Jump to content

Solar eclipse of May 20, 2012

This is a good article. Click here for more information.
From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Codyorb (talk | contribs) at 14:33, 13 October 2018 (→‎Asia). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Solar eclipse of May 20, 2012
Composite image taken from Red Bluff, California
Map
Type of eclipse
NatureAnnular
Gamma0.4828
Magnitude0.9439
Maximum eclipse
Duration346 s (5 min 46 s)
Coordinates49°06′N 176°18′E / 49.1°N 176.3°E / 49.1; 176.3
Max. width of band237 km (147 mi)
Times (UTC)
(P1) Partial begin20:56:07
(U1) Total begin22:06:17
Greatest eclipse23:53:54
(U4) Total end1:39:11
(P4) Partial end2:49:21
References
Saros128 (58 of 73)
Catalog # (SE5000)9535

The solar eclipse of May 20, 2012 (May 21, 2012 local time in the Eastern Hemisphere) was an annular solar eclipse that was visible in a band spanning through Eastern Asia, the Pacific Ocean, and North America. As a partial solar eclipse, it was visible from northern Greenland to Hawaii, and from eastern Indonesia at sunrise to northwestern Mexico at sunset.

The annular eclipse was the first visible from the contiguous United States since the solar eclipse of May 10, 1994, and the first in Asia since the solar eclipse of January 15, 2010.[1] The path of the eclipse's antumbra included heavily populated regions of China and Japan, and an estimated 100 million people in those areas were capable of viewing annularity. In the western United States, its path included 8 states, and an estimated 6 million people were capable of viewing annularity.

Visibility and viewing

Animated path of the eclipse

The antumbra had a magnitude of .94 stretched 236 kilometres (147 mi) wide, and traveled eastbound at an average rate of 1.00 kilometre (0.62 mi) per second, remaining north of the equator throughout the event. The longest duration of annularity was 5 minutes and 43 seconds, occurring just south of the Aleutian Islands.[2] The eclipse began on a Monday and ended on the previous Sunday, as it crossed the International Date Line.[1]

Asia

The annular eclipse commenced over the Chinese province of Hainan at sunrise, at 6:06 a.m. China Standard Time. Travelling northeast, antumbra of the eclipse approached and passed over the cities of Guangzhou, Hong Kong, and Xiamen, reaching Taipei, Taiwan by 6:10 a.m. After crossing the East China Sea, it passed over much of eastern Japan, including Nagoya and Tokyo at 7:28 a.m and 7:32 a.m respectively, before entering the Pacific Ocean. The penumbra of the eclipse was visible throughout Eastern Asia and various islands in the Pacific Ocean until noon.[3][2][4][5]

The path of the antumbra over highly populated areas allowed at least an estimated 100 million people to view annularity.[6] Because the eclipse took place during the summer monsoon season in Southeast Asia, viewing conditions were not ideal in some areas, including Hong Kong.[7]

North America

After traveling approximately 4,000 miles (6,437 kilometers) across the Pacific Ocean, the antumbra entered North America between the coastlines of Oregon and California, reaching the coastal city of Eureka, California at 6:28 p.m. PST. After passing over Medford, Oregon and Redding, California, it had reached Reno, Nevada by 6:31 p.m PST. The eclipse continued to travel southeast, passing 30 miles (48 km) north of Las Vegas, Nevada, over St. George, Utah, and reaching the Grand Canyon by approximately 6:35 p.m. After passing over Albuquerque, New Mexico and Lubbock, Texas, the eclipse terminated above central Texas at sunset, 8:39 p.m. CST.[2][4][8] An estimated 6.6 million people lived under the path of the antumbra.[9] The penumbra was visible throughout most of North America, including the islands of Hawaii.[2]

Asia

United States

Solar eclipses 2011–2014

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[10]

The partial solar eclipses on January 4, 2011 and July 1, 2011 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 2011 to 2014
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
118

Partial in Tromsø, Norway
June 1, 2011

Partial
1.21300 123

Hinode XRT footage
November 25, 2011

Partial
−1.05359
128

Annularity in Red Bluff, CA, USA
May 20, 2012

Annular
0.48279 133

Totality in Mount Carbine, Queensland, Australia
November 13, 2012

Total
−0.37189
138

Annularity in Churchills Head, Australia
May 10, 2013

Annular
−0.26937 143

Partial in Libreville, Gabon
November 3, 2013

Hybrid
0.32715
148

Partial in Adelaide, Australia
April 29, 2014

Annular (non-central)
−0.99996 153

Partial in Minneapolis, MN, USA
October 23, 2014

Partial
1.09078

Saros 128

This eclipse is a part of Saros series 128, repeating every 18 years, 11 days, and containing 73 events. The series started with a partial solar eclipse on August 29, 984 AD. It contains total eclipses from May 16, 1417 through June 18, 1471; hybrid eclipses from June 28, 1489 through July 31, 1543; and annular eclipses from August 11, 1561 through July 25, 2120. The series ends at member 73 as a partial eclipse on November 1, 2282. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 27 at 1 minutes, 45 seconds on June 7, 1453, and the longest duration of annularity was produced by member 48 at 8 minutes, 35 seconds on February 1, 1832. All eclipses in this series occur at the Moon’s descending node of orbit.[11]

Series members 47–68 occur between 1801 and 2200:
47 48 49

January 21, 1814

February 1, 1832

February 12, 1850
50 51 52

February 23, 1868

March 5, 1886

March 17, 1904
53 54 55

March 28, 1922

April 7, 1940

April 19, 1958
56 57 58

April 29, 1976

May 10, 1994

May 20, 2012
59 60 61

June 1, 2030

June 11, 2048

June 22, 2066
62 63 64

July 3, 2084

July 15, 2102

July 25, 2120
65 66 67

August 5, 2138

August 16, 2156

August 27, 2174
68

September 6, 2192

Octon series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

21 eclipse events between May 21, 1993 and May 20, 2069
May 20–21 March 9 December 25–26 October 13–14 August 1–2
118 120 122 124 126

May 21, 1993

March 9, 1997

December 25, 2000

October 14, 2004

August 1, 2008
128 130 132 134 136

May 20, 2012

March 9, 2016

December 26, 2019

October 14, 2023

August 2, 2027
138 140 142 144 146

May 21, 2031

March 9, 2035

December 26, 2038

October 14, 2042

August 2, 2046
148 150 152 154 156

May 20, 2050

March 9, 2054

December 26, 2057

October 13, 2061

August 2, 2065
158

May 20, 2069

Notes

References

  1. ^ a b Friedlander, Blaine (May 17, 2012). "Annular solar eclipse first in 18 years in continental United States on May 20". The Washington Post. Archived from the original on July 19, 2012. Retrieved February 24, 2018. {{cite news}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  2. ^ a b c d "Annular Solar Eclipse of 2012 May 20". NASA Goddard Space Flight Center Eclipse Website. NASA. May 13, 2012. Retrieved September 18, 2017.
  3. ^ "Eclipse Map - May 20-21 Solar Eclipse". TimeandDate.com. Retrieved 13 October 2018.
  4. ^ a b "Map of Annular Solar Eclipse of May 20, 2012" (Map). Annular Solar Eclipse of May 20, 2012. NASA. 2000. Retrieved October 17, 2017.
  5. ^ Matsutani, Minoru (May 4, 2012). "Tokyo to be treated to rare annular eclipse, Venus transit". The Japan Times. Retrieved 17 October 2017.
  6. ^ Beatty, Kelly (March 1, 2012). "May 20th's Annular Eclipse of the Sun". Sky and Telescope. Retrieved September 19, 2017.
  7. ^ "May the Sun Shine on Rare Eclipse". South China Morning Post. May 20, 2012. Retrieved 13 October 2017.
  8. ^ Potter, Ned (May 18, 2012). "Solar Eclipse Visible From California to Texas Sunday Afternoon". ABC News. Retrieved September 21, 2017.
  9. ^ Tariq, Malik (May 21, 2012). "Spectacular "Ring of Fire" Solar Eclipse Wows Millions". Space.com. Retrieved September 19, 2017.
  10. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  11. ^ "NASA - Catalog of Solar Eclipses of Saros 128". eclipse.gsfc.nasa.gov.