Triphenylethylene

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by The Nth User (talk | contribs) at 22:40, 4 August 2019 (→‎References: Added one category). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Triphenylethylene
Identifiers
  • 1,1',1-(Ethene-1,1,2-triyl)tribenzene
CAS Number
PubChem CID
ChemSpider
CompTox Dashboard (EPA)
ECHA InfoCard100.000.359 Edit this at Wikidata
Chemical and physical data
FormulaC20H16
Molar mass256.34104 g/mol g·mol−1
3D model (JSmol)
  • C1=CC=C(C=C1)C=C(C2=CC=CC=C2)C3=CC=CC=C3
  • InChI=1S/C20H16/c1-4-10-17(11-5-1)16-20(18-12-6-2-7-13-18)19-14-8-3-9-15-19/h1-16H
  • Key:MKYQPGPNVYRMHI-UHFFFAOYSA-N

Triphenylethylene (TPE) is a simple aromatic hydrocarbon that possesses weak estrogenic activity.[1][2] Its estrogenic effects were discovered in 1937.[3] TPE was derived from structural modification of the more potent estrogen diethylstilbestrol, which is a member of the stilbestrol group of nonsteroidal estrogens.[4]

TPE is the parent compound of a group of nonsteroidal estrogen receptor ligands.[1][2][5] It includes the estrogens chlorotrianisene, estrobin (DBE), triphenylbromoethylene, triphenylchloroethylene, triphenyliodoethylene, triphenylmethylethylene; the selective estrogen receptor modulators (SERMs) afimoxifene, brilanestrant, broparestrol, clomifene, clomifenoxide, droloxifene, endoxifen, etacstil, fispemifene, idoxifene, miproxifene, miproxifene phosphate, nafoxidine, ospemifene, panomifene, and toremifene. The antiestrogen ethamoxytriphetol (MER-25) is also closely related, but is technically not a derivative of TPE and is instead a triphenylethanol derivative. The tamoxifen metabolite and aromatase inhibitor norendoxifen is also a TPE derivative. In addition to their estrogenic activity, various TPE derivatives like tamoxifen and clomifene have been found to act as protein kinase C inhibitors.[6]

See also

References

  1. ^ a b JORDAN V. CRAIG; B.J.A. Furr (5 February 2010). Hormone Therapy in Breast and Prostate Cancer. Springer Science & Business Media. pp. 95–. ISBN 978-1-59259-152-7.
  2. ^ a b Philipp Y. Maximov; Russell E. McDaniel; V. Craig Jordan (23 July 2013). Tamoxifen: Pioneering Medicine in Breast Cancer. Springer Science & Business Media. pp. 4–. ISBN 978-3-0348-0664-0.
  3. ^ Jie Jack Li (3 April 2009). Triumph of the Heart: The Story of Statins. Oxford University Press, USA. pp. 33–. ISBN 978-0-19-532357-3.
  4. ^ Carmen Avendano; J. Carlos Menendez (11 June 2015). Medicinal Chemistry of Anticancer Drugs. Elsevier Science. pp. 87–. ISBN 978-0-444-62667-7.
  5. ^ Antonio Cano; Joacquim Calaf i Alsina; Jose Luis Duenas-Diez (22 September 2006). Selective Estrogen Receptor Modulators: A New Brand of Multitarget Drugs. Springer Science & Business Media. pp. 52–. ISBN 978-3-540-34742-2.
  6. ^ O'Brian CA, Liskamp RM, Solomon DH, Weinstein IB (1986). "Triphenylethylenes: a new class of protein kinase C inhibitors". J. Natl. Cancer Inst. 76 (6): 1243–6. doi:10.1093/jnci/76.6.1243. PMID 3458960.