Bisphenol S

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Bisphenol S
Bisphenol S
Names
IUPAC name
4,4'-Sulfonyldiphenol
Other names
BPS, 4,4'-sulfonylbisphenol,
bis(4-hydroxyphenyl)sulfone
Identifiers
80-09-1 YesY
ChEMBL ChEMBL384441 YesY
ChemSpider 6374 YesY
Jmol 3D model Interactive image
Interactive image
KEGG C14216 YesY
PubChem 6626
Properties
C12H10O4S
Molar mass 250.27 g·mol−1
Appearance White colorless solid; forms needle shaped crystals in water
Density 1.3663 g/cm3
Melting point 245 to 250 °C (473 to 482 °F; 518 to 523 K)[1]
insoluble
Solubility soluble in ethanol
Hazards
R-phrases R36
S-phrases S26
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Bisphenol S (BPS) is an organic compound with the formula (HOC6H4)2SO2. It has two phenol functional groups on either side of a sulfonyl group. It is commonly used in curing fast-drying epoxy resin adhesives. It is a bisphenol, and a close analog of bisphenol A (BPA) in which the dimethylmethylene group (C(CH3)2) is replaced with a sulfone group (SO2).

Use[edit]

BPS is used in curing fast-drying epoxy glues and as a corrosion inhibitor. It is also commonly used as a reactant in polymer reactions.

BPS has become increasingly common as a building block in polycarbonates and some epoxies, following the widespread belief that BPA has estrogen-mimicking properties, and enough of it remains in the products to be dangerous. BPS is now used to a variety of common consumer products.[2][3] In some cases, BPS is used where the legal prohibition on BPA allows products containing BPS to be labelled "BPA free".[4] BPS also has the advantage of being more stable to heat and light than BPA.[5]

To comply with restrictions and regulations on BPA due to its confirmed toxicity, manufacturers are gradually replacing BPA with other related compounds, mainly bisphenol S, as substitutes in industrial applications.[6]

BPS is also used as an anticorrosive agent in epoxy glues. Chemically, BPS is being used as a reagent in polymer reactions. BPS has also been reported to occur in canned foodstuffs, such as tin cans.[7]

In a recent study analyzing BPS in a variety of paper products worldwide, BPS was found in 100% of tickets, mailing envelopes, airplane boarding passes, and airplane luggage tags. In this study, very high concentrations of BPS were detected in thermal receipt samples collected from cities in the United States, Japan, Korea, and Vietnam. The BPS concentrations were large but varied greatly, from a few tens of nanograms per gram to several milligrams per gram. Nevertheless, concentrations of BPS used in thermal paper are usually lower compared to those of BPA.[8] Finally, BPS can get into the human body through dermal absorption from handling banknotes.[9]

Environmental considerations[edit]

Recent work suggests that, like BPA, BPS also has endocrine disrupting properties.[10] What makes BPS, and BPA, endocrine disruptors is the presence of the alcohol group on the benzene ring. This is called a phenol ring and it allows BPA and BPS to mimic estradiol. In a study of human urine, BPS was found in 81% of the samples tested. This percentage is comparable to BPA which was found in 95% of urine samples.[11] Another study done on thermal receipt paper shows that 88% of human exposure to BPS is through receipts.[12]

The recycling of thermal paper can introduce BPS into the cycle of paper production and cause BPS contamination of other types of paper products.[13][14] A recent study showed presence of BPS in more than 70% of the household waste paper samples, potentially indicating spreading of BPS contamination through paper recycling.[8]

BPS is more resistant to environmental degradation than BPA, and although not persistent cannot be characterised as readily biodegradable.[8][15]

History[edit]

BPS was first made in 1869 as a dye[16] and is currently common in everyday consumer products. BPS is an analog of BPA that has replaced BPA in a variety of ways, being present in thermal receipt paper, plastics, and indoor dust.[10] After health concerns associated with bisphenol A grew in 2012, BPS began to be used as a replacement.[17]

Regulation[edit]

It is difficult for consumers to determine if a product contains BPS due to limited labeling regulations.[18]

Synthesis[edit]

Bisphenol S is prepared by the reaction of two equivalents of phenol with one equivalent of sulfuric acid or oleum.[19]

2 C6H5OH + H2SO4 → (C6H4OH)2SO2 + 2 H2O
2 C6H5OH + SO3 → (C6H4OH)2SO2 + H2O

This reaction can also produce 2,4'-sulfonyldiphenol, a common isomeric complication in electrophilic aromatic substitution reactions.

Chemical reaction to bisphenol S

References[edit]

  1. ^ "4,4′-Sulfonyldiphenol". Retrieved 4 February 2016. 
  2. ^ Liao, C.; Liu, F.; Kannan, K. (2012). "Bisphenol S, a New Bisphenol Analogue, in Paper Products and Currency Bills and Its Association with Bisphenol a Residues". Environmental Science & Technology 46 (12): 6515–22. Bibcode:2012EnST...46.6515L. doi:10.1021/es300876n. PMID 22591511. 
  3. ^ Liao, C.; Liu, F.; Guo, Y.; Moon, H. B.; Nakata, H.; Wu, Q.; Kannan, K. (2012). "Occurrence of Eight Bisphenol Analogues in Indoor Dust from the United States and Several Asian Countries: Implications for Human Exposure". Environmental Science & Technology 46 (16): 9138–9145. Bibcode:2012EnST...46.9138L. doi:10.1021/es302004w. 
  4. ^ Jenna Bilbrey (Aug 11, 2014). "BPA-Free Plastic Containers May Be Just as Hazardous". Scientific American. 
  5. ^ Kuruto-Niwa, R.; Nozawa, R.; Miyakoshi, T.; Shiozawa, T.; Terao, Y. (2005). "Estrogenic activity of alkylphenols, bisphenol S, and their chlorinated derivatives using a GFP expression system". Environmental Toxicology and Pharmacology 19 (1): 121–130. doi:10.1016/j.etap.2004.05.009. PMID 21783468. 
  6. ^ Chen, M. Y.; Ike, M.; Fujita, M. Acute toxicity, mutagenicity, and estrogenicity of bisphenol-A and other bisphenols. Environ. Toxicol. 2002, 17 (1), 80−86.
  7. ^ (Viñas, P.; Campillo, N.; Martínez-Castillo, N.; Hernandez- ́ Cordoba, M. Comparison of two derivatization-based methods for ́ solid-phase microextraction-gas chromatography-mass spectrometric determination of bisphenol A, bisphenol S and biphenol migrated from food cans. Anal. Bioanal. Chem. 2010, 397 (1), 115−125.)
  8. ^ a b c Pivnenko, K.; Pedersen, G. A.; Eriksson, E.; Astrup, T. F. (2015-10-01). "Bisphenol A and its structural analogues in household waste paper". Waste Management 44: 39–47. doi:10.1016/j.wasman.2015.07.017. PMID 26194879. 
  9. ^ Liao, Chunyang; Liu, Fang; Kannan, Kurunthachalam (2012). "Bisphenol S, a new bisphenol analogue, in paper products and currency bills and its association with bisphenol A residues". Environmental Science & Technology 46 (12): 6515–6522. Bibcode:2012EnST...46.6515L. doi:10.1021/es300876n. PMID 22591511. 
  10. ^ a b Manjumol Mathew; S. Sreedhanya; P. Manoj; C.T. Aravindakumar & Usha K. Aravind (2014). "Exploring the interaction of Bisphenol-S with Serum Albumins: A Better or Worse Alternative for Bisphenol A?". The Journal of Physical Chemistry 118 (14): 3832–3843. doi:10.1021/jp500404u. PMID 24635450. 
  11. ^ Calafat, A. M.; Kuklenyik, Z; Reidy, J. A.; Caudill, S. P.; Ekong, J; Needham, L. L. (2005). "Urinary Concentrations of Bisphenol A and 4-Nonylphenol in a Human Reference Population". PubMed Central (PMC) 113 (4): 391–395. doi:10.1289/ehp.7534. PMC 1278476. PMID 15811827. 
  12. ^ "EHP – Thermal Reaction: The Spread of Bisphenol S via Paper Products". Retrieved 4 February 2016. 
  13. ^ Gehring, M.; Tennhardt, L.; Vogel, D.; Weltin, D.; Bilitewski, B. Bisphenol A Contamination of Wastepaper, Cellulose and Recycled Paper Products. In Waste Management and the Environment II. WIT Transactions on Ecology and the Environment; Brebbia, C. A., Kungulos, S., Popov, V., Itoh, H., Eds.; WIT Press: Southampton, Boston, 2004; Vol. 78, pp 294−300.
  14. ^ European Commission-Joint Research Centre. European Union Risk Assessment Report, 4,4′-Isopropylidenediphenol (Bisphenol-A). 2008, available from http://ecb.jrc.ec.europa.eu/documents/ExistingChemicals/RISK_ASSESSMENT/ADDENDUM/bisphenola_add_ 325.pdf
  15. ^ Ike, M.; Chen, M. Y.; Danzl, E.; Sei, K.; Fujita, M. (2006). "Biodegradation of a variety of bisphenols under aerobic and anaerobic conditions". Water Sci. Technol. 53 (6): 153–159. doi:10.2166/wst.2006.189. PMID 16749452. 
  16. ^ Glausiusz, Josie. "Toxicology: The plastics puzzle". Nature Publishing Group. Retrieved 25 March 2015. 
  17. ^ Liao, C; Liu, F; Alomirah, H; Loi, V. D.; Mohd, M. A.; Moon, H. B.; Nakata, H; Kannan, K (2012). "Bisphenol S in urine from the United States and seven Asian countries: Occurrence and human exposures". Environmental Science & Technology 46 (12): 6860–6. Bibcode:2012EnST...46.6860L. doi:10.1021/es301334j. PMID 22620267. 
  18. ^ Howard, Brian. "Chemical in BPA-Free Products Linked to Irregular Heartbeats". National Geographic. National Geographic. Retrieved 29 March 2015. 
  19. ^ METHOD OF PREPARATION OF 4,4′-DIHYDROXYDIPHENYLSULPHONE (Freepatentsonline).