshan Formation and Lower Cretaceous Yixian Formation (China), assessing the degree of plant host specificity, is published by Lin et al. (2019).[232]
- A study on the plant specimens (ferns, gymnosperms and angiosperms) from the Lower Cretaceous Araripe Basin (Brazil) preserving evidence of plant–insect interactions and potentially of paleoecological relationships between plants and insects is published by Edilson Bezerra dos Santos Filho et al. (2019).[233]
- Leaves of members of the family Nymphaeaceae preserving evidence of insect herbivory are reported from the Albian Utrillas Formation (Spain) by Estévez-Gallardo et al. (2019).[234]
- A study on Cenomanian plants from the Redmond no.1 mine near Schefferville (Redmond Formation; Labrador Peninsula, Canada) and on their implications for the knowledge of paleoclimate of this site is published by Demers‐Potvin & Larsson (2019).[235]
- A study on the canopy structure of Late Cretaceous and Paleocene forests in South America, as indicated by the carbon isotope composition of fossil angiosperm leaves from two localities in the Paleocene Cerrejón Formation and one locality in the Maastrichtian Guaduas Formation (Colombia), is published by Graham et al. (2019).[236]
- A quantitative analysis of an earliest Paleocene megaflora from the Ojo Alamo Sandstone in the San Juan Basin (New Mexico, United States) is published by Flynn & Peppe (2019).[237]
- A study on the evolution of plant assemblages in the area of Primorye (Russia) throughout the Paleogene is published by Bondarenko, Blokhina & Utescher (2019).[238]
- A study on changes in plant and insect communities across the Paleocene–Eocene boundary within the Hanna Basin (Wyoming, United States) is published by Azevedo Schmidt et al. (2019).[239]
- A study on stomata of fossil specimens of members of the family Lauraceae from the Eocene of Australia and New Zealand, evaluating their implications for reconstructions of Eocene pCO2 levels, is published by Steinthorsdottir et al. (2019).[240]
- Description of early Eocene leaf fossils from the Dinmore locality (Redbank Plains Formation, Booval Basin; Australia) and a study on the implications of these fossils for reconstructions of paleoclimate is published by Pole (2019).[241]
- A study on changes of plant communities from the Herren beds (Oregon, United States) during the Eocene and on the implications of plant fossils from this area for the reconstruction of Eocene climate is published by Jijina, Currano & Constenius (2019).[242]
- Su et al. (2019) use radiometrically dated plant fossil assemblages to quantify when southeastern Tibet achieved its present elevation, and what kind of floras existed there at that time.[243]
- Description of a plant megafossil assemblage from the Kailas Formation in western part of the southern Lhasa terrane, and a study on its implications for inferring the elevation history of the southern Tibetan Plateau, is published by Ai et al. (2019).[244]
- A study on the dynamics and evolution of the flora of Turgai ecological type in Western Siberia during the early Oligocene to earliest Miocene is published by Popova et al. (2019).[245]
- A study on the paleoclimate, vegetational type and ecological strategies adopted by fossil plants from the Oligocene Baigang Formation (China), as indicated by characteristics of fossil leaves from this formation, is published by Li et al. (2019).[246]
- Description of a fossil plant assemblage from the Miocene Hattiesburg Formation (Mississippi, United States) is published by McNair et al. (2019).[247]
- A study on changes of C4 vegetation composition in southwestern Montana (United States) from the late Miocene through present is published by Hyland et al. (2019).[248]
- A study aiming to test the hypothesis that fire contributed to the rise of C3-dominated grasslands in Eurasia, based on data from core retrieved from the late Miocene to Pleistocene sediments from the Black Sea, is published by Feurdean & Vasiliev (2019).[249]
- A study on the origin of the African C4 savannah grasslands is published by Polissar et al. (2019).[250]
- A study on vegetation changes in west African tropical montane forest over the past 90,000 years, as indicated by pollen data from the Lake Bambili site (Cameroon), is published by Lézine et al. (2019).[251]
- A study on changes of vegetation in southern Borneo over the past 40,000 calibrated years BP, as indicated by data from Saleh Cave (South Kalimantan, Indonesia), is published by Wurster et al. (2019).[252]
- A study on the role of past climate, extinct megafauna and guanaco in shaping the vegetation of the Patagonian steppe is published by Hernández, Ríos & Perotto-Baldivieso (2019).[253]
- The discovery of ancient chestnut, hazelnut and flax DNA recovered from stalagmites from the Solkota cave (Georgia) is reported by Stahlschmidt et al. (2019).[254]
- The discovery of oldest fossil trees, dating back 386 million years, in the Catskill region near Cairo, New York, is published online by Stein et al. (2019).[255]
References
- ^ a b c d e f g h i j k Alexander B. Doweld (2019). "New names for Ilex and Ilexpollenites (Aquifoliaceae), extant and fossil. Notulae Systematicae ad Palaeofloram Europaeam spectantes II. Aquifoliaceae". Phytotaxa. 388 (2): 179–191. doi:10.11646/phytotaxa.388.2.5.
- ^ Mahasin Ali Khan; Kakali Mandal; Subir Bera (2019). "A new species of permineralized palm stem from the Maastrichtian–Danian sediments of Central India and its palaeoclimatic signal". Botany Letters. 166 (2): 189–206. doi:10.1080/23818107.2019.1600166.
- ^ T. Su; A. Farnsworth; R. A. Spicer; J. Huang; F.-X. Wu; J. Liu; S.-F. Li; Y.-W. Xing; Y.-J. Huang; W.-Y.-D. Deng; H. Tang; C.-L. Xu; F. Zhao; G. Srivastava; P. J. Valdes; T. Deng; Z.-K. Zhou (2019). "No high Tibetan Plateau until the Neogene". Science Advances. 5 (3): eaav2189. doi:10.1126/sciadv.aav2189. PMC 6402856. PMID 30854430.
- ^ a b Friðgeir Grímsson; Bonnie F. Jacobs; Johan L. C. H. Van Valkenburg; Jan J. Wieringa; Alexandros Xafis; Neil Tabor; Aaron D. Pan; Reinhard Zetter (2019). "Sclerosperma fossils from the late Oligocene of Chilga, north-western Ethiopia". Grana. 58 (2): 81–98. doi:10.1080/00173134.2018.1510977. PMC 6382288. PMID 30828285.
- ^ a b Heinrich Winterscheid (2019). "Nomenclatural novelties in the fossil genus Spinopalmoxylon (Arecaceae) from the Central European Oligocene and Miocene: A whole-plant concept for Spinopalmoxylon daemonorops". Acta Palaeobotanica. 59 (2): 351–365. doi:10.2478/acpa-2019-0016.
- ^ Patricia Vallati; Andrea De Sosa Tomas; Gabriel Casal (2020). "A Maastrichtian terrestrial palaeoenvironment close to the K/Pg boundary in the Golfo San Jorge basin, Patagonia, Argentina". Journal of South American Earth Sciences. 97: Article 102401. doi:10.1016/j.jsames.2019.102401.
- ^ a b Luis Miguel Sender; James A. Doyle; Garland R. Upchurch Jr; Uxue Villanueva-Amadoz; José B. Diez (2019). "Leaf and inflorescence evidence for near-basal Araceae and an unexpected diversity of other monocots from the late Early Cretaceous of Spain". Journal of Systematic Palaeontology. 17 (15): 1313–1346. doi:10.1080/14772019.2018.1528999.
- ^ a b c d e f g h i j k l m n o p q r Carlos D'Apolito; Silane A. F. da Silva-Caminha; Carlos Jaramillo; Rodolfo Dino; Emílio A. A. Soares (2019). "The Pliocene–Pleistocene palynology of the Negro River, Brazil". Palynology. 43 (2): 223–243. doi:10.1080/01916122.2018.1437090.
- ^ John G. Conran; Uwe Kaulfuss; Jennifer M. Bannister; Dallas C. Mildenhall; Daphne E. Lee (2019). "An Akania (Akaniaceae) inflorescence with associated pollen from the early Miocene of New Zealand". American Journal of Botany. 106 (2): 292–302. doi:10.1002/ajb2.1236. PMID 30791095.
- ^ Anjum Farooqui; Joseph G. Ray; Arti Garg (2019). "An extinct species of Basella: pollen evidence from sediments (~80 ka) in Kerala, India". Grana. 58 (6): 399–407. doi:10.1080/00173134.2019.1630479.
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y Else Marie Friis; Peter R. Crane; Kaj Raunsgaard Pedersen (2019). "The Early Cretaceous mesofossil flora of Torres Vedras (NE of Forte da Forca), Portugal: a palaeofloristic analysis of an early angiosperm community" (PDF). Fossil Imprint. 75 (2): 153–257. doi:10.2478/if-2019-0013.
- ^ Else Marie Friis; Peter R. Crane; Kaj Raunsgaard Pedersen (2019). "Hedyosmum-like fossils in the Early Cretaceous diversification of angiosperms". International Journal of Plant Sciences. 180 (3): 232–239. doi:10.1086/701819.
- ^ Brian A. Atkinson; Camila Martínez; William L. Crepet (2019). "Cretaceous asterid evolution: fruits of Eydeia jerseyensis sp. nov. (Cornales) from the upper Turonian of eastern North America". Annals of Botany. 123 (3): 451–460. doi:10.1093/aob/mcy170. PMC 6377102. PMID 30212854.
- ^ Ana L. Hernández-Damián; Sergio R. S. Cevallos-Ferriz; Alma R. Huerta-Vergara (2019). "Fossil flower of Staphylea L. from the Miocene amber of Mexico: New evidence of the Boreotropical Flora in low-latitude North America". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 108 (4): 471–478. doi:10.1017/S1755691018000701.
- ^ a b c d e f g h i j k Indah B. Huegele; Steven R. Manchester (2019). "Newly recognized diversity of fruits and seeds from the late Paleogene flora of Trinity County, East Texas, USA". International Journal of Plant Sciences. 180 (7): 681–708. doi:10.1086/704358.
- ^ Rakesh Chandra Mehrotra; Anumeha Shukla (2019). "First record of Dioscorea from the early Eocene of northwestern India: Its evolutionary and palaeoecological importance". Review of Palaeobotany and Palynology. 261: 11–17. doi:10.1016/j.revpalbo.2018.11.008.
- ^ Zlatko Kvaček (2019). "Dioscorea manchesteri Kvaček, sp. nov., a new fossil species from the early Miocene flora of North Bohemia (Czech Republic)". Acta Palaeobotanica. 59 (2): 367–371. doi:10.2478/acpa-2019-0017.
- ^ MacKenzie Smith; Steven R. Manchester (2019). "A new species of "gigantic" capsular fruits of Vaccinioideae from the Miocene of Idaho". Palaeontologia Electronica. 22 (3): Article number 22.3.65. doi:10.26879/982.
- ^ Patrick S. Herendeen; Fabiany Herrera (2019). "Eocene fossil legume leaves referable to the extant genus Arcoa (Caesalpinioideae, Leguminosae)". International Journal of Plant Sciences. 180 (3): 220–231. doi:10.1086/701468.
- ^ a b Ünal Akkemik (2019). "New fossil wood descriptions from Pliocene of central Anatolia and presence of Taxodioxylon in Turkey from Oligocene to Pliocene". Turkish Journal of Earth Sciences. 28 (3): 398–409. doi:10.3906/yer-1805-24.
- ^ a b Grzegorz Worobiec; Elżbieta Worobiec (2019). "Wetland vegetation from the Miocene deposits of the Bełchatów Lignite Mine (central Poland)". Palaeontologia Electronica. 22 (3): Article number 22.3.63. doi:10.26879/871.
- ^ Anumeha Shukla; Hukam Singh; R. C. Mehrotra (2019). "Fossil Wood of Subfamily Detarioideae (family Fabaceae) from the Paleogene of the Indian Subcontinent: Origin and Palaeo-dispersal Pathways". Journal of the Geological Society of India. 94 (4): 411–415. doi:10.1007/s12594-019-1329-z.
- ^ a b c d Ünal Akkemik; Hüseyin Akkılıç; Yıldırım Güngör (2019). "Fossil wood from the Neogene of the Kilyos coastal area in Istanbul, Turkey". Palaeontographica Abteilung B. 299 (1–6): 133–185. doi:10.1127/palb/2019/0065.
- ^ Zixi Wang; Gongle Shi; Bainian Sun; Suxin Yin (2019). "A new species of Ormosia (Leguminosae) from the middle Miocene of Fujian, Southeast China and its biogeography". Review of Palaeobotany and Palynology. 270: 40–47. doi:10.1016/j.revpalbo.2019.07.003.
- ^ Diana K. Pérez-Lara; Emilio Estrada-Ruiz; Carlos Castañeda-Posadas (2019). "New fossil woods of Fabaceae from El Bosque Formation (Eocene), Chiapas, Mexico". Journal of South American Earth Sciences. 94: Article 102202. doi:10.1016/j.jsames.2019.05.018.
- ^ Peter Wilf; Kevin C. Nixon; Maria A. Gandolfo; N. Rubén Cúneo (2019). "Eocene Fagaceae from Patagonia and Gondwanan legacy in Asian rainforests". Science. 364 (6444): eaaw5139. doi:10.1126/science.aaw5139. PMID 31171664.
- ^ Thomas Denk; Robert S. Hill; Marco C. Simeone; Chuck Cannon; Mary E. Dettmann; Paul S. Manos (2019). "Comment on "Eocene Fagaceae from Patagonia and Gondwanan legacy in Asian rainforests"". Science. 366 (6467): eaaz2189. doi:10.1126/science.aaz2189.
- ^ Peter Wilf; Kevin C. Nixon; Maria A. Gandolfo; N. Rubén Cúneo (2019). "Response to Comment on "Eocene Fagaceae from Patagonia and Gondwanan legacy in Asian rainforests"". Science. 366 (6467): eaaz2297. doi:10.1126/science.aaz2297.
- ^ Mathew R. Vanner (2019). "Miocene Casuarinaceae wood from Landslip Hill, Southland, New Zealand". IAWA Journal. 40 (3): 627–639. doi:10.1163/22941932-40190244.
- ^ Xiao‐Yan Liu; Sheng‐Lan Xu; Meng Han; Jian‐Hua Jin (2019). "An early Oligocene fossil acorn, associated leaves and pollen of the ring‐cupped oaks (Quercus subg. Cyclobalanopsis) from Maoming Basin, South China". Journal of Systematics and Evolution. 57 (2): 153–168. doi:10.1111/jse.12450.
- ^ a b c d e f g h i j k l m D.W. Woodcock; H.W. Meyer; Y. Prado (2019). "The Piedra Chamana fossil woods (Eocene, Peru), II". IAWA Journal. 40 (3): 551–595. doi:10.1163/22941932-40190231.
- ^ a b Cédric Del Rio; Gregory W. Stull; Dario De Franceschi (2019). "New species of Iodes fruits (Icacinaceae) from the early Eocene Le Quesnoy locality, Oise, France". Review of Palaeobotany and Palynology. 262: 60–71. doi:10.1016/j.revpalbo.2018.12.005.
- ^ a b c d e Cédric Del Rio; Romain Thomas; Dario De Franceschi (2019). "Fruits of Icacinaceae Miers from the Palaeocene of the Paris Basin (Oise, France)". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 108 (4): 459–469. doi:10.1017/S1755691018000221.
- ^ Diana Karen Pérez-Lara; Emilio Estrada-Ruiz; Carlos Castañeda-Posadas (2019). "Nueva especie de Laurinoxylon (Lauraceae) de la Formación El Bosque (Eoceno), Chiapas, México" (PDF). Boletín de la Sociedad Geológica Mexicana. 71 (3): 761–772. doi:10.18268/BSGM2019v71n3a8.
- ^ a b c d e Zixi Wang; Fankai Sun; Jidong Wang; Defei Yan; Junling Dong; Mingxuan Sun; Bainian Sun (2019). "New fossil leaves and fruits of Lauraceae from the Middle Miocene of Fujian, southeastern China differentiated using a cluster analysis". Historical Biology: An International Journal of Paleobiology. 31 (5): 581–599. doi:10.1080/08912963.2017.1379517.
- ^ a b c Daniela P. Ruiz; M. Sol Raigemborn; Mariana Brea; Roberto R. Pujana (2020). "Paleocene Las Violetas Fossil Forest: Wood anatomy and paleoclimatology". Journal of South American Earth Sciences. 98: Article 102414. doi:10.1016/j.jsames.2019.102414.
- ^ Qijia Li; Gongle Shi; Yusheng Liu; Qiongyao Fu; Jianhua Jin; Cheng Quan (2019). "The early history of Annonaceae (Magnoliales) in Southeast Asia suggests floristic exchange between India and Pan‐Indochina by the late Oligocene". Papers in Palaeontology. 5 (4): 601–612. doi:10.1002/spp2.1249.
- ^ a b Else Marie Friis; Peter R. Crane; Kaj Raunsgaard Pedersen (2019). "Extinct diversity among Early Cretaceous angiosperms: mesofossil evidence of early Magnoliales from Portugal". International Journal of Plant Sciences. 180 (2): 93–127. doi:10.1086/701319.
- ^ Zixi Wang; Fankai Sun; Jidong Wang; Junling Dong; Sanping Xie; Mingxuan Sun; Bainian Sun (2019). "The diversity and paleoenvironmental significance of Calophyllum (Clusiaceae) from the Miocene of southeastern China". Historical Biology: An International Journal of Paleobiology. 31 (10): 1379–1393. doi:10.1080/08912963.2018.1455677.
- ^ Rashmi Srivastava; Regis B. Miller; Pieter Baas (2019). "More Malpighiales: Woods of Achariaceae and/or Salicaceae from the Deccan Intertrappean Beds, India". Journal of Systematics and Evolution. 57 (2): 200–208. doi:10.1111/jse.12455.
- ^ Zixi Wang; Fankai Sun; Sanping Xie; Jidong Wang; Yijie Li; Junling Dong; Mingxuan Sun; Bainian Sun (2019). "A new species of Garcinia (Clusiaceae) from the middle Miocene of Fujian, China, and a phytogeographic analysis". Geological Journal. 54 (3): 1317–1330. doi:10.1002/gj.3228.
- ^ Naylet K. Centeno-González; Héctor Porras-Múzquiz; Emilio Estrada-Ruiz (2019). "A new fossil genus of angiosperm leaf from the Olmos Formation (upper Campanian), of northern Mexico". Journal of South American Earth Sciences. 91: 80–87. doi:10.1016/j.jsames.2019.01.016.
- ^ Markus Sachse (2019). "Populus erratica Sachse, nom. nov. – not really new, but a stratigraphically informative species from the late Oligocene and early Miocene of Central Europe". Acta Palaeobotanica. 59 (1): 69–73. doi:10.2478/acpa-2019-0009.
- ^ Anwesha Biswas; Mahasin Ali Khan; Subir Bera (2019). "Occurrence of Dryobalanops Gaertn. (Dipterocarpaceae) in the late Miocene of Bengal basin, India and biogeography of the genus during the Cenozoic of Southeast Asia". Botany Letters. 166 (4): 434–443. doi:10.1080/23818107.2019.1672102.
- ^ Carole T. Gee; David Winship Taylor (2019). "An extinct transitional leaf genus of Nymphaeaceae from the Eocene lake at Messel, Germany: Nuphaea engelhardtii Gee et David W. Taylor gen. et sp. nov". International Journal of Plant Sciences. 180 (7): 724–736. doi:10.1086/704376.
- ^ a b Roberto R. Pujana; Daniela P. Ruiz (2019). "Fossil woods from the Eocene–Oligocene (Río Turbio Formation) of southwestern Patagonia (Santa Cruz province, Argentina)". IAWA Journal. 40 (3): 596–S3. doi:10.1163/22941932-40190253.
- ^ George O. Poinar, Jr; Kenton L. Chambers (2019). "Tropidogyne lobodisca sp. nov., a third species of the genus from mid-Cretaceous Myanmar amber". Journal of the Botanical Research Institute of Texas. 13 (2): 461–466.
- ^ a b c d Gaurav Srivastava; Tao Su; Rakesh Chandra Mehrotra; Pushpa Kumari; Uma Shankar (2019). "Bamboo fossils from Oligo–Pliocene sediments of northeast India with implications on their evolutionary ecology and biogeography in Asia". Review of Palaeobotany and Palynology. 262: 17–27. doi:10.1016/j.revpalbo.2018.12.002.
- ^ Ping Lu; Ya Li; Jian-Wei Zhang; Xiao-Qing Liang; Yue-Zhuo Li; Cheng-Sen Li (2019). "Fruits of Scirpus (Cyperaceae) from the early Miocene of Weichang, Hebei Province, North China and their palaeoecological and palaeobiogeographical implications". Journal of Palaeogeography. 8 (1): Article 15. doi:10.1186/s42501-019-0030-x.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Ge Sun; Tatiana Kovaleva; Fei Liang; Tao Yang; Yuhui Feng (2019). "A new species of Platanus from the Cenomanian (Upper Cretaceous) in eastern Heilongjiang, China". Geoscience Frontiers. 10 (4): 1535–1541. doi:10.1016/j.gsf.2018.10.006.
- ^ Lin‐Bo Jia; Tao Su; Yong‐Jiang Huang; Fei‐Xiang Wu; Tao Deng; Zhe‐Kun Zhou (2019). "First fossil record of Cedrelospermum (Ulmaceae) from the Qinghai–Tibetan Plateau: Implications for morphological evolution and biogeography". Journal of Systematics and Evolution. 57 (2): 94–104. doi:10.1111/jse.12435.
- ^ a b William Oki Wong; David L. Dilcher; Kazuhiko Uemura (2019). "Three new fossil-species of Pteroceltis (Cannabaceae) from East Asia". Phytotaxa. 409 (1): 1–11. doi:10.11646/phytotaxa.409.1.1.
- ^ a b Alexander B. Doweld (2019). "New names of fossil Rubus (Rosaceae). Addendum I". Phytotaxa. 393 (2): 198–200. doi:10.11646/phytotaxa.393.2.6.
- ^ Terry A. Lott; Steven R. Manchester; Sarah L. Corbett (2019). "The Miocene flora of Alum Bluff, Liberty County, Florida". Acta Palaeobotanica. 59 (1): 75–129. doi:10.2478/acpa-2019-0003.
- ^ Jia Liu; Tao Su; Robert A. Spicer; He Tang; Wei-Yu-Dong Deng; Fei-Xiang Wu; Gaurav Srivastava; Teresa Spicer; Truong Van Do; Tao Deng; Zhe-Kun Zhou (2019). "Biotic interchange through lowlands of Tibetan Plateau suture zones during Paleogene". Palaeogeography, Palaeoclimatology, Palaeoecology. 524: 33–40. doi:10.1016/j.palaeo.2019.02.022.
- ^ a b c Fabiany Herrera; Mónica R. Carvalho; Carlos Jaramillo; Steven R. Manchester (2019). "19-million-year-old spondioid fruits from Panama reveal a dynamic dispersal history for Anacardiaceae". International Journal of Plant Sciences. 180 (6): 479–492. doi:10.1086/703551.
- ^ Hui Jiang; Tao Su; William Oki Wong; Feixiang Wu; Jian Huang; Gongle Shi (2019). "Oligocene Koelreuteria (Sapindaceae) from the Lunpola Basin in central Tibet and its implication for early diversification of the genus". Journal of Asian Earth Sciences. 175: 99–108. doi:10.1016/j.jseaes.2018.01.014.
- ^ Aixa Tosal; Josep Sanjuan; Carles Martín-Closas (2019). "Foliar adaptations of Rhus asymmetrica sp. nov. from the Oligocene of Cervera (Catalonia, Spain). Palaeoclimatic implications". Review of Palaeobotany and Palynology. 261: 67–80. doi:10.1016/j.revpalbo.2018.11.011.
- ^ a b c Soon Flynn; Melanie L. DeVore; Kathleen B. Pigg (2019). "Morphological features of sumac leaves (Rhus, Anacardiaceae), from the latest Early Eocene flora of Republic, Washington". International Journal of Plant Sciences. 180 (6): 464–478. doi:10.1086/703526.
- ^ Natalia P. Maslova; Tatiana M. Kodrul; Alexei B. Herman; Ming Tu; Xiaoyan Liu; Jianhua Jin (2019). "A new species of Liquidambar (Altingiaceae) from the late Eocene of South China". Journal of Plant Research. 132 (2): 223–236. doi:10.1007/s10265-019-01091-0. PMID 30840210.
- ^ Steven R. Manchester; Dashrath K. Kapgate; Deepak D. Ramteke; Sharadkumar P. Patil; Selena Y. Smith (2019). "Morphology and anatomy of the angiosperm fruit Baccatocarpon, incertae sedis, from the Maastrichtian Deccan Intertrappean Beds of India". Acta Palaeobotanica. 59 (2): 241–250. doi:10.2478/acpa-2019-0019.
- ^ a b Catherine Smith; Sophie Warny; Amelia E. Shevenell; Sean P.S. Gulick; Amy Leventer (2019). "New species from the Sabrina Flora: an early Paleogene pollen and spore assemblage from the Sabrina Coast, East Antarctica". Palynology. 43 (4): 650–659. doi:10.1080/01916122.2018.1471422.
- ^ Steven Manchester; Terry A. Lott (2019). "Bonanzacarpum sprungerorum sp. nov. – a bizarre fruit from the Eocene Green River Formation in Utah, USA" (PDF). Fossil Imprint. 75 (2): 281–288. doi:10.2478/if-2019-0016.
- ^ Clément Coiffard; Nikolay Kardjilov; Ingo Manke; Mary E. C. Bernardes-de-Oliveira (2019). "Fossil evidence of core monocots in the Early Cretaceous". Nature Plants. 5 (7): 691–696. doi:10.1038/s41477-019-0468-y. PMID 31285562.
- ^ A.B. Herman; V.V. Kostyleva; P.A. Nikolskii; A.E. Basilyan; A.E. Kotel’nikov (2019). "New data on the Late Cretaceous flora of the New Siberia Island, New Siberian Islands". Stratigraphy and Geological Correlation. 27 (3): 323–338. doi:10.1134/S0869593819030031.
- ^ George O. Poinar Jr.; Kenton L. Chambers (2019). "Dispariflora robertae gen. et sp. nov., a mid-Cretaceous flower of possible Lauralean affinity from Myanmar amber". Journal of the Botanical Research Institute of Texas. 13 (1): 173–183.
- ^ George O. Poinar, Jr (2019). "Exalloanthum, a new name for a fossil angiosperm flower in Myanmar amber". Journal of the Botanical Research Institute of Texas. 13 (2): 475–476.
- ^ a b Karen Chin; Emilio Estrada-Ruiz; Elisabeth A. Wheeler; Garland R. Upchurch Jr.; Douglas G. Wolfe (2019). "Early angiosperm woods from the mid-Cretaceous (Turonian) of New Mexico, USA: Paraphyllanthoxylon, two new taxa, and unusual preservation". Cretaceous Research. 98: 292–304. doi:10.1016/j.cretres.2019.01.017.
- ^ He Tang; Jia Liu; Fei‐Xiang Wu; Teresa Spicer; Robert A. Spicer; Wei‐Yu‐Dong Deng; Cong‐Li Xu; Fan Zhao; Jian Huang; Shu‐Feng Li; Tao Su; Zhe‐Kun Zhou (2019). "Extinct genus Lagokarpos reveals a biogeographic connection between Tibet and other regions in the Northern Hemisphere during the Paleogene". Journal of Systematics and Evolution. 57 (6): 670–677. doi:10.1111/jse.12505.
- ^ A. Boura; G. Saulnier; D. De Franceschi; B. Gomez; V. Daviero-Gomez; D. Pons; G. Garcia; N. Robin; J-M. Boiteau; X. Valentin (2019). "An early record of a vesselless angiosperm from the middle Cenomanian of the Envigne valley (Vienne, Western France)". IAWA Journal. 40 (3): 530–550. doi:10.1163/22941932-40190238.
- ^ George O. Poinar, Jr; Kenton L. Chambers (2019). "Strombothelya gen. nov., a fossil angiosperm with two species in mid-Cretaceous Myanmar amber". Journal of the Botanical Research Institute of Texas. 13 (2): 451–460.
- ^ Elisabeth A. Wheeler; Peter K. Brown; Allan J. Koch (2019). "Late Paleocene woods from Cherokee Ranch, Colorado, U.S.A.". Rocky Mountain Geology. 54 (1): 33–46. doi:10.24872/rmgjournal.54.1.33.
- ^ George O. Poinar, Jr; Kenton L. Chambers (2019). "Zygadelphus aetheus gen. et sp. nov., an unusual fossil flower from mid-Cretaceous Myanmar amber". Journal of the Botanical Research Institute of Texas. 13 (2): 467–473.
- ^ Sergio R.S. Cevallos-Ferriz; César Ríos-Santos; Socorro Lozano-García (2019). "Abies cuitlahuacii sp. nov., a mummified late Quaternary fossil wood from Chalco, Mexico" (PDF). Boletín de la Sociedad Geológica Mexicana. 71 (1): 193–206. doi:10.18268/BSGM2019v71n1a10.
- ^ a b c d César Ríos-Santos; Sergio R. S. Cevallos-Ferriz (2019). "Upper Jurassic, Upper Cretaceous and Palaeocene conifer woods from Mexico". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 108 (4): 399–418. doi:10.1017/S1755691018000245.
- ^ Chopparapu Chinnappa; Annamraju Rajanikanth; Kavali Pauline Sabina (2019). "Palaeofloras from the Kota Formation, India: palaeodiversity and ecological implications". Volumina Jurassica. in press.
- ^ a b c Robert S. Hill; Gregory J. Jordan; Raymond J. Carpenter; Rosemary Paull (2019). "Araucaria section Eutacta macrofossils from the Cenozoic of southeastern Australia". International Journal of Plant Sciences. 180 (8): 902–921. doi:10.1086/704829.
- ^ Jiří Kvaček; Ismail Omer Yilmaz; Izzet Hosgor; Mário Miguel Mendes (2019). "New araucarian conifer from the Late Cretaceous (Campanian-Maastrichtian) of southeastern Turkey". International Journal of Plant Sciences. 180 (6): 597–606. doi:10.1086/703525.
- ^ Cristina I. Nunes; Josefina Bodnar; Ignacio H. Escapa; María A. Gandolfo; N. Rubén Cúneo (2019). "A new cupressaceous wood from the Lower Cretaceous of Central Patagonia reveals possible clonal growth habit". Cretaceous Research. 99: 133–148. doi:10.1016/j.cretres.2019.02.013.
- ^ Dori L. Contreras; Ignacio H. Escapa; Rocio C. Iribarren; N. Rubén Cúneo (2019). "Reconstructing the early evolution of the Cupressaceae: a whole-plant description of a new Austrohamia species from the Cañadón Asfalto Formation (Early Jurassic), Argentina". International Journal of Plant Sciences. 180 (8): 834–868. doi:10.1086/704831.
- ^ Martin A. Carrizo; Maiten A. Lafuente Diaz; Georgina M. Del Fueyo; Gaëtan Guignard (2019). "Cuticle ultrastructure in Brachyphyllum garciarum sp. nov (Lower Cretaceous, Argentina) reveals its araucarian affinity". Review of Palaeobotany and Palynology. 269: 104–128. doi:10.1016/j.revpalbo.2019.06.014.
- ^ Rosemary Paull; Robert S. Hill; Gregory J. Jordan; J.M. Kale Sniderman (2019). "Mid Miocene–Last Interglacial Callitris (Cupressaceae) from south-eastern Australia". Review of Palaeobotany and Palynology. 263: 1–11. doi:10.1016/j.revpalbo.2019.01.005.
- ^ Jian-Wei Zhang; Ashalata D’Rozario; Xiao-Qing Liang; Zhe-Kun Zhou (2019). "Middle Miocene Cephalotaxus (Taxaceae) from Yunnan, Southwest China, and its implications to taxonomy and evolution of the genus". Palaeoworld. 28 (3): 381–402. doi:10.1016/j.palwor.2019.01.002.
- ^ Abel Barral; Bernard Gomez; Véronique Daviero-Gomez; Christophe Lécuyer; Mário Miguel Mendes; Timothy A.M. Ewin (2019). "New insights into the morphology and taxonomy of the Cretaceous conifer Frenelopsis based on a new species from the Albian of San Just, Teruel, Spain". Cretaceous Research. 95: 21–36. doi:10.1016/j.cretres.2018.11.004.
- ^ Ana Andruchow-Colombo; Peter Wilf; Ignacio H. Escapa (2019). "A South American fossil relative of Phyllocladus: Huncocladus laubenfelsii gen. et sp. nov. (Podocarpaceae), from the early Eocene of Laguna del Hunco, Patagonia, Argentina". Australian Systematic Botany. 32 (4): 290–309. doi:10.1071/SB18043.
- ^ Ana Andruchow-Colombo; Ignacio H. Escapa; Raymond J. Carpenter; Robert S. Hill; Ari Iglesias; Ana M. Abarzua; Peter Wilf (2019). "Oldest record of the scale-leaved clade of Podocarpaceae, early Paleocene of Patagonia, Argentina". Alcheringa: An Australasian Journal of Palaeontology. 43 (1): 127–145. doi:10.1080/03115518.2018.1517222.
- ^ Yi-Ming Cui; Wei Wang; David K. Ferguson; Jian Yang; Yu-Fei Wang (2019). "Fossil evidence reveals how plants responded to cooling during the Cretaceous-Paleogene transition". BMC Plant Biology. 19: Article number 402. doi:10.1186/s12870-019-1980-y. PMC 6743113. PMID 31519148.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Hai-Bo Wei; Xu-Dong Gou; Ji-Yuan Yang; Zhuo Feng (2019). "Fungi–plant–arthropods interactions in a new conifer wood from the uppermost Permian of China reveal complex ecological relationships and trophic networks". Review of Palaeobotany and Palynology. 271: Article 104100. doi:10.1016/j.revpalbo.2019.07.005.
- ^ Peng-Cheng An; De-Liang Tang; Hui Chen; Qian Yang; Su-Ting Ding; Jing-Yu Wu (2019). "Pliocene white pine (Pinus subgenus Strobus) needles from western Yunnan, southwestern China". Historical Biology: An International Journal of Paleobiology. 31 (10): 1412–1422. doi:10.1080/08912963.2018.1461216.
- ^ Dimitra Mantzouka; Jakub Sakala; Zlatko Kvaček; Efterpi Koskeridou; Chryssanthi Ioakim (2019). "Two fossil conifer species from the Neogene of Alonissos Island (Iliodroma, Greece)". Geodiversitas. 41 (3): 125–142. doi:10.5252/geodiversitas2019v41a3.
- ^ C. H. Chinnappa; P. S. Kavali; A. Rajanikanth (2019). "Protaxodioxylon from the Late Jurassic to Early Cretaceous Kota Formation, Pranhita-Godavari Basin, India". Paleontological Journal. 53 (11): 1206–1215. doi:10.1134/S0031030119110029.
- ^ Gustavo Correa; Josefina Bodnar; Carina Colombi; Paula Santi Malnis; Angel Praderio; Ricardo Martínez; Cecilia Apaldetti; Eliana Fernández; Diego Abelín; Oscar Alcober (2019). "Systematics and taphonomy of fossil woods from a new locality in the Upper Triassic Carrizal Formation of the El Gigantillo area (Marayes-El Carrizal Basin), San Juan, Argentina". Journal of South American Earth Sciences. 90: 94–106. doi:10.1016/j.jsames.2018.11.027.
- ^ Chris Mays; David J. Cantrill (2019). "Protodammara reimatamoriori, a new species of conifer (Cupressaceae) from the Upper Cretaceous Tupuangi Formation, Chatham Islands, Zealandia". Alcheringa: An Australasian Journal of Palaeontology. 43 (1): 114–126. doi:10.1080/03115518.2017.1417478.
- ^ Ksenia V. Domogatskaya; Alexei B. Herman (2019). "New species of the genus Schizolepidopsis (conifers) from the Albian of the Russian high Arctic and geological history of the genus". Cretaceous Research. 97: 73–93. doi:10.1016/j.cretres.2019.01.012.
- ^ Mingli Wan; Wan Yang; Jun Wang (2019). "Amyelon bogdense sp. nov., a silicified gymnospermous root from the Changhsingian–Induan (?) in southern Bogda Mountains, northwestern China". Review of Palaeobotany and Palynology. 263: 12–27. doi:10.1016/j.revpalbo.2019.01.004.
- ^ a b c d e Else Marie Friis; Peter R. Crane; Kaj Raunsgaard Pedersen (2019). "Chlamydospermous seeds document the diversity and abundance of extinct gnetalean relatives in Early Cretaceous vegetation". International Journal of Plant Sciences. 180 (7): 643–666. doi:10.1086/704356.
- ^ a b Heidi M. Anderson; Maria K. Barbacka; Marion K. Bamford; W. B. Keith Holmes; John M. Anderson (2019). "Umkomasia (megasporophyll): part 1 of a reassessment of Gondwana Triassic plant genera and a reclassification of some previously attributed". Alcheringa: An Australasian Journal of Palaeontology. 43 (1): 43–70. doi:10.1080/03115518.2018.1554748.
- ^ Robert S. Hill; Kathryn E. Hill; Raymond J. Carpenter; Gregory J. Jordan (2019). "New macrofossils of the Australian cycad Bowenia and their significance in reconstructing the past morphological range of the genus". International Journal of Plant Sciences. 180 (2): 128–140. doi:10.1086/701103.
- ^ Evelyn Kustatscher; Henk Visscher; Johanna H. A. van Konijnenburg-van Cittert (2019). "Did the Czekanowskiales already exist in the late Permian?". PalZ. 93 (3): 465–477. doi:10.1007/s12542-019-00468-9.
- ^ a b c d e Zbyněk Šimůnek (2019). "The earliest evidence of cordaitalean cuticles from coal in the Pennsylvanian of Europe (Langsettian, Upper Silesian Basin, Czech Republic)". Review of Palaeobotany and Palynology. 261: 81–94. doi:10.1016/j.revpalbo.2018.11.007.
- ^ Patrick Blomenkemper; Abdalla Abu Hamad; Benjamin Bomfleur (2019). "Cryptokerpia sarlaccophora gen. et sp. nov., an enigmatic plant fossil from the Late Permian Umm Irna Formation of Jordan". PalZ. 93 (3): 479–485. doi:10.1007/s12542-019-00466-x.
- ^ Pedro Correia; Zbynĕk Šimůnek; Christopher J. Cleal; Artur A. Sá (2019). "Douropteris alvarezii gen. nov., sp. nov., a new medullosalean pteridosperm from the Late Pennsylvanian of Portugal". Geological Journal. 54 (3): 1567–1577. doi:10.1002/gj.3251.
- ^ Else Marie Friis; Peter R. Crane; Kaj Raunsgaard Pedersen (2019). "Geminispermum, an Early Cretaceous (early–middle Albian) cupulate unit from the angiosperm-dominated Puddledock flora of eastern North America". Acta Palaeobotanica. 59 (2): 229–239. doi:10.2478/acpa-2019-0020.
- ^ a b Stephen McLoughlin; Anton Maksimenko; Chris Mays (2019). "A new high-paleolatitude Late Permian permineralized peat flora from the Sydney Basin, Australia". International Journal of Plant Sciences. 180 (6): 513–539. doi:10.1086/702939.
- ^ Andrew C. Scott; Jason Hilton; Jean Galtier; Marco Stampanoni (2019). "A charcoalified ovule adapted for wind dispersal and deterring herbivory from the late Viséan (Carboniferous) of Scotland". International Journal of Plant Sciences. 180 (9): 1059–1074. doi:10.1086/705590.
- ^ Andrés Elgorriaga; Ignacio H. Escapa; N. Rubén Cúneo (2019). "Relictual Lepidopteris (Peltaspermales) from the Early Jurassic Cañadón Asfalto Formation, Patagonia, Argentina". International Journal of Plant Sciences. 180 (6): 578–596. doi:10.1086/703461.
- ^ Heidi M. Anderson; Maria Barbacka; Marion K. Bamford; W. B. Keith Holmes; John M. Anderson (2019). "Pteruchus (microsporophyll): part 2 of a reassessment of Gondwana Triassic plant genera and a reclassification of some previously attributed". Alcheringa: An Australasian Journal of Palaeontology. 43 (4): 540–562. doi:10.1080/03115518.2019.1617348.
- ^ Eugeny Karasev; Giuseppa Forte; Mario Coiro; Evelyn Kustatscher (2019). "Mutoviaspermum krassilovii gen. et sp. nov.: a peculiar compound ovuliferous conifer cone from the Lopingian (late Permian) of European Russia (Vologda Region)". International Journal of Plant Sciences. 180 (8): 779–799. doi:10.1086/704944.
- ^ Isabela Degani-Schmidt; Margot Guerra-Sommer (2019). "Epidermal morphology of the cordaitalean leaf Noeggerathiopsis brasiliensis nom. nov. from the southern Paraná Basin (Lower Permian, Rio Bonito Formation) and paleoenvironmental considerations". Brazilian Journal of Geology. 49 (2): e20190020. doi:10.1590/2317-4889201920190020.
- ^ Josef Pšenička; Erwin L. Zodrow; Jiří Bek (2019). "The compound synangial organ Potoniea krisiae sp. nov. and its plausible relationship with linopterids based on cuticles from the Late Pennsylvanian Sydney Coalfield, Canada". International Journal of Coal Geology. 210: Article 103200. doi:10.1016/j.coal.2019.05.007.
- ^ Mingli Wan; Wan Yang; Jun Wang (2019). "A new Protophyllocladoxylon wood from the Induan (Lower Triassic) Jiucaiyuan Formation in the Turpan–Hami Basin, southern Bogda Mountains, northwestern China". Review of Palaeobotany and Palynology. 267: 62–72. doi:10.1016/j.revpalbo.2019.05.005.
- ^ a b Chong Dong; Zhiyan Zhou; Bole Zhang; Yongdong Wang; Gongle Shi (2019). "Umaltolepis and associated Pseudotorellia leaves from the Middle Jurassic of Yima in Henan Province, Central China". Review of Palaeobotany and Palynology. 271: Article 104111. doi:10.1016/j.revpalbo.2019.104111.
- ^ Martín A. Carrizo; Maiten A. Lafuente Diaz; Georgina M. Del Fueyo (2019). "Resolving taxonomic problems through cuticular analysis in Early Cretaceous bennettitalean leaves from Patagonia". Cretaceous Research. 97: 40–51. doi:10.1016/j.cretres.2019.01.013.
- ^ Maiten A. Lafuente Diaz; Martín A. Carrizo; Georgina M. Del Fueyo; José A. D'Angelo (2019). "Chemometric approach to the foliar cuticle of Ptilophyllum micropapillosum sp. nov. from the Springhill Formation (Lower Cretaceous, Argentina)". Review of Palaeobotany and Palynology. 271: Article 104110. doi:10.1016/j.revpalbo.2019.104110.
- ^ Andrés Elgorriaga; Ignacio H. Escapa; N. Rubén Cúneo (2019). "Southern Hemisphere Caytoniales: vegetative and reproductive remains from the Lonco Trapial Formation (Lower Jurassic), Patagonia". Journal of Systematic Palaeontology. 17 (17): 1477–1495. doi:10.1080/14772019.2018.1535456.
- ^ Mingli Wan; Wan Yang; Jun Wang (2019). "Sclerospiroxylon xinjiangensis nov. sp., a gymnospermous wood from the Kungurian (lower Permian) southern Bogda Mountains, northwestern China: systematics and palaeoecology". Geobios. 52: 85–97. doi:10.1016/j.geobios.2018.11.005.
- ^ Toshihiro Yamada; Takae F. Yamada; Kazuo Terada; Takeshi A. Ohsawa; Atsushi Yabe; Julien Legrand; Kazuhiko Uemura; Marcelo Leppe; Luis Felipe Hinojosa; Patricio López-Sepúlveda; Harufumi Nishida (2019). "Sueria laxinervis, a new fossil species of Cycadales from the Upper Cretaceous Quiriquina Formation in Cocholgüe, Bíobío Region, Chile". Phytotaxa. 402 (2): 126–130. doi:10.11646/phytotaxa.402.2.7.
- ^ a b Gongle Shi; Peter R. Crane; Patrick S. Herendeen; Niiden Ichinnorov; Masamichi Takahashi; Fabiany Herrera (2019). "Diversity and homologies of corystosperm seed-bearing structures from the Early Cretaceous of Mongolia". Journal of Systematic Palaeontology. 17 (12): 997–1029. doi:10.1080/14772019.2018.1493547.
- ^ Malte Backer; Benjamin Bomfleur; Hans Kerp (2019). "Reconstruction of a small-leaved cordaitalean plant from the Permian of North China by means of cuticular analysis". International Journal of Plant Sciences. 180 (7): 709–723. doi:10.1086/704375.
- ^ Yang Yang; Xiao-Yuan He; Jason Hilton; Fu-Guang Zhao; Xin-Shi Chen; Shi-Jun Wang (2019). "Xuanweioxylon damogouense sp. nov., a gymnosperm stem from the Lopingian (late Permian) of southwestern China and its systematic and paleoecological implications". Review of Palaeobotany and Palynology. 269: 94–103. doi:10.1016/j.revpalbo.2019.06.012.
- ^ Zhong-Jian Liu; Ye-Mao Hou; Xin Wang (2019). "Zhangwuia: an enigmatic organ with a bennettitalean appearance and enclosed ovules". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 108 (4): 419–428. doi:10.1017/S1755691018000257.
- ^ a b Filippo Barattolo; Viorel Ionesi; Paul Ţibuleac (2019). "A new polyphysacean alga from the Miocene of Romania and its biomineralization". Acta Palaeontologica Polonica. 64 (1): 85–100. doi:10.4202/app.00537.2018.
- ^ Josef Pšenička; Ronny Rößler; Jana Frojdová; Stanislav Opluštil; Mathias Merbitz (2019). "A new anatomically preserved Alloiopteris fern from Moscovian (Bolsovian) volcanoclastics of Flöha (Flöha Basin, SE Germany)". PalZ. 93 (3): 395–407. doi:10.1007/s12542-019-00482-x.
- ^ Bruno R.C. Granier; Alexandre Lethiers (2019). "Aloisalthella, a new genus of fossil Polyphysacean green algae (Chlorophyta, Dasycladales), with notes on the genus Clypeina (Michelin, 1845)". Palaeontologia Electronica. 22 (2): Article number 22.2.45. doi:10.26879/923.
- ^ B. Cascales-Miñana; J. Z. Xue; G. Rial; P. Gerrienne; P. Huang; P. Steemans (2019). "Revisiting the spore assemblages from the Lower Devonian Posongchong Formation of Wenshan, Yunnan Province, southwestern China". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 108 (4): 339–354. doi:10.1017/S1755691018000233.
- ^ a b Lassad Tiss; Khaled Trabelsi; Fekri Kamoun; Mohamed Soussi; Yassine Houla; Benjamin Sames; Carles Martín-Closas (2019). "Middle Jurassic charophytes from southern Tunisia: Implications on evolution and paleobiogeography". Review of Palaeobotany and Palynology. 263: 65–84. doi:10.1016/j.revpalbo.2019.01.011.
- ^ Elizabeth J. Hermsen; Nathan A. Jud; Facundo De Benedetti; Maria A. Gandolfo (2019). "Azolla sporophytes and spores from the Late Cretaceous and Paleocene of Patagonia, Argentina". International Journal of Plant Sciences. 180 (7): 737–754. doi:10.1086/704377.
- ^ Bruno R.C. Granier; Ioan I. Bucur (2019). "Le genre Bakalovaella Bucur, 1993 (Dasycladeae, Dasycladaceae), et description de son plus ancien représentant crétacé". Carnets de Géologie. 19 (1): 1–19. doi:10.4267/2042/69540.
- ^ Eva‐Maria Sadowski; Leyla J. Seyfullah; Ledis Regalado; Laura E. Skadell; Alexander Gehler; Carsten Gröhn; Christel Hoffeins; Hans Werner Hoffeins; Christian Neumann; Harald Schneider; Alexander R. Schmidt (2019). "How diverse were ferns in the Baltic amber forest?". Journal of Systematics and Evolution. 57 (4): 305–328. doi:10.1111/jse.12501.
- ^ Ru Feng; Ashalata D’Rozario; Jian-Wei Zhang (2019). "A new Bergeria (Flemingitaceae) from the Mississippian of Xinjiang, NW China and its evolutionary implications". Journal of Palaeogeography. 8: Article 4. doi:10.1186/s42501-018-0020-4.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ a b c d e Alexander B. Doweld (2019). "On the nomenclature of the fossil‐genera Acitheca, Bifariusotheca, Polymorphopteris and Strephopteris (fossil Pteridophyta, Marattiopsida)". Taxon. 68 (5): 1101–1111. doi:10.1002/tax.12118.
- ^ Fankai Sun; Conghui Xiong; Zixi Wang; Xuelian Wang; Bainian Sun (2019). "Discovery of several Sphenophyllum from Cisuralian in Yongchang, Gansu and its paleogeographical significance". Acta Palaeontologica Sinica. 58 (2): 202–215.
- ^ a b Steven T. LoDuca (2019). "New Ordovician marine macroalgae from North America, with observations on Buthograptus, Callithamnopsis, and Chaetocladus". Journal of Paleontology. 93 (2): 197–214. doi:10.1017/jpa.2018.76.
- ^ a b Karl Krainer; Daniel Vachard; Maria Schaffhauser (2019). "Yakhtashian (Artinskian–Early Kungurian) cyanobacteria and calcareous algae from the Carnic Alps (Austria/Italy)". Palaeontologia Electronica. 22 (3): Article number 22.3.54. doi:10.26879/931.
- ^ Mélanie Tanrattana; Brigitte Meyer-Berthaud; Anne-Laure Decombeix (2019). "Callixylon wendtii sp. nov., a new species of archaeopteridalean progymnosperm from the Late Devonian of Anti-Atlas, Morocco". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 108 (4): 373–385. doi:10.1017/S1755691017000457.
- ^ a b c Patricio Emmanuel Santamarina; Viviana Dora Barreda; Ari Iglesias; Augusto Nicolás Varela (2019). "Palynology from the Cenomanian Mata Amarilla Formation, southern Patagonia, Argentina". Cretaceous Research. 109: Article 104354. doi:10.1016/j.cretres.2019.104354.
- ^ Yujin Zhang; Bingcai Liu; Fei Liang (2019). "A new species of Coniopteris moguqiensis sp. nov. from the Middle Jurassic Wanbao Formation in Eastern Inner Mongolia, China". Acta Geologica Sinica (English Edition). 93 (5): 1317–1324. doi:10.1111/1755-6724.14363.
- ^ Fankai Sun; Conghui Xiong; Zixi Wang; Jidong Wang; Mingxuan Sun; Xuelian Wang; Bainian Sun (2019). "A new species of Cyathocarpus with in situ spores from the lower Permian of Gansu, northwestern China". Historical Biology: An International Journal of Paleobiology. 31 (7): 824–835. doi:10.1080/08912963.2017.1396321.
- ^ Felix Schlagintweit; Koorosh Rashidi; Hamed Yarahmadzahi; Sharam Habibimood; Mahnaz Amirshahkarmi; Hossain Ahmadi; Hossain Khokan (2019). "Dissocladella? chahtorshiana Rashidi & Schlagintweit n. sp., a new dasycladale (green algae) from the Paleocene of Iran" (PDF). Acta Palaeontologica Romaniae. 15 (2): 3–13. doi:10.35463/j.apr.2019.02.01.
- ^ K. Rashidi; F. Schlagintweit (2019). "Dissocladella compressa n. sp., a new Dasycladale (green algae) from the Upper Maastrichtian of Iran". Arabian Journal of Geosciences. 12 (7): Article 247. doi:10.1007/s12517-019-4403-3.
- ^ Kolby R. Lundgren; N. Ruben Cúneo; Ignacio H. Escapa; Alexandru M.F. Tomescu (2019). "A new marattialean fern from the Lower Permian of Patagonia (Argentina) with cautionary tales on synangial morphology and pinnule base characters". International Journal of Plant Sciences. 180 (7): 667–680. doi:10.1086/704357.
- ^ Carmen Álvarez-Vázquez (2019). "Filicopsida from the lower Westphalian (Middle Pennsylvanian) of Nova Scotia and New Brunswick, Maritime Provinces, Canada". Atlantic Geology. 55: 1–55. doi:10.4138/atlgeol.2019.001. ISSN 1718-7885.
- ^ Deming Wang; Min Qin; Le Liu; Lu Liu; Yi Zhou; Yingying Zhang; Pu Huang; Jinzhuang Xue; Shihui Zhang; Meicen Meng (2019). "The most extensive Devonian fossil forest with small lycopsid trees bearing the earliest stigmarian roots". Current Biology. 29 (16): 2604–2615.e2. doi:10.1016/j.cub.2019.06.053. PMID 31402300.
- ^ L.B. Golovneva; A.A. Grabovskiy (2019). "The genus Hausmannia (Dipteridaceae) in the Cretaceous of the North-East of Russia and its paleobiogeographic implications". Cretaceous Research. 93: 22–32. doi:10.1016/j.cretres.2018.09.001.
- ^ Ledis Regalado; Alexander R. Schmidt; Patrick Müller; Lisa Niedermeier; Michael Krings; Harald Schneider (2019). "Heinrichsia cheilanthoides gen. et sp. nov., a fossil fern in the family Pteridaceae (Polypodiales) from the Cretaceous amber forests of Myanmar". Journal of Systematics and Evolution. 57 (4): 329–338. doi:10.1111/jse.12514.
- ^ Alexander C. Bippus; Adolfina Savoretti; Ignacio H. Escapa; Juan Garcia-Massini; Diego Guido (2019). "Heinrichsiella patagonica gen. et sp. nov.: a permineralized acrocarpous moss from the Jurassic of Patagonia". International Journal of Plant Sciences. 180 (8): 882–891. doi:10.1086/704832.
- ^ a b c d Maya A. Bickner; Alexandru M.F. Tomescu (2019). "Structurally complex, yet anatomically plesiomorphic: permineralized plants from the Emsian of Gaspé (Quebec, Canada) expand the diversity of Early Devonian euphyllophytes". IAWA Journal. 40 (3): 421–445. doi:10.1163/22941932-40190234.
- ^ a b c Yuriy S. Mamontov; Michael S. Ignatov (2019). "How to rely on the unreliable: examples from Mesozoic bryophytes of Transbaikalia". Journal of Systematics and Evolution. 57 (4): 339–360. doi:10.1111/jse.12483.
- ^ Maria Barbacka; Grzegorz Pacyna; Artur Górecki; Evelyn Kustatscher (2019). "Leonophyllum tenellum nov. gen., nov. sp., an enigmatic plant from the Early Jurassic of the Mecsek Mts (Hungary)". Geobios. 53: 1–7. doi:10.1016/j.geobios.2019.02.004.
- ^ Elizabeth J. Hermsen (2019). "Revisions to the fossil sporophyte record of Marsilea". Acta Palaeobotanica. 59 (1): 27–50. doi:10.2478/acpa-2019-0005.
- ^ Junyou Wang; Tao Li; Zhiping Liu; Bin Guo; Ai Kang; Yuling Na; Yunfeng Li; Hongshan Wag; Junchen Bo; Chunlin Sun (2019). "A new member of Sphenopsida, Neolobatannularia gen. nov. from Late Triassic of western Liaoning, China". Global Geology (English Edition). 22 (1): 1–8. doi:10.3969/j.issn.1673-9736.2019.01.01.
- ^ Anne-Laure Decombeix; Jean Galtier; Stephen McLoughlin; Brigitte Meyer-Berthaud; Gregory E. Webb; Paul R. Blake (2019). "Early Carboniferous lignophyte tree diversity in Australia: Woods from the Drummond and Yarrol basins, Queensland". Review of Palaeobotany and Palynology. 263: 47–64. doi:10.1016/j.revpalbo.2019.01.009.
- ^ Stanislav Opluštil; Josef Pšenička; Jiří Bek (2019). "Omphalophloios wagneri sp. nov., a new sub-arborescent lycopsid from the middle Moscovian (Middle Pennsylvanian) of the Illinois Basin, USA". Review of Palaeobotany and Palynology. 271: Article 104105. doi:10.1016/j.revpalbo.2019.104105.
- ^ N. V. Bazhenova; A. V. Bazhenov (2019). "Stems of a new osmundaceous fern from the Middle Jurassic of Kursk Region, European Russia". Paleontological Journal. 53 (5): 540–550. doi:10.1134/S0031030119050034.
- ^ Uwe Kaulfuss; John G. Conran; Jennifer M. Bannister; Dallas C. Mildenhall; Daphne E. Lee (2019). "A new Miocene fern (Palaeosorum: Polypodiaceae) from New Zealand bearing in situ spores of Polypodiisporites". New Zealand Journal of Botany. 57 (1): 2–17. doi:10.1080/0028825X.2018.1560336.
- ^ Carmine C. Wainman; Daniel J. Mantle; Carey Hannaford; Peter J. McCabe (2019). "Possible freshwater dinoflagellate cysts and colonial algae from the Upper Jurassic strata of the Surat Basin, Australia". Palynology. 43 (3): 411–422. doi:10.1080/01916122.2018.1451785.
- ^ Maria Barbacka; Evelyn Kustatscher; Emese R. Bodor (2019). "Ferns of the Lower Jurassic from the Mecsek Mountains (Hungary): taxonomy and palaeoecology". PalZ. 93 (1): 151–185. doi:10.1007/s12542-018-0430-8.
- ^ Koorosh Rashidi; Felix Schlagintweit (2019). "New data on some type-species of Maastrichtian-Paleocene Dasycladales (Green algae) from Iran. Part I. Pseudocymopolia Elliott, 1970". Carnets de Géologie. 19 (6): 97–111. doi:10.4267/2042/70194.
- ^ Ruiyun Li; Xiaoqiang Li; Hongshan Wang; Bainian Sun (2019). "Ricciopsis sandaolingensis sp. nov., a new fossil bryophyte from the Middle Jurassic Xishanyao Formation in the Turpan-Hami Basin, Xinjiang, Northwest China". Palaeontologia Electronica. 22 (2): Article number 22.2.42. doi:10.26879/917.
- ^ Cyrille Prestianni; Robert W. Gess (2019). "Rinistachya hilleri gen. et sp. nov. (Sphenophyllales), from the upper Devonian of South Africa". Organisms Diversity & Evolution. 19 (1): 1–11. doi:10.1007/s13127-018-0385-3.
- ^ Xiao-Yuan He; Shi-Jun Wang; Jun Wang; Jason Hilton (2019). "The anatomically preserved tripinnate frond Rothwellopteris pecopteroides gen. et sp. nov. from the latest Permian of South China: timing the stem to crown group transition in Marattiales". International Journal of Plant Sciences. 180 (8): 869–881. doi:10.1086/704946.
- ^ Christopher M. Berry; Patricia G. Gensel (2019). "Late Mid Devonian Sawdonia (Zosterophyllopsida) from Venezuela". International Journal of Plant Sciences. 180 (6): 540–557. doi:10.1086/702940.
- ^ Dan-Dan Li; Jun Wang; Shan Wan; Josef Pšenička; Wei-Ming Zhou; Jiří Bek; Jana Votočková-Frojdová (2019). "A marattialean fern, Scolecopteris libera n. sp., from the Asselian (Permian) of Inner Mongolia, China". Palaeoworld. 28 (4): 487–507. doi:10.1016/j.palwor.2019.05.002.
- ^ Michael S. Ignatov; Paul Lamkowski; Elena A. Ignatova; Evgeny E. Perkovsky (2019). "Mosses from Rovno amber (Ukraine), 4. Sphagnum heinrichsii, a new moss species from Eocene". Arctoa: A Journal of Bryology. 28 (1): 1–11. doi:10.15298/arctoa.28.01.
- ^ Jun-you Wang; Tao Li; Zhi-ping Liu; Bin Guo; Ai Kang; Yu-ling Na; Yun-feng Li; Jun-chen Bo; Chun-lin Sun (2019). "New discovery of Late Triassic liverworts from Yangcaogou, Beipiao, Liaoning, China". Global Geology. 38 (1): 1–10. doi:10.3969/j.issn.1004-5589.2019.01.001.
- ^ Xiao-Yuan He; Shi-Jun Wang (2019). "A new anatomically preserved osmundalean stem Tiania resinus sp. nov. from the Lopingian (upper Permian) of eastern Yunnan, China". Review of Palaeobotany and Palynology. 262: 52–59. doi:10.1016/j.revpalbo.2018.12.004.
- ^ Petr Kraft; Josef Pšenička; Jakub Sakala; Jiří Frýda (2019). "Initial plant diversification and dispersal event in upper Silurian of the Prague Basin". Palaeogeography, Palaeoclimatology, Palaeoecology. 514: 144–155. doi:10.1016/j.palaeo.2018.09.034.
- ^ Koorosh Rashidi; Felix Schlagintweit (2019). "Uteria naghanensis n. sp. (Dasycladale) from the Upper Maastrichtian of Iran". Carnets de Géologie. 19 (2): 21–33. doi:10.4267/2042/69755.
- ^ Charles H. Wellman; Linda E. Graham; Louise A. Lewis (2019). "Filamentous green algae from the Early Devonian Rhynie chert". PalZ. 93 (3): 387–393. doi:10.1007/s12542-019-00456-z.
- ^ Filippo Barattolo; Nicola Carras; Marc André Conrad; Rajka Radoičić (2019). "Falsolikanella campanensis (Azéma and Jaffrezo, 1972) Granier, 1987 revisited on type material, evidence of polyphysacean nature (green algae)". Journal of Paleontology. 93 (4): 593–611. doi:10.1017/jpa.2018.108.
- ^ Alba Vicente; Zoltán Csiki-Sava; Carles Martín-Closas (2019). "European charophyte evolution across the Cretaceous–Paleogene boundary". Palaeogeography, Palaeoclimatology, Palaeoecology. 533: Article 109244. doi:10.1016/j.palaeo.2019.109244.
- ^ Claudia V. Rubinstein; Vivi Vajda (2019). "Baltica cradle of early land plants? Oldest record of trilete spores and diverse cryptospore assemblages; evidence from Ordovician successions of Sweden". GFF. 141 (3): 181–190. doi:10.1080/11035897.2019.1636860.
- ^ Alexander J. Askew; Charles H. Wellman (2019). "An endemic flora of dispersed spores from the Middle Devonian of Iberia". Papers in Palaeontology. 5 (3): 415–459. doi:10.1002/spp2.1245.
- ^ Marcela Quetglas; Cecilia Macluf; Mercedes di Pasquo (2019). "Morphology of the megaspore Lagenoisporites magnus (Chi and Hills 1976) Candilier et al. (1982), from the Carboniferous (lower Mississippian: mid-upper Tournaisian) of Bolivia". Anais da Academia Brasileira de Ciências. 91 (Suppl. 2): e20180750. doi:10.1590/0001-3765201920180750. PMID 31340218.
- ^ Thomas Servais; Borja Cascales-Miñana; Christopher J. Cleal; Philippe Gerrienne; David A.T. Harper; Mareike Neumann (2019). "Revisiting the Great Ordovician Diversification of land plants: Recent data and perspectives". Palaeogeography, Palaeoclimatology, Palaeoecology. 534: Article 109280. doi:10.1016/j.palaeo.2019.109280.
- ^ Y. Datu Adiatma; Matthew R. Saltzman; Seth A. Young; Elizabeth M. Griffith; Nevin P. Kozik; Cole T. Edwards; Stephen A. Leslie; Alyssa M. Bancroft (2019). "Did early land plants produce a stepwise change in atmospheric oxygen during the Late Ordovician (Sandbian ~458 Ma)?". Palaeogeography, Palaeoclimatology, Palaeoecology. 534: Article 109341. doi:10.1016/j.palaeo.2019.109341.
- ^ Zhenzhu Wan; Thomas J. Algeo; Patricia G. Gensel; Stephen E. Scheckler; William E. Stein; Walter L. Cressler III; Christopher M. Berry; Honghe Xu; Harold D. Rowe; Peter E. Sauer (2019). "Environmental influences on the stable carbon isotopic composition of Devonian and Early Carboniferous land plants". Palaeogeography, Palaeoclimatology, Palaeoecology. 531, Part A: Article 109100. doi:10.1016/j.palaeo.2019.02.025.
- ^ Borja Cascales‐Miñana; Philippe Steemans; Thomas Servais; Kevin Lepot; Philippe Gerrienne (2019). "An alternative model for the earliest evolution of vascular plants". Lethaia. 52 (4): 445–453. doi:10.1111/let.12323.
- ^ William L. Crepet; Karl J. Niklas (2019). "The evolution of early vascular plant complexity". International Journal of Plant Sciences. 180 (8): 800–810. doi:10.1086/705001.
- ^ Christine Strullu‐Derrien; Sylvain Bernard; Alan R. T. Spencer; Laurent Remusat; Paul Kenrick; Delphine Derrien (2019). "On the structure and chemistry of fossils of the earliest woody plant". Palaeontology. 62 (6): 1015–1026. doi:10.1111/pala.12440.
- ^ Nikole K. Bonacorsi; Andrew B. Leslie (2019). "Functional diversity and convergence in the evolution of plant reproductive structures". Annals of Botany. 123 (1): 145–152. doi:10.1093/aob/mcy151. PMC 6344085. PMID 30107388.
- ^ Olga A. Orlova; Natalia Zavialova; Sergey Snigirevsky; Aleftina Jurina; Anna Lidskaya (2019). "Kossoviella timanica Petrosjan emend. from the Upper Devonian of North Timan: morphology and spore ultrastructure". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 108 (4): 355–372. doi:10.1017/S1755691018000269.
- ^ Wilson A. Taylor (2019). "Spore wall ultrastructure in the Tournaisian lycopsid Oxroadia gracilis". International Journal of Plant Sciences. 180 (6): 571–577. doi:10.1086/702942.
- ^ Alexander J. Hetherington; William A. DiMichele; Spencer G. Lucas; Sebastian Voigt (2019). "Tiny rhizomorphic rooting systems from the Early Permian Abo Formation of New Mexico, USA". International Journal of Plant Sciences. 180 (6): 504–512. doi:10.1086/702759.
- ^ Rodrigo Neregato; Jason Hilton (2019). "Reinvestigation of the enigmatic Carboniferous sphenophyte strobilus Cheirostrobus Scott and implications of in situ Retusotriletes spores". International Journal of Plant Sciences. 180 (8): 811–833. doi:10.1086/704945.
- ^ Hugues Terreaux de Felice; Anne-Laure Decombeix; Jean Galtier (2019). "Anatomy, affinities, and evolutionary implications of new silicified stems of Sphenophyllum Brongniart, 1828 from the early Carboniferous (Mississippian) of France and Germany". Geodiversitas. 41 (14): 587–599. doi:10.5252/geodiversitas2019v41a14.
- ^ Andrew C. Rozefelds; Mary E. Dettmann; Anita K. Milroy; Andrew Hammond; H. Trevor Clifford; Merrick Ekins (2019). "The unexpected, recent history of horsetails in Australia". Australian Systematic Botany. 32 (3): 255–268. doi:10.1071/SB18033.
- ^ James W. Clark; Mark N. Puttick; Philip C. J. Donoghue (2019). "Origin of horsetails and the role of whole-genome duplication in plant macroevolution". Proceedings of the Royal Society B: Biological Sciences. 286 (1914): Article ID 20191662. doi:10.1098/rspb.2019.1662. PMC 6842847. PMID 31662084.
- ^ Sofie Lindström; Hamed Sanei; Bas van de Schootbrugge; Gunver K. Pedersen; Charles E. Lesher; Christian Tegner; Carmen Heunisch; Karen Dybkjær; Peter M. Outridge (2019). "Volcanic mercury and mutagenesis in land plants during the end-Triassic mass extinction". Science Advances. 5 (10): eaaw4018. doi:10.1126/sciadv.aaw4018. PMC 6810405. PMID 31681836.
- ^ Keith Berry (2019). "Fern spore viability considered in relation to the duration of the Cretaceous-Paleogene (K-Pg) impact winter. A contribution to the discussion". Acta Palaeobotanica. 59 (1): 19–25. doi:10.2478/acpa-2019-0008.
- ^ Yuangao Qu; Nicola McLoughlin; Mark. A. van Zuilen; Martin Whitehouse; Anders Engdahl; Vivi Vajda (2019). "Evidence for molecular structural variations in the cytoarchitectures of a Jurassic plant". Geology. 47 (4): 325–329. doi:10.1130/G45725.1.
- ^ Candela Blanco-Moreno; Bernard Gomez; Jesús Marugán-Lobón; Véronique Daviero-Gomez; Ángela D. Buscalioni (2019). "A novel approach for the metric analysis of fern fronds: Growth and architecture of the Mesozoic fern Weichselia reticulata in the light of modern ferns". PLoS ONE. 14 (6): e0219192. doi:10.1371/journal.pone.0219192. PMC 6597107. PMID 31247026.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Cunlin Xin; Jingjing Wang; Luhan Wang; Yamei Zhang (2019). "Numerical taxonomy and Bayes discriminant analysis on 42 fossil species in Dicksoniaceae from China". Acta Geologica Sinica (English Edition). 93 (1): 183–198. doi:10.1111/1755-6724.13777.
- ^ Cong‐Li Xu; Tao Su; Jian Huang; Yong‐Jiang Huang; Shu‐Feng Li; Yi‐Shan Zhao; Zhe‐Kun Zhou (2019). "Occurrence of Christella (Thelypteridaceae) in Southwest China and its indications of the paleoenvironment of the Qinghai–Tibetan Plateau and adjacent areas". Journal of Systematics and Evolution. 57 (2): 169–179. doi:10.1111/jse.12452.
- ^ Anuradha Tewari; Ashalata D'Rozario; Sharmila Bhattacharya; Ahinsuk Barua; Meghma Bera; Subir Bera; Suryendu Dutta (2019). "Biomarker signatures of the iconic Glossopteris plant". Palaeogeography, Palaeoclimatology, Palaeoecology. 531, Part B: Article 108887. doi:10.1016/j.palaeo.2018.08.001.
- ^ Anju Saxena; Kamal Jeet Singh; Christopher J. Cleal; Shaila Chandra; Shreerup Goswami; Husain Shabbar (2019). "Development of the Glossopteris flora and its end Permian demise in the Tatapani–Ramkola Coalfield, Son–Mahanadi Basin, India". Geological Journal. 54 (4): 2472–2494. doi:10.1002/gj.3307.
- ^ Stephen Mcloughlin; Rose Prevec (2019). "The architecture of Permian glossopterid ovuliferous reproductive organs". Alcheringa: An Australasian Journal of Palaeontology. 43 (4): 480–510. doi:10.1080/03115518.2019.1659852.
- ^ Kathryn Edwina Hill; Robert Stephen Hill; Jennifer Robyn Watling (2019). "Pinnule and stomatal size and stomatal density of living and fossil Bowenia and Eobowenia specimens give insight into physiology during Cretaceous and Eocene paleoclimates". International Journal of Plant Sciences. 180 (4): 323–336. doi:10.1086/702643.
- ^ Qing-Min Meng; Conrad C. Labandeira; Qiao-Ling Ding; Dong Ren (2019). "The natural history of oviposition on a ginkgophyte fruit from the Middle Jurassic of northeastern China". Insect Science. 26 (1): 171–179. doi:10.1111/1744-7917.12506. PMID 28737833.
- ^ Atsushi Yabe; Eunkyoung Jeong; Kyungsik Kim; Kazuhiko Uemura (2019). "Oligocene–Neogene fossil history of Asian endemic conifer genera in Japan and Korea". Journal of Systematics and Evolution. 57 (2): 114–128. doi:10.1111/jse.12445.
- ^ Gabriela Gleiser; Karina L. Speziale; Sergio A. Lambertucci; Fernando Hiraldo; José L. Tella; Marcelo A. Aizen (2019). "Uncoupled evolution of male and female cone sizes in an ancient conifer lineage". International Journal of Plant Sciences. 180 (1): 72–80. doi:10.1086/700580.
- ^ Yan Wu; Jian‐Hua Jin; Nan Li; Hui‐Min He; Ting Chen; Xiao‐Yan Liu (2019). "Early Oligocene Calocedrus (Cupressaceae) from the Maoming Basin, South China, and its paleogeographic and paleoclimatic implications". Journal of Systematics and Evolution. 57 (2): 142–152. doi:10.1111/jse.12424.
- ^ Li Wang; Lutz Kunzmann; Tao Su; Yao-Wu Xing; Shi-Tao Zhang; Yu-Qing Wang; Zhe-Kun Zhou (2019). "The disappearance of Metasequoia (Cupressaceae) after the middle Miocene in Yunnan, Southwest China: Evidences for evolutionary stasis and intensification of the Asian monsoon". Review of Palaeobotany and Palynology. 264: 64–74. doi:10.1016/j.revpalbo.2018.12.007.
- ^ Marc Philippe; Maxim Afonin; Sylvain Delzon; Gregory J. Jordan; Kazuo Terada; Mélanie Thiébaut (2019). "A paleobiogeographical scenario for the Taxaceae based on a revised fossil wood record and embolism resistance". Review of Palaeobotany and Palynology. 263: 147–158. doi:10.1016/j.revpalbo.2019.01.003.
- ^ Birgit Niebuhr (2019). "From animal to plant kingdom: the alleged sponge Siphonia bovista Geinitz from the Cretaceous of Saxony (Germany) in fact represents internal moulds of the cone-like plant fossil Dammarites albens Presl in Sternberg". Bulletin of Geosciences. 94 (2): 221–234. doi:10.3140/bull.geosci.1733.
- ^ Paula J. Rudall; Richard M. Bateman (2019). "Leaf surface development and the plant fossil record: stomatal patterning in Bennettitales". Biological Reviews. 94 (3): 1179–1194. doi:10.1111/brv.12497. PMID 30714286.
- ^ Boglárka Erdei; Mario Coiro; Ian Miller; Kirk R. Johnson; M. Patrick Griffith; Vickie Murphy (2019). "First cycad seedling foliage from the fossil record and inferences for the Cenozoic evolution of cycads". Biology Letters. 15 (7): Article ID 20190114. doi:10.1098/rsbl.2019.0114. PMC 6684986. PMID 31288679.
- ^ Mario Coiro; James A. Doyle; Jason Hilton (2019). "How deep is the conflict between molecular and fossil evidence on the age of angiosperms?". New Phytologist. 223 (1): 83–99. doi:10.1111/nph.15708. PMID 30681148.
- ^ Hong-Tao Li; Ting-Shuang Yi; Lian-Ming Gao; Peng-Fei Ma; Ting Zhang; Jun-Bo Yang; Matthew A. Gitzendanner; Peter W. Fritsch; Jie Cai; Yang Luo; Hong Wang; Michelle van der Bank; Shu-Dong Zhang; Qing-Feng Wang; Jian Wang; Zhi-Rong Zhang; Chao-Nan Fu; Jing Yang; Peter M. Hollingsworth; Mark W. Chase; Douglas E. Soltis; Pamela S. Soltis; De-Zhu Li (2019). "Origin of angiosperms and the puzzle of the Jurassic gap". Nature Plants. 5 (5): 461–470. doi:10.1038/s41477-019-0421-0. PMID 31061536.
- ^ Else Marie Friis; Peter R. Crane; Kaj Raunsgaard Pedersen (2019). "The endothelium in seeds of early angiosperms". New Phytologist. 224 (4): 1419–1424. doi:10.1111/nph.16024. PMID 31240716.
- ^ Kelly K. S. Matsunaga; Steven R. Manchester; Rashmi Srivastava; Dashrath K. Kapgate; Selena Y. Smith (2019). "Fossil palm fruits from India indicate a Cretaceous origin of Arecaceae tribe Borasseae". Botanical Journal of the Linnean Society. 190 (3): 260–280. doi:10.1093/botlinnean/boz019.
- ^ Yong‐Jiang Huang; Hai Zhu; Arata Momohara; Lin‐Bo Jia; Zhe‐Kun Zhou (2019). "Fruit fossils of Rosoideae (Rosaceae) from the late Pliocene of northwestern Yunnan, Southwest China". Journal of Systematics and Evolution. 57 (2): 180–189. doi:10.1111/jse.12443.
- ^ He Xu; Tao Su; Zhe‐Kun Zhou (2019). "Leaf and infructescence fossils of Alnus (Betulaceae) from the late Eocene of the southeastern Qinghai–Tibetan Plateau". Journal of Systematics and Evolution. 57 (2): 105–113. doi:10.1111/jse.12463.
- ^ Carina Hoorn; Raymond van der Ham; Felipe de la Parra; Sonia Salamanca; Hans ter Steege; Hannah Banks; Wim Star; Bertie Joan van Heuven; Rob Langelaan; Fernanda A. Carvalho; Guillermo Rodriguez-Forero; Laura P. Lagomarsino (2019). "Going north and south: The biogeographic history of two Malvaceae in the wake of Neogene Andean uplift and connectivity between the Americas". Review of Palaeobotany and Palynology. 264: 90–109. doi:10.1016/j.revpalbo.2019.01.010.
- ^ Jordan B. Bemmels; L. Lacey Knowles; Christopher W. Dick (2019). "Genomic evidence of survival near ice sheet margins for some, but not all, North American trees". Proceedings of the National Academy of Sciences of the United States of America. 116 (17): 8431–8436. doi:10.1073/pnas.1901656116. PMC 6486725. PMID 30962371.
- ^ Karolin Moraweck; Michaela Grein; Wilfried Konrad; Jiří Kvaček; Johanna Kova-Eder; Christoph Neinhuis; Christopher Traiser; Lutz Kunzmann (2019). "Leaf traits of long-ranging Paleogene species and their relationship with depositional facies, climate and atmospheric CO2 level". Palaeontographica Abteilung B. 298 (4–6): 93–172. doi:10.1127/palb/2019/0062.
- ^ Steven R. Manchester; Margaret E. Collinson (2019). "Fruit morphology, anatomy and relationships of the type species of Mastixicarpum and Eomastixia (Cornales) from the late Eocene of Hordle, southern England". Acta Palaeobotanica. 59 (1): 51–67. doi:10.2478/acpa-2019-0006.
- ^ Carlos A. Góis-Marques; Ria L. Mitchell; Lea de Nascimento; José María Fernández-Palacios; José Madeira; Miguel Menezes de Sequeira (2019). "Eurya stigmosa (Theaceae), a new and extinct record for the Calabrian stage of Madeira Island (Portugal): 40Ar/39Ar dating, palaeoecological and oceanic island palaeobiogeographical implications". Quaternary Science Reviews. 206: 129–140. doi:10.1016/j.quascirev.2019.01.008.
- ^ Mauro G. Passalia; Nicolás Caviglia; Ezequiel I. Vera (2019). "Lithraea australis (Berry) comb. nov. (Anacardiaceae) from the upper section of Ñirihuau Formation (middle Miocene), Patagonia". Review of Palaeobotany and Palynology. 266: 1–11. doi:10.1016/j.revpalbo.2019.04.003.
- ^ Mélanie Tanrattana; Jean-François Barczi; Anne-Laure Decombeix; Brigitte Meyer-Berthaud; Jonathan Wilson (2019). "A new approach for modelling water transport in fossil plants". IAWA Journal. 40 (3): 466–S4. doi:10.1163/22941932-40190243.
- ^ Man Lu; YueHan Lu; Takehito Ikejiri; Nicholas Hogancamp; Yongge Sun; Qihang Wu; Richard Carroll; Ibrahim Çemen; Jack Pashin (2019). "Geochemical evidence of first forestation in the southernmost Euramerica from Upper Devonian (Famennian) black shales". Scientific Reports. 9: Article number 7581. doi:10.1038/s41598-019-43993-y. PMC 6527553. PMID 31110279.
- ^ Nikole K. Bonacorsi; Andrew B. Leslie (2019). "Sporangium position, branching architecture, and the evolution of reproductive morphology in Devonian plants". International Journal of Plant Sciences. 180 (6): 493–503. doi:10.1086/702938.
- ^ Gustavo Correa; Silvia N. Césari (2019). "Revision of the first Carboniferous palaeofloristic locality discovered in Argentina". Acta Palaeobotanica. 59 (1): 3–17. doi:10.2478/acpa-2019-0007.
- ^ Hendrik Nowak; Elke Schneebeli-Hermann; Evelyn Kustatscher (2019). "No mass extinction for land plants at the Permian–Triassic transition". Nature Communications. 10: Article number 384. doi:10.1038/s41467-018-07945-w. PMC 6344494. PMID 30674875.
- ^ Christopher R. Fielding; Tracy D. Frank; Stephen McLoughlin; Vivi Vajda; Chris Mays; Allen P. Tevyaw; Arne Winguth; Cornelia Winguth; Robert S. Nicoll; Malcolm Bocking; James L. Crowley (2019). "Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis". Nature Communications. 10: Article number 385. doi:10.1038/s41467-018-07934-z. PMC 6344581. PMID 30674880.
- ^ Abdalla M. B. Abu Hamad; Bety Al-Saqarat; Cátia V. Gonçalves; Rafael Spiekermann; André Jasper; Dieter Uhl (2019). "The first record of Dicroidium from the Triassic palaeotropics based on dispersed cuticles from the Anisian Mukheiris Formation of Jordan". PalZ. 93 (3): 487–498. doi:10.1007/s12542-019-00470-1.
- ^ Sam M. Slater; Richard J. Twitchett; Silvia Danise; Vivi Vajda (2019). "Substantial vegetation response to Early Jurassic global warming with impacts on oceanic anoxia". Nature Geoscience. 12 (6): 462–467. doi:10.1038/s41561-019-0349-z.
- ^ Stephen McLoughlin; Christian Pott (2019). "Plant mobility in the Mesozoic: Disseminule dispersal strategies of Chinese and Australian Middle Jurassic to Early Cretaceous plants". Palaeogeography, Palaeoclimatology, Palaeoecology. 515: 47–69. doi:10.1016/j.palaeo.2017.12.036.
- ^ Maria Patricia Velasco-de León; Erika L. Ortiz-Martínez; Diego E. Lozano-Carmona; Miguel A. Flores-Barragan (2019). "Paleofloristic comparison of the Ayuquila and Otlaltepec basins, Middle Jurassic, Oaxaca, Mexico". Journal of South American Earth Sciences. 93: 1–13. doi:10.1016/j.jsames.2019.04.008.
- ^ Zikun Jiang; Benpei Liu; Yongdong Wang; Min Huang; Tom Kapitany; Ning Tian; Yong Cao; Yuanzheng Lu; Shenghui Deng (2019). "Tree ring phototropism and implications for the rotation of the North China Block". Scientific Reports. 9: Article number 4856. doi:10.1038/s41598-019-41339-2. PMC 6425038. PMID 30890749.
- ^ Marcelo de Araujo Carvalho; Peter Bengtson; Cecília Cunha Lana; Natália de Paula Sá; Gustavo Santiago; Michele Cardoso da Silva Giannerini (2019). "Late Aptian (Early Cretaceous) dry–wet cycles and their effects on vegetation in the South Atlantic: Palynological evidence". Cretaceous Research. 100: 172–183. doi:10.1016/j.cretres.2019.03.021.
- ^ Xiaodan Lin; Conrad C. Labandeira; Qiaoling Ding; Qingmin Meng; Dong Ren (2019). "Exploiting nondietary resources in deep time: patterns of oviposition on mid-Mesozoic plants from northeastern China". International Journal of Plant Sciences. 180 (5): 411–457. doi:10.1086/702641.
- ^ Edilson Bezerra dos Santos Filho; Karen Adami-Rodrigues; Flaviana Jorge de Lima; Renan Alfredo Machado Bantim; Torsten Wappler; Antônio Álamo Feitosa Saraiva (2019). "Evidence of plant–insect interaction in the Early Cretaceous Flora from the Crato Formation, Araripe Basin, Northeast Brazil". Historical Biology: An International Journal of Paleobiology. 31 (7): 926–937. doi:10.1080/08912963.2017.1408611.
- ^ Pablo Estévez-Gallardo; Luis M. Sender; Eduardo Mayoral; José B. Diez (2019). "First evidence of insect herbivory on Albian aquatic angiosperms of the NE Iberian Peninsula". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 108 (4): 429–435. doi:10.1017/S1755691018000555.
- ^ Alexandre V. Demers‐Potvin; Hans C. E. Larsson (2019). "Palaeoclimatic reconstruction for a Cenomanian‐aged angiosperm flora near Schefferville, Labrador". Palaeontology. 62 (6): 1027–1048. doi:10.1111/pala.12444.
- ^ Heather V. Graham; Fabiany Herrera; Carlos Jaramillo; Scott L. Wing; Katherine H. Freeman (2019). "Canopy structure in Late Cretaceous and Paleocene forests as reconstructed from carbon isotope analyses of fossil leaves". Geology. 47 (10): 977–981. doi:10.1130/G46152.1.
- ^ Andrew G. Flynn; Daniel J. Peppe (2019). "Early Paleocene tropical forest from the Ojo Alamo Sandstone, San Juan Basin, New Mexico, USA". Paleobiology. 45 (4): 612–635. doi:10.1017/pab.2019.24.
- ^ Olesya V. Bondarenko; Nadezhda I. Blokhina; Torsten Utescher (2019). "Major plant biome changes in the Primorye Region (Far East of Russia) during the Paleogene". Botanica Pacifica. 8 (1): 3–18. doi:10.17581/bp.2019.08106.
- ^ Lauren E. Azevedo Schmidt; Regan E. Dunn; Jason Mercer; Marieke Dechesne; Ellen D. Currano (2019). "Plant and insect herbivore community variation across the Paleocene–Eocene boundary in the Hanna Basin, southeastern Wyoming". PeerJ. 7: e7798. doi:10.7717/peerj.7798. PMC 6798869. PMID 31637117.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Margret Steinthorsdottir; Vivi Vajda; Mike Pole; Guy Holdgate (2019). "Moderate levels of Eocene pCO2 indicated by Southern Hemisphere fossil plant stomata". Geology. 47 (10): 914–918. doi:10.1130/G46274.1.
- ^ Mike Pole (2019). "Early Eocene plant macrofossils from the Booval Basin, Dinmore, near Brisbane, Queensland". Palaeontologia Electronica. 22 (3): Article number 22.3.60. doi:10.26879/922.
- ^ Anthony P. Jijina; Ellen D. Currano; Kurt Constenius (2019). "The paleobotany and paleoecology of the Eocene Herren beds of north-central Oregon, USA". Palaios. 34 (9): 424–436. doi:10.2110/palo.2019.014.
- ^ Tao Su; Robert A. Spicer; Shi-Hu Li; He Xu; Jian Huang; Sarah Sherlock; Yong-Jiang Huang; Shu-Feng Li; Li Wang; Lin-Bo Jia; Wei-Yu-Dong Deng; Jia Liu; Cheng-Long Deng; Shi-Tao Zhang; Paul J. Valdes; Zhe-Kun Zhou (2019). "Uplift, climate and biotic changes at the Eocene–Oligocene transition in south-eastern Tibet" (PDF). National Science Review. 6 (3): 495–504. doi:10.1093/nsr/nwy062.
- ^ Keke Ai; Gongle Shi; Kexin Zhang; Junliang Ji; Bowen Song; Tianyi Shen; Shuangxing Guo (2019). "The uppermost Oligocene Kailas flora from southern Tibetan Plateau and its implications for the uplift history of the southern Lhasa terrane". Palaeogeography, Palaeoclimatology, Palaeoecology. 515: 143–151. doi:10.1016/j.palaeo.2018.04.017.
- ^ Svetlana Popova; Torsten Utescher; Dmitry Gromyko; Volker Mosbrugger; Louis François (2019). "Dynamics and evolution of Turgay‐type vegetation in Western Siberia throughout the early Oligocene to earliest Miocene—a study based on diversity of plant functional types in the carpological record". Journal of Systematics and Evolution. 57 (2): 129–141. doi:10.1111/jse.12420.
- ^ Qijia Li; Tao Su; Yusheng (Christopher) Liu; Cheng Quan (2019). "Oligocene plant ecological strategies in low-latitude Asia unraveled by leaf economics". Journal of Asian Earth Sciences. 182: Article 103933. doi:10.1016/j.jseaes.2019.103933.
- ^ Daniel M. McNair; Debra Z. Stults; Brian Axsmith; Mac H. Alford; James E. Starnes (2019). "Preliminary investigation of a diverse megafossil floral assemblage from the middle Miocene of southern Mississippi, USA". Palaeontologia Electronica. 22 (2): Article number 22.2.40. doi:10.26879/906.
- ^ Ethan G. Hyland; Nathan D. Sheldon; Selena Y. Smith; Caroline A.E. Strömberg (2019). "Late Miocene rise and fall of C4 grasses in the western United States linked to aridification and uplift". GSA Bulletin. 131 (1–2): 224–234. doi:10.1130/B32009.1.
- ^ Angelica Feurdean; Iuliana Vasiliev (2019). "The contribution of fire to the late Miocene spread of grasslands in eastern Eurasia (Black Sea region)". Scientific Reports. 9: Article number 6750. doi:10.1038/s41598-019-43094-w. PMC 6494819. PMID 31043665.
- ^ Pratigya J. Polissar; Cassaundra Rose; Kevin T. Uno; Samuel R. Phelps; Peter deMenocal (2019). "Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification". Nature Geoscience. 12 (8): 657–660. doi:10.1038/s41561-019-0399-2.
- ^ Anne-Marie Lézine; Kenji Izumi; Masa Kageyama; Gaston Achoundong (2019). "A 90,000-year record of Afromontane forest responses to climate change". Science. 363 (6423): 177–181. doi:10.1126/science.aav6821. PMID 30630932.
- ^ Christopher M. Wurster; Hamdi Rifai; Bin Zhou; Jordahna Haig; Michael I. Bird (2019). "Savanna in equatorial Borneo during the late Pleistocene". Scientific Reports. 9: Article number 6392. doi:10.1038/s41598-019-42670-4. PMC 6483998. PMID 31024024.
- ^ Fidel Hernández; Carlos Ríos; Humberto L. Perotto-Baldivieso (2019). "Evolutionary history of herbivory in the Patagonian steppe: The role of climate, ancient megafauna, and guanaco". Quaternary Science Reviews. 220: 279–290. doi:10.1016/j.quascirev.2019.07.014.
- ^ M. C. Stahlschmidt; T. C. Collin; D. M. Fernandes; G. Bar-Oz; A. Belfer-Cohen; Z. Gao; N. Jakeli; Z. Matskevich; T. Meshveliani; J. K. Pritchard; F. McDermott; R. Pinhasi (2019). "Ancient mammalian and plant DNA from late Quaternary stalagmite layers at Solkota cave, Georgia". Scientific Reports. 9: Article number 6628. doi:10.1038/s41598-019-43147-0. PMC 6488622. PMID 31036834.
- ^ William E. Stein; Christopher M. Berry; Jennifer L. Morris; Linda VanAller Hernick; Frank Mannolini; Charles Ver Straeten; Ed Landing; John E.A. Marshall; Charles H. Wellman; David J. Beerling; Jonathan R. Leake (2019). "Mid-Devonian Archaeopteris Roots Signal Revolutionary Change in Earliest Fossil Forests". Current Biology. 30 (3): 421–431.e2. doi:10.1016/j.cub.2019.11.067. PMID 31866369.