Jump to content

User:CAChamblee/sandbox

From Wikipedia, the free encyclopedia

An Error has occurred retrieving Wikidata item for infobox

Human gene HSPA1B is an intron-less gene which encodes for the heat shock protein HSP70-2, a member of the Hsp70 family of proteins.[1] The gene is located in the major histocompatibility complex, on the short arm of chromosome 6, in a cluster with two paralogous genes, HSPA1A and HSPA1L.[2][3][4] As the small number of sequential differences between the HSPA1A and HSPA1B are unexpressed, contained exclusively in the 3' untranslated region and synonymous substitutions, both these genes produce nearly identical protein products, heat shock 70kDa protein 1A, from HSPA1A, and heat shock 70kDa protein 1B, from HSPA1B.[2] A third, more modified paralog to these genes exists in the same region, HSPA1L, which shares a 90% homology with the other two.[4] HSPA1B is one of several genes that is expressed primarily in spermatogenic cells that have corresponding homologous genes that are expressed in somatic cells, including fellow heat shock protein 70 kDa family member HSPA8, lactate dehydrogenase isoenzyme C, phosphoglycerate kinase isoenzyme 2, and GAPDHS.[5]

Function

[edit]

Heat shock 70kDa protein 1B is a chaperone protein, cooperating with other heat shock proteins and chaperone systems to maintain proteostasis by stabilizing the structural conformation of other proteins in the cell and protecting against stress-induced aggregation.[6] Hsp70s have also been shown to bind and stabilize mRNA rich in adenine and uracil bases, independent of the occupational states of its other binding sites.[7] This protein is deactivated by binding ATP, and activated by its dephosphorylation to ADP, which requires a potassium ion to facilitate the hydrolysis, or ATP-ADP exchange.[8]

Hsp70-2 specifically is developmentally expressed in male germ line cells during meiosis, where it is required for the complexation of CDC2 and cyclin B1.[9] It later becomes incorporated into the CatSper complex, a specialized calcium ion channel that enables spermatozoa motility.[10]

Clinical significance

[edit]

Infertility has been observed in mice when HSA1B expression is disrupted, as CDC2 in unable to form the required heterodimer with cyclin B1 and the meiotic cell cycle is arrested in S phase.[11]

Expression of heat shock protein 70kDa protein 2 in transformed tumor cells has been implicated in the rapid proliferation, metastasis, and inhibition of apoptosis in ovarian, bladder urothelial, and breast cancers.[12][13][14] Patients with chronic hepatitis B or hepatitis C virus infection who harbor a HSPA1B-1267 single nucleotide polymorphism have a higher risk for developing hepatocellular carcinoma.[15]

Interactions

[edit]

Interactions have been characterized between Hsp70-2 and the following proteins:

See also

[edit]

References

[edit]
  1. ^ Milner CM, Campbell RD (1990). "Structure and expression of the three MHC-linked HSP70 genes". Immunogenetics. 32 (4): 242–251. doi:10.1007/BF00187095. PMID 1700760. S2CID 9531492.
  2. ^ a b "Entrez Gene: HSPA1A heat shock 70kDa protein 1B".
  3. ^ Ito Y, Ando A, Ando H, Ando J, Saijoh Y, Inoko H, Fujimoto H (August 1998). "Genomic structure of the spermatid-specific hsp70 homolog gene located in the class III region of the major histocompatibility complex of mouse and man". Journal of Biochemistry. 124 (2): 347–353. doi:10.1093/oxfordjournals.jbchem.a022118. PMID 9685725.
  4. ^ a b Sargent CA, Dunham I, Trowsdale J, Campbell RD (March 1989). "Human major histocompatibility complex contains genes for the major heat shock protein HSP70". Proceedings of the National Academy of Sciences of the United States of America. 86 (6): 1968–1972. doi:10.1073/pnas.86.6.1968. PMC 286826. PMID 2538825.
  5. ^ Eddy EM (January 1999). "Role of heat shock protein HSP70-2 in spermatogenesis". Reviews of Reproduction. 4 (1): 23–30. doi:10.1530/ror.0.0040023. PMID 10051099.
  6. ^ Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B (November 2019). "The Hsp70 chaperone network". Nature Reviews. Molecular Cell Biology. 20 (11): 665–680. doi:10.1038/s41580-019-0133-3. PMID 31253954.
  7. ^ Kishor A, White EJ, Matsangos AE, Yan Z, Tandukar B, Wilson GM (August 2017). "Hsp70's RNA-binding and mRNA-stabilizing activities are independent of its protein chaperone functions". The Journal of Biological Chemistry. 292 (34): 14122–14133. doi:10.1074/jbc.M117.785394. PMC 5572911. PMID 28679534.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  8. ^ Arakawa A, Handa N, Shirouzu M, Yokoyama S (August 2011). "Biochemical and structural studies on the high affinity of Hsp70 for ADP". Protein Science. 20 (8): 1367–1379. doi:10.1002/pro.663. PMC 3189522. PMID 21608060.
  9. ^ Eddy, E. (1999-01-01). "Role of heat shock protein HSP70-2 in spermatogenesis". Reviews of Reproduction. 4 (1): 23–30. doi:10.1530/ror.0.0040023. ISSN 1359-6004.
  10. ^ Liu, Jin; Xia, Jingsheng; Cho, Kwang-Hyun; Clapham, David E.; Ren, Dejian (2007-06-29). "CatSperβ, a Novel Transmembrane Protein in the CatSper Channel Complex *". Journal of Biological Chemistry. 282 (26): 18945–18952. doi:10.1074/jbc.M701083200. ISSN 0021-9258. PMID 17478420.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  11. ^ Eddy, E. (1999-01-01). "Role of heat shock protein HSP70-2 in spermatogenesis". Reviews of Reproduction. 4 (1): 23–30. doi:10.1530/ror.0.0040023. ISSN 1359-6004.
  12. ^ Gupta N, Jagadish N, Surolia A, Suri A (2017). "Heat shock protein 70-2 (HSP70-2) a novel cancer testis antigen that promotes growth of ovarian cancer". American Journal of Cancer Research. 7 (6): 1252–1269. PMC 5489776. PMID 28670489.
  13. ^ Garg M, Kanojia D, Seth A, Kumar R, Gupta A, Surolia A, Suri A (January 2010). "Heat-shock protein 70-2 (HSP70-2) expression in bladder urothelial carcinoma is associated with tumour progression and promotes migration and invasion". European Journal of Cancer. 46 (1): 207–215. doi:10.1016/j.ejca.2009.10.020. PMID 19914824.
  14. ^ Rohde M, Daugaard M, Jensen MH, Helin K, Nylandsted J, Jäättelä M (March 2005). "Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms". Genes & Development. 19 (5): 570–582. doi:10.1101/gad.305405. PMC 551577. PMID 15741319.
  15. ^ Jeng JE, Tsai JF, Chuang LY, Ho MS, Lin ZY, Hsieh MY, et al. (March 2008). "Heat shock protein A1B 1267 polymorphism is highly associated with risk and prognosis of hepatocellular carcinoma: a case-control study". Medicine. 87 (2): 87–98. doi:10.1097/MD.0b013e31816be95c. PMID 18344806. S2CID 26906991.
  16. ^ Liu, Xijun; Liu, Dan; Qian, Dongmeng; Dai, Jenny; An, Yi; Jiang, Shaoyan; Stanley, Bruce; Yang, Jinming; Wang, Bin; Liu, Xinyuan; Liu, David X. (2012-06-01). "Nucleophosmin (NPM1/B23) interacts with activating transcription factor 5 (ATF5) protein and promotes proteasome- and caspase-dependent ATF5 degradation in hepatocellular carcinoma cells". The Journal of Biological Chemistry. 287 (23): 19599–19609. doi:10.1074/jbc.M112.363622. ISSN 1083-351X. PMC 3365995. PMID 22528486.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  17. ^ Rauch, Jennifer N.; Gestwicki, Jason E. (2014-01-17). "Binding of human nucleotide exchange factors to heat shock protein 70 (Hsp70) generates functionally distinct complexes in vitro". The Journal of Biological Chemistry. 289 (3): 1402–1414. doi:10.1074/jbc.M113.521997. ISSN 1083-351X. PMC 3894324. PMID 24318877.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  18. ^ Rauch, Jennifer N.; Gestwicki, Jason E. (2014-01-17). "Binding of human nucleotide exchange factors to heat shock protein 70 (Hsp70) generates functionally distinct complexes in vitro". The Journal of Biological Chemistry. 289 (3): 1402–1414. doi:10.1074/jbc.M113.521997. ISSN 1083-351X. PMC 3894324. PMID 24318877.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  19. ^ Rauch, Jennifer N.; Gestwicki, Jason E. (2014-01-17). "Binding of human nucleotide exchange factors to heat shock protein 70 (Hsp70) generates functionally distinct complexes in vitro". The Journal of Biological Chemistry. 289 (3): 1402–1414. doi:10.1074/jbc.M113.521997. ISSN 1083-351X. PMC 3894324. PMID 24318877.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  20. ^ Liu, Jin; Xia, Jingsheng; Cho, Kwang-Hyun; Clapham, David E.; Ren, Dejian (2007-06-29). "CatSperβ, a Novel Transmembrane Protein in the CatSper Channel Complex *". Journal of Biological Chemistry. 282 (26): 18945–18952. doi:10.1074/jbc.M701083200. ISSN 0021-9258. PMID 17478420.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  21. ^ Zhu D, Dix DJ, Eddy EM (August 1997). "HSP70-2 is required for CDC2 kinase activity in meiosis I of mouse spermatocytes". Development. 124 (15): 3007–3014. PMID 9247342.
  22. ^ Darshi M, Mendiola VL, Mackey MR, Murphy AN, Koller A, Perkins GA, et al. (January 2011). "ChChd3, an inner mitochondrial membrane protein, is essential for maintaining crista integrity and mitochondrial function". The Journal of Biological Chemistry. 286 (4): 2918–2932. doi:10.1074/jbc.M110.171975. PMC 3024787. PMID 21081504.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  23. ^ Brychzy A, Rein T, Winklhofer KF, Hartl FU, Young JC, Obermann WM (July 2003). "Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system". The EMBO Journal. 22 (14): 3613–3623. doi:10.1093/emboj/cdg362. PMC 165632. PMID 12853476.
  24. ^ Moffatt NS, Bruinsma E, Uhl C, Obermann WM, Toft D (August 2008). "Role of the cochaperone Tpr2 in Hsp90 chaperoning". Biochemistry. 47 (31): 8203–8213. doi:10.1021/bi800770g. PMID 18620420.
  25. ^ Ito, Norie; Kamiguchi, Kenjiro; Nakanishi, Katsuya; Sokolovskya, Alice; Hirohashi, Yoshihiko; Tamura, Yasuaki; Murai, Aiko; Yamamoto, Eri; Kanaseki, Takayuki; Tsukahara, Tomohide; Kochin, Vitaly (2016-06-10). "A novel nuclear DnaJ protein, DNAJC8, can suppress the formation of spinocerebellar ataxia 3 polyglutamine aggregation in a J-domain independent manner". Biochemical and Biophysical Research Communications. 474 (4): 626–633. doi:10.1016/j.bbrc.2016.03.152. ISSN 1090-2104. PMID 27133716.
  26. ^ Han, Chaofeng; Chen, Taoyong; Li, Nan; Yang, Mingjin; Wan, Tao; Cao, Xuetao (2007-02-09). "HDJC9, a novel human type C DnaJ/HSP40 member interacts with and cochaperones HSP70 through the J domain". Biochemical and Biophysical Research Communications. 353 (2): 280–285. doi:10.1016/j.bbrc.2006.12.013. ISSN 0006-291X. PMID 17182002.
  27. ^ Hammond, Colin M.; Bao, Hongyu; Hendriks, Ivo A.; Carraro, Massimo; García-Nieto, Alberto; Liu, Yanhong; Reverón-Gómez, Nazaret; Spanos, Christos; Chen, Liu; Rappsilber, Juri; Nielsen, Michael L. (2021-06-17). "DNAJC9 integrates heat shock molecular chaperones into the histone chaperone network". Molecular Cell. 81 (12): 2533–2548.e9. doi:10.1016/j.molcel.2021.03.041. ISSN 1097-4164. PMC 8221569. PMID 33857403.
  28. ^ Chen, Zuojia; Barbi, Joseph; Bu, Shurui; Yang, Huang-Yu; Li, Zhiyuan; Gao, Yayi; Jinasena, Dilini; Fu, Juan; Lin, Fang; Chen, Chen; Zhang, Jing (2013-08-22). "The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3". Immunity. 39 (2): 272–285. doi:10.1016/j.immuni.2013.08.006. ISSN 1097-4180. PMC 3817295. PMID 23973223.
  29. ^ Seo, Ji Hae; Park, Ji-Hyeon; Lee, Eun Ji; Vo, Tam Thuy Lu; Choi, Hoon; Kim, Jun Yong; Jang, Jae Kyung; Wee, Hee-Jun; Lee, Hye Shin; Jang, Se Hwan; Park, Zee Yong (2016-10-06). "ARD1-mediated Hsp70 acetylation balances stress-induced protein refolding and degradation". Nature Communications. 7: 12882. doi:10.1038/ncomms12882. ISSN 2041-1723. PMC 5059642. PMID 27708256.
  30. ^ Seo, Ji Hae; Park, Ji-Hyeon; Lee, Eun Ji; Vo, Tam Thuy Lu; Choi, Hoon; Kim, Jun Yong; Jang, Jae Kyung; Wee, Hee-Jun; Lee, Hye Shin; Jang, Se Hwan; Park, Zee Yong (2016-10-06). "ARD1-mediated Hsp70 acetylation balances stress-induced protein refolding and degradation". Nature Communications. 7: 12882. doi:10.1038/ncomms12882. ISSN 2041-1723. PMC 5059642. PMID 27708256.
  31. ^ Seo, Ji Hae; Park, Ji-Hyeon; Lee, Eun Ji; Vo, Tam Thuy Lu; Choi, Hoon; Kim, Jun Yong; Jang, Jae Kyung; Wee, Hee-Jun; Lee, Hye Shin; Jang, Se Hwan; Park, Zee Yong (2016-10-06). "ARD1-mediated Hsp70 acetylation balances stress-induced protein refolding and degradation". Nature Communications. 7: 12882. doi:10.1038/ncomms12882. ISSN 2041-1723. PMC 5059642. PMID 27708256.
  32. ^ Seo, Ji Hae; Park, Ji-Hyeon; Lee, Eun Ji; Vo, Tam Thuy Lu; Choi, Hoon; Kim, Jun Yong; Jang, Jae Kyung; Wee, Hee-Jun; Lee, Hye Shin; Jang, Se Hwan; Park, Zee Yong (2016-10-06). "ARD1-mediated Hsp70 acetylation balances stress-induced protein refolding and degradation". Nature Communications. 7: 12882. doi:10.1038/ncomms12882. ISSN 2041-1723. PMC 5059642. PMID 27708256.
  33. ^ Rauch, Jennifer N.; Gestwicki, Jason E. (2014-01-17). "Binding of human nucleotide exchange factors to heat shock protein 70 (Hsp70) generates functionally distinct complexes in vitro". The Journal of Biological Chemistry. 289 (3): 1402–1414. doi:10.1074/jbc.M113.521997. ISSN 1083-351X. PMC 3894324. PMID 24318877.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  34. ^ Haag Breese E, Uversky VN, Georgiadis MM, Harrington MA (December 2006). "The disordered amino-terminus of SIMPL interacts with members of the 70-kDa heat-shock protein family". DNA and Cell Biology. 25 (12): 704–714. doi:10.1089/dna.2006.25.704. PMID 17233114.
  35. ^ Jakobsson, Magnus E.; Moen, Anders; Bousset, Luc; Egge-Jacobsen, Wolfgang; Kernstock, Stefan; Melki, Ronald; Falnes, Pål Ø (2013-09-27). "Identification and characterization of a novel human methyltransferase modulating Hsp70 protein function through lysine methylation". The Journal of Biological Chemistry. 288 (39): 27752–27763. doi:10.1074/jbc.M113.483248. ISSN 1083-351X. PMC 3784692. PMID 23921388.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  36. ^ Seo, Ji Hae; Park, Ji-Hyeon; Lee, Eun Ji; Vo, Tam Thuy Lu; Choi, Hoon; Kim, Jun Yong; Jang, Jae Kyung; Wee, Hee-Jun; Lee, Hye Shin; Jang, Se Hwan; Park, Zee Yong (2016-10-06). "ARD1-mediated Hsp70 acetylation balances stress-induced protein refolding and degradation". Nature Communications. 7: 12882. doi:10.1038/ncomms12882. ISSN 2041-1723. PMC 5059642. PMID 27708256.
  37. ^ Fang, Chieh-Ting; Kuo, Hsiao-Hui; Pan, Tiffany S.; Yu, Fu-Chi; Yih, Ling-Huei (2016-10). "HSP70 regulates the function of mitotic centrosomes". Cellular and molecular life sciences: CMLS. 73 (20): 3949–3960. doi:10.1007/s00018-016-2236-8. ISSN 1420-9071. PMID 27137183. {{cite journal}}: Check date values in: |date= (help)
  38. ^ Mohanan, Vishnu; Grimes, Catherine Leimkuhler (2014-07-04). "The molecular chaperone HSP70 binds to and stabilizes NOD2, an important protein involved in Crohn disease". The Journal of Biological Chemistry. 289 (27): 18987–18998. doi:10.1074/jbc.M114.557686. ISSN 1083-351X. PMC 4081938. PMID 24790089.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  39. ^ Zeke T, Morrice N, Vázquez-Martin C, Cohen PT (January 2005). "Human protein phosphatase 5 dissociates from heat-shock proteins and is proteolytically activated in response to arachidonic acid and the microtubule-depolymerizing drug nocodazole". The Biochemical Journal. 385 (Pt 1): 45–56. doi:10.1042/BJ20040690. PMC 1134672. PMID 15383005.
  40. ^ Hasson, Samuel A.; Kane, Lesley A.; Yamano, Koji; Huang, Chiu-Hui; Sliter, Danielle A.; Buehler, Eugen; Wang, Chunxin; Heman-Ackah, Sabrina M.; Hessa, Tara; Guha, Rajarshi; Martin, Scott E. (2013-12-12). "High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy". Nature. 504 (7479): 291–295. doi:10.1038/nature12748. ISSN 1476-4687. PMC 5841086. PMID 24270810.
  41. ^ Shang, Yu; Xu, Xialian; Duan, Xiaolin; Guo, Junwei; Wang, Yinyin; Ren, Fangli; He, Dacheng; Chang, Zhijie (2014-03-28). "Hsp70 and Hsp90 oppositely regulate TGF-β signaling through CHIP/Stub1". Biochemical and Biophysical Research Communications. 446 (1): 387–392. doi:10.1016/j.bbrc.2014.02.124. ISSN 1090-2104. PMID 24613385.
  42. ^ Seo, Ji Hae; Park, Ji-Hyeon; Lee, Eun Ji; Vo, Tam Thuy Lu; Choi, Hoon; Kim, Jun Yong; Jang, Jae Kyung; Wee, Hee-Jun; Lee, Hye Shin; Jang, Se Hwan; Park, Zee Yong (2016-10-06). "ARD1-mediated Hsp70 acetylation balances stress-induced protein refolding and degradation". Nature Communications. 7: 12882. doi:10.1038/ncomms12882. ISSN 2041-1723. PMC 5059642. PMID 27708256.
  43. ^ Forsythe, H. L.; Jarvis, J. L.; Turner, J. W.; Elmore, L. W.; Holt, S. E. (2001-05-11). "Stable association of hsp90 and p23, but Not hsp70, with active human telomerase". The Journal of Biological Chemistry. 276 (19): 15571–15574. doi:10.1074/jbc.C100055200. ISSN 0021-9258. PMID 11274138.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  44. ^ Hwang, Chae Young; Holl, Jens; Rajan, Devi; Lee, Younglang; Kim, Susan; Um, Moonkyoung; Kwon, Ki-Sun; Song, Byeongwoon (2010-03-05). "Hsp70 interacts with the retroviral restriction factor TRIM5alpha and assists the folding of TRIM5alpha". The Journal of Biological Chemistry. 285 (10): 7827–7837. doi:10.1074/jbc.M109.040618. ISSN 1083-351X. PMC 2844226. PMID 20053985.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  45. ^ Nellist M, Burgers PC, van den Ouweland AM, Halley DJ, Luider TM (August 2005). "Phosphorylation and binding partner analysis of the TSC1-TSC2 complex". Biochemical and Biophysical Research Communications. 333 (3): 818–826. doi:10.1016/j.bbrc.2005.05.175. PMID 15963462.
[edit]

This article incorporates text from the United States National Library of Medicine, which is in the public domain.


Category:Heat shock proteins