Jump to content

ISRO

Coordinates: 12°58′0″N 77°34′0″E / 12.96667°N 77.56667°E / 12.96667; 77.56667
From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 178.93.237.66 (talk) at 18:59, 4 October 2014 (→‎External links). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

12°58′0″N 77°34′0″E / 12.96667°N 77.56667°E / 12.96667; 77.56667

Indian Space Research Organisation
भारतीय अंतरिक्ष अनुसंधान संगठन
Agency overview
AbbreviationISRO
Formed15 August 1969 (1969-08-15)
(superseded INCOSPAR)
TypeSpace agency
HeadquartersBengaluru, India
MottoSpace Technology in the Service of Human Kind
AdministratorK. Radhakrishnan, Chairman
Primary spaceportSatish Dhawan Space Centre, Sriharikota, Andhra Pradesh
OwnerIndia India
Annual budget67.92 billion (US$810 million) (2013–14)[1][2]
Websitewww.isro.gov.in

The Indian Space Research Organisation (ISRO, /ˈɪsr/; Hindi: भारतीय अंतरिक्ष अनुसंधान संगठन Bhāratīya Antarikṣ Anusandhān Sangaṭhan) is the primary space agency of India. ISRO is among the largest government space agencies in the world. Its primary objective is to advance space technology and use its applications for national benefit.[3]

Established in 1969, ISRO superseded the erstwhile Indian National Committee for Space Research (INCOSPAR). Headquartered in Bangalore, ISRO is under the administrative control of the Department of Space of the Government of India.

ISRO built India's first satellite, Aryabhata, which was launched by the Soviet Union on 19 April in 1975. In 1980, Rohini became the first satellite to be placed in orbit by an Indian-made launch vehicle, SLV-3. ISRO subsequently developed two other rockets: the Polar Satellite Launch Vehicle (PSLV) for launching satellites into polar orbits and the Geosynchronous Satellite Launch Vehicle (GSLV) for placing satellites into geostationary orbits. These rockets have launched numerous communications satellites and earth observation satellites. Satellite navigation systems like GAGAN and IRNSS have been deployed. In January 2014, ISRO successfully used an indigenous cryogenic engine in a GSLV-D5 launch of the GSAT-14.[4][5]

On 22 October 2008, ISRO sent its first mission to the Moon, Chandrayaan-1. On 5 November 2013, ISRO launched its Mars Orbiter Mission, which successfully entered the Mars orbit on 24 September 2014, making India the first nation to succeed on its maiden attempt, and ISRO the first Asian space agency to reach Mars orbit.[6] Future plans include development of GSLV Mk III (for launch of heavier satellites), development of a reusable launch vehicle, human spaceflight, further lunar exploration, interplanetary probes, a satellite to study the Sun, etc.[7]

Over the years, ISRO has also conducted a variety of operations for both Indian and foreign clients. ISRO has several field installations as assets, and cooperates with the international community as a part of several bilateral and multilateral agreements. In June 2014, it launched five foreign satellites by the PSLV. There are plans for the development and launch of a satellite which will be collectively used by the eight SAARC nations.[8]

Formative years

Dr. Vikram Sarabhai, the father of India's Space Programme.

Modern space research in India is most visibly traced to the 1920s, when the scientist S. K. Mitra conducted a series of experiments leading to the sounding of the ionosphere by application of ground based radio methods in Calcutta.[9] Later, Indian scientists like C.V. Raman and Meghnad Saha contributed to scientific principles applicable in space sciences.[9] However, it was the period after 1945 which saw important developments being made in coordinated space research in India.[9] Organised space research in India was spearheaded by two scientists: Vikram Sarabhai—founder of the Physical Research Laboratory at Ahmedabad—and Homi Bhabha, who established the Tata Institute of Fundamental Research in 1945.[9] Initial experiments in space sciences included the study of cosmic radiation, high altitude and airborne testing of instruments, deep underground experimentation at the Kolar mines—one of the deepest mining sites in the world – and studies of the upper atmosphere.[10] Studies were carried out at research laboratories, universities, and independent locations.[10][11]

In 1950, the Department of Atomic Energy was founded with Homi Bhabha as its secretary.[11] The Department provided funding for space research throughout India.[12] During this time, tests continued on aspects of meteorology and the Earth's magnetic field, a topic which was being studied in India since the establishment of the observatory at Colaba in 1823. In 1954, the Uttar Pradesh state observatory was established at the foothills of the Himalayas.[11] The Rangpur Observatory was set up in 1957 at Osmania University, Hyderabad.[11] Both these facilities enjoyed the technical support and scientific cooperation of the United States of America.[11] Space research was further encouraged by the technically inclined Prime Minister of India, Jawaharlal Nehru.[12] In 1957, the Soviet Union successfully launched Sputnik and opened up possibilities for the rest of the world to conduct a space launch.[12] INCOSPAR was found in 1962 with Vikram Sarabhai as its chairman.

Goals and objectives

The prime objective of Indian space research organisation (ISRO) is to develop space technology and its application to various national tasks.[3] The Indian space programme was driven by the vision of Dr Vikram Sarabhai, considered the father of Indian Space Programme.[13] As he said in 1969: Both China and India are great countries,

There are some who question the relevance of space activities in a developing nation. To us, there is no ambiguity of purpose. We do not have the fantasy of competing with the economically advanced nations in the exploration of the Moon or the planets or manned space-flight. But we are convinced that if we are to play a meaningful role nationally, and in the community of nations, we must be second to none in the application of advanced technologies to the real problems of man and society.[3]

As the former Indian President Dr APJ Abdul Kalam said:

Many individuals with myopic vision questioned the relevance of space activities in a newly independent nation, which was finding it difficult to feed its population. Their vision was clear if Indians were to play meaningful role in the community of nations, they must be second to none in the application of advanced technologies to their real-life problems. They had no intention of using it as a means of displaying our might.[14]

India's economic progress has made its space programme more visible and active as the country aims for greater self-reliance in space technology.[15] Hennock etc. hold that India also connects space exploration to national prestige, further stating: "This year India has launched 11 satellites, including nine from other countries—and it became the first nation to launch 10 satellites on one rocket."[15] ISRO has successfully put into operation two major satellite systems namely Indian National Satellites (INSAT) for communication services and Indian Remote Sensing (IRS) satellites for management of natural resources. ISRO has also developed the PSLV for launching IRS type of satellites and GSLV for launching INSAT type of satellites.

On July 2012, the former President, Dr APJ Abdul Kalam said that research was being done by ISRO and DRDO for developing cost reduction technologies for access to space.[16]

Launch vehicle fleet

Comparison of Indian carrier rockets. Left to right: SLV, ASLV, PSLV, GSLV, GSLV Mk.III.

During the 1960s and 1970s, India initiated its own launch vehicle programme owing to geopolitical and economic considerations. In the 1960s–1970s, the country successfully developed a sounding rockets programme, and by the 1980s, research had yielded the Satellite Launch Vehicle-3 and the more advanced Augmented Satellite Launch Vehicle (ASLV), complete with operational supporting infrastructure.[17] ISRO further applied its energies to the advancement of launch vehicle technology resulting in the creation of PSLV and GSLV technologies.

Satellite Launch Vehicle (SLV)

Status: Decommissioned

The Satellite Launch Vehicle, usually known by its abbreviation SLV or SLV-3 was a 4-stage solid-propellant light launcher. It was intended to reach a height of 500 km and carry a payload of 40 kg.[18] Its first launch took place in 1979 with 2 more in each subsequent year, and the final launch in 1983. Only two of its four test flights were successful.[19]

Augmented Satellite Launch Vehicle (ASLV)

Status: Decommissioned

The Augmented Satellite Launch Vehicle, usually known by its abbreviation ASLV was a 5-stage solid propellant rocket with the capability of placing a 150 kg satellite into LEO. This project was started by the ISRO during the early 1980s to develop technologies needed for a payload to be placed into a geostationary orbit. Its design was based on Satellite Launch Vehicle.[20] The first launch test was held in 1987, and after that 3 others followed in 1988, 1992 and 1994, out of which only 2 were successful, before it was decommissioned.[19]

Polar Satellite Launch Vehicle (PSLV)

File:PSLV-CA 1.jpg
PSLV-C8 (CA Variant) carrying the AGILE x-ray and γ-ray astronomical satellite of the Italian Space Agency lifting off from the SDSC, Sriharikota.

Status: Active

The Polar Satellite Launch Vehicle, usually known by its abbreviation PSLV, is an expendable launch system developed to allow India to launch its Indian Remote Sensing (IRS) satellites into Sun synchronous orbits, a service that was, until the advent of the PSLV, commercially viable only from Russia. PSLV can also launch small satellites into geostationary transfer orbit (GTO). The reliability and versatility of the PSLV is proven by the fact that it has launched 70 satellites / spacecraft ( 30 Indian and 40 Foreign Satellites) into a variety of orbits so far.[21][22] In April 2008, it successfully launched 10 satellites at once, breaking a world record held by Russia.[23]

On 30 June 2014, the PSLV flew its 25th consecutive successful launch mission,[24] delivering a payload of five foreign satellites into orbit. Its only failure in 26 flights was its maiden voyage in September 1993, providing the rocket with a 96 percent success rate.[25]

Geosynchronous Satellite Launch Vehicle (GSLV)

File:GSLV1.jpg
GSLV-D5 lifts off carrying GSAT-14 satellite.

Status: Active

The Geosynchronous Satellite Launch Vehicle, usually known by its abbreviation GSLV, is an expendable launch system developed to enable India to launch its INSAT-type satellites into geostationary orbit and to make India less dependent on foreign rockets. At present, it is ISRO's heaviest satellite launch vehicle and is capable of putting a total payload of up to 5 tons to Low Earth Orbit. The vehicle is built by India with the cryogenic engine purchased from Russia while the ISRO develops its own engine programme.

In a setback for ISRO, the attempt to launch the GSLV, GSLV-F07 carrying GSAT-5P, failed on 25 December 2010. The initial evaluation implies that loss of control for the strap-on boosters caused the rocket to veer from its intended flight path, forcing a programmed detonation. Sixty-four seconds into the first stage of flight, the rocket began to break up due to the acute angle of attack. The body housing the 3rd stage, the cryogenic stage, incurred structural damage, forcing the range safety team to initiate a programmed detonation of the rocket.[26]

On 5 January 2014, GSLV-D5 successfully launched GSAT-14 into intended orbit. This also marked first successful flight using indigenous cryogenic engine, making India sixth country in the world to have this technology.[27][28]

Geosynchronous Satellite Launch Vehicle Mark-III (GSLV III)

Status: Active

The Geosynchronous Satellite Launch Vehicle Mark-III is a launch vehicle currently under development by the Indian Space Research Organisation. It is intended to launch heavy satellites into geostationary orbit, and will allow India to become less dependent on foreign rockets for heavy lifting. The rocket, though the technological successor to the GSLV, however is not derived from its predecessor.[29]

A GSLV III is planned to launch on a suborbital test flight in the third quarter of 2014/15; This suborbital test flight will demonstrate the performance of the GSLV Mk.3 in the atmosphere. This launch has been delayed from May, June, July and August of 2014.[30]

Earth observation and communication satellites

INSAT-1B.

India's first satellite, the Aryabhata, was launched by the Soviet Union on 19 April 1975 from Kapustin Yar using a Cosmos-3M launch vehicle. This was followed by the Rohini series of experimental satellites which were built and launched indigenously. At present, ISRO operates a large number of earth observation satellites.

The INSAT series

INSAT (Indian National Satellite System) is a series of multipurpose geostationary satellites launched by ISRO to satisfy the telecommunications, broadcasting, meteorology and search-and-rescue needs of India. Commissioned in 1983, INSAT is the largest domestic communication system in the Asia-Pacific Region. It is a joint venture of the Department of Space, Department of Telecommunications, India Meteorological Department, All India Radio and Doordarshan. The overall coordination and management of INSAT system rests with the Secretary-level INSAT Coordination Committee.

The IRS series

Indian Remote Sensing satellites (IRS) are a series of earth observation satellites, built, launched and maintained by ISRO. The IRS series provides remote sensing services to the country. The Indian Remote Sensing Satellite system is the largest constellation of remote sensing satellites for civilian use in operation today in the world. All the satellites are placed in polar Sun-synchronous orbit and provide data in a variety of spatial, spectral and temporal resolutions to enable several programmes to be undertaken relevant to national development. The initial versions are composed of the 1 (A,B, C, D) nomenclature. The later versions are named based on their area of application including OceanSat, CartoSat, Resource Sat.

Radar Imaging Satellites

ISRO currently operates two Radar Imaging Satellites. RISAT-1 was launched from Sriharikota Spaceport on 26 April 2012 on board a PSLV.RISAT-1 carries a C-band Synthetic Aperture Radar (SAR) payload, operating in a multi-polarisation and multi-resolution mode and can provide images with coarse, fine and high spatial resolutions.[31] India also operates RISAT-2 which was launched in 2009 and acquired from Israel at a cost $110 million.[31]

Other satellites

ISRO has also launched a set of experimental geostationary satellites known as the GSAT series. Kalpana-1, ISRO's first dedicated meteorological satellite,[32] was launched by the Polar Satellite Launch Vehicle on 12 September 2002.[33] The satellite was originally known as MetSat-1.[34] In February 2003 it was renamed to Kalpana-1 by the Indian Prime Minister Atal Bihari Vajpayee in memory of Kalpana Chawla – a NASA astronaut of Indian origin who perished in Space Shuttle Columbia.

SARAL satellite model.

ISRO has also successfully launched the Indo-French satellite SARAL on 25 February 2013, 12:31 UTC. SARAL (or "Satellite with ARgos and ALtiKa") is a cooperative altimetry technology mission. It is being used for monitoring the oceans surface and sea-levels. AltiKa will measure ocean surface topography with an accuracy of 8 mm, against 2.5 cm on average using current-generation altimeters, and with a spatial resolution of 2 km.[35][36]

In June 2014, ISRO launched French Earth Observation Satellite SPOT-7 (mass 714 kg) along with Singapore's first nano satellite VELOX-I, Canada's satellite CAN-X5, Germany's satellite AISAT, via the PSLV-C23 launch veicle. It was ISRO's 4th commercial launch.[37][38]

Satellite navigation

GAGAN

The Ministry of Civil Aviation has decided to implement an indigenous Satellite-Based Regional GPS Augmentation System also known as Space-Based Augmentation System (SBAS) as part of the Satellite-Based Communications, Navigation and Surveillance (CNS)/Air Traffic Management (ATM) plan for civil aviation. The Indian SBAS system has been given an acronym GAGAN – GPS Aided GEO Augmented Navigation. A national plan for satellite navigation including implementation of Technology Demonstration System (TDS) over the Indian air space as a proof of concept has been prepared jointly by Airports Authority of India (AAI) and ISRO. TDS was successfully completed during 2007 by installing eight Indian Reference Stations (INRESs) at eight Indian airports and linked to the Master Control Centre (MCC) located near Bengaluru.

The first GAGAN navigation payload has been fabricated and it was proposed to be flown on GSAT-4 during Apr 2010. However, GSAT-4 was not placed in orbit as GSLV-D3 could not complete the mission. Two more GAGAN payloads will be subsequently flown, one each on two geostationary satellites, GSAT-8 and GSAT-10. On 12 May 2012, ISRO announced the successful testing of its indigenous cryogenic engine for 200 seconds for its forthcoming GSLV-D5 flight.[39]

The IRNSS series

IRNSS is an independent regional navigation satellite system being developed by India. It is designed to provide accurate position information service to users in India as well as the region extending up to 1500 km from its boundary, which is its primary service area. IRNSS will provide two types of services, namely, Standard Positioning Service (SPS) and Restricted Service (RS) and is expected to provide a position accuracy of better than 20 m in the primary service area.[40] It is an autonomous regional satellite navigation system being developed by Indian Space Research Organisation which would be under total control of Indian government. The requirement of such a navigation system is driven by the fact that access to Global Navigation Satellite Systems like GPS are not guaranteed in hostile situations. ISRO plans to launch the constellation of satellites between 2012 and 2014.

ISRO on 1 July 2013, at 23:41Hrs IST launched from Sriharikota the First Indian Navigation Satellite the IRNSS-1A. The IRNSS-1A was launched aboard PSLV-C22. The constellation would be comprising 7 satellites of I-1K bus each weighing around 1450 Kilograms, with three satellites in the Geostationary Earth Orbit (GEO) and 4 in Geosynchronous Earth Orbit(GSO). The constellation would be completed around 2015.[41]

On 4 April 2014, at 17:14 Hrs IST ISRO has launched IRNSS-1B from Sriharikota, its second of seven IRNSS series. After 19 mins of launch PSLV-C24 has successfully injected into its orbit.[42]

Human spaceflight programme

File:ISRO-sre02.jpg
Indian Navy Frogmen recovering the SRE-1

The Indian Space Research Organisation has proposed a budget of 124 billion (US$1.5 billion) for its human spaceflight programme.[43] According to the Space Commission which recommended the budget, an unmanned flight will be launched after 7 years of final approval.[44] and a manned mission will be launch after 7 years of funding.[45][46] If realised in the stated time-frame, India will become the fourth nation, after the USSR, US and China, to successfully carry out manned missions indigenously.

Technology demonstration

The Space Capsule Recovery Experiment (SCRE or more commonly SRE or SRE-1)[47] is an experimental Indian spacecraft which was launched using the PSLV C7 rocket, along with three other satellites. It remained in orbit for 12 days before re-entering the Earth's atmosphere and splashing down into the Bay of Bengal.[48] The SRE-1 was designed to demonstrate the capability to recover an orbiting space capsule, and the technology for performing experiments in the microgravity conditions of an orbiting platform. It was also intended to test thermal protection, navigation, guidance, control, deceleration and flotation systems, as well as study hypersonic aero-thermodynamics, management of communication blackouts, and recovery operations. ISRO also plans to launch SRE-2 and SRE-3 in the near future to test advanced re-entry technology for future manned missions.[49]

Astronaut training and other facilities

ISRO will set up an astronaut training centre in Bengaluru to prepare personnel for flights on board the crewed vehicle. The centre will use simulation facilities to train the selected astronauts in rescue and recovery operations and survival in zero gravity, and will undertake studies of the radiation environment of space. ISRO will build centrifuges to prepare astronauts for the acceleration phase of the mission. It also plans to build a new Launch pad to meet the target of launching a manned space mission in 7 years of funding clearance. This would be the third launchpad at the Satish Dhawan Space Centre, Sriharikota.

Development of crew vehicle

File:GSLV Mk III payload fairing assembly.jpg
GSLV Mk III payload fairing assembly mockup

The Indian Space Research Organisation (ISRO) is working towards a maiden manned Indian space mission vehicle that can carry three astronauts for seven days in a near earth orbit. The Indian manned spacecraft temporarily named as Orbital Vehicle intends to be the basis of indigenous Indian human spaceflight programme. The capsule will be designed to carry three people, and a planned upgraded version will be equipped with a rendezvous and docking capability. In its maiden manned mission, ISRO's largely autonomous 3-ton capsule will orbit the Earth at 400 km in altitude for up to seven days with a two-person crew on board. The crew vehicle would launch atop of ISRO's GSLV Mk II, currently under development. The GSLV Mk II features an indigenously developed cryogenic upper-stage engine.[50] The first test of the cryogenic engine, held on 15 April 2010, failed as the cryogenic phase did not perform as expected and rocket deviated from the planned trajectory.[51] However the second test of the indigenous cryogenic engine was successful on 5 January 2014.[52]

Planetary sciences and astronomy

India's space era dawned when the first two-stage sounding rocket was launched from Thumba in 1963. Even before this, noteworthy contributions were made by the Indian scientists in the following areas of space science research:[citation needed]

  • Cosmic rays and high energy astronomy using both ground based as well as balloon borne experiments/studies such as neutron/meson monitors, Geiger Muller particle detectors/counters etc.
  • Ionospheric research using ground based radio propagation techniques such as ionosonde, VLF/HF/VHF radio probing, a chain of magnetometer stations etc.
  • Upper atmospheric research using ground based optical techniques such as Dobson spectrometers for measurement of total ozone content, air glow photometers etc.
  • Indian astronomers have been carrying out major investigations using a number of ground based optical and radio telescopes with varying sophistication.

With the advent of the Indian space programme, emphasis was laid on indigenous, self-reliant and state-of-the-art development of technology for immediate practical applications in the fields of space science research activities in the country.

There is a national balloon launching facility at Hyderabad jointly supported by TIFR and ISRO. This facility has been extensively used for carrying out research in high energy (i.e., X- and gamma ray) astronomy, IR astronomy, middle atmospheric trace constituents including CFCs & aerosols, ionisation, electric conductivity and electric fields.[citation needed]

The flux of secondary particles and X-ray and gamma-rays of atmospheric origin produced by the interaction of the cosmic rays is very low. This low background, in the presence of which one has to detect the feeble signal from cosmic sources is a major advantage in conducting hard X-ray observations from India. The second advantage is that many bright sources like Cyg X-1, Crab Nebula, Scorpius X-1 and Galactic Centre sources are observable from Hyderabad due to their favourable declination. With these considerations, an X-ray astronomy group was formed at TIFR in 1967 and development of an instrument with an orientable X-ray telescope for hard X-ray observations was undertaken. The first balloon flight with the new instrument was made on 28 April 1968 in which observations of Scorpius X-1 were successfully carried out. In a succession of balloon flights made with this instrument between 1968 and 1974 a number of binary X-ray sources including Scorpius X-1, Cyg X-1, Her X-1 etc. and the diffuse cosmic X-ray background were studied. Many new and astrophysically important results were obtained from these observations.[53]

One of most important achievements of ISRO in this field was the discovery of three species of bacteria in the upper stratosphere at an altitude of between 20–40 km. The bacteria, highly resistant to ultra-violet radiation, are not found elsewhere on Earth, leading to speculation on whether they are extraterrestrial in origin. These three bacteria can be considered to be extremophiles. Until then, the upper stratosphere was believed to be inhospitable because of the high doses of ultra-violet radiation. The bacteria were named as Bacillus isronensis in recognition of ISRO's contribution in the balloon experiments, which led to its discovery, Bacillus aryabhata after India's celebrated ancient astronomer Aryabhata and Janibacter Hoylei after the distinguished astrophysicist Fred Hoyle.[54]

Extraterrestrial exploration

ISRO had a mostly successful Moon mission from 2008 to 2009. A mission to Mars started in 2013 and will last till 2015.

First mission to the Moon: Chandrayaan-1

Model of the Chandrayaan-1 spacecraft.

Chandrayaan-1 was India's first mission to the Moon. The unmanned lunar exploration mission included a lunar orbiter and an impactor called the Moon Impact Probe. ISRO launched the spacecraft using a modified version of the PSLV on 22 October 2008 from Satish Dhawan Space Centre, Sriharikota. The vehicle was successfully inserted into lunar orbit on 8 November 2008. It carried high-resolution remote sensing equipment for visible, near infrared, and soft and hard X-ray frequencies. During its 312 days operational period (2 years planned), it surveyed the lunar surface to produce a complete map of its chemical characteristics and 3-dimensional topography. The polar regions were of special interest, as they possibly had ice deposits. The spacecraft carried a total of 11 instruments: 5 Indian and 6 from foreign institutes and space agencies (including NASA, ESA, Bulgarian Academy of Sciences, Brown University and other European and North American institutes/companies) which were carried free of cost. Chandrayaan-1 became the first lunar mission to discover existence of water on the Moon.[55]

Mars Orbiter Mission (Mangalayaan)

Artist's rendering of the Mars Orbiter Mission spacecraft, with Mars in the background.

The Mars Orbiter Mission (MOM), informally known as 'Mangalayaan' was launched into Earth orbit on 5 November 2013 by the Indian Space Research Organisation (ISRO) and has entered Mars orbit on 24 September 2014.[56] India is the first country to enter Mars orbit in first attempt. It was completed at a record cost of $74 million. [57]

MOM was successfully placed into Mars orbit on September 24,2014 at 8:23 AM IST. It has a highly elliptical orbit with a periapsis of 421.7 km (262.0 mi) and an apoapsis of 76,993.6 km (47,841.6 mi).

The spacecraft had a launch mass of 1,337 kg (2,948 lb), with 15 kg (33 lb) of five scientific instruments as payload.

Facilities

ISRO's headquarters is located at Antariksh Bhavan in Bengaluru.

Research facilities

Facility Location Description
Vikram Sarabhai Space Centre Thiruvananthapuram The largest ISRO base is also the main technical centre and the venue of development of the SLV-3, ASLV, and PSLV series.[58] The base supports India's Thumba Equatorial Rocket Launching Station and the Rohini Sounding Rocket programme.[58] This facility is also developing the GSLV series.[58]
Liquid Propulsion Systems Centre Thiruvananthapuram and Bengaluru The LPSC handles design, development, testing and implementation of liquid propulsion control packages, liquid stages and liquid engines for launch vehicles and satellites.[58] The testing of these systems is largely conducted at IPRC at Mahendragiri.[58] The LPSC, Begaluru also produces precision transducers.[59]
Physical Research Laboratory Ahmedabad Solar planetary physics, infrared astronomy, geo-cosmo physics, plasma physics, astrophysics, archaeology, and hydrology are some of the branches of study at this institute.[58] An observatory at Udaipur also falls under the control of this institution.[58]
Semi-Conductor Laboratory Chandigarh Research & Development in the field of semiconductor technology, micro-electromechanical systems and process technologies relating to semiconductor processing.
National Atmospheric Research Laboratory Chittoor The NARL carries out fundamental and applied research in Atmospheric and Space Sciences.
Space Applications Centre Ahmedabad The SAC deals with the various aspects of practical use of space technology.[58] Among the fields of research at the SAC are geodesy, satellite based telecommunications, surveying, remote sensing, meteorology, environment monitoring etc.[58] The SEC additionally operates the Delhi Earth Station.[60]
North-Eastern Space Applications Centre Shillong Providing developmental support to North East by undertaking specific application projects using remote sensing, GIS, satellite communication and conducting space science research.

Test facilities

Facility Location Description
ISRO Propulsion Complex Mahendragiri Formerly called LPSC-Mahendragiri, was declared a separate centre. It handles testing and assembly of liquid propulsion control packages, liquid engines and stages for launch vehicles and satellites.[58]

Construction and launch facilities

Facility Location Description
ISRO Satellite Centre Bengaluru The venue of eight successful spacecraft projects is also one of the main satellite technology bases of ISRO. The facility serves as a venue for implementing indigenous spacecraft in India.[58] The satellites Ayrabhata, Bhaskara, APPLE, and IRS-1A were constructed at this site, and the IRS and INSAT satellite series are presently under development here.[59]
Laboratory for Electro-Optics Systems Bengaluru The Unit of ISRO responsible for the development of altitude sensors for all satellites. The high precision optics for all cameras and payloads in all ISRO satellites including Chandrayaan-1 are developed at this laboratory. Located at Peenya Industrial Estate, Bangalore.
Satish Dhawan Space Centre Sriharikota With multiple sub-sites the Sriharikota island facility acts as a launching site for India's satellites.[58] The Sriharikota facility is also the main launch base for India's sounding rockets.[59] The centre is also home to India's largest Solid Propellant Space Booster Plant (SPROB) and houses the Static Test and Evaluation Complex (STEX).[59]
Thumba Equatorial Rocket Launching Station Thiruvananthapuram TERLS is used to launch sounding rockets.

Tracking and control facilities

Facility Location Description
Indian Deep Space Network (IDSN) Bengaluru This network receives, processes, archives and distributes the spacecraft health data and payload data in real time. It can track and monitor satellites up to very large distances, even beyond the Moon.
National Remote Sensing Centre Hyderabad The NRSC applies remote sensing to manage natural resources and study aerial surveying.[58] With centres at Balanagar and Shadnagar it also has training facilities at Dehradun in form of the Indian Institute of Remote Sensing.[58]
ISRO Telemetry, Tracking and Command Network Bangalore (headquarters) and a number of ground stations throughout India and World.[60] Software development, ground operations, Tracking Telemetry and Command (TTC), and support is provided by this institution.[58] ISTRAC has Tracking stations throughout the country and all over the world in Port Louis (Mauritius), Bearslake (Russia), Biak (Indonesia) and Brunei.
Master Control Facility Bhopal; Hassan Geostationary satellite orbit raising, payload testing, and in-orbit operations are performed at this facility.[61] The MCF has earth stations and Satellite Control Centre (SCC) for controlling satellites.[61] A second MCF-like facility named 'MCF-B' is being constructed at Bhopal.[61]

Human resource development

Facility Location Description
Indian Institute of Remote Sensing (IIRS) Dehradun Indian Institute of Remote Sensing (IIRS), an independent unit of Indian Space Research Organisation (ISRO), Department of Space, Govt. of India is a premier training and educational institute set up for developing trained professionals (P.G and PhD level) in the field of Remote Sensing, Geoinformatics and GPS Technology for Natural Resources, Environmental and Disaster Management. IIRS is also executing many R&D projects on Remote Sensing and GIS for societal applications.
Indian Institute of Space Science and Technology (IIST) Thiruvananthapuram The institute offers undergraduate and graduate courses in Aerospace engineering, Avionics and Physical Sciences. The students of the first three batches of IIST have been inducted into different ISRO centres as of September 2012.
Development and Educational Communication Unit Ahmedabad The centre works for education, research, and training, mainly in conjunction with the INSAT programme.[58] The main activities carried out at DECU include GRAMSAT and EDUSAT projects.[59] The Training and Development Communication Channel (TDCC) also falls under the operational control of the DECU.[60]

Commercial wing (Antrix Corporation)

Facility Location Description
Antrix Corporation Bengaluru The marketing agency under government control markets ISRO's hardware, manpower, software, launch services, etc..[61]

Other facilities

Future projects

A model of the Geosynchronous Satellite Launch Vehicle III.
A model of the RLV-TD

ISRO plans to launch a number of new-generation Earth Observation Satellites in the near future. It will also undertake the development of new launch vehicles and spacecraft. ISRO has stated that it will send unmanned missions to Mars and Near-Earth Objects. ISRO has planned 58 missions during 2012–17; 33 satellites missions in next two years and 25 launch vehicles missions thereafter, costing 200 billion (US$2 billion).[62]

Forthcoming Satellites

Satellite Name Details
ASTROSAT ASTROSAT is a first dedicated Indian Astronomy satellite mission, which will enable multi-wavelength observations of the celestial bodies and cosmic sources in X-ray and UV spectral bands simultaneously. The scientific payloads cover the Visible (3500–6000 Å…), UV (1300–3000 Å…), soft and hard X-ray regimes (0.5–8 keV; 3–80 keV). The uniqueness of ASTROSAT lies in its wide spectral coverage extending over visible, UV, soft and hard X-ray regions.
GSAT-6 / INSAT-4E The primary goal of GSAT-6/INSAT-4E, which is a Multimedia broadcast satellite, is to cater to the consumer requirements of providing entertainment and information services to vehicles through Digital Multimedia consoles and to the Multimedia mobile Phones. The satellite carries a 5 spot beam BSS and 5 spot beam MSS. It will be positioned at 83° East longitude with a mission life of 12 years.
GSAT-7/INSAT-4F It is a multi-band satellite carrying payloads in UHF, S-band, C-band and Ku band. The satellite weighs 2330 kg with a payload power of 2000W and mission life of 9 years.
GSAT-9 GSAT-9 will carry 6 C band and 24 Ku band transponders with India coverage beam. The satellite is planned to be launched during 2011–12 with a mission life of 12 years and positioned at 48° East longitude. This I-2K satellite has a liftoff mass of 2330 kg and payload power of 2300 W.
GSAT-11 GSAT-11 is based on I-4K bus which is under advanced stage of development. The spacecraft can generate 10–12 KW of power and can support payload power of 8KW. The payload configuration is on-going. It consists of 16 spot beams covering entire country including Andaman & Nicobar islands. The communication link to the user-end terminals operate in Ku-band while the communication link to the hubs operate in Ka-band. The payload is configured to be operated as a high data throughput satellite, to be realised in orbit in 2013 time frame.
GSAT-15 GSAT-15 is an Indian communication satellite similar to GSAT-10 to augment the capacity of transponders to provided more bandwidth for Direct-to-Home television and VSAT services. The satellite will be the 10th one in the series of GSAT satellites.
GSAT-16 GSAT-16 will be the 11th Indian communication satellite similar to GSAT-15 meant to increase the number of transponders that in turn enhance the satellite based telecommunication, television, VSAT services in India.
NISAR Nasa-Isro Synthetic Aperture Radar (Nisar) is a joint project between NASA and ISRO to co-develop and launch a dual frequency synthetic aperture radar satellite to be used for remote sensing. It is notable for being the first dual band radar imaging satellite.

Future launch vehicles

GSLV-Mk III is envisaged to launch four tonne satellite into geosynchronous transfer orbit. GSLV-Mk III is a three-stage vehicle with a 110 tonne core liquid propellant stage (L-110) and a strap-on stage with two solid propellant motors, each with 200 tonne propellant (S-200). The upper stage will be cryogenic with a propellant loading of 25 tonne (C-25). GSLV Mk-III will have a lift-off weight of about 626 tonne and will be 43.43 m tall. The payload fairing will have a diameter of 5-metre and a payload volume of 100 cubic metre. GSLV Mk III was planned at the end of August 2014, but it has been postponed due to Mars Orbiter Mission's (MOM) next big challenge on 24 September 2014.[63] It will weigh 640 tonnes at the time of lift-off, which will make it the heaviest rocket ever to be built in India.

As a first step towards realising a Two Stage To Orbit (TSTO) fully re-usable launch vehicle, a series of technology demonstration missions have been conceived. For this purpose a Winged Reusable Launch Vehicle technology Demonstrator (RLV-TD) has been configured. The RLV-TD will act as a flying test bed to evaluate various technologies viz., hypersonic flight, autonomous landing, powered cruise flight and hypersonic flight using air-breathing propulsion. First in the series of demonstration trials is the hypersonic flight experiment (HEX).

Extraterrestrial exploration

ISRO's missions beyond Earth's orbit include Chandrayaan-1 (to the Moon) and Mars Orbiter Mission (to Mars). ISRO plans to follow up with Chandrayaan-2 and missions to Venus and near-Earth objects such as asteroids and comets.

Chandrayaan-2

Chandrayaan-2 (Sanskrit: चंद्रयान-२) will be India's second unmanned mission to the Moon will include an orbiter and lander-rover module. Chandrayaan-2 will be launched on India's Geosynchronous Satellite Launch Vehicle (GSLV-MkII) around 2016 - 2017 timeframe.[64] The science goals of the mission are to further improve the understanding of the origin and evolution of the Moon.

Venus exploration

ISRO is planning a mission to Venus, by May 2015 to study its atmosphere. The probe will reach Venus by September 2015 and would carry at least five instruments.[65]

Solar exploration programme

ISRO plans to carry out a mission to the Sun by the year 2015-16. The probe is named as Aditya-1 and will weigh about 400 kg.[66] It is the First Indian space based Solar Coronagraph to study solar Corona in visible and near IR bands. Launch of the Aditya mission was planned during the high solar activity period in 2012 but was postponed to 2015–2016 due to the extensive work involved in the fabrication and other technical aspects . The main objectives is to study the Coronal Mass Ejection (CME) and consequently the crucial physical parameters for space weather such as the coronal magnetic field structures, evolution of the coronal magnetic field etc. This will provide completely new information on the velocity fields and their variability in the inner corona having an important bearing on the unsolved problem of heating of the corona would be obtained.

Space science missions

Space Capsule Recovery Experiment II: The main objective of SRE II is to realise a fully recoverable capsule and provide a platform to conduct microgravity experiments on Micro-biology, Agriculture, Powder Metallurgy, etc. SRE-2 is proposed to be launched on board PSLV.

Applications

Telecommunication

India uses its satellites communication network – one of the largest in the world – for applications such as land management, water resources management, natural disaster forecasting, radio networking, weather forecasting, meteorological imaging and computer communication.[67] Business, administrative services, and schemes such as the National Informatics Centre (NICNET) are direct beneficiaries of applied satellite technology.[68] Dinshaw Mistry, on the subject of practical applications of the Indian space programme, writes:

"The INSAT-2 satellites also provide telephone links to remote areas; data transmission for organisations such as the National Stock Exchange; mobile satellite service communications for private operators, railways, and road transport; and broadcast satellite services, used by India's state-owned television agency as well as commercial television channels. India's EDUSAT (Educational Satellite), launched aboard the GSLV in 2004, was intended for adult literacy and distance learning applications in rural areas. It augmented and would eventually replace such capabilities already provided by INSAT-3B."

Resource management

The IRS satellites have found applications with the Indian Natural Resource Management programme, with regional Remote Sensing Service Centres in five Indian cities, and with Remote Sensing Application Centres in twenty Indian states that use IRS images for economic development applications. These include environmental monitoring, analysing soil erosion and the impact of soil conservation measures, forestry management, determining land cover for wildlife sanctuaries, delineating groundwater potential zones, flood inundation mapping, drought monitoring, estimating crop acreage and deriving agricultural production estimates, fisheries monitoring, mining and geological applications such as surveying metal and mineral deposits, and urban planning.

Military

India's satellites and satellite launch vehicles have had military spin-offs. While India's 93–124-mile (150–250 km) range Prithvi missile is not derived from the Indian space programme, the intermediate range Agni missile is drawn from the Indian space programme's SLV-3. In its early years, when headed by Vikram Sarabhai and Satish Dhawan, ISRO opposed military applications for its dual-use projects such as the SLV-3. Eventually, however, the Defence Research and Development Organisation(DRDO)–based missile programme borrowed human resources and technology from ISRO. Missile scientist Dr APJ Abdul Kalam (elected president of India in 2002), who had headed the SLV-3 project at ISRO, moved to DRDO to direct India's missile programme. About a dozen scientists accompanied Kalam from ISRO to DRDO, where he designed the Agni missile using the SLV-3's solidfuel first stage and a liquid-fuel (Prithvi-missile-derived) second stage. The IRS and INSAT satellites were primarily intended and used for civilian-economic applications, but they also offered military spin-offs. In 1996 New Delhi's Ministry of Defence temporarily blocked the use of IRS-1C by India's environmental and agricultural ministries in order to monitor ballistic missiles near India's borders. In 1997 the Indian air force's "Airpower Doctrine" aspired to use space assets for surveillance and battle management.[69]

Academic

Institutions like the Indira Gandhi National Open University (IGNOU) and the Indian Institutes of Technology use satellites for scholarly applications.[70] Between 1975 and 1976, India conducted its largest sociological programme using space technology, reaching 2400 villages through video programming in local languages aimed at educational development via ATS-6 technology developed by NASA.[71] This experiment—named Satellite Instructional Television Experiment (SITE)—conducted large scale video broadcasts resulting in significant improvement in rural education.[71]

Telemedicine

ISRO has applied its technology to "telemedicine", directly connecting patients in rural areas to medical professionals in urban locations via satellites.[70] Since high-quality healthcare is not universally available in some of the remote areas of India, the patients in remote areas are diagnosed and analysed by doctors in urban centres in real time via video conferencing.[70] The patient is then advised medicine and treatment.[70] The patient is then treated by the staff at one of the 'super-specialty hospitals' under instructions from the doctor.[70] Mobile telemedicine vans are also deployed to visit locations in far-flung areas and provide diagnosis and support to patients.[70]

Biodiversity Information System

ISRO has also helped implement India's Biodiversity Information System, completed in October 2002.[72] Nirupa Sen details the programme: "Based on intensive field sampling and mapping using satellite remote sensing and geospatial modelling tools, maps have been made of vegetation cover on a 1 : 250,000 scale. This has been put together in a web-enabled database which links gene-level information of plant species with spatial information in a BIOSPEC database of the ecological hot spot regions, namely northeastern India, Western Ghats, Western Himalayas and Andaman and Nicobar Islands. This has been made possible with collaboration between the Department of Biotechnology and ISRO."[72]

Cartography

The Indian IRS-P5 (CARTOSAT-1) was equipped with high-resolution panchromatic equipment to enable it for cartographic purposes.[13] IRS-P5 (CARTOSAT-1) was followed by a more advanced model named IRS-P6 developed also for agricultural applications.[13] The CARTOSAT-2 project, equipped with single panchromatic camera which supported scene-specific on-spot images, succeed the CARTOSAT-1 project.[73]

International co-operation

ISRO has had international cooperation since inception. Some instances are listed below:

Antrix Corporation, the commercial and marketing arm of ISRO, handles both domestic and foreign deals.[77]

ISRO and the Department of Space have signed formal Memorandum of Understanding agreements with a number of foreign political entities, including:[citation needed]

In the 39th Scientific Assembly of Committee on Space Research held in Mysore, the ISRO Chairman K. Radhakrishnan called upon international synergy in space missions in view of their prohibitive cost. He also mentioned that ISRO is gearing up to meet the growing demand of service providers, security agencies, etc. in a cost effective manner.[78]

Foreign satellites with mass of 100 kg or more launched by ISRO

ISRO has launched many foreign satellites. Those with mass of 100 kg or more are listed below.[79] As of October 2014, only the Polar Satellite Launch Vehicle (PSLV) has been used to launch all major foreign satellites. Though reliable, the PSLV can not launch satellites having mass greater than 1600 kg.[80] ISRO is developing its Geosynchronous Satellite Launch Vehicle (GSLV) for launching heavier satellites.

S. No. Satellite's name Country of origin Date of launch Mass (kg) Launch vehicle Other information Reference(s)
1. KITSAT-3  South Korea 26 May 1999 107 PSLV-C2 Main payload was India's IRS-P4 (OCEANSAT) (mass 1050 kg). Launch vehicle also placed into orbit Germany's DLR-TUBSAT (mass 45 kg). PSLV's 2nd operational launch. [81]
2. AGILE  Italy 23 April 2007 350 PSLV-C8 ISRO's 1st commercial launch (foreign satellite as the main payload). PSLV's 11th flight. [82]
3. TECSAR  Israel 21 January 2008 300 PSLV-C10 ISRO's 2nd commercial launch (foreign satellite as the main payload). PSLV's 12th launch. [83]
4. ALSAT-2A  Algeria 12 July 2010 116 PSLV-C15 Main payload was India's CARTOSAT-2B (mass 694 kg). Launch vehicle also placed into orbit Canada's NLS6.1 AISSAT-1 (mass 6.5 kg) and Switzerland's NLS6.2 TISAT-1 (mass 1 kg). PSLV's 17th flight. [84]
5. X-SAT  Singapore 20 April 2011 106 PSLV-C16 Main payload was India's RESOURCESAT-2 (mass 1206 kg). Launch vehicle also placed into orbit the Indo-Russian YOUTHSAT (mass 92 kg). PSLV's 18th flight. [85]
6. SPOT-6  France 9 September 2012 712 PSLV-C21 ISRO's 3rd commercial launch (foreign satellite as main payload). Launch vehicle also placed into orbit Japan's PROITERES (mass 15 kg). PSLV's 22nd flight. [86][87]
7. SAPPHIRE  Canada 25 February 2013 148 PSLV-C20 Main payload was the Indo-French satellite SARAL (mass 409 kg). Launch vehicle also placed into orbit Canada's NEOSSAT (mass 74 kg), Austria's NLS8.1 and NLS8.2 (mass 14 kg each), Denmark's NLS8.3 (mass 3 kg), and United Kingdom's STRAND-1 (mass 6.5 kg). PSLV's 23rd flight. [88][89]
8. SPOT-7  France 30 June 2014 714 PSLV-C23 ISRO's 4th commercial launch (foreign satellite as the main payload). Launch vehicle also placed into orbit Germany's AISAT (mass 14 kg), Canada's NLS7.1 (CAN-X4) and NLS7.2 (CAN-X5) (mass 15 kg each) and Singapore's VELOX-1 (mass 7 kg). PSLV's 10th flight in 'core-alone' configuration (i.e. without the use of solid strap-on motors). [90][91]

See also

Notes

  1. ^ http://www.isro.gov.in/pdf/BUDGET_AT_A_GLANCE.pdf
  2. ^ http://www.isro.gov.in/pdf/Outcome%20Budget2013-14.pdf
  3. ^ a b c "About ISRO – Introduction". ISRO.
  4. ^ "GSLV-D5 - Indian cryogenic engine and stage" (PDF). Official ISRO website. Indian Space Research Organisation. Retrieved 29 September 2014.
  5. ^ "GSLV soars to space with Indian cryogenic engine". Spaceflight Now. 5 January 2014. Retrieved 29 September 2014.
  6. ^ Thomas, Arun. "Mangalyan". CNN.
  7. ^ "About ISRO - Future Programme". ISRO official website. Indian Space Research Organisation. Retrieved 29 September 2014.
  8. ^ http://online.wsj.com/articles/india-launches-five-foreign-satellites-1404126863
  9. ^ a b c d Daniel, 486
  10. ^ a b Daniel, 487
  11. ^ a b c d e Daniel, 488
  12. ^ a b c Daniel, 489
  13. ^ a b c Burleson, 136
  14. ^ In Wings of Fire: An Autobiography of APJ Kalam (1999), his autobiography.
  15. ^ a b Hennock etc. (2008), "The Real Space Race Is In Asia", Newsweek.
  16. ^ "ISRO, DRDO pursuing research to lessen cost of access to space". 10 July 2012.
  17. ^ Gupta, 1697
  18. ^ "ISRO vehicles". Jean-Jacques Serra for TBS Satellite. Retrieved 27 January 2009.
  19. ^ a b "ISRO milestones". ISRO. Archived from the original on 14 October 2007. Retrieved 27 January 2009.
  20. ^ "ASLV". ISRO. Archived from the original on 17 October 2007. Retrieved 27 January 2009.
  21. ^ ISRO's Website: ISRO's Launch Vehicle
  22. ^ PSLV-C11 Successfully Launches Chandrayaan-1
  23. ^ Majumder, Sanjoy (21 October 2008). "India sets its sights on the Moon". BBC. Retrieved 23 October 2008.
  24. ^ "India launches rocket in hope of joining elite Mars explorer club". CNN. 6 November 2013. Retrieved 13 January 2014.
  25. ^ ISRO's Website: Polar Satellite Launch Vehicle
  26. ^ "Indian space programme hit by another launch mishap". SpaceFlightNow. 25 December 2010.
  27. ^ "GSLV-D5 - Indian cryogenic engine and stage" (PDF). Official ISRO website. Indian Space Research Organisation. Retrieved 29 September 2014.
  28. ^ "GSLV soars to space with Indian cryogenic engine". Spaceflight Now. 5 January 2014. Retrieved 29 September 2014.
  29. ^ "Welcome To ISRO :: Launch Vehicles :: GSLV Mark III". Isro.org. Retrieved 12 August 2010.
  30. ^ "Spaceflightnow list of upcoming launches". spaceflightnow.com. Retrieved 13 August 2014.
  31. ^ a b "'ISRO successfully launches 'spy satellite' RISAT-1'". ndtv. 26 April 2012.
  32. ^ "eoPortal directory: Kalpana-1/MetSat-1 (Meteorological Satellite-1)". Eoportal.org. Retrieved 11 March 2011.
  33. ^ "Space Technology in India | Indian Space Research Organisation (ISRO)". Indiaonline.in. Retrieved 11 March 2011.
  34. ^ "The Hindu Business Line : ISRO left poorer by transponder crunch, foreign leases". Thehindubusinessline.in. 8 January 2011. Retrieved 11 March 2011.
  35. ^ "India successfully launches Indo-French, 6 foreign satellites". Indian Express. 25 February 2013. Retrieved 25 February 2013.
  36. ^ "Satellite SARAL". Ilrs.gsfc.nasa.gov. Retrieved 24 July 2012.
  37. ^ http://zeenews.india.com/news/space/pslv-c23-launch-a-global-endorsement-of-india-s-space-capability-narendra-modi_943885.html
  38. ^ http://www.channelnewsasia.com/news/singapore/singapore-s-first-nano/1232324.html
  39. ^ "Isro successfully tests indigenous cryogenic engine". Hindustan Times. 12 May 2012. Retrieved 12 May 2012.
  40. ^ "Navigation Satellite". ISRO. Retrieved 26 January 2014.
  41. ^ "ISRO PSLV C22 STATUS". Retrieved 1 July 2013.
  42. ^ "Isro successfully launches navigation satellite IRNSS-1B".
  43. ^ "Plan panel okays ISRO manned space flight". Indianexpress. 23 February 2009. Retrieved 11 March 2011.
  44. ^ ISRO To Put Unmanned Test Capsule In Orbit in 4 years.
  45. ^ BBC.co.uk – India announces first manned space mission
  46. ^ Where [[China Leads, India Follows?]
  47. ^ Express News Service (16 April 2009). "UoP part of ISRO's bio experiment in space". Express India. Retrieved 11 March 2011.
  48. ^ "The Hindu : Opinion / Letters to the Editor : Well done ISRO". Hinduonnet.com. 24 January 2007. Retrieved 11 March 2011.
  49. ^ "UoP part of ISRO's bio experiment in space". Indianexpress. 16 April 2009. Retrieved 11 March 2011.
  50. ^ "Breaking news, views, current affairs & Infotainment". Khabrein.info. Retrieved 12 August 2010.
  51. ^ "India cryogenic satellite space launch fails". BBC World News. 15 April 2010. Retrieved 10 Jone 2010. {{cite news}}: Check date values in: |accessdate= (help)
  52. ^ "ISRO launches GSLV D5, India among heavyweights of rocket science". Indian Express. 7 January 2014. Retrieved 7 February 2014.
  53. ^ Template:Wayback
  54. ^ ISRO finds ‘alien’ life in upper atmosphere
  55. ^ "'Mission definitely over'". 90–95% of the job done. Chennai, India. 30 August 2009. Retrieved 29 August 2009.
  56. ^ "India becomes first country to enter Mars' orbit on their first attempt". Herald Sun. 24 September 2014. Retrieved 24 September 2014.
  57. ^ "India's Maiden Mars Mission Makes History". Bloomberg TV India. Retrieved 24 September 2014.
  58. ^ a b c d e f g h i j k l m n o p India in Space", Science & Technology edited by N.N. Ojha, 142.
  59. ^ a b c d e "Space Research", Science and Technology in India edited by R.K. Suri and Kalapana Rajaram, 414.
  60. ^ a b c "Space Research", Science and Technology in India edited by R.K. Suri and Kalapana Rajaram, 415.
  61. ^ a b c d "Space Research", Science and Technology in India edited by R.K. Suri and Kalapana Rajaram, 416.
  62. ^ "ISRO lines up 58 missions, to scale up industry role". The Times of India. 10 August 2012.
  63. ^ "Isro postpones GSLV-MKIII flight scheduled in August". The Times of India. 20 August 2014.
  64. ^ "India to launch Chandrayaan-II by 2017". NTS - Aerospace Services. Chennai, India. 10 January 2014. Retrieved 12 January 2014. {{cite news}}: |first= missing |last= (help)
  65. ^ Srinivas Laxman, TNN 17 Feb 2012, 05.03 am IST (17 February 2012). "India planning Venus mission – Times of India". Articles.timesofindia.indiatimes.com. Retrieved 24 July 2012.{{cite news}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  66. ^ ISRO targets Sun after the Moon
  67. ^ Bhaskaranarayana, 1738–1746
  68. ^ Bhaskaranarayana, 1738
  69. ^ Mistry, 94–95
  70. ^ a b c d e f Bhaskaranarayana, 1744
  71. ^ a b Bhaskaranarayana, 1737
  72. ^ a b Sen, 490
  73. ^ Burleson, 143
  74. ^ a b "Space Research", Science and Technology in India edited by R.K. Suri and Kalapana Rajaram, 447.
  75. ^ Times of India (25 January 2011). "US removes ISRO, DRDO from export control list". The Times of India. Retrieved 24 February 2011.
  76. ^ "U.S., India to Collaborate on Mars Exploration, Earth-Observing Mission". NASA official website. National Aeronautics and Space Administration. 30 September 2014. Retrieved 1 October 2014.
  77. ^ "Antrix Corporation Limited". ISRO official website. Indian Space Research organisation. Retrieved 1 October 2014.
  78. ^ "India to boost space assets to meet demand". 17 July 2012.
  79. ^ "PSLV-C23 brochure" (PDF). ISRO official website. Indian Space Research Organisation. Retrieved 1 October 2014.
  80. ^ "PSLV information". ISRO official website. Indian Space Research Organisation. Retrieved 1 October 2014.
  81. ^ "PSLV-C2 mission information". ISRO official website. Indian Space Research Organisation. Retrieved 1 October 2014.
  82. ^ "PSLV-C8 mission information". ISRO official website. Indian Space Research Organisation. Retrieved 1 October 2014.
  83. ^ "PSLV-C10 mission information". ISRO official website. Indian Space Research Organisation. Retrieved 1 October 2014.
  84. ^ "PSLV-C15 mission information". ISRO official website. Indian Space Research Organisation. Retrieved 1 October 2014.
  85. ^ "PSLV-C16 mission information". ISRO official website. Indian Space Research Organisation. Retrieved 1 October 2014.
  86. ^ "PSLV-C21 mission information". ISRO official website. Indian Space Research Organisation. Retrieved 1 October 2014.
  87. ^ "PSLV-C21 brochure" (PDF). ISRO official website. Indian Space Research Organisation. Retrieved 1 October 2014.
  88. ^ "PSLV-C20 mission information". ISRO official website. Indian Space Research Organisation. Retrieved 1 October 2014.
  89. ^ "PSLV-C20 brochure" (PDF). ISRO official website. Indian Space Research Organisation. Retrieved 1 October 2014.
  90. ^ "PSLV-C23 mission information". ISRO official website. Indian Space Research Organisation. Retrieved 1 October 2014.
  91. ^ "PSLV-C23 brochure" (PDF). ISRO official website. Indian Space Research Organisation. Retrieved 1 October 2014.

References

  • Bhaskaranarayana etc. (2007), "Applications of space communication", Current Science, 93 (12): 1737–1746, Bangalore: Indian Academy of Sciences.
  • Burleson, D. (2005), "India", Space Programmes Outside the United States: All Exploration and Research Efforts, Country by Country, pp. 136–146, United States of America: McFarland & Company, ISBN 0-7864-1852-4.
  • Daniel, R.R. (1992), "Space Science in India", Indian Journal of History of Science, 27 (4): 485–499, New Delhi: Indian National Science Academy.
  • Gupta, S.C. etc. (2007), "Evolution of Indian launch vehicle technologies", Current Science, 93 (12): 1697–1714, Bangalore: Indian Academy of Sciences.
  • "India in Space", Science & Technology edited by N.N. Ojha, pp. 110–143, New Delhi: Chronicle Books.
  • Mistry, Dinshaw (2006), "Space Programme", Encyclopedia of India (vol. 4) edited by Stanley Wolpert, pp. 93–95, Thomson Gale, ISBN 0-684-31353-7.
  • Narasimha, R. (2002), "Satish Dhawan", Current Science, 82 (2): 222–225, Bangalore: Indian Academy of Sciences.
  • Sen, Nirupa (2003), "Indian success stories in use of Space tools for social development", Current Science, 84 (4): 489–490, Bangalore: Indian Academy of Sciences.
  • "Space Research", Science and Technology in India edited by R.K. Suri and Kalapana Rajaram, pp. 411–448, New Delhi: Spectrum, ISBN 81-7930-294-6.

Further reading

  • [ISRO plans human colony on Moon]; by Bibhu Ranjan Mishra in Bangalore; 18 December 2007; Rediff India Abroad (Rediff.com)
  • The Economics of India's Space Programme, by U.Sankar, Oxford University Press, New Delhi, 2007, ISBN.13:978-0-19-568345-5