LTE Advanced: Difference between revisions
MrCellular (talk | contribs) →Devices: Removed list with devices because they are already mentioned in an separated article which is already linked. |
|||
Line 607: | Line 607: | ||
{{Unreferenced|section|date=August 2015}} |
{{Unreferenced|section|date=August 2015}} |
||
At the time of its launch in 2007, LTE Advanced was not supported by any [[smartphone]], but only by a small number of [[Router (computing)|routers]]. The first capable smartphones wouldn't arrive until late 2013. While no smartphone is currently capable of 1 Gbit/s+, there are smartphones that can reach 300 Mbit/s to 500 Mbit/s under ideal conditions. Requirements are that the device must either have 3GB+ of [[Random-access memory|RAM]], a 32- |
At the time of its launch in 2007, LTE Advanced was not supported by any [[smartphone]], but only by a small number of [[Router (computing)|routers]]. The first capable smartphones wouldn't arrive until late 2013. While no smartphone is currently capable of 1 Gbit/s+, there are smartphones that can reach 300 Mbit/s to 500 Mbit/s under ideal conditions. Requirements are that the device must either have 3GB+ of [[Random-access memory|RAM]], a 32- |
||
{| class="wikitable sortable" |
|||
! Manufacturer |
|||
! Name |
|||
! Max Download Speed |
|||
|- |
|||
| rowspan="2" | [[Apple Inc.|Apple]] || [[iPhone 6]] || 150 Mbit/s |
|||
|- |
|||
| [[iPhone 6 Plus]] || 150 Mbit/s |
|||
|- |
|||
| rowspan="1" | [[Motorola]] || [[Nexus 6]] || 300 Mbit/s |
|||
|- |
|||
| rowspan="1" | [[HTC]] || [[HTC One M9]] || 300 Mbit/s |
|||
|- |
|||
| rowspan="6" | [[Samsung]] || [[Samsung Galaxy S6|Galaxy S6]] || 450 Mbit/s |
|||
|- |
|||
| [[Samsung Galaxy S6 Edge|Galaxy S6 Edge]] || 450 Mbit/s |
|||
|- |
|||
| [[Samsung Galaxy Note 4|Galaxy Note 4]] || 300 Mbit/s on selected versions. |
|||
|- |
|||
| [[Samsung Galaxy Note Edge|Galaxy Note Edge]] || 300 Mbit/s |
|||
|- |
|||
| [[Samsung Galaxy Alpha|Galaxy Alpha]] || 300 Mbit/s |
|||
|- |
|||
| Samsung Galaxy S5 LTE+ || 300 Mbit/s |
|||
|- |
|||
| rowspan="1" | [[Sony]] || [[Sony Xperia Z3+|Xperia Z3+/Z4]] || 300 Mbit/s |
|||
|- |
|||
| rowspan="2" | [[LG]] || [[LG G Flex 2|G Flex 2]] || 450 Mbit/s |
|||
|- |
|||
| LG G3 Prime || 300 Mbit/s |
|||
|- |
|||
| rowspan="2" | [[Huawei]] || [[Huawei Ascend Mate7|Ascend Mate 7]] || 300 Mbit/s |
|||
|- |
|||
| Honor 6 || 300 Mbit/s |
|||
|} |
|||
==See also== |
==See also== |
Revision as of 11:25, 6 September 2015
LTE Advanced is a mobile communication standard and a major enhancement of the Long Term Evolution (LTE) standard. It was formally submitted as a candidate 4G system to ITU-T in late 2009 as meeting the requirements of the IMT-Advanced standard, and was standardized by the 3rd Generation Partnership Project (3GPP) in March 2011 as 3GPP Release 10.[1]
Background
The LTE format was first proposed by NTT DoCoMo of Japan and has been adopted as the international standard.[2] LTE standardization has matured to a state where changes in the specification are limited to corrections and bug fixes. The first commercial services were launched in Sweden and Norway in December 2009[3] followed by the United States and Japan in 2010. More LTE networks were deployed globally during 2010 as a natural evolution of several 2G and 3G systems, including Global system for mobile communications (GSM) and Universal Mobile Telecommunications System (UMTS) (3GPP as well as 3GPP2).
The work by 3GPP to define a 4G candidate radio interface technology started in Release 9 with the study phase for LTE-Advanced. Being described as a 3.9G (beyond 3G but pre-4G), the first release of LTE did not meet the requirements for 4G (also called IMT Advanced as defined by the International Telecommunication Union) such as peak data rates up to 1 Gb/s. The ITU has invited the submission of candidate Radio Interface Technologies (RITs) following their requirements in a circular letter, 3GPP Technical Report (TR) 36.913, "Requirements for Further Advancements for E-UTRA (LTE-Advanced)."[4] These are based on ITU's requirements for 4G and on operators’ own requirements for advanced LTE. Major technical considerations include the following:
- Continual improvement to the LTE radio technology and architecture
- Scenarios and performance requirements for working with legacy radio technologies
- Backward compatibility of LTE-Advanced with LTE. An LTE terminal should be able to work in an LTE-Advanced network and vice versa. Any exceptions will be considered by 3GPP.
- Consideration of recent World Radiocommunication Conference (WRC-07) decisions regarding frequency bands to ensure that LTE-Advanced accommodates the geographically available spectrum for channels above 20 MHz. Also, specifications must recognize those parts of the world in which wideband channels are not available.
Likewise, 'WiMAX 2', 802.16m, has been approved by ITU as the IMT Advanced family. WiMAX 2 is designed to be backward compatible with WiMAX 1 devices. Most vendors now support conversion of 'pre-4G', pre-advanced versions and some support software upgrades of base station equipment from 3G.
The mobile communication industry and standards organizations have therefore started work on 4G access technologies, such as LTE Advanced. At a workshop in April 2008 in China, 3GPP agreed the plans for work on Long Term Evolution (LTE).[5] A first set of specifications were approved in June 2008.[6] Besides the peak data rate 1 Gb/s as defined by the ITU-R, it also targets faster switching between power states and improved performance at the cell edge. Detailed proposals are being studied within the working groups.
Proposals
The target of 3GPP LTE Advanced is to reach and surpass the ITU requirements. LTE Advanced should be compatible with first release LTE equipment, and should share frequency bands with first release LTE. In the feasibility study for LTE Advanced, 3GPP determined that LTE Advanced would meet the ITU-R requirements for 4G. The results of the study are published in 3GPP Technical Report (TR) 36.912.[7]
One of the important LTE Advanced benefits is the ability to take advantage of advanced topology networks; optimized heterogeneous networks with a mix of macrocells with low power nodes such as picocells, femtocells and new relay nodes. The next significant performance leap in wireless networks will come from making the most of topology, and brings the network closer to the user by adding many of these low power nodes — LTE Advanced further improves the capacity and coverage, and ensures user fairness. LTE Advanced also introduces multicarrier to be able to use ultra wide bandwidth, up to 100 MHz of spectrum supporting very high data rates.
In the research phase many proposals have been studied as candidates for LTE Advanced (LTE-A) technologies. The proposals could roughly be categorized into:[8]
- Support for relay node base stations
- Coordinated multipoint (CoMP) transmission and reception
- UE Dual TX antenna solutions for SU-MIMO and diversity MIMO, commonly referred to as 2x2 MIMO
- Scalable system bandwidth exceeding 20 MHz, up to 100 MHz
- Carrier aggregation of contiguous and non-contiguous spectrum allocations
- Local area optimization of air interface
- Nomadic / Local Area network and mobility solutions
- Flexible spectrum usage
- Cognitive radio
- Automatic and autonomous network configuration and operation
- Support of autonomous network and device test, measurement tied to network management and optimization
- Enhanced precoding and forward error correction
- Interference management and suppression
- Asymmetric bandwidth assignment for FDD
- Hybrid OFDMA and SC-FDMA in uplink
- UL/DL inter eNB coordinated MIMO
- SONs, Self Organizing Networks methodologies
Within the range of system development, LTE-Advanced and WiMAX 2, can use up to 8x8 MIMO and 128 QAM in downlink direction. Example performance: 100 MHz aggregated bandwidth, LTE-Advanced provides almost 3.3 Gbit peak download rates per sector of the base station under ideal conditions. Advanced network architectures combined with distributed and collaborative smart antenna technologies provide several years road map of commercial enhancements.
A summary of a study carried out in 3GPP can be found in TR36.912.[9]
Timeframe and introduction of additional features
Original standardization work for LTE-Advanced was done as part of 3GPP Release 10, which was frozen in April 2011. Trials were based on pre-release equipment. Major vendors support software upgrades to later versions and ongoing improvements.
In order to improve the quality of service for users in hotspots and on cell edges, heterogenous networks (HetNet) are formed of a mixture of macro-, pico- and femto base stations serving corresponding-size areas. Frozen in December 2012, 3GPP Release 11[10] concentrates on better support of HetNet. Coordinated Multi-Point operation (CoMP) is a key feature of Release 11 in order to support such network structures. Whereas users located at a cell edge in homogenous networks suffer from decreasing signal strength compounded by neighbor cell interference, CoMP is designed to enable use of a neighboring cell to also transmit the same signal as the serving cell, enhancing quality of service on the perimeter of a serving cell. In-device Co-existence (IDC) is another topic addressed in Release 11. IDC features are designed to ameliorate disturbances within the user equipment caused between LTE/LTE-A and the various other radio subsystems such as WiFi, Bluetooth, and the GPS receiver. Further enhancements for MIMO such as 4x4 configuration for the uplink were standardized.
The higher number of cells in HetNet results in user equipment changing the serving cell more frequently when in motion. The ongoing work on LTE-Advanced [11] in Release 12, amongst other areas, concentrates on addressing issues that come about when users move through HetNet, such as frequent hand-overs between cells.
Technology demonstrations
Company | Country | Date | Note |
---|---|---|---|
NTT DoCoMo | Japan | February 2007 | [12] The operator announced the completion of a 4G trial where it achieved a maximum packet transmission rate of approximately 5 Gbit/s in the downlink using 12 transmit and 12 receive antennas and 100 MHz frequency bandwidth to a mobile station moving at 10 km/h. |
Agilent Technologies | Spain | February 2011 | [13] The vendor demonstrated at Mobile World Congress the industry's first test solutions for LTE-Advanced with both signal generation and signal analysis solutions. |
Ericsson | Sweden | June 2011 | [14] The vendor demonstrated LTE-Advanced in Kista. |
touch | Lebanon | April 2013 | [15] The operator trialed LTE-Advanced with Chinese vendor Huawei and combined 800 MHz spectrum and 1.8 GHz spectrum. touch achieved 250 Mbit/s. |
A1 | Austria | June 2013 | [16] The operator trialed LTE-Advanced with Ericsson and NSN using 4x4 MIMO. A1 achieved 580 Mbit/s. |
Turkcell | Turkey | August 2013 | [17] The operator trialed LTE-Advanced in Istanbul with Chinese vendor Huawei. Turkcell achieved 900 Mbit/s. |
Telstra | Australia | August 2013 | [18] The operator trialed LTE-Advanced with Swedish vendor Ericsson and combined 900 MHz spectrum and 1.8 GHz spectrum. |
SMART | Philippines | August 2013 | [19] The operator trialed LTE-Advanced with Chinese vendor Huawei and combined 2.1GHz spectrum and 1.80GHz spectrum bands and achieves 200 Mbit/s. |
SoftBank | Japan | September 2013 | [20] The operator trialed LTE-Advanced in Tokyo with Chinese vendor Huawei. Softbank used spectrum 3.5 GHz spectrum band and achieved 770 Mbit/s. |
beCloud/ MTS | Belarus | October 2013 | [21] The operator trialed LTE-Advanced with Chinese vendor Huawei. |
SFR | France | October 2013 | [22] The operator trialed LTE-Advanced in Marseille and combined 800 MHz spectrum and 2.6 GHz spectrum. SFR achieved 174 Mbit/s. |
EE | United Kingdom | November 2013 | [23] The operator trialed LTE-Advanced in London with Chinese vendor Huawei and combined 20 MHz of 1.8 GHz spectrum and 20 MHz of 2.6 GHz spectrum. EE achieved 300 Mbit/s which is equal to category 6 LTE. |
O2 | Germany | November 2013 | [24] The operator trialed LTE-Advanced in Munich with Chinese vendor Huawei and combined 10 MHz of 800 MHz spectrum and 20 MHz of 2.6 GHz spectrum. O2 achieved 225 Mbit/s. |
SK Telecom | South Korea | November 2013 | [25] The operator trialed LTE-Advanced and combined 10 MHz of 850 MHz spectrum and 20 MHz of 1.8 GHz spectrum. SK Telecom achieved 225 Mbit/s. |
Vodafone | Germany | November 2013 | [26] The operator trialed LTE-Advanced in Dresden with Swedish vendor Ericsson and combined 10 MHz of 800 MHz spectrum and 20 MHz of 2.6 GHz spectrum. Vodafone achieved 225 Mbit/s. |
Telstra | Australia | December 2013 | [27] The operator trialed LTE-Advanced with Swedish vendor Ericsson and combined 20 MHz of 1.8 GHz spectrum and 20 MHz of 2.6 GHz spectrum. Telstra achieved 300 Mbit/s which is equal to category 6 LTE. |
Optus | Australia | December 2013 | [28] The operator trialed TD-LTE-Advanced with Chinese vendor Huawei and combined two 20 MHz channels of 2.3 GHz spectrum. Optus achieved over 160 Mbit/s. |
Unitel | Angola | January 2014 | [29] The operator trialed LTE-Advanced in Luanda with Swedish vendor Ericsson. Unitel combined 900 MHz spectrum and 1.8 GHz spectrum. |
Sunrise | Switzerland | January 2014 | [30] The operator trialed LTE-Advanced with Chinese vendor Huawei. Commercial service is planned for Q3 2014. |
Telstra | Australia | January 2014 | [31] The Swedish vendor Ericsson trialed LTE-Advanced with American supplier Qualcomm on the Telstra network. |
Nokia Networks | Spain | February 2014 | [32] The vendor demonstrated at Mobile World Congress 450 Mbit/s data speeds for individual users by using LTE-Advanced. |
Elisa | Finland | February 2014 | [33] The operator trialed LTE-Advanced with American supplier Broadcom and Finnish vendor Nokia Networks. Elisa combined 20 MHz of 1.8 GHz spectrum and 20 MHz of 2.6 GHz spectrum. Elisa achieved 300 Mbit/s which is equal to category 6 LTE. |
Deutsche Telekom | Germany | February 2014 | [34][35] The operator trialed LTE-Advanced in Alzey using 4x4 MIMO. Deutsche Telekom achieved 580 Mbit/s. Commercial service is planned for summer 2014. |
Vodafone | Italy | February 2014 | [36] The operator trialed LTE-Advanced in Naples and combined 1.8 GHz spectrum and 2.6 GHz spectrum. Vodafone achieved 253 Mbit/s. |
Vodafone | Spain | February 2014 | [37] The operator trialed LTE-Advanced in Barcelona using 4x4 MIMO. Vodafone achieved 580 Mbit/s. |
Eta Devices | Spain | February 2014 | [38] The supplier demonstrated at the Mobile World Congress Envelope Tracking Advanced (ETAdvanced) for LTE-A over 80 MHz channels. |
Base | Belgium | February 2014 | [39] The operator trialed LTE-Advanced in Hasselt with Chinese vendor ZTE. Base achieved over 250 Mbit/s. |
Orange | Spain | March 2014 | [40] The operator trialed LTE-Advanced in Valencia and combined 10 MHz of 1.8 GHz spectrum and 20 MHz of 2.6 GHz spectrum. Orange achieved 222 Mbit/s. |
Etisalat | UAE | April 2014 | [41] The operator trialed LTE-Advanced in Abu Dhabi with French vendor Alcatel-Lucent. Etisalat combined 20 MHz of 800 MHz spectrum and 20 MHz of 1.8 GHz spectrum. Etisalat achieved 300 Mbit/s which is equal to category 6 LTE. |
China Mobile | China | April 2014 | [42] The operator trialed TD-LTE-Advanced in Chengdu with Chinese vendor Huawei. |
Magyar Telekom | Hungary | April 2014 | [43] The operator demonstrated LTE-Advanced in Budapest with Swedish vendor Ericsson. Magyar Telekom achieved 250 Mbit/s. |
Huawei | China | April 2014 | [44] The Chinese vendor Huawei trialed LTE-Advanced with Qualcomm. Huawei achieved 300 Mbit/s which is equal to category 6 LTE. |
Mobistar | Belgium | January 2014 - April 2014 |
[45] The operator trialed LTE-Advanced in Mechelen with Chinese vendor Huawei. Mobistar combined 10 MHz of 800 MHz spectrum and 20 MHz of 1.8 GHz spectrum. Mobistar achieved 213 Mbit/s. |
Hrvatski Telekom | Croatia | May 2014 | [46] The operator trialed LTE-Advanced in Varaždin. Hrvatski Telekom combined 10 MHz of 800 MHz spectrum and 10 MHz of 1.8 GHz spectrum. Hrvatski Telekom achieved 136 Mbit/s. |
Telstra | Australia | May 2014 | [47][48] The operator trialed LTE-Advanced with Swedish vendor Ericsson and combined 20 MHz of 1.8 GHz spectrum and 40 MHz of 2.6 GHz spectrum. Telstra achieved 450 Mbit/s. |
Orange | Spain | May 2014 | [49] The operator trialed LTE-Advanced again in Valencia and combined 10 MHz of 1.8 GHz spectrum and 20 MHz of 2.6 GHz spectrum. Orange achieved 225 Mbit/s. |
Telecom New Zealand | New Zealand | May 2014 | [50] The operator trials LTE-Advanced in Auckland with Chinese vendor Huawei. Telecom New Zealand combined 20 MHz of 1.8 GHz spectrum and 20 MHz of 2.6 GHz spectrum. Telecom New Zealand achieved up to 260 Mbit/s. |
LG U+ | South Korea | June 2014 | [51] The operator trialed LTE-Advanced with Chinese vendor Huawei. LG U+ combined 10 MHz of 850 MHz spectrum, 10 MHz of 2.1 GHz spectrum and 20 MHz of 2.6 GHz spectrum. LG U+ achieved 300 Mbit/s which is equal to category 6 LTE. |
Elisa | Estonia | June 2014 | [52] The operator trialed LTE-Advanced and combined 20 MHz of 1.8 GHz spectrum and 20 MHz of 2.6 GHz spectrum. Elisa achieved 300 Mbit/s which is equal to category 6 LTE. Commercial service is planned in Tallinn for the second half of 2014. |
Vodafone | Portugal | June 2014 | [53] The operator unveiled an LTE-Advanced router (Vodafone B4000) from Huawei (Huawei E5186). |
Vodafone | The Netherlands | June 2014 | [54] The operator trialed LTE-Advanced in Amsterdam and combined 10 MHz of 800 MHz spectrum and 20 MHz of 1.8 GHz spectrum. Vodafone achieved 225 Mbit/s. Commercial service in ten cities, including Amsterdam, Rotterdam, The Hague, Utrecht, Leiden, Eindhoven, Den Bosch and Schiphol, and reach another 50 medium and small cities is planned around year-end. |
O2 | Czech Republic | July 2014 | [55] The operator trials LTE-Advanced in the southeastern part of Vysočina Region. O2 achieved 185 Mbit/s. |
Telecom Italia | Italy | July 2014 | [56] The operator trialed LTE-Advanced in Turin with Swedish vendor Ericsson, Chinese vendor Huawei and Qualcomm. Telecom Italia combined 1.8 GHz spectrum and 2.6 GHz spectrum. |
O2 | Czech Republic | August 2014 | [57] The operator trials LTE-Advance in Prague. |
China Telecom | China | September 2014 | [58] The operator claims to demonstrated the world-first FDD-TDD carrier aggregation including a user device chipset with Nokia Networks. China Telecom achieved 260 Mbit/s. |
T-Com | Slovakia | September 2014 | [59] The operator claims 300 Mbit/s in world's first over-the-air trial for intraband contiguous Carrier Aggregation in B7/2600 MHz 20+20 MHz in field environment. |
SingTel | Singapore | October 2014 | [60] The operator demonstrated FDD-TDD carrier aggregation with Ericsson. SingTel achieved 260 Mbit/s. |
SK Telecom | South Korea | October 2014 | [61] The operator demonstrated LTE-Advanced Tri-Band Carrier aggregation with Ericsson. |
Ooredoo | Maldives | October 2014 | [62] The operator trialed LTE-Advanced. |
Omnitel | Lithuania | November 2014 | [63] The operator trials LTE-Advanced in Kaunas. |
Polkomtel | Poland | November 2014 | [64] The operator trialed LTE-Advanced with Swedish vendor Ericsson and combined 20 MHz of 1.8 GHz spectrum and 20 MHz of 2.6 GHz spectrum. Polkomtel achieved 300 Mbit/s. |
Ericsson | November 2014 | [65] The Swedish vendor trialed LTE-Advanced with American supplier Qualcomm and achieved 450 Mbit/s. | |
Cosmote | Greece | November 2014 | [66] The operator trials LTE Advanced. Cosmote combines 800 MHz spectrum and 2.6 GHz spectrum. |
Vodafone | Portugal | November 2014 | [67] The operator trials LTE Advanced. Vodafone achieved 450 Mbit/s. |
Deployment
Operator | Country | Date | Note |
---|---|---|---|
Yota | Russia | February 2011 | [68] The operator launched the first-ever commercial mobile implementation of the technology, at 11 of its base-stations around Moscow. However compatible handsets weren't available until the first-half of 2013. |
SK Telecom | South Korea | June 2013 | [69] The operator announced to launch LTE-Advanced services. |
LG U+ | South Korea | July 2013 | [70] The operator unveiled an LTE-Advanced network built by the Swedish vendor Ericsson. LG U+ combine 850 MHz spectrum and 2.1 GHz spectrum. LG U+ provides up to 150 Mbit/s which is equal to category 4 LTE. |
KT | South Korea | September 2013 | [71] The operator unveiled an LTE-Advanced network. KT uses 1.8 GHz spectrum. KT provides up to 150 Mbit/s which is equal to category 4 LTE. |
csl. | Hong Kong | February 2014 | [72] The operator unveiled an LTE-Advanced network built by the Chinese vendor ZTE. csl. combines 20 MHz of 1.8 GHz spectrum and 20 MHz of 2.6 GHz spectrum. CSL provides up to 300 Mbit/s which is equal to category 6 LTE. |
MegaFon | Russia | February 2014 | [73] The operator unveiled an LTE-Advanced network in Moscow, St. Petersburg and Sochi built by the Chinese vendor Huawei. MegaFon combine two 20 MHz channels of 2.6 GHz spectrum. MegaFon provides up to 300 Mbit/s. |
VIVA | Kuwait | September 2013 | [74] The operator announced to upgrade to LTE-Advanced but failed to do so, 2017 is a possibility due to lack in infrastructure. |
Zain | Kuwait | November 2013 | [75] The operator announced to roll out LTE-Advanced but still not launched until this date, it might come in 2016. |
Ooredoo | Kuwait | September 2014 | [76] The operator announced to launch LTE-Advanced in 2014, however, it launched in mid-2015 which makes it first operator to offer LTE-A in Kuwait. |
AT&T | United States | March 2014 | [77] The operator unveiled an LTE-Advanced network in Chicago and other markets. AT&T combined 700 MHz spectrum and 1.7 GHz spectrum. AT&T achieved 110 Mbit/s |
Safaricom | Kenya | December 2014 | [78] The operator begun the rollout of LTE Advanced in the cities of Nairobi and Mombasa , with speeds of up to 100Mbit/s. |
SingTel | Singapore | May 2014 | [79] The operator unveiled an LTE-Advanced network. SingTel combines 20 MHz of 1.8 GHz spectrum and 20 MHz of 2.6 GHz spectrum. SingTel provides up to 300 Mbit/s. |
Swisscom | Switzerland | June 2014 | [80] The operator unveiled an LTE-Advanced network. Swisscom combines 20 MHz of 1.8 GHz spectrum and 20 MHz of 2.6 GHz spectrum. Swisscom provides up to 300 Mbit/s. A compatible device will be available from autumn 2014. |
Bouygues | France | June 2014 | [81] The operator unveiled an LTE-Advanced network in Bordeaux, Grenoble, Lyon and the Paris suburbs of Vanves, Issy-les-Moulineaux, Malakoff and Rosny-sous-Bois. Bouygues Telecom provides up to 220 Mbit/s. Two compatible device from Huawei will be available from 1 July 2014. |
Orange | France | June 2014 | [82] The operator announced to launch LTE-Advanced services in July 2014. Commercial service is planned in Strasbourg and Toulouse. Followed by plans to cover all of France's large cities by the end of the year. |
T-Mobile | Czech Republic | July 2014 | [83] The operator unveiled an LTE-Advanced in Mlada Boleslav. T-Mobile combines 10 MHz of 800 MHz spectrum and 20 MHz of 1.8 GHz spectrum. T-Mobile provides up to 225 Mbit/s. |
Telstra | Australia | July 2014 | [84] The operator announced to launch LTE-Advanced in 2015. |
Vodafone | Czech Republic | July 2014 | [85] The operator launched LTE-Advanced in Karlovy Vary. Vodafone also combines 10 MHz of 800 MHz spectrum and 20 MHz of 1.800 MHz spectrum. Vodafone provides up to 225 Mbit/s and expects in the future maximum of 300 Mbit/s. |
Orange | France | July 2014 | [86] The operator announced the roll out of LTE-Advanced in Strasbourg and Toulouse. |
EE | United Kingdom | July 2014 | [87] The operator announced to launch LTE-Advanced in 2015. |
Beeline | Russia | August 2014 | [88] The operator launched LTE-Advanced in Moscow. |
SMART | Philippines | August 2014 | [89] The operator launched LTE-Advanced in Mandaluyong. |
BITE | Lithuania | August 2014 | [90] The operator announced to roll out LTE-Advanced in early 2015. |
EMT | Estonia | August 2014 | [91] The operator launched LTE-Advanced in the area of Kiisa. EMT provides up to 300 Mbit/s. |
Vodafone | Romania | September 2014 | [92] The operator launched LTE-Advanced. Vodafone provides up to 300 Mbit/s. |
Vodafone | The Netherlands | September 2014 | [93][94] The operator launched LTE-Advanced. Vodafone combines 10 MHz of 800 MHz spectrum and 20 MHz of 1.8 GHz spectrum. |
KPN | The Netherlands | September 2014 | [94] The operator launched LTE-Advanced. KPN combines 10 MHz of 800 MHz spectrum and 20 MHz of 1.8 GHz spectrum. |
Orange | Romania | September 2014 | [95] The operator launched LTE-Advanced. Orange provides up to 300 Mbit/s. |
Optus | Australia | September 2014 | [96] The operator launched LTE-Advanced in Sydney, Melbourne, Brisbane and Adelaide. Optus combines two 20 MHz channels of 2.3 GHz spectrum. |
Telkom | South Africa | September 2014 | [97] The operator announced to roll out LTE-Advanced in 2014. |
Movistar | Spain | October 2014 | [98] The operator launched LTE-Advanced in Barcelona and Madrid. Movistar provides up to 300 Mbit/s. |
Vodafone | Spain | October 2014 | [99] The operator launched LTE-Advanced in Madrid, Barcelona and Valencia, with Seville, Bilbao, Málaga, Zaragoza and A Coruña to follow in December 2014. Vodafone combines 20 MHz of 1.8 GHz spectrum and 20 MHz of 2.6 GHz spectrum. Vodafone provides up to 300 Mbit/s. |
Vodafone | United Kingdom | October 2014 | [100] The operator has started rolling out LTE-Advanced in London, Birmingham and Manchester. Vodafone combines 10 MHz of 800 MHz spectrum and 20 MHz of 2.6 GHz spectrum. |
EE | United Kingdom | October 2014 | [101] The operator announced that LTE-Advanced will go live by the end of October 2014. |
Vodafone | Portugal | October 2014 | [102] The operator announced to launch LTE-Advanced services on 30 October 2014. Vodafone combines 20 MHz of 1.8 GHz spectrum and 20 MHz of 2.6 GHz spectrum. Vodafone provides up to 300 Mbit/s. |
SFR | France | October 2014 | [103] The operator launched LTE-Advanced in Toulouse. SFR combines 10 MHz of 800 MHz spectrum and 20 MHz of 2.6 GHz spectrum. SFR provides up to 225 Mbit/s. |
Rogers | Canada | October 2014 | [104] The operator launched LTE-Advanced in Vancouver, Edmonton, Calgary, Windsor, London, Hamilton, Toronto, Kingston, Moncton, Fredericton, Saint John and Halifax. |
EE | United Kingdom | October 2014 | [105] The operator launched LTE-Advanced in central London. EE combines 20 MHz of 1.8 GHz spectrum and 20 MHz of 2.6 GHz spectrum. EE provides up to 300 Mbit/s. |
Telstra | Australia | November 2014 | [106] The operator launched LTE-Advanced. Telstra combines 20 MHz of 700 MHz spectrum and 20 MHz of 1.8 GHz spectrum. Telstra provides up to 300 Mbit/s. |
TIM | Italy | November 2014 | [107] The operator launched LTE-Advanced. |
LMT | Latvia | November 2014 | [108] The operator launched LTE-Advanced. |
Vodafone | Germany | November 2014 | [109] The operator announced to launch LTE-Advanced in Q1 2015. |
Telekom | Germany | November 2014 | [110] The operator launched LTE-Advanced. Telekom combines 20 MHz of 1.8 GHz spectrum and 20 MHz of 2.6 GHz spectrum. Telekom provides up to 300 Mbit/s. |
A1 | Austria | November 2014 | [111] The operator launched LTE-Advanced. A1 combines 20 MHz of 800 MHz spectrum and 20 MHz of 2.6 GHz spectrum and provides up to 300 Mbit/s. |
Si.mobil | Slovenia | November 2014 | [112] The operator launched LTE-Advanced. |
Vodafone | Italy | November 2014 | [113] The operator launched LTE-Advanced. Vodafone combines 1.8 GHz spectrum and 2.6 GHz spectrum and provides up to 225 Mbit/s. |
Tango | Luxembourg | December 2014 | [114] The operator launched LTE-Advanced. Tango combines 10 MHz of 800 MHz and 20 MHz of 1.8 GHz spectrum and provides up to 225 Mbit/s. |
M1 | Singapore | December 2014 | [115] The operator launched LTE-Advanced. M1 combines 20 MHz of 1.8 GHz and 20 MHz of 2.6 GHz spectrum. M1 provides up to 300 Mbit/s. |
Ooredoo | Qatar | December 2014 | [116] The operator launched LTE-Advanced. Ooredoo combines 800 MHz spectrum and 2.6 GHz spectrum and provides up to 225 Mbit/s. |
Vodafone | Greece | February 2015 | [117] The operator launched commercially LTE Advanced. Vodafone combines 800 MHz spectrum and 2.6 GHz spectrum and 1800 MHz spectrum, offering up to 225Mbps download and 50Mbit/s upload |
Bell | Canada | February 2015 | [118][119][120] The operator launched LTE-Advanced in select communities in Canada. The company says that its maximum download speeds of 220Mbps are some of the fastest in the world, and use a combination of high-capacity Band 7 (2600Mhz) spectrum and carrier aggregation between Band 4 (AWS) and Band 2 (PCS) to reach those speeds. |
NTT DoCoMo | Japan | March 2015 | [121] The operator launched LTE-Advanced, combining 1.7 GHz spectrum and 800 MHz spectrum as well as 1.5 GHz spectrum and 2 GHz, offering up to 225Mbps. |
Devices
At the time of its launch in 2007, LTE Advanced was not supported by any smartphone, but only by a small number of routers. The first capable smartphones wouldn't arrive until late 2013. While no smartphone is currently capable of 1 Gbit/s+, there are smartphones that can reach 300 Mbit/s to 500 Mbit/s under ideal conditions. Requirements are that the device must either have 3GB+ of RAM, a 32-
See also
Bibliography
- Qualcomm
- Harri Holma, Antti Toskala, LTE for UMTS - OFDMA and SC-FDMA Based Radio Access, John Wiley & Sons 2009, ISBN 978-0-470-99401-6 Chapter 2.6: LTE Advanced for IMT-advanced, pp 19–21.
- Moray Rumney (editor), LTE and the Evolution to 4G Wireless: Design and Measurement Challenges, Agilent Technologies Publication 2009, ISBN 978-0-470-68261-6, Chapter 8.7: Proving LTE Advanced, p 425
- Christina Gessner (editor), Long Term Evolution: A concise introduction to LTE and its measurement requirements, Rohde & Schwarz Publication 2011, ISBN 978-3-939837-11-4,
- Preben E. Mogensen, Tommi Koivisto, Klaus I. Pedersen 1, et al.; Nokia Siemens Networks;LTE Advanced: The Path towards Gigabit/s in Wireless Mobile Communications, Wireless VITAE'09.
References
- ^ Stefan Parkvall, Erik Dahlman, Anders Furuskär et al.; Ericsson, Robert Syputa, Maravedis; ITU global standard for international mobile telecommunications ´IMT-Advanced´; LTE Advanced - Evolving LTE towards IMT-Advanced; Vehicular Technology Conference, 2008. VTC 2008-Fall. IEEE 68th 21-24 Sept. 2008 Page(s):1 - 5.
- ^ Faster cell phone services planned
- ^ "TeliaSonera launches world's first 4G mobile network". swedishwire. Retrieved 25 November 2013.
- ^ "Requirements for further advancements for Evolved Universal Terrestrial Radio Access (E-UTRA) (LTE-Advanced)"
- ^ Beyond 3G: “LTE Advanced” Workshop, Shenzhen, China
- ^ 3GPP specification: Requirements for further advancements for E-UTRA (LTE Advanced)
- ^ Agilent [1], Introducing LTE-Advanced, pg. 6 , March 8, 2011, accessed July 28, 2011.
- ^ Nomor Research: White Paper on LTE Advanced
- ^ 3GPP Technical Report: Feasibility study for Further Advancements for E-UTRA (LTE Advanced)
- ^ Introduction to LTE-Advanced Rel.11
- ^ 3GPP News & Events, Dec.12th, 2012 and Apr.8th, 2013 entries
- ^ "NTT DoCoMo Achieves World's First 5 Gbit/s Packet Transmission in 4G Field Experiment". NTT DoCoMo.
- ^ "Agilent Technologies Introduces Industry's First LTE-Advanced Signal Generation, Analysis Solutions". Agilent.
- ^ "Ericsson demonstrates LTE Advanced in Sweden". Telecompaper. 2011-06-28. Retrieved 2014-08-13.
- ^ "Touch, Huawei trial 250Mbps LTE FDD 800MHz/1800MHz carrier aggregation". TeleGeography. 2013-04-08. Retrieved 2014-08-24.
- ^ "A1 TELEKOM AUSTRIA DEMOS 580MBPS LTE-A SPEEDS WITH ERICSSON, NSN HARDWARE". Mobile Europe. 2013-06-06. Retrieved 2014-04-30.
- ^ "Turkish delight? Turkcell unveils 900Mbps transmission speeds in LTE-A trial". TeleGeography. 2013-08-02. Retrieved 2014-11-14.
- ^ "World's first commercial LTE-Advanced call on 1800MHz and 900MHz". Ericsson. 2013-08-12. Retrieved 2014-04-30.
- ^ J.M. Tuazon (21 August 2013). "200MBPS IN DAVAO - Smart tests LTE-Advanced system down south". Interaksyon. Retrieved 21 August 2013.
- ^ "Softbank's trial LTE-A in 3.5GHz band achieves 770Mbps". TeleGeography. 2013-09-13. Retrieved 2014-08-13.
- ^ "beCloud to test LTE-A". TeleGeography. 2013-10-10. Retrieved 2014-08-13.
- ^ "SFR completes 'first' LTE Advanced trials in France". FierceWirelessEurope. 2013-10-18. Retrieved 2014-04-30.
- ^ "EE launches 'world's fastest' LTE-A network in London". Telecoms.com. 2013-11-05. Retrieved 2013-12-27.
- ^ "Now available at Telefónica: The fastest LTE radio cell in Germany and mobile VoLTE in live network". Telefónica. 2013-11-14. Retrieved 2014-04-30.
- ^ "[넓고 빠른 광대역 LTE-A] #1. 3배 빠른 광대역 LTE-A 시대가 열린다!" (in Korean). SK Telecom. 2013-11-28. Retrieved 2014-05-16.
- ^ "Vodafone zeigt in Dresden das schnellste Mobilfunknetz der Republik" (in German). Vodafone. 2013-11-15. Retrieved 2014-04-30.
- ^ "Telstra hits 300 Mbps in LTE-A trial". Computerworld. 2013-12-06. Retrieved 2014-03-24.
- ^ "Optus tests TD-LTE carrier aggregation in Melbourne". iTnews. 2013-12-19. Retrieved 2014-03-29.
- ^ "Unitel demonstrates first LTE-A in Africa with Ericsson". TeleGeography. 2014-01-15. Retrieved 2014-08-13.
- ^ "Das Sunrise LTE-Mobilfunknetz wird noch schneller" (PDF) (in German). Sunrise. 2014-01-29. Retrieved 2014-01-30.
- ^ "Ericsson and Qualcomm Technologies demo first LTE CAT6 Carrier Aggregation interoperability for Telstra". Ericsson. 2014-01-31. Retrieved 2014-02-04.
- ^ "NSN breaks new ground with LTE-Advanced for superior performance #MWC14". NSN. 2014-02-04. Retrieved 2014-02-04.
- ^ "Finland's Elisa Gets 300Mbsp Download Speeds Out of an LTE-A Network". cellular-news. 2014-02-11. Retrieved 2014-02-12.
- ^ "DT leads the way to LTE Advanced". Deutsche Telekom. 2014-02-20. Retrieved 2014-02-20.
- ^ "Deutsche Telekom: Ab Sommer bis zu 300 MBit/s über LTE" (in German). teltarif. 2014-03-11. Retrieved 2014-04-30.
- ^ "Vodafone achieves 253.4Mbps speeds in Naples LTE-Advanced trial". TeleGeography. 2014-02-27. Retrieved 2014-04-30.
- ^ "MWC: Vodafone Spain demonstrates 540Mbps using FDD/TDD-LTE CA setup". TeleGeography. 2014-03-01. Retrieved 2014-03-01.
- ^ Buckley, Paul. "Envelope tracking: a game-changer for smartphones?". EE Times. Retrieved 12 March 2014.
- ^ "BASE Company confirms LTE-A trials". TeleGeography. 2014-03-03. Retrieved 2014-04-30.
- ^ "Orange Spain begins LTE-A trials in Valencia". Telecompaper. 2014-03-21. Retrieved 2014-03-21.
- ^ "Etisalat Tests LTE-A Upgrade in Abu Dhabi". cellular-news. 2014-04-01. Retrieved 2014-04-02.
- ^ "Huawei, China Mobile test TD-LTE Advanced". Telecompaper. 2014-04-21. Retrieved 2014-04-21.
- ^ "MTel and Ericsson demonstrate LTE-A technology; a first for Hungary". TeleGeography. 2014-04-29. Retrieved 2014-04-30.
- ^ "Huawei, Qualcomm show 300 Mbps over LTE-A Cat 6". Telecompaper. 2014-04-29. Retrieved 2014-04-30.
- ^ "Mobistar tests LTE Advanced". Telecompaper. 2014-05-06. Retrieved 2014-05-06.
- ^ "Hrvatski Telekom tests LTE carrier aggregation". 2014-05-15. Retrieved 2014-05-15.
- ^ "Ericsson and Telstra achieve world's first 450Mbps in commercial LTE-A network demonstration". Ericsson. 2014-05-15. Retrieved 2014-05-15.
- ^ "World first from Telstra – 450Mbps achievable with LTE Advanced Carrier Aggregation". Telstra. 2014-05-15. Retrieved 2014-05-15.
- ^ "Orange Spain presents LTE-A technology in Valencia". Telecompaper. 2014-05-22. Retrieved 2014-05-22.
- ^ "Telecom NZ achieves 260Mbps speeds in CA trial". TeleGeography. 2014-06-02. Retrieved 2014-06-02.
- ^ "Huawei and LG Uplus Complete World's First Commercial Trial of 3 Band Carrier Aggregation". cellular-news. 2014-06-09. Retrieved 2014-06-09.
- ^ "Elisa tests LTE-Advanced technology". Telecompaper. 2014-06-10. Retrieved 2014-06-11.
- ^ "Vodafone Portugal launches LTE Advanced-compatible router". Telecompaper. 2014-06-10. Retrieved 2014-06-11.
- ^ "Vodafone demos LTE Advanced in Amsterdam". Telecompaper. 2014-06-19. Retrieved 2014-06-19.
- ^ "O2 Czech Republic deploys LTE Advanced". Telecompaper. 2014-07-07. Retrieved 2014-07-07.
- ^ "Telecom Italia opens up Turin LTE-A trial to public". Telecompaper. 2014-07-25. Retrieved 2014-07-25.
- ^ "O2 Czech Republic starts testing LTE-A in Prague". Telecompaper. 2014-08-27. Retrieved 2014-08-27.
- ^ "Nokia Networks, China Telecom mark major milestone in FDD-TDD carrier aggregation". Ericsson. 2014-09-19. Retrieved 2014-09-19.
- ^ "Ericsson and Slovak Telekom conduct first intraband 300 Mbps over-the-air trial". telecomtv. 2014-09-03. Retrieved 2014-10-07.
- ^ "ricsson, SingTel, Qualcomm hit 260 Mbps in FDD/TDD demo". Telecompaper. 2014-10-07. Retrieved 2014-10-07.
- ^ "Ericsson, SK Telecom demo LTE-A Tri-Band Carrier aggregation". Telecompaper. 2014-10-16. Retrieved 2014-10-16.
- ^ "Ooredoo completes trials on LTE-Advanced in Maldives". Telecompaper. 2010-10-23. Retrieved 2010-10-23.
- ^ "Omnitel tests LTE Advanced". Telecompaper. 2014-11-06. Retrieved 2014-11-06.
- ^ "Polkomtel tested LTE-Advanced". Telecompaper. 2014-11-07. Retrieved 2014-11-07.
- ^ "Ericsson, Qualcomm test LTE Category 9". Telecompaper. 2014-11-18. Retrieved 2014-11-19.
- ^ "Cosmote starts testing LTE Advanced". Telecompaper. 2014-11-19. Retrieved 2014-11-20.
- ^ "Vodafone Portugal tests 450 Mbps mobile connection". Telecompaper. 2014-11-28. Retrieved 2014-11-28.
- ^ "Yota Networks has launched the world's first mobile communication technology LTE Advanced". YOTA. Retrieved 2012-10-19. [dead link]
- ^ "LTE-Advanced 4G network launches in South Korea". BBC News. 26 June 2013. Retrieved 18 July 2013.
- ^ "LG U+ launched commercial LTE-Advanced service with Ericsson". Ericsscon. 2013-07-30. Retrieved 2014-04-30.
- ^ "KT launches LTE-Advanced service". The Korea Herald. 2013-09-15. Retrieved 2014-05-16.
- ^ "Hong Kong's csl. Offers 300Mbps Download Speeds over LTE-A Network". cellular-news. 2014-02-24. Retrieved 2014-02-26.
- ^ "MegaFon Launches World's Fastest Mobile Data Network". MegaFon. 2014-02-25. Retrieved 2014-02-26.
- ^ "Viva announces upgrade to LTE-A". TeleGeography. 2013-09-26. Retrieved 2014-08-13.
- ^ "Zain Kuwait to roll out LTE-A in selected areas". TeleGeography. 2031-11-07. Retrieved 2014-08-13.
{{cite web}}
: Check date values in:|date=
(help) - ^ "Ooredoo Kuwait unveils plans to upgrde LTE network". Telecompaper. 2014-09-26. Retrieved 2014-09-26.
- ^ "AT&T lights up LTE Advanced carrier aggregation in Chicago, other markets". FierceWireless. 2014-03-07. Retrieved 2014-06-17.
- ^ "Kenya: Safaricom launches LTE Advanced". IT News Africa. 2014-12-05. Retrieved 2015-03-21.
- ^ "SingTel Launches 300Mbps Download Speed Service". cellular-news. 2014-05-28. Retrieved 2014-05-28.
- ^ "Swisscom speeds up mobile communications even more with the rollout of LTE advanced". Swisscom. 2014-06-16. Retrieved 2014-06-16.
- ^ "Bouygues Telecom launches LTE-A". Telecompaper. 2014-06-17. Retrieved 2014-06-17.
- ^ "Orange to launch LTE-A in Strasbourg, Toulouse in July". Telecompaper. 2014-06-18. Retrieved 2014-06-18.
- ^ "Orange Poland covers 50 percent of population with LTE". Telecompaper. 2014-07-01. Retrieved 2014-07-01.
- ^ "Mobile Update". Telestra. 2014-07-03. Retrieved 2014-07-10.
- ^ Jan Láska (2014-07-03). "Vodafone hlásí: Také máme LTE-A. Kde jinde než v Karlových Varech" (in Czech). Mobilmania. Retrieved 2014-07-03.
- ^ "Orange France starts LTE-A rollout in Strasbourg, Toulouse". Telecompaper. 2014-07-24. Retrieved 2014-08-13.
- ^ "EE set for 2015 LTE-A launch". Mobile World Live. 2014-07-10. Retrieved 2014-07-10.
- ^ "Билайн» запустил LTE-Advanced" (in Russian). TelecomDaily. 2014-08-05. Retrieved 2014-08-05.
- ^ "PLDT's Smart switches on LTE-A network". TeleGeography. 2014-08-14. Retrieved 2014-08-14.
- ^ "Bite to roll out LTE-A in five cities in early 2015". TeleGeography. 2014-08-11. Retrieved 2014-08-13.
- ^ "EMT launches LTE-Advanced". TeleGeography. 2014-08-27. Retrieved 2014-09-23.
- ^ "Is it a bird? A plane? No, its Supernet from Vodafone". TeleGeography. 2014-09-09. Retrieved 2014-09-12.
- ^ "KPN follows LTE-A launch with VoLTE trial". TeleGeography. 2014-07-28. Retrieved 2014-09-22.
- ^ a b "Vodafone, KPN trumpet LTE-A rollouts". TeleGeography. 2014-09-19. Retrieved 2014-09-22.
- ^ "Orange launches LTE Advanced in Romania". Telecompaper. 2014-09-19. Retrieved 2014-09-23.
- ^ "Optus launches LTE-A commercially in four cities". TeleGeography. 2014-09-22. Retrieved 2014-09-22.
- ^ "Telkom starts roll-out of LTE Advanced". Telecompaper. 2014-09-30. Retrieved 2014-09-30.
- ^ "Movistar launches 300 Mbps LTE-A in Madrid, Barcelona". Telecompaper. 2014-10-01. Retrieved 2014-10-01.
- ^ "Vodafone Spain launches LTE-A in 3 cities, offers HD calls". Telecompaper. 2014-10-15. Retrieved 2014-10-15.
- ^ "Vodafone UK starts LTE-A rollout". Telecompaper. 2014-10-15. Retrieved 2014-10-15.
- ^ "EE to launch LTE-A in London "within weeks". Telecompaper. 2014-10-16. Retrieved 2014-10-16.
- ^ "Vodafone Portugal launches 300 Mbps internet connections". Telecompaper. 2014-10-19. Retrieved 2014-10-19.
- ^ "SFR launches LTE-A in Toulon". Telecompaper. 2014-10-22. Retrieved 2014-10-22.
- ^ "Rogers Communications launches LTE-Advanced in Canada". Telecompaper. 2014-10-14. Retrieved 2014-10-25.
- ^ "EE activates LTE-A in Central London". Telecom.com. 2014-10-30. Retrieved 2014-11-03.
- ^ "Telstra unveils faster 4GX service". Telecompaper. 2014-11-03. Retrieved 2014-11-03.
- ^ "Telecom Italia launches LTE-A service in 60 Italian cities". Telecompaper. 2014-11-05. Retrieved 2014-11-06.
- ^ "LMT introduces LTE Advanced". Telecompaper. 2014-11-06. Retrieved 2014-11-06.
- ^ Markus Weidner (11 November 2014). "Vodafone plant 90 Prozent LTE-Abdeckung bis Ende 2015" (in German). teltarif.de. Retrieved 11 November 2014.
- ^ Marleen Frontzeck (15 November 2014). "Telekom startet LTE-Datenturbo mit bis zu 300 MBit/s & passt Tarife an" (in German). teltarif.de. Retrieved 16 November 2014.
- ^ "Telekom Austria's A1, Si.mobil launch LTE-Advanced". Telecompaper. 2014-11-25. Retrieved 2014-11-26.
- ^ "Si.mobil rolls out LTE Advanced". Telecompaper. 2014-11-24. Retrieved 2014-11-24.
- ^ "Vodafone Italia launches LTE-A in 80 Italian cities". Telecompaper. 2014-11-28. Retrieved 2014-11-29.
- ^ "Tango, the first operator in Luxembourg to roll out its 4G+ network" (PDF). Tango. 2014-12-15. Retrieved 2015-01-06.
- ^ "M1 launches Singapore's first nationwide 300Mbps 4G network". M1 Limited. 2014-12-02. Retrieved 2014-12-02.
- ^ "Ooredoo launch LTE-A services in Qatar". Telecompaper. 2014-12-02. Retrieved 2014-12-02.
- ^ "Δίκτυο 4G+". Vodafone.gr. 2015-02-21. Retrieved 2015-02-21.
- ^ "Bell LTE Network Upgrades".
- ^ "Bell LTE Network".
- ^ "Bell LTE Coverage Map".
- ^ "PREMIUM 4GTM ~LTEは次のステージへ~".
External links
- LTE Advanced page on Qualcomm site
- 3GPP Official 3GPP Standardisation Page on LTE Advanced
- LTE Advanced overview
- Future use of LTE A femtocells
- LTE Portal – 3GPP LTE / LTE Advanced Technology, dedicated portal created for information sharing, collaboration, and networking
- LTE-3GPP online decoders - 3GPP LTE / LTE Advanced online L3 messages decoders (24.008, 44.018, 44.060, etc.)
Resources (white papers, technical papers, application notes)
- LTE Blog – LTE Blog
- ITU-R Confers IMT-Advanced (4G) Status to 3GPP LTE – LTE Advanced is officially 4G
- The LTE / LTE Advanced Guide – a semi-annual publication on LTE / LTE Advanced, May and November 2010 publications are now available
- LTE-Advanced Technology Introduction - this white paper summarizes improvements on LTE known as LTE-Advanced Rel.10
- Introducing LTE-Advanced - Application Note
- Introduction to LTE-Advanced Rel.11 - Summarization of improvements specified in LTE-Advanced Release 11.
- LTE Transmission Modes and Beamforming - this white paper discusses the basics of beamforming and explains the eight MIMO transmission modes for LTE Release 9 onwards.