2018 in paleomammalogy: Difference between revisions
Line 256: | Line 256: | ||
* A study evaluating how the [[mammoth steppe]] ecosystem with its expected low vegetation productivity managed to support a high diversity and density of large mammalian herbivores during the [[Last Glacial Maximum]] is published by Zhu ''et al.'' (2018).<ref>{{Cite journal|author1=Dan Zhu |author2=Philippe Ciais |author3=Jinfeng Chang |author4=Gerhard Krinner |author5=Shushi Peng |author6=Nicolas Viovy |author7=Josep Peñuelas |author8=Sergey Zimov |year=2018 |title=The large mean body size of mammalian herbivores explains the productivity paradox during the Last Glacial Maximum |journal=Nature Ecology & Evolution |volume=2 |issue=4 |pages=640–649 |doi=10.1038/s41559-018-0481-y |pmid=29483680 |pmc=5868731 }}</ref> |
* A study evaluating how the [[mammoth steppe]] ecosystem with its expected low vegetation productivity managed to support a high diversity and density of large mammalian herbivores during the [[Last Glacial Maximum]] is published by Zhu ''et al.'' (2018).<ref>{{Cite journal|author1=Dan Zhu |author2=Philippe Ciais |author3=Jinfeng Chang |author4=Gerhard Krinner |author5=Shushi Peng |author6=Nicolas Viovy |author7=Josep Peñuelas |author8=Sergey Zimov |year=2018 |title=The large mean body size of mammalian herbivores explains the productivity paradox during the Last Glacial Maximum |journal=Nature Ecology & Evolution |volume=2 |issue=4 |pages=640–649 |doi=10.1038/s41559-018-0481-y |pmid=29483680 |pmc=5868731 }}</ref> |
||
* A study modeling spatial and temporal patterns of habitat suitability for 24 megafauna species and ''Homo sapiens'' in the Late Pleistocene in Eurasia is published by Carotenuto ''et al.'' (2018), who state that extinct herbivorous megafauna species were consistently rare within habitat patches optimal for humans.<ref>{{Cite journal|author1=F. Carotenuto |author2=M. Di Febbraro |author3=M. Melchionna |author4=A. Mondanaro |author5=S. Castiglione |author6=C. Serio |author7=L.Rook |author8=A. Loy |author9=M.S. Lima-Ribeiro |author10=J.A.F. Diniz-Filho |author11=P. Raia |year=2018 |title=The well-behaved killer: Late Pleistocene humans in Eurasia were significantly associated with living megafauna only |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=500 |pages=24–32 |doi=10.1016/j.palaeo.2018.03.036 }}</ref> |
* A study modeling spatial and temporal patterns of habitat suitability for 24 megafauna species and ''Homo sapiens'' in the Late Pleistocene in Eurasia is published by Carotenuto ''et al.'' (2018), who state that extinct herbivorous megafauna species were consistently rare within habitat patches optimal for humans.<ref>{{Cite journal|author1=F. Carotenuto |author2=M. Di Febbraro |author3=M. Melchionna |author4=A. Mondanaro |author5=S. Castiglione |author6=C. Serio |author7=L.Rook |author8=A. Loy |author9=M.S. Lima-Ribeiro |author10=J.A.F. Diniz-Filho |author11=P. Raia |year=2018 |title=The well-behaved killer: Late Pleistocene humans in Eurasia were significantly associated with living megafauna only |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=500 |pages=24–32 |doi=10.1016/j.palaeo.2018.03.036 }}</ref> |
||
* A study on the age of the Pleistocene Linyi Fauna, and on its implications for establishing the chronological sequencing of the mammalian faunas on the Chinese [[Loess Plateau]], is published by Qiu ''et al.'' (2018).<ref>{{cite journal |author1=Yahui Qiu |author2=Hong Ao |author3=Yunxiang Zhang |author4=Peixian Shu |author5=Yongxiang Li |author6=Xingwen Li |author7=Peng Zhang |year=2018 |title=Magnetostratigraphic dating of the Linyi Fauna and implications for sequencing the mammalian faunas on the Chinese Loess Plateau |journal=Quaternary Research |volume=89 |issue=3 |pages=629–644 |doi=10.1017/qua.2017.83 }}</ref> |
|||
* A study on the [[Morphology (biology)|morphology]] of the skulls of extant and extinct elephants and hippos, evaluating the hypothesis that the skulls of extinct [[Insular dwarfism|island dwarf]] members of these groups were [[pedomorphic]], is published by van der Geer ''et al.'' (2018).<ref>{{Cite journal|author1=Alexandra A. E. van der Geer |author2=George A. Lyras |author3=Philipp Mitteroecker |author4=Ross D. E. MacPhee |year=2018 |title=From Jumbo to Dumbo: cranial shape changes in elephants and hippos during phyletic dwarfing |journal=Evolutionary Biology |volume=45 |issue=3 |pages=303–317 |doi=10.1007/s11692-018-9451-1 }}</ref> |
* A study on the [[Morphology (biology)|morphology]] of the skulls of extant and extinct elephants and hippos, evaluating the hypothesis that the skulls of extinct [[Insular dwarfism|island dwarf]] members of these groups were [[pedomorphic]], is published by van der Geer ''et al.'' (2018).<ref>{{Cite journal|author1=Alexandra A. E. van der Geer |author2=George A. Lyras |author3=Philipp Mitteroecker |author4=Ross D. E. MacPhee |year=2018 |title=From Jumbo to Dumbo: cranial shape changes in elephants and hippos during phyletic dwarfing |journal=Evolutionary Biology |volume=45 |issue=3 |pages=303–317 |doi=10.1007/s11692-018-9451-1 }}</ref> |
||
* The first evidence of [[bear]]s scavenging on [[Equidae|horses]] in the South American fossil record is reported from the Pleistocene deposits of the Gruta do Urso cave ([[Brazil]]) by Avilla ''et al.'' (2018).<ref>{{Cite journal|author1=Leonardo S. Avilla |author2=Helena Machado |author3=Herminio I. De Araújo-Júnior |author4=Dimila Mothe |author5=Alline Rotti |author6=Karoliny De Oliveira-Nascimento |author7=Victoria Maldonado |author8=Ana M. Graciano Figueiredo |author9=Angela Kinoshita |author10=Oswaldo Baffa |year=2018 |title=Pleistocene ''Equus'' (Equidae: Mammalia) from northern Brazil: evidence of scavenger behavior by ursids on South American horses |journal=Ameghiniana |volume=in press |pages= |doi=10.5710/AMGH.05.07.2018.3069 }}</ref> |
* The first evidence of [[bear]]s scavenging on [[Equidae|horses]] in the South American fossil record is reported from the Pleistocene deposits of the Gruta do Urso cave ([[Brazil]]) by Avilla ''et al.'' (2018).<ref>{{Cite journal|author1=Leonardo S. Avilla |author2=Helena Machado |author3=Herminio I. De Araújo-Júnior |author4=Dimila Mothe |author5=Alline Rotti |author6=Karoliny De Oliveira-Nascimento |author7=Victoria Maldonado |author8=Ana M. Graciano Figueiredo |author9=Angela Kinoshita |author10=Oswaldo Baffa |year=2018 |title=Pleistocene ''Equus'' (Equidae: Mammalia) from northern Brazil: evidence of scavenger behavior by ursids on South American horses |journal=Ameghiniana |volume=in press |pages= |doi=10.5710/AMGH.05.07.2018.3069 }}</ref> |
Revision as of 21:05, 26 September 2018
| |||
---|---|---|---|
+... |
This article records new taxa of fossil mammals of every kind are scheduled to be described during the year 2018, as well as other significant discoveries and events related to paleontology of mammals that are scheduled to occur in the year 2018.
Mammals in general
- A study on the morphological diversity of vertebral regions in non-mammalian synapsids, and on its implication for elucidating the evolution of anatomically distinct regions of the mammalian spines, is published by Jones et al. (2018).[1]
- A study on the evolution of the mammalian jaw is published by Lautenschlager et al. (2018), who find no evidence for a concurrent reduction in jaw-joint stress and increase in bite force in key non-mammaliaform taxa in the cynodont–mammaliaform transition.[2]
- A study on the structure and origin of the braincase sidewalls of monotremes, multituberculates and therians, based on data from extant and fossil mammals and non-mammalian cynodonts, is published by Crompton et al. (2018).[3]
- A study on diversification dynamics of the three major mammalian clades (multituberculates, metatherians and eutherians) in North America across the Cretaceous/Palaeogene boundary is published by Pires et al. (2018).[4]
- A study on changes in mammalian faunal composition and structure during the earliest Paleogene biotic recovery, based on data from four localities in the Hell Creek Formation and Tullock Member of the Fort Union Formation (Montana, United States), will be published by Smith et al. (2018).[5]
- A study on the mammalian extinction selectivity, continental body size distributions, and taxonomic diversity over five time periods spanning the past 125,000 years is published by Smith et al. (2018), who report evidence indicating that larger species of mammals were at greater risk of extinction following the global expansion of hominins over the late Quaternary, and that the degree of size-selectivity of mammalian extinctions in this period was unprecedented in the past 65 million years of mammalian evolution.[6]
- A study on the relationship between extinctions of insular endemic mammal species in the Late Pleistocene and Holocene and their body mass, the size of the island and the first human arrival to the archipelago is published by Kouvari & van der Geer (2018).[7]
- A study on the relationship between diversification rates and climatic niche evolution in mammals is published by Castro-Insua et al. (2018).[8]
- A study on the dietary isotopic signatures recorded in tissues of herbivorous mammals, focusing on extant and fossil sloths, and evaluating the hypothesis that a single isotope enrichment pattern holds for all herbivorous mammals, is published by Tejada-Lara et al. (2018).[9]
- A study on the temporal changes in the spatial differentiation of mammal faunas in China during the Cenozoic, and on the timing of the emergence of the modern spatially structured mammal faunas in China, will be published by He et al. (2018).[10]
Metatherians
- A study on the changes of the global diversity of metatherians through time based on a new dataset of metatherian fossil occurrences is published by Bennett et al. (2018).[11]
- A study on the morphological diversity of sparassodonts and its implications for the structure of the terrestrial carnivore guild from the middle Cenozoic of South America is published by Croft et al. (2018).[12]
- Description of a partial skull of Allqokirus australis from the Paleocene Santa Lucía Formation (Bolivia) and a study on the phylogenetic relationships of this species is published by de Muizon et al. (2018), who name a new metatherian superorder Pucadelphyda.[13]
- A study on the age of thylacine and Tasmanian devil fossils from the mainland Australia and their implications for estimating the time of extinction in mainland Australia for both species is published by White et al. (2018).[14]
- A study on the phylogeography and demographic history of the thylacine during the late Pleistocene and Holocene is published by White, Mitchell & Austin (2018).[15]
- A study on the phylogeography and demographic history of the Tasmanian devil across southern Australia over the last ~30,000 years, based on genomes from 202 devils representing the extinct mainland and the extant Tasmanian populations, is published by Brüniche–Olsen et al. (2018).[16]
- A study on the phylogenetic relationships of Palaeopotorous priscus is published by den Boer & Kear (2018), who interpret this taxon as a probable non-macropodoid macropodiform marsupial.[17]
- Revision of the taxonomic status of fossil kangaroo relatives attributed to the genera Ganawamaya and Nambaroo is published by Butler et al. (2018), who also describe new fossil material of Ganawamaya couperi (formerly assigned to the genus Nambaroo), Ganawamaya acris and G. aediculis.[18]
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
In press |
Engelman, Anaya & Croft |
Honda Group |
A member of Sparassodonta. Genus includes new species A. leptognathus. |
||||
Gen. et sp. nov |
Valid |
Carneiro, Oliveira & Goin |
A member of Marsupialiformes belonging to the order Archimetatheria and the superfamily Pediomyiodea. The type species is A. marshalli. |
|||||
Gen. et sp. nov |
Valid |
Chornogubsky et al. |
Middle Eocene |
A member of Polydolopimorphia belonging to the superfamily Bonapartherioidea and to the family Prepidolopidae. Genus includes new species C. cardonensis. |
||||
Gen. et sp. nov |
Valid |
Cohen |
Late Cretaceous (Turonian) |
A member of Stagodontidae. Genus includes new species F. pulveris. |
||||
Sp. nov |
Valid |
Korth |
Late Paleogene (Chadronian) |
|||||
Gen. et sp. nov |
Valid |
Cohen |
Late Cretaceous (Turonian) |
A member of Stagodontidae. Genus includes new species H. praeceps. |
||||
Gen. et sp. nov |
Valid |
Archer et al. |
A member of Phalangerida belonging to the new family Miminipossumidae. The type species is M. notioplanetes. |
|||||
Sp. nov |
Valid |
Travouillon & Phillips |
Nullarbor Plain | |||||
Gen. et sp. nov |
In press |
Goin et al. |
Probably a member of Polydolopimorphia. Genus includes new species P. ektopos. |
|||||
Sp. nov |
Valid |
Brewer et al. |
Riversleigh site |
A wombat. |
||||
Sp. nov |
Valid |
Carneiro |
Late Cretaceous (late Cenomanian to early Coniacian) |
Possibly a member of Sparassodonta. |
Eutherians
- A study on the causes of the increase of body size in aquatic mammals, based on data on the body masses of living and fossil mammals, is published by Gearty, McClain & Payne (2018).[29]
- A study on large mammal burrows from the Upper Miocene Cerro Azul Formation (Argentina), aiming to infer their likely producers and to interpret the taphonomic processes involved in the preservation of the burrow casts, is published by Cardonatto & Melchor (2018).[30]
- A study on the diet and habitat of the Hemphillian equids Calippus hondurensis, Dinohippus mexicanus and Protohippus gidleyi, the gomphothere Gomphotherium hondurensis, and the llama Hemiauchenia vera from San Gerardo de Limoncito (Costa Rica) is published by Pérez-Crespo et al. (2018).[31]
- A study on the evolution and interconnectedness of the mammal faunas living in the Old World savannas in the Neogene is published by Kaya et al. (2018).[32]
- A study on the changes of the species richness of mammals from the Iberian Peninsula between 15 and 2 million years ago, and on the modulating role of different factors influencing that species richness, is published by Cantalapiedra, Domingo & Domingo (2018).[33]
- A study on changes in local climate and habitat conditions in central Spain in a period from 9.1 to 6.3 million years ago, and on the diet and ecology of large mammals from this area in this time period as indicated by tooth wear patterns, is published by De Miguel, Azanza & Morales (2018).[34]
- Faith (2018) evaluates the aridity index, a widely used technique for reconstructing local paleoclimate and water deficits from oxygen isotope composition of fossil mammal teeth, arguing that in some taxa altered drinking behavior (influencing oxygen isotope composition of teeth) might have been caused by dietary change rather than water deficits.[35][36][37]
- A revision of the mammal fauna from the Miocene site of Bukwa (Uganda) and a study on the age of this fauna is published by Cote et al. (2018), who interpret their finding as indicating that a significant faunal turnover may have occurred in East Africa between 20 and 19 million years ago.[38]
- A study on changes of the species- and genus-level diversity of large mammals in the Omo-Turkana Basin (eastern Africa) in the Pliocene and Pleistocene will be published by Du & Alemseged (2018).[39]
- The primary description and analysis of the so called GD A faunal assemblage from the Gondolin Cave (South Africa) is published by Adams (2018).[40]
- A study on the diet of large mammals from the Pleistocene sediments at Olduvai Gorge (Tanzania), as indicated by tooth wear and stable isotope data from fossil teeth, is published by Uno et al. (2018).[41]
- A study on the diet of the most abundant ungulate taxa from the Oldowan site HWK EE (Olduvai Gorge, Tanzania), as indicated by tooth wear and stable isotope analyses, is published by Rivals et al. (2018).[42]
- Description of new mammal and fish remains from the Olduvai Gorge site, comparing the mammal assemblage from this site to the present mammal community of Serengeti, and a study on their implications for reconstructing the paleoecology of this site at ∼1.7–1.4 million years ago, is published by Bibi et al. (2018).[43]
- A study on the distance of seed dispersal by extant and extinct mammalian frugivores and on the impact of the extinction of Pleistocene megafauna on seed dispersal is published by Pires et al. (2018).[44]
- A study on the diet and habitat of ungulates from the Middle Pleistocene site of Fontana Ranuccio (Italy) as indicated by their tooth wear is published by Strani et al. (2018).[45]
- A study on the response of large ungulates to the palaeoenvironmental changes that occurred at the passage between the Gelasian and Calabrian in the Italian Peninsula, based on the dental wear patterns and hypsodonty of the ungulates from the fossil assemblage of Olivola (Aulla, Italy), is published by Strani et al. (2018).[46]
- A study on the ungulate and carnivoran carrying capacity of the late Early and early Middle Pleistocene ecosystems of Europe is published by Rodríguez & Mateos (2018).[47]
- A study on the changes of vegetation in the temperate zone of Asia during an interval containing the Mid-Pleistocene Transition, ~1.2–0.7 million years ago, as indicated by pollen data from a drilling core from the North China Plain, as well as on their effect on the large mammal fauna is published by Xinying et al. (2018).[48]
- A study evaluating how the mammoth steppe ecosystem with its expected low vegetation productivity managed to support a high diversity and density of large mammalian herbivores during the Last Glacial Maximum is published by Zhu et al. (2018).[49]
- A study modeling spatial and temporal patterns of habitat suitability for 24 megafauna species and Homo sapiens in the Late Pleistocene in Eurasia is published by Carotenuto et al. (2018), who state that extinct herbivorous megafauna species were consistently rare within habitat patches optimal for humans.[50]
- A study on the age of the Pleistocene Linyi Fauna, and on its implications for establishing the chronological sequencing of the mammalian faunas on the Chinese Loess Plateau, is published by Qiu et al. (2018).[51]
- A study on the morphology of the skulls of extant and extinct elephants and hippos, evaluating the hypothesis that the skulls of extinct island dwarf members of these groups were pedomorphic, is published by van der Geer et al. (2018).[52]
- The first evidence of bears scavenging on horses in the South American fossil record is reported from the Pleistocene deposits of the Gruta do Urso cave (Brazil) by Avilla et al. (2018).[53]
Xenarthrans
- A study on the species distribution of 15 fossil xenarthrans from the late Pleistocene of South America will be published by Varela et al. (2018).[54]
- A study on the relationship between humerus shape and the modes of exploring substrate among extant and fossil members of Pilosa will be published by de Oliveira & Santos (2018).[55]
- A study on the microwear patterns in the teeth of the Oligocene sloths Orophodon hapaloides and Octodontotherium grande, as well its implications for inferring the diet of these taxa, will be published by Kalthoff & Green (2018).[56]
- A study on the anatomy of the ear region in Glossotherium robustum and on the evolution of the inner ear anatomy in the xenarthrans is published by Boscaini et al. (2018).[57]
- A study on the internal morphology of the skull of Glossotherium robustum will be published by Boscaini et al. (2018).[58]
- A skull of a megatheriid sloth belonging to a member or a relative of the genus Proeremotherium is described from the Pliocene San Gregorio Formation (Venezuela) by Carlini et al. (2018).[59]
- A study on the feet anatomy of the fossil sloths Megatherium and Eremotherium, as well as its implications for inferring the degree to which their feet were habitually inverted, will be published by Toledo et al. (2018).[60]
- New remains (skull and humeri) of Megathericulus patagonicus are described from the middle Miocene fossiliferous locality of Quebrada Honda (Bolivia) by Brandoni et al. (2018).[61]
- New fossil remains of Megatherium filholi are described from the late Pleistocene sediments of Buenos Aires Province (Argentina) by Agnolin et al. (2018), who revalidate M. filholi as a distinct species.[62]
- A study on the bone structure of the skull of Thalassocnus and on the evolution of bone mass increase in extinct aquatic sloths is published by Amson, Billet & de Muizon (2018).[63]
- A study on the phylogenetic relationships of Mylodon darwinii, based on mitogenomic and nuclear data, is published by Delsuc et al. (2018).[64]
- A study on the impact of climate changes on the distribution of armadillos as indicated by fossil record will be published by Soibelzon (2018).[65]
- A study on the morphology and histology of glyptodont osteoderms from the Gruta do Urso cave (Brazil), representing the first juvenile specimen of Glyptotherium described from the Late Pleistocene of South America, is published by Luna et al. (2018).[66]
- Taxonomic revision of glyptodonts from Uruguay belonging to the tribe Plohophorini is published by Toriño & Perea (2018).[67]
- A study comparing the morphology of South American species of Glyptodon and Glyptotherium, in order to identify diagnostic differences and potential synapomorphies, is published by Zurita et al. (2018).[68]
- A study on the anatomy of the hyoid apparatus of two glyptodontid specimens from Lujanian sediments of the Pampean Region (Argentina), assigned to the genus Panochthus, is published by Zamorano et al. (2018).[69]
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Fernicola et al. |
Late Miocene |
A member of Cingulata. |
||||
Gen. et sp. nov |
Valid |
Rincón et al. |
Late Miocene |
A sloth belonging to the family Megalonychidae. The type species is P. diazgameroi. |
||||
Gen. et sp. nov |
Valid |
Rincón et al. |
Late Miocene |
A sloth belonging to the family Megalonychidae. The type species is U. urbanii. |
||||
Sp. nov |
Valid |
Stinnesbeck, Frey & Stinnesbeck |
Late Pleistocene |
A ground sloth belonging to the family Megalonychidae. |
Afrotherians
- A study on the anatomy and phylogenetic relationships of the elephant shrew Chambius kasserinensis based on known and newly described fossil remains from the Eocene of Tunisia is published by Tabuce (2018).[73]
- Description of the anatomy of middle and inner ears of the golden mole Namachloris arenatans from the Palaeogene of Namibia is published by Mason, Bennett & Pickford (2018).[74]
- Dugongid fossils will be described from the Oligocene (Rupelian) Borysthenic Formation (Ukraine) by Gol’din, Kovalchuk & Krakhmalnaya (2018), representing the first known sirenian record from inner seas of the Old World (Paratethys).[75]
- A revision of sirenian fossils and taxa from the Miocene Chesapeake Group (eastern United States) is published by Domning (2018).[76]
- A method to estimate the body mass of extinct proboscideans on the basis of skull remains is presented by Jukar, Lyons & Uhen (2018).[77]
- New proboscidean remains from the late Miocene (Turolian) of Samos Island (Greece), representing juvenile individuals of deinotheres, choerolophodonts and amebelodonts, will be described by Konidaris & Koufos (2018).[78]
- A study on the evolution of the cheek teeth displacement mechanism in elephantiform proboscideans is published by Sanders (2018).[79]
- Phytoliths preserved in the dental calculus of specimens of Gomphotherium connexum and Gomphotherium steinheimense from the Miocene Halamagai Formation (northern Junggar Basin, China) are described by Wu et al. (2018), who interpret their findings as indicating that G. connexum was an obligate browser or a mixed feeder, while G.steinheimense may have had a more grass-dominated feeding preference, and was the earliest-known proboscidean with a predominantly grazing habit.[80]
- Mothé, Ferretti & Avilla (2018) support the validity of Notiomastodon as a genus separate from Stegomastodon, arguing that members of the genus Stegomastodon were absent from South America.[81]
- A study on the diet and habitat of Notiomastodon platensis from Central Chile is published by González-Guarda et al. (2018).[82]
- A study on the diet of the Columbian mammoths, pygmy mammoths and American mastodons as indicated by tooth wear is published by Smith & Desantis (2018).[83]
- A study on permafrost‐preserved Siberian woolly mammoths, aiming to measure testosterone in the hair samples of the studied specimens, will be published by Koren et al. (2018).[84]
- A study on changes in woolly mammoth range in Europe during MIS 2 will be published by Nadachowski et al. (2018).[85]
- A study on the life conditions of woolly mammoths from the Upper Paleolithic site Kraków Spadzista (Poland) will be published by Haynes, Klimowicz & Wojtal (2018).[86]
- A study on the evolutionary history of the family Elephantidae based on 14 genomes from extant and fossil elephantids and from the American mastodon is published by Palkopoulou et al. (2018).[87]
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Valid |
Early Miocene |
Elisabeth Bay Formation |
A tenrec. The type species is P. namibiensis. |
||||
Gen. et sp. nov |
Valid |
Díaz-Berenguer et al. |
A sirenian of uncertain phylogenetic placement. The type species is S. cardieli. |
|||||
Gen. et sp. nov |
Valid |
Gheerbrant, Schmitt & Kocsis |
An early member of Embrithopoda. The type species is S. minor. |
Bats
- A review of the distribution of sesamoids in extant bats, as well as in Eocene bats Onychonycteris finneyi and Icaronycteris index, is published by Amador et al. (2018).[91]
- A study on the phylogeny of extant and fossil short-faced bats (leaf-nosed bats belonging to the subfamily Stenodermatinae and the subtribe Stenodermatina) and on the ancestral distributions of the group, evaluating whether this group was more likely to originate on Antilles or on the American mainland, is published by Tavares et al. (2018).[92]
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Valid |
Jones et al. |
Uzunçarşidere Formation |
A member of the family Palaeochiropterygidae. The type species is A. insularis. |
||||
Sp. nov |
In press |
Gunnell & Manthi |
Kanapoi site |
A species of Mops. |
||||
Sp. nov |
In press |
Gunnell & Manthi |
Kanapoi site |
A species of Mops. |
||||
Sp. nov |
Valid |
Van Den Hoek Ostende, Van Oijen & Donovan |
Late Pleistocene |
A species of Pteronotus. |
||||
Sp. nov |
In press |
Gunnell & Manthi |
Kanapoi site |
A species of Rousettus. |
||||
Sp. nov |
In press |
Gunnell & Manthi |
Kanapoi site |
A species of Saccolaimus. |
||||
Gen. et sp. nov |
In press |
Gunnell & Manthi |
Kanapoi site |
A very large fruit bat, larger than all extant fruit bats other than some species of Pteropus and Hypsignathus. Genus includes new species T. harrisi. |
||||
Gen. et sp. nov |
Valid |
Hand et al. |
Early Miocene |
Bannockburn Formation |
A New Zealand short-tailed bat. The type species is V. jennyworthyae. |
Odd-toed ungulates
- Tooth anomalies in two juvenile specimens of the Miocene rhinoceros Prosantorhinus germanicus are described by Böhmer & Rössner (2018), who discuss probable causes of these anomalies.[97]
- A jaw of Stephanorhinus kirchbergensis is described from the Mus Khaya locality on the Yana River in the Sakha Republic (Russia) by Shpansky & Boeskorov (2018), representing the northernmost occurrence of this species; the authors also interpret Coelodonta jacuticus as the junior synonym of the woolly rhinoceros (Coelodonta antiquitatis).[98]
- A study on the morphology of the postcranial skeleton of Teleolophus, based on new remains from the Eocene of China, is published by Bai, Wang & Meng (2018).[99]
- A study on the digit reduction in the evolution of horses is published by Solounias et al. (2018).[100]
- A study testing for the presence of broad-scale habitat partitioning in fossil horses of North America is published by Parker, McHorse & Pierce (2018).[101]
- A revised diagnosis and a description of the anatomy of the Miocene hipparionine species Sivalhippus ptychodus and S. platyodus from China is published by Sun et al. (2018).[102]
- A study on the ontogeny (mineralization, eruption, and replacement patterns) of postcanine teeth of members of the genus Hipparion from Cerro de los Batallones (Spain) is published by Domingo et al. (2018).[103]
- Review of fossils of members of the family Equidae from the Pleistocene site of lac Karâr (Algeria) is published by Sam (2018).[104]
- A study on the diet and habitat of Pleistocene members of the genera Equus and Hippidion from southern United States, Mexico and South America, as indicated by carbon and oxygen isotopic data, will be published by Pérez-Crespo et al. (2018).[105]
- A study evaluating how the geographic distribution of horses changed through time in the Late Pleistocene and Holocene, based on paleontological and archeological horse finds across the whole of Eurasia evaluated in association with paleoclimatic and paleoenvironmental reconstructions for the Late Quaternary, is published by Leonardi et al. (2018).[106]
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Bai, Wang & Zhang |
Late Eocene |
A member of the family Hyracodontidae. |
||||
Sp. nov |
Valid |
Sun, Li & Deng |
Late Miocene |
|||||
Sp. nov |
Bai, Wang & Meng |
Earliest Eocene |
Hengyang Basin |
A member of the family Brontotheriidae. |
||||
Sp. nov |
Valid |
Li |
Eocene (Irdinmanhan) |
A member of the family Brontotheriidae. |
||||
Gen. et sp. nov |
Bai, Wang & Meng |
Earliest Eocene |
A member of the family Equidae. The type species is E. tingae. |
|||||
Sp. nov |
Valid |
Wang et al. |
Irdin Manha Formation |
|||||
Sp. nov |
Valid |
Sun et al. |
Wushan Subbasin |
|||||
Gen. et sp. nov |
Valid |
Averianov et al. |
Late Eocene |
A member of the family Brontotheriidae. The type species is M. paganus. |
||||
Gen. et comb. nov |
Valid |
Tissier et al. |
A member of the family Amynodontidae. The type species is "Cadurcodon" zimborensis Codrea & Şuraru (1989). |
|||||
Gen. et comb. nov |
Valid |
Bernor et al. |
Late Miocene |
A member of the family Equidae belonging to the tribe Hipparionini. The type species is "Hipparion" dermatorhinum Sefve (1927). |
Even-toed ungulates
- A study evaluating whether tooth measurements of the kind typically used in the systematics of Merycoidodontoidea can diagnose between related, similarly-sized even-toed ungulates is published by Emery-Wetherell & Davis (2018).[116]
- Description of the fossil material of the camel species Camelus thomasi from the Pleistocene locality of Tighennif (Algeria) and a study on the phylogenetic relationships of this species is published by Martini & Geraads (2018).[117]
- New specimen of the fossil peccary Parachoerus carlesi will be described from the Upper Pleistocene of the Chaco Province of Argentina by Gasparini et al. (2018), representing the most complete fossil material of a member this species reported so far, and providing new information on the morphology of the species and the environment it lived in.[118]
- A study on the diet of extinct peccaries in Florida from the late Miocene throughout the Pleistocene, as indicated by tooth microwear and stable carbon isotopes, is published by Bradham et al. (2018).[119]
- A description of the skull anatomy of the fossil suid Nyanzachoerus jaegeri based on new fossil material and a study on the phylogenetic relationships of the species will be published by Reda, Lazagabaster & Haile-Selassie (2018).[120]
- New fossil suid specimens, providing new information on the classification and relationships of the Miocene Suinae from China, will be described from the latest Miocene site of Shuitangba (Zhaotong Basin, China) by Hou et al. (2018).[121]
- Partial skull of a suid assigned to the genus Metridiochoerus is described from the Malapa Fossil Site (South Africa) by Lazagabaster et al. (2018).[122]
- A study on the evolution of hypsodonty in ruminants as indicated by phylogeny of ruminants, estimated ancestral ruminant diets and habitats, and fossil record of grasslands is published by Toljagić et al. (2018).[123]
- A study comparing the exclusivity and magnitude of changes in diversification rates during the evolution of ruminants and other lineages of placental mammals is published by Rossi, Mello & Schrago (2018).[124]
- Fossils of the chevrotain Dorcatherium crassum, including a skull and teeth remains, are described from the Miocene (Langhian) of the Faluns Auger quarry (Contres, France) by Mennecart et al. (2018).[125]
- Croitor, Sanz & Daura (2018) report the findings from a morphological and demographic analysis of remains of the endemic deer Haploidoceros mediterraneus from the Late Pleistocene of the Cova del Rinoceront (Spain).[126]
- A study on the feeding habits of Morenelaphus as indicated by tooth enamel microwear is published by Rotti et al. (2018).[127]
- A study on the dietary plasticity of specimens of Eucladoceros ctenoides from eight middle and late Villafranchian localities in Europe, as indicated by tooth microwear, is published by Berlioz et al. (2018).[128]
- Antler remains of the wapiti (Cervus canadensis) are described from the Late Paleolithic site of Climăuți II (Moldova) by Croitor & Obada (2018), confirming the presence of wapiti in the Late Pleistocene of western Eurasia.[129]
- Pfeiffer-Deml (2018) raises fossil fallow deer Dama dama geiselana to the rank of a separate species Dama geiselana, and compares its antler and skeletal characteristics with other fossil and recent fallow deers.[130]
- Description of new specimens of Sardomeryx oschiriensis from the Miocene (Burdigalian) of Sardinia (Italy) and a study on the phylogenetic relationships of this species will be published by Mennecart et al. (2018).[131]
- Description of new fossils of Propalaeoryx stromeri from the Miocene of Namibia, redescription of the skull anatomy of Propalaeoryx and a study on the phylogenetic relationships of this taxon is published by Sánchez et al. (2018).[132]
- A study on the dietary preferences of extant and fossil members of the family Giraffidae as indicated by teeth microwear is published by Merceron, Colyn & Geraads (2018).[133]
- Giraffe tracks are described from the Pleistocene Waenhuiskrans Formation (Bredasdorp Group, South Africa) by Helm et al. (2018), increasing known historical range of giraffes.[134]
- A study on the diet and habitat of Leptomeryx from the Eocene (Uintan) Yolomécatl Formation (Mexico) as indicated by tooth enamel carbon and oxygen isotopic relationships will be published by Ferrusquía-Villafranca et al. (2018).[135]
- A study on the dietary preferences of members of the tribe Tragelaphini from the Plio-Pleistocene Shungura Formation (Lower Omo Valley, Ethiopia) as indicated by their tooth wear is published by Blondel et al. (2018).[136]
- Description of the late Miocene gazelle fossils from the Qingyang area (Gansu, China), and a review of the taxonomy of gazelle species known from this area, is published by Li et al. (2018).[137]
- A study on the dietary ecology of Antidorcas bondi (an extinct relative of the springbok) will be published by Ecker & Lee-Thorp (2018).[138]
- A study on the impact of climate changes on the evolution of body size of members of the genus Bison based on the data from extant and fossil bisons is published by Martin, Mead & Barboza (2018).[139]
- A study on the dietary preference and habitat use of three Mexican samples of Bison antiquus, as indicated by tooth wear, will be published by Díaz-Sibaja et al. (2018).[140]
- A study evaluating when the island of Sulawesi (Indonesia) gained its modern shape and size, and determining the timings of diversification of the three largest endemic mammals on the island (the babirusa, the Celebes warty pig and the anoa) is published by Frantz et al. (2018).[141]
- Putative helohyids Pakkokuhyus and Progenitohyus are transferred to the family Dichobunidae by Ducrocq (2018).[142]
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Mennecart et al. |
Eocene (latest Bartonian or early Priabonian) |
An early ruminant belonging to the group Tragulina and the family Bachitheriidae. |
||||
Sp. nov |
Valid |
Van der Geer |
Late Pleistocene |
An Old World deer. |
||||
Sp. nov |
Valid |
Van der Geer |
Late Pleistocene |
An Old World deer. |
||||
Sp. nov |
Valid |
Van der Geer |
Late Pleistocene |
An Old World deer. |
||||
Sp. nov |
Valid |
Sánchez et al. |
Middle Miocene |
A chevrotain. |
||||
Sp. nov |
In press |
Hou & Deng |
Latest Middle or earliest Late Miocene |
A member of the family Suidae belonging to the subfamily Listriodontinae. |
||||
Sp. nov |
In press |
Van der Made |
Middle Pleistocene |
|||||
Gen. et sp. et comb. nov |
Valid |
Scherler, Lihoreau & Becker |
An anthracotheriine hippopotamoid. The type species is P. bergeri; genus also includes "Anthracotherium" hippoideum Rütimeyer (1857) and "Brachyodus" strategus Forster-Cooper (1913). |
|||||
Sp. nov |
Valid |
Bibi et al. |
Olduvai Gorge site |
A member of the family Bovidae belonging to the tribe Alcelaphini. |
||||
Sp. nov |
Croitor |
Early Pleistocene |
A species of Rucervus. |
|||||
Sp. nov |
Croitor |
Early Pleistocene |
A species of Rucervus. |
|||||
Gen. et sp. nov |
Valid |
Kostopoulos & Soubise |
Late Miocene |
A member of the family Bovidae. Genus includes new species S. exophthalmon. |
Cetaceans
- A study assessing the lumbar mobility in archaeocetes is published by Bebej & Smith (2018).[151]
- A study on the anatomy of the auditory region of the skull of protocetids as indicated by fossils from the Eocene of Togo is published by Mourlam & Orliac (2018).[152]
- A study on the teeth complexity across fossil and living cetaceans, attempting to identify a trend toward dental simplicity through the Neogene, is published by Peredo, Peredo & Pyenson (2018).[153]
- A quantitative analysis and a study on the evolution of cranial telescoping (sliding of facial bones over each other, in much the same way as long sections of telescope slide over shorter sections) in toothed whales is published by Churchill et al. (2018).[154]
- A study on the morphology of the bony labyrinth in extant and fossil toothed whales is published by Costeur et al. (2018), who interpret their findings as indicating that the bony labyrinth provides key information both about phylogeny and habitat preferences of members of this group of cetaceans.[155]
- Isolated teeth resembling tooth taxon Phococetus vasconum are described from the Pungo River Formation (North Carolina, United States) by Boessenecker (2018), who also notes their similarities to the teeth of Inticetus vertizi, and suggests that Phococetus may be an Inticetus-like, large heterodont toothed whale.[156]
- A study on the anatomy and phylogenetic relationships of Phoberodon arctirostris will be published by Viglino et al. (2018).[157]
- A study on the life history and ecology of Neogene members of Physeteroidea known from the Lee Creek Mine (North Carolina, United States) based on the examination of their teeth is published by Gilbert, Ivany & Uhen (2018).[158]
- Description of postcranial remains of the stem-beaked whale Messapicetus gregarius from the Miocene (Tortonian) of Peru is published by Ramassamy et al. (2018), who also propose a reconstruction of the musculature of the neck and forelimb of the species.[159]
- An almost complete skull of Llanocetus denticrenatus is described from the Eocene La Meseta Formation (Antarctica) by Fordyce & Marx (2018), who also study the phylogenetic relationships and likely feeding strategy of this species, as well as its implications for inferring the origin of baleen and gigantism in baleen whales.[160]
- Partial periotic bone of a member of the genus Caperea is described from the latest Miocene of southern Australia by Marx et al. (2018), representing the oldest record of this genus reported so far.[161]
- A study on the anatomy of cochleae of extant and extinct cetaceans, the relationships of cochlear shape and the frequency ranges heard by cetaceans, and their implications for determining the occurrence of very low frequency and infrasonic hearing in fossil baleen whales is published by Ritsche et al. (2018).[162]
- Oxygen-isotope analysis of a whale barnacle specimen collected from early Pleistocene deposits of Apulia (Italy) is published by Collareta et al. (2018), who interpret their findings as indicating that the barnacle lived on a cetacean that seasonally migrated towards high-latitude areas outside the Mediterranean.[163]
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Valid |
Viglino et al. |
Early Miocene |
A member of Platanistoidea. The type species is A. talen. |
||||
Sp. nov |
Valid |
Kimura, Hasegawa & Kohno |
Early Pleistocene |
A relative of the gray whale. |
||||
Sp. nov |
Valid |
Lambert et al. |
Uncertain, possibly Miocene |
Seafloor 370 km SWW to Kerguelen Islands |
A beaked whale belonging to the subfamily Hyperoodontinae. |
|||
Gen. et sp. nov |
Valid |
Lambert et al. |
Late Miocene |
A member of the family Iniidae. The type species is K. khoisani. |
||||
Gen. et sp. nov |
Valid |
Bianucci et al. |
A member of the family Squalodelphinidae. The type species is M. ukupachai. |
|||||
Gen. et sp. nov |
Valid |
Peredo & Pyenson |
Late Oligocene |
A member of the family Aetiocetidae. The type species is S. meadi. |
||||
Gen. et sp. nov |
Valid |
Tanaka, Ando & Sawamura |
Middle Miocene |
A cetotheriid-like baleen whale. The type species is T. inouei. |
||||
Gen. et sp. nov |
Valid |
Hernández Cisneros |
Late Oligocene |
A member of Chaeomysticeti of uncertain phylogenetic placement. The type species is T. guaycurae. |
||||
Gen. et sp. nov |
Valid |
Tsai & Fordyce |
An archaic baleen whale. The type species is T. waitaki. |
|||||
Gen. et sp. nov |
Valid |
Peredo, Uhen & Nelson |
Early Miocene |
A member of the family Kentriodontidae. Genus includes new species W. chinookensis. |
Carnivorans
- A systematic examination of members of the family Canidae from the Hemphillian Mehrten Formation (California, United States) is published by Balisi et al. (2018).[174]
- A study evaluating whether body size and the occurrence of skull and teeth traits related to the dietary specialization were correlated with species duration and locality coverage in North American canids over 40 million years of their evolution is published by Balisi, Casey & Van Valkenburgh (2018).[175]
- A study on the teeth microwear in extant gray wolves and coyotes, and its implications for dietary studies of extant and fossil canids, is published by Tanis, DeSantis & Terry (2018).[176]
- Description of a sample of coprolites from the Upper Miocene Mehrten Formation (California, United States), likely produced by Borophagus parvus, and a study on their implications for inferring the diet of this species, is published by Wang et al. (2018).[177]
- Revision of the taxonomy and relative age of the Javanese canid fossils will be published by van der Geer, Lyras & Volmer (2018).[178]
- A study on the phylogenetic relationships of extant and fossil members of the subfamily Caninae is published by Zrzavý et al. (2018).[179]
- Fossil footprint of a jackal-like predator is described from the Sorbas Member of the Sorbas Basin (Spain) by McCann et al. (2018).[180]
- Revision of fossils attributed to the species Canis variabilis and a study on the morphotype variability of the Pleistocene members of the genus Canis is published by Jiangzuo et al. (2018), who considered C. variabilis to be a subspecies of Canis mosbachensis.[181]
- A study on the morphological diversity of the limb bones of fossil and modern North American gray wolves is published by Tomiya & Meachen (2018).[182]
- A study on the morphological and morphometric variability of late Pleistocene gray wolves from Avetrana (Italy) in comparison to other populations from northern and southern Italy, as well as from other localities in Europe, is published by Mecozzi & Bartolini Lucenti (2018).[183]
- A study on the evolutionary history of the domestic dogs living in the Americas before the arrival of European colonists, based on data from sequenced mitochondrial and nuclear genomes from ancient North American and Siberian dogs from time frames spanning ~9000 years, is published by Ní Leathlobhair et al. (2018).[184]
- A study on the age of dingo bones from Madura Cave on the Nullarbor Plain (Australia), and its implications for inferring the likely rate of dingo spread throughout Australia from their point of arrival, is published by Balme, O’Connor & Fallon (2018).[185]
- A study on the diet of Agriotherium africanum from the South African fossil site of Langebaanweg, as indicated by tooth microwear, will be published by Stynder et al. (2018).[186]
- The complete mitochondrial genome of a ∼22,000-year-old giant panda specimen from the Cizhutuo Cave (Leye County, Guangxi, China) is sequenced by Ko et al. (2018).[187]
- A study on the age of the fossil remains of short-faced bears (Arctodus simus) and brown bears (Ursus arctos) from Pellucidar Cave (Vancouver Island, Canada) is published by Steffen & Fulton (2018).[188]
- A study on the living conditions of Pleistocene bears (belonging to the species Ursus ingressus) from Jaskinia Niedźwiedzia (Bear Cave) in Kletno (Poland) as indicated by the frequency of Harris lines in their bones is published by Nowakowski (2018).[189]
- A study on the diet of the cave bears from four MIS 3 sites in the Carpathian Mountains, based on isotopic data, is published by Robu et al. (2018).[190]
- A study aiming to decipher the various factors influencing the isotopic composition of bones of a potentially omnivorous species like cave bear, as well examining how likely are the different interpretations of the palaeodiet of the Romanian cave bears in comparison with the rest of the European cave bears, will be published by Bocherens (2018).[191]
- A study on the cranial and mandibular morphology of Ursus deningeri compared to other bear species, and on its implications for inferring the palaeobiology of this species, will be published by van Heteren et al. (2018).[192]
- A study on the feedings preferences and timing of extinction of cave bears in Mediterranean Europe based on data from two Paleolithic cave bear sites in northeastern Italy (Paina Cave and Trene Cave) will be published by Terlato et al. (2018).[193]
- A study on the timing and causes of extinction of cave bears in the Alps will be published by Döppes et al. (2018).[194]
- Multifold coverage genomic data from four Late Pleistocene cave bears is presented by Barlow et al. (2018), who report that cave bears hybridized with brown bears during the Pleistocene, and that segments of cave bear DNA still persist in the genomes of living brown bears.[195]
- A revision of bear fossils from Zhoukoudian is published by Jiangzuo et al. (2018), who unambiguously confirm the presence of Ursus deningeri in Loc. 1 of Zhoukoudian.[196]
- A study on the dynamics of lineage diversification and diversity of body mass and length in the evolution of musteloid carnivorans based on data from extant and fossil taxa is published by Law, Slater & Mehta (2018).[197]
- A study estimating the body mass of the fossil procyonids Cyonasua, Parahyaenodon and Tetraprothomo is published by Tarquini et al. (2018).[198]
- Fossils of members of the genera Nasua and Procyon are described from the Marplatan stage of the El Breal of Orocual locality (Venezuela) by Ruiz-Ramoni, Rincón & Montellano-Ballesteros (2018), representing the oldest record of these procyonids in South America reported so far.[199]
- The first well-preserved skull of the fossil mustelid Leptarctus oregonensis is described from the Miocene Mascall Formation (Oregon, United States) by Calede, Kehl & Davis (2018).[200]
- Femur of a member of the genus Enhydra (a relative of the sea otter) is described from the middle Pleistocene Merced Formation (California, United States) by Boessenecker (2018), representing the oldest record of Enhydra in the Pacific with robust geochronologic age control reported so far.[201]
- New specimens of members of the genus Enaliarctos are described from the Miocene Skooner Gulch Formation (California, United States), Oligocene Yaquina Formation (Oregon, United States) and Miocene Astoria Formation (Oregon, United States) by Poust & Boessenecker (2018), extending the geographic and temporal range of the genus.[202]
- A study on the morphology of the forelimbs of Enaliarctos mealsi and extant phocine earless seals, on the use of forelimbs to secure and tear prey by extant phocine seals, and on its implications for inferring the feeding behaviour of early pinnipeds, is published by Hocking et al. (2018).[203]
- A study on the bone histology of Nanophoca vitulinoides will be published by Dewaele et al. (2018).[204]
- A fossil specimen assigned to the genus Homiphoca will be described from the Pliocene of Spain by Rahmat et al. (2018), representing the first European record ot this genus.[205]
- New specimen of Ontocetus emmonsi is described from the Austin Sand Pit (Ridgeville, South Carolina, United States) by Boessenecker, Boessenecker & Geisler (2018), representing the youngest record of O. emmonsi from the Atlantic coastal plain reported so far.[206]
- A study evaluating the ability of the extinct giant fossa to hunt large lemurs will be published by Meador et al. (2018).[207]
- Evidence of Pleistocene hyenas preying upon small rodents is reported from the Bois Roche cave site (France) by Williams et al. (2018).[208]
- Cougar skull is described from the Pleistocene (Ensenadan) of Argentina by Chimento & Dondas (2018), representing the first unequivocal record of the cougar prior to late Pleistocene times in South America.[209]
- A study on the shape and the dimensions of the bony vestibular system in the inner ear of the cheetah, comparing it with the vestibular system in other extant felids and in the extinct giant cheetah (Acinonyx pardinensis) and Proailurus lemanensis, and on the evolution of the vestibular system of the cheetah is published by Grohé, Lee & Flynn (2018).[210]
- Description of a partial skull of a large felid from the late Villafranchian site of Monte Argentario (Italy), formerly assigned to the species Panthera gombaszoegensis, is published by Cherin et al. (2018), who refer this specimen (and some other Italian materials previously referred to P. gombaszoegensis) to the species Acinonyx pardinensis.[211]
- Description of fossils of at least four adult cave lions (Panthera spelaea) from Medvedia Cave in the Západné Tatra Mountains (Slovakia) and a study on the range and social behavior of members of this taxon is published by Sabol, Gullár & Horvát (2018).[212]
- An exceptionally large skull of a lion, comparable to large specimens of the American lion in terms of skull length and substantially larger than known skulls of extant lions, is described from the Pleistocene of Kenya by Manthi et al. (2018).[213]
- The northernmost fossil record of the jaguar from Argentina is reported from the late Pleistocene-early Holocene Río Bermejo Formation (Formosa Province) by Rodriguez et al. (2018).[214]
- A study on the evolution of the morphological diversity of the mandibles of saber-toothed cats, as well as on the speciation and extinction rates in the evolution of saber-toothed cats, is published by Piras et al. (2018).[215]
- A study on the evolution of upper canine length in the felid lineages leading to the fossil saber-toothed cats and extant clouded leopard is published by Harano & Kutsukake (2018).[216]
- An almost complete skull of Smilodon fatalis will be described from the Pleistocene Sopas Formation (Uruguay) by Manzuetti et al. (2018), representing the first known record of the species from the eastern part of South America.[217]
- Large carnivore footprints, probably produced by Smilodon populator, will be described from a new ichnological site from the Late Pleistocene of Buenos Aires Province (Argentina) by Agnolin et al. (2018), who name a new ichnotaxon Felipeda miramarensis.[218]
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Boessenecker & Churchill |
||||||
Sp. nov |
Valid |
Tonomori et al. |
Middle Miocene |
|||||
Gen. et sp. nov |
Valid |
Dewaele et al. |
An earless seal belonging to the subfamily Monachinae. The type species is A. atlantica. |
|||||
Sp. nov |
Valid |
Fourvel |
Pliocene-Pleistocene transition |
A relative of the African civet. |
||||
Gen. et comb. nov |
Valid |
Dewaele, Lambert & Louwye |
Late Miocene |
Probably Diest Formation |
An earless seal belonging to the subfamily Phocinae. The type species is "Monotherium" aberratum Van Beneden (1876); genus also includes "Monotherium" affine Van Beneden (1876). |
|||
Sp. nov |
Valid |
Samuels, Bredehoeft & Wallace |
A relative of the wolverine. |
|||||
Gen. et sp. nov |
Valid |
Adrian, Werdelin & Grossman |
Early Miocene |
Lothidok Formation |
A member of the family Felidae. The type species is K. nightingalei. |
|||
Sp. nov |
Valid |
Adrian, Werdelin & Grossman |
Early Miocene |
Lothidok Formation |
A member of the family Viverridae belonging to the subfamily Paradoxurinae. |
|||
Gen. et comb. nov |
In press |
Salesa et al. |
Late Miocene |
A member of the family Felidae belonging to the subfamily Felinae; a new genus for "Styriofelis" vallesiensis Salesa et al. (2012). |
||||
Gen. et comb. nov |
Valid |
Bartolini Lucenti |
A member of the family Mustelidae. Genus includes "Mustela" ardea Gervais (1848–1852). |
|||||
Sp. nov |
Valid |
Jiangzuo et al. |
Early Pleistocene |
|||||
Gen. et sp. nov |
Valid |
Velez-Juarbe & Salinas-Márquez |
A relative of the walrus. The type species is N. arandai. |
|||||
Sp. nov |
Valid |
Emmert & Short |
A species of Nasua. |
|||||
Gen. et comb. nov |
Valid |
Dewaele, Lambert & Louwye |
Probably Bolognano Formation |
An earless seal belonging to the subfamily Monachinae. The type species is "Monotherium" gaudini (Guiscardi, 1870). |
||||
Sp. nov |
Valid |
Emmert & Short |
A species of Procyon. |
|||||
Sp. nov |
Valid |
Emmert & Short |
A species of Procyon. |
|||||
Gen. et sp. nov |
Valid |
De Bonis et al. |
Late Miocene |
A member of the family Felidae belonging to the subfamily Machairodontinae. The type species is T. adei. |
||||
Gen. et sp. nov |
Valid |
Dewaele et al. |
An earless seal belonging to the subfamily Monachinae. The type species is V. magurai. |
Rodents
- A study on the late Miocene rodents of the Iberoccitanian Region (Iberian Peninsula and southern France), aiming to identify the rodent metacommunities and to analyse their reactions to environmental changes, is published by Blanco et al. (2018).[232]
- A study on the enamel microstructure of the incisors of caviomorph rodents from the Eocene and Oligocene localities in Peruvian Amazon will be published by Boivin et al. (2018).[233]
- A study on the enamel microstructure of the incisors of the hystricognaths and anomaluroids from the Oligocene of Western Sahara will be published by Marivaux et al. (2018).[234]
- A study on the morphology of the lower deciduous premolars of extant and fossil caviomorph rodents and its implications for inferring the phylogenetic relationships of fossil caviomorphs will be published by Verzi, Olivares & Morgan (2018), who argue that Eocene genus Cachiyacuy might be a stem-octodontoid.[235]
- New adult and juvenile specimens of the dinomyid rodent Isostylomys laurillardi will be described from the Miocene Camacho Formation (Uruguay) by Rinderknecht, Bostelmann & Ubilla (2018).[236]
- Description of a well-preserved skull of Telicomys giganteus, estimation of body mass and analysis of the bite mechanics of this species will be published by Rinderknecht et al. (2018).[237]
- The first description of the postcranium of Cardiomys, based on a well-preserved specimen from the late Miocene of Central Argentina, and a study on the paleobiology and systematics of this taxon is published by Candela, Muñoz & García-Esponda (2018).[238]
- A mandibular fragment of the euryzygomatomyine echimyid Dicolpomys fossor is described from the late Holocene Sambaquí de Puerto Landa site (Entre Ríos Province, Argentina) by Verzi et al. (2018), representing the most recent record of an extinct South American caviomorph genus reported so far.[239]
- The first known fossil (an almost complete skull) of the San Felipe hutia (Mesocapromys sanfelipensis) is described from a cave room within Cueva del Indio (Mayabeque Province, Cuba) by Viñola Lopez, Garrido & Bermúdez (2018), who interpret their finding as indicating that the modern population of this species is a marginal relic of its former distribution during the Quaternary.[240]
- A revision of the fossils of members of the genus Phoberomys from the late Miocene of Entre Ríos Province (Argentina) and a study on their systematics and phylogenetic relationships is published by Rasia & Candela (2018).[241]
- A study on the morphology of the ossicles of the extinct neoepiblemid rodent Perimys and of extant and extinct caviomorph rodents in general is published by Kerber & Sánchez-Villagra (2018).[242]
- Fossil New World porcupine belonging or related to the species Coendou magnus is described from the Upper Pleistocene of the Santa Fe Province (Argentina) by Vezzosi & Kerber (2018).[243]
- Nine virtual skull endocasts of members of the family Ischyromyidae (members of the genera Pseudotomus, Notoparamys, Reithroparamys and Rapamys) are reconstructed by Bertrand et al. (2018).[244]
- Revision of the problematic Neogene sciurid genus Sinotamias is published by Sinitsa (2018).[245]
- A sciurid rodent is reported from the Miocene Clarkia fossil beds (Latah Formation, Idaho, United States) by Calede et al. (2018), representing the first tetrapod reported from this lagerstätte.[246]
- The first virtual endocasts of extant mountain beaver and three fossil members of the family Aplodontiidae are described by Bertrand et al. (2018).[247]
- A study on the enamel ultrastructure of molars of the anomalomyid species Anomalomys gaillardi, as well as extant and fossil spalacids from Ukraine belonging to the genera Pliospalax and Spalax, is published by Nowakowski et al. (2018).[248]
- A study on the body mass and evolution of the Miocene rodent Mikrotia from Italy is published by Moncunill-Solé, Jordana & Köhler (2018).[249]
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Valid |
Li et al. |
Zanda Basin |
A hamster. Genus includes new species A. liuae. |
||||
Sp. nov |
In press |
Li |
A member of the family Dipodidae. |
|||||
Gen. et sp. nov |
Valid |
De Bruijn et al. |
A member of Muroidea belonging to the subfamily Pappocricetodontinae. The type species is B. dissimile. |
|||||
Gen. et sp. nov |
Valid |
Pérez et al. |
Salla beds |
A New World porcupine. Genus includes new species C. tetralophodonta. |
||||
Sp. nov |
In press |
Boivin et al. |
Early Oligocene |
Possibly a member of Chinchilloidea. |
||||
Sp. nov |
In press |
Boivin et al. |
Early Oligocene |
Possibly a member of Chinchilloidea. |
||||
Sp. nov |
Valid |
Pelaez-Campomanes et al. |
Early Miocene |
A member of the family Muridae. |
||||
Sp. nov |
Valid |
Mörs & Tomida |
Early Miocene |
Nakamura Formation |
A member of the family Castoridae. |
|||
Sp. nov |
Valid |
Jiménez-Hidalgo, Guerrero-Arenas & Smith |
Eocene (Chadronian) |
A member of Geomyidae. |
||||
Sp. nov |
Valid |
López‐Antoñanzas et al. |
A species of Karydomys. |
|||||
Gen. et sp. nov |
In press |
Boivin et al. |
Early Oligocene |
A member of Erethizontoidea. The type species is K. raimondii. |
||||
Gen. et sp. nov |
Valid |
Pérez et al. |
Salla beds |
A caviomorph rodent related to the group Octodontoidea. Genus includes new species L. hartenbergeri. |
||||
Sp. nov |
Valid |
Cramb, Price & Hocknull |
Age uncertain, likely Middle or Late Pleistocene |
A species of Leggadina. |
||||
Sp. nov |
Valid |
Cramb, Price & Hocknull |
Middle Pleistocene |
A species of Leggadina. |
||||
Gen. et sp. nov |
In press |
Boivin et al. |
Early Oligocene |
A member of Octodontoidea of uncertain phylogenetic placement. The type species is M. confluens. |
||||
Sp. nov |
Valid |
Dawson & Constenius |
Middle Eocene |
|||||
Sp. nov |
Valid |
Pérez et al. |
Salla beds |
A caviomorph rodent related to the group Octodontoidea. |
||||
Gen. et 2 sp. nov |
Valid |
Wessels et al. |
A member of the family Muridae belonging to the subfamily Melissiodontinae. The type species is M. miloshi; genus also includes M. lautus. |
|||||
Gen. et sp. nov |
Valid |
Mein & Pickford |
Black Crow Limestone |
Possibly a relative of Reithroparamys. The type species is N. inexpectatus. |
||||
Sp. nov |
Valid |
Li et al. |
A hamster. Genus includes new species A. liuae. |
|||||
Sp. nov |
Valid |
Madozzo-Jaén et al. |
A member of Caviinae. |
|||||
Gen. et sp. nov |
Valid |
Martin et al. |
Early Pleistocene |
A member of Arvicolidae. Genus includes new species O. giberti. |
||||
Sp. nov |
Valid |
Van de Weerd et al. |
Early Oligocene |
A member of the family Muridae belonging to the subfamily Paracricetodontinae. |
||||
Sp. nov |
Valid |
Van de Weerd et al. |
A member of the family Muridae belonging to the subfamily Paracricetodontinae. |
|||||
Sp. nov |
Valid |
Van Kolfschoten, Tesakov & Bell |
Early Pleistocene (Gelasian) |
A heather vole, the first known European member of the genus Phenacomys. |
||||
Sp. nov |
Valid |
Pérez et al. |
Salla beds |
|||||
Sp. nov |
Valid |
Pérez et al. |
Salla beds |
A caviomorph rodent related to the group Octodontoidea. |
||||
Gen. et sp. nov |
In press |
Boivin et al. |
Early Oligocene |
A member of Octodontoidea of uncertain phylogenetic placement. The type species is S. paulus. |
||||
Gen. et sp. nov |
In press |
Boivin et al. |
Early Oligocene |
A member of Erethizontoidea. The type species is S. labocensis. |
||||
Gen. et 2 sp. nov |
In press |
Boivin et al. |
Early Oligocene |
A member of Caviomorpha of uncertain phylogenetic placement. The type species is T. subandinus; genus also includes T. mayoensis. |
||||
Gen. et sp. nov |
Valid |
Black Crow Limestone |
A member of the family Zegdoumyidae. The type species is T. calcareus. |
|||||
Gen. et sp. nov |
Valid |
Eocene (Bartonian, possibly Priabonian) |
Eocliff Limestone |
A member of Hystricognathi belonging to the new family Tufamyidae. The type species is T. woodi. |
||||
Sp. nov |
Valid |
Sinitsa & Nesin |
Late Miocene |
A dormouse belonging to the subfamily Leithiinae. |
||||
Sp. nov |
Valid |
De Bruijn et al. |
A member of Muroidea belonging to the subfamily Pappocricetodontinae. |
Primates
- A study on the anatomy and phylogenetic relationships of Propotto leakeyi is published by Gunnell et al. (2018), who support George Simpson's original interpretation of this species as a strepsirrhine primate, and consider both P. leakeyi and Plesiopithecus teras to be relatives of the aye-aye.[270]
- A study on reconstructing the jaw muscles and bite force of subfossil lemurs from Madagascar, as well as on their implications for inferring the diet of these lemurs, is published by Perry (2018).[271]
- A study on the early evolution of North American adapids and omomyids, comparing reconstructed dietary niches of these primates and other animals from their guild to establish the nature of the competitive environment surrounding primate origins in North America, is published by Stroik & Schwartz (2018).[272]
- Description of isolated phalanges from four early Eocene localities in Wyoming (United States), indicative of presence of grooming claws in five genera of early haplorhine primates (including Teilhardina), is published by Boyer et al. (2018).[273]
- A study on the evolutionary history of the New World monkeys (especially on the evolution of their body mass, changes of the mean latitude of their geographic range, and species diversification rates), based on data from extant and fossil species, will be published by Silvestro et al. (2018).[274]
- A study evaluating whether the locomotor behaviour of extant New World monkeys can be inferred from their talus morphology, and applying machine learning algorithms trained using both the biomechanical and morphometric data from the extant taxa to infer the possible locomotor behaviour of Miocene New World monkeys from Argentina, Chile, Peru, Colombia and Cuba, is published by Püschel et al. (2018).[275]
- A tibia of a large-bodied arboreally-adapted Old World monkey (a member or a relative of the genus Rhinocolobus) is described from the Australopithecus afarensis-bearing Upper Laetolil Beds (∼3.7 Ma) of Laetoli (Tanzania) by Laird et al. (2018), who also study the implications of the specimen for inferring the paleoenvironment of the Upper Laetolil Beds.[276]
- A skull of a large papionin monkey is described from the Lower Pleistocene site of Dafnero-3 (Greece) by Kostopoulos et al. (2018), who interpret the anatomy of this skull as indicating that the specimen could equally be ascribed to either the Eurasian genus Paradolichopithecus or to the East Asian Procynocephalus, and argue in favor of the synonymy of these genera.[277]
- A study on the phylogenetic relationships of living and fossil African papionins is published by Pugh & Gilbert (2018).[278]
- A study on the fossil members of the genus Papio from across Africa, focusing on their distinguishing features and distribution, is published by Gilbert et al. (2018).[279]
- A study on the feeding ecology of Plio-Pleistocene members of the genera Papio and Theropithecus from the Shungura Formation (Ethiopia) is published by Martin et al. (2018).[280]
- A study evaluating whether climatic and environmental changes were the main cause of extinction of Oreopithecus bambolii is published by DeMiguel & Rook (2018).[281]
- A study on the body mass sexual dimorphism in Nacholapithecus kerioi is published by Kikuchi et al. (2018).[282]
- A review of the paleontological, archeological, genetic and behavioral evidence of the impact of at least 70,000 years of human influence on orangutan distribution, abundance and ecology is published by Spehar et al. (2018).[283]
- Description of tooth decay affecting the type specimen of Dryopithecus carinthiacus, and a study on its implications for inferring the diet of this specimen, is published by Fuss, Uhlig & Böhme (2018).[284]
- A study on the phylogenetic relationships of Graecopithecus published by Benoit & Thackeray (2017), aiming to refute the hypothesis that Graecopithecus is a member of the hominin clade,[285] is criticized by Fuss et al. (2018).[286]
- A study evaluating whether machine learning methods can accurately classify extant apes based on dental data, and using this classification method to explore the affinities between dentitions of Miocene hominoid fossils and living apes, is published by Monson, Armitage & Hlusko (2018).[287]
General paleoanthropology
- Estimations of body mass in Pliocene and Pleistocene hominins based on lower limb bones dimensions are presented by Ruff et al. (2018).[288]
- A study on the evolution of the brain size in hominins is published by Du et al. (2018).[289]
- A study on the evolution of the mandible shape in hominins, based on an analysis of the mandibular shape variation in a large sample of plesiadapiforms and primates, is published by Raia et al. (2018).[290]
- A study on the cervical kinematics in early fossil hominins, based on an analysis of uncinate processes in the vertebrae of fossil hominins, Homo sapiens and extant nonhuman primates, is published by Meyer et al. (2018).[291]
- A study on the intra-specific variation of patterns of metatarsal robusticity (a measure reflecting habitual stresses in long bones, and in particular, loads experienced over an animal's lifetime) in modern humans and extant African apes, and its implications for inferring whether the Olduvai Hominid 8 foot was biomechanically similar to the feet of modern humans, is published by Patel et al. (2018).[292]
- A study on the bony shape variables in the metatarsals of extant anthropoid primates and fossil hominins, and on their importance to the evolution of terrestrial bipedalism in hominins, is published by Fernández et al. (2018).[293]
- Domínguez-Rodrigo & Baquedano (2018) evaluate the ability of successful machine learning methods to compare and distinguish various types of bone surface modifications (trampling marks, crocodile bite marks and cut marks made with stone tools) in archaeofaunal assemblages.[294]
- Taphonomic study on the ca. 1.84 million year old bovid fossils (preserving evidence of meat eating by early hominins) from Olduvai Gorge (Tanzania), evaluating whether hominins had early access to fleshed carcasses through hunting or active scavenging, or late access to largely defleshed carcasses through passive scavenging, is published by Parkinson (2018).[295]
- The study published by Gierliński et al. (2017), reporting putative tetrapod footprints with hominin-like characteristics from the late Miocene of Crete (Greece),[296] is criticized by Meldrum & Sarmiento (2018).[297]
- A study aiming to estimate body mass of Orrorin tugenensis and Ardipithecus ramidus is published by Grabowski, Hatala & Jungers (2018).[298]
- A study on the hydrological changes in the Limpopo River catchment and in sea surface temperature in the southwestern Indian Ocean for the past 2.14 million years, and on their implications for inferring the palaeoclimatic changes in southeastern Africa in this time period and their possible impact on the evolution of early hominins, is published by Caley et al. (2018).[299]
- A study on the behavioral features which might have contributed to the demographic success of early hominids such as Australopithecus, based on comparison with macaques, is published by Meindl, Chaney & Lovejoy (2018).[300]
- A study on the diversity dynamics of early hominins, evaluating whether the observed patterns of early hominin diversity can be better explained by sampling biases or genuine evolutionary processes, is published by Maxwell et al. (2018).[301]
- A study on the pelvic morphology in Ardipithecus and Australopithecus, evaluating the hypothesis that early hominins retained ischial proportions and orientation that favored greater force production during climbing but limited their ability to hyperextend the hip and walk as economically as modern humans, is published by Kozma et al. (2018).[302]
- New fossils attributable to the species Australopithecus anamensis will be described from Kanapoi (Kenya) by Ward, Plavcan & Manthi (2018).[303]
- Endocrania of two specimens of Australopithecus africanus from Sterkfontein Member 4 (South Africa) are virtually reconstructed by Beaudet et al. (2018).[304]
- A study on the paleoenvironment and diet of Australopithecus africanus and Paranthropus robustus as indicated by tooth microwear is published by Peterson et al. (2018).[305]
- A study on the relationship between root splay and overall morphology of first maxillary molars and jaw kinematics in South African Australopithecus africanus and Paranthropus robustus, and on its implications for inferring the dietary niches of these species, is published by Kupczik, Toro-Ibacache & Macho (2018).[306]
- A study on the variation in trabecular bone structure of the femoral head in fossil hominins attributed to the species Australopithecus africanus, Paranthropus robustus and to the genus Homo, attempting to reconstruct hip joint loading conditions in these fossil hominins, is published by Ryan et al. (2018).[307]
- The skull of ‘Mrs. Ples’ (Sts 5 specimen of Australopithecus africanus) is interpreted as a skull of a small male rather than a large female individual by Tawane & Thackeray (2018).[308]
- A study on the variation in the structure of trabecular bone and joint loading in the humeral head of extant hominoids, spider monkeys and Australopithecus africanus will be published by Kivell et al. (2018), who interpret their findings as indicating that A. africanus may have still used its forelimbs for arboreal locomotion.[309]
- Description of a nearly complete, 3.32-million-year-old foot of a juvenile Australopithecus afarensis from Dikika (Ethiopia) is published by DeSilva et al. (2018).[310]
- A study on the possible date of the first appearance of Australopithecus sediba as indicated by the average hominin species’ temporal range is published by Robinson et al. (2018).[311]
- A study on the linear marks observed on the hominin fossil Stw53 from the Sterkfontein cave site (South Africa), evaluating whether these marks were cutmarks inflicted by stone tools or non-anthropic modifications, is published by Hanon, Péan & Prat (2018).[312]
- New artifacts are described from the Swartkrans cave (South Africa) by Kuman et al. (2018), who confirm the affinity of the Swartkrans artifacts with the Oldowan industrial complex.[313]
- Pelvic remains of Homo naledi from the Dinaledi Chamber in the Rising Star Cave system (Cradle of Humankind, South Africa) will be described by VanSickle et al. (2018).[314]
- A study on the minimum number of individuals and on a demographic profile of the assemblage of Homo naledi individuals in the Dinaledi Chamber (Rising Star Cave system, South Africa) is published by Bolter et al. (2018).[315]
- A study on the diet of Homo naledi as indicated by teeth wear textures is published by Ungar & Berger (2018).[316]
- A study comparing tooth shape and size in Homo naledi and other South African Plio-Pleistocene hominins, as well as a study on the possible diet of Homo naledi, is published by Berthaume, Delezene & Kupczik (2018).[317]
- A study on the endocast morphology of Homo naledi, comparing it with other hominoids and fossil hominins, is published by Holloway et al. (2018).[318]
- A study on the phenetic affinities and taxonomic validity of Homo naledi as indicated by teeth morphology will be published by Irish et al. (2018).[319]
- Three incudes of Homo naledi recovered from the Dinaledi Chamber in the Rising Star cave system are described by Elliott et al. (2018).[320]
- A study on evaluating whether deliberate disposal of corpses is the only likely explanation for large assemblages of fossil human bones from the Middle Pleistocene sites of Sima de los Huesos (Spain) and the Dinaledi Chamber (South Africa) is published by Egeland et al. (2018).[321]
- A study on the phylogenetic relationships of the Pleistocene hominin specimen (a fragmented skullcap) from Kocabaş (Denizli Basin, Turkey) is published by Vialet et al. (2018).[322]
- A study on the morphology and affinities of the hominin calvaria KNM-ER 42700 from Ileret, Kenya is published by Neubauer et al. (2018).[323]
- A study on the frequency and location of hominin (likely Homo habilis) butchery marks and carnivore tooth marks on mammal bones from the HWK EE site (Olduvai Gorge, Tanzania), and on their implications for inferring carnivorous feeding behavior of the HWK EE hominins and the ecological interactions they had with carnivores, is published by Pante et al. (2018).[324]
- A study estimating possible adult stature and body mass of the Homo erectus specimen KNM-WT 15000 ("Turkana Boy") is published by Cunningham et al. (2018).[325]
- A study on the structure of the animal community known from the Okote Member of the Koobi Fora Formation at East Turkana (Kenya) as indicated by tracks and skeletal assemblages, and on the interactions of Homo erectus with environment and associated faunas from this site, is published by Roach et al. (2018).[326]
- A study on 1.07–0.99 million-year-old pelvic remains from Buia (Eritrea) is published by Hammond et al. (2018), who interpret their findings as indicating that the postcranial morphology of Homo erectus sensu lato was variable and, in some cases, nearly indistinguishable from modern human morphology, and that the shared last common ancestor of Late Pleistocene Homo species was unlikely to have an australopith-like pelvis.[327]
- A study on the humeral rigidity and strength in members of the species Homo erectus known from Zhoukoudian (China), comparing it with the humeral rigidity and strength in the African members of the species, is published by Xing et al. (2018).[328]
- A study on the morphology of teeth of Homo erectus from Zhoukoudian is published by Xing, Martinón-Torres & Bermúdez de Castro (2018).[329]
- A study on the age of the archaeological layers from the Zhoukoudian Upper Cave, and on its implications for understanding Late Quaternary human evolution in eastern Asia, is published by Li et al. (2018).[330]
- New magnetostratigraphic dating results for the Bailong Cave (China) sedimentary sequence containing hominin teeth assigned to the species Homo erectus are presented by Kong et al. (2018).[331]
- An Early Pleistocene artefact sequence, containing 17 artefact layers that extend from approximately 1.26 million years ago to about 2.12 million years ago, is described from the Shangchen locality (Loess Plateau, China) by Zhu et al. (2018), indicating that hominins left Africa earlier than indicated by the evidence from Dmanisi.[332]
- A study on the morphology and affinities of the Middle Pleistocene hominin mandible recovered from La Niche cave site of the Montmaurin karst system (France) is published by Vialet et al. (2018).[333]
- A series of excavated Middle Stone Age sites from the Olorgesailie Basin (Kenya), dated as ~320,000 years old, is presented by Brooks et al. (2018), who report evidence of hominins preparing cores and points, exploiting iron-rich rocks to obtain red pigment, and procuring stone tool materials from ≥25–50 km distance.[334]
- A study on the environmental dynamics before and after the onset of the early Middle Stone Age in the Olorgesailie Basin (Kenya) is published by Potts et al. (2018).[335]
- A study on the chronology of the Acheulean and early Middle Stone Age sedimentary deposits in the Olorgesailie Basin (Kenya) is published by Deino et al. (2018).[336]
- A study on the stone tools from the Acheulean site of Saffaqah near Dawadmi (Saudi Arabia), and their implications for inferring how hominins adapted to this region, is published by Shipton et al. (2018).[337]
- A study on the age of stone tools from the Attirampakkam site in India is published by Akhilesh et al. (2018), indicating the emergence of a Middle Paleolithic culture in India at 385 ± 64 thousand years ago.[338]
- Stone tools associated with a skeleton of Rhinoceros philippinensis showing clear signs of butchery are described from a bone bed at Kalinga in the Cagayan Valley of northern Luzon (the Philippines), dated to between 777 and 631 thousand years ago, by Ingicco et al. (2018).[339]
- The study on the Cerutti Mastodon site published by Holen et al. (2017), reporting possible evidence of an unidentified species of the genus Homo living in California 130,000 years ago,[340] is criticized by Ferraro et al. (2018).[341][342]
- Bone retouchers dated as approximately 125–105,000 years old are described from the Lingjing site in Henan, China by Doyon et al. (2018), representing the first evidence from Eastern Asia for the use of bone as raw material to modify stone tools.[343]
- A study on the antiquity of the remains of Homo antecessor, based on the first direct Electron Spin Resonance dating of a tooth from the TD6 unit of Atapuerca Gran Dolina site (Spain), is published by Duval et al. (2018).[344]
- An assemblage of hominin tracks produced by adults and children potentially as young as 12 months, probably members of the species Homo heidelbergensis living 700,000 years ago, is described from the Upper Awash Valley (Ethiopia) by Altamura et al. (2018).[345]
- A study on the morphology and function of the browridge of the Kabwe 1 archaic hominin specimen is published by Godinho, Spikins & O’Higgins (2018).[346]
- A study intending to detect introgressed Denisovan genetic material in present-day human genomes is published by Browning et al. (2018), who report evidence of Denisovan ancestry in populations from East and South Asia and Papuans, and interpret their findings as indicating that at least two distinct instances of Denisovan admixture into modern humans occurred.[347]
- Genome recovered from a bone fragment from the Denisova Cave (Russia) is presented by Slon et al. (2018), who interpret the studied individual as the offspring of a Neanderthal mother and a Denisovan father.[348]
- A study on the morphology of hominin teeth from the Middle Pleistocene sites of Arago (southeast France) and Sima de los Huesos (northern Spain), as well as on their implications for inferring how the settlement of Europe by hominins in the Middle Pleistocene occurred, is published by Bermúdez de Castro et al. (2018).[349]
- A study on the stone tools from the site of la Noira (France and their implications for reconstructing early Acheulean hominin behavior is published by Hardy et al. (2018), who argue that the hominins from this site used a broad range of resources including wood, plants, mammals, and possibly birds and fish, and that Middle Pleistocene hominins had detailed local environmental knowledge and were able to adapt to a wide range of environments.[350]
- A study aiming to estimate total lung capacity of Neanderthals, as well as Early Pleistocene hominins from the Gran Dolina site ATD6 (Spain), is published by García-Martínez et al. (2018).[351]
- A series of partially charred wooden tools is described from the late Middle Pleistocene site of Poggetti Vecchi (central Italy) by Aranguren et al. (2018), who interpret their findings as indicating that Neanderthals were able to choose the appropriate timber and to process it with fire to produce tools.[352]
- A wooden tool (possibly a digging stick), likely produced by Neanderthals, is described from the early Late Pleistocene Aranbaltza III site (Basque Country, Spain) by Rios-Garaizar et al. (2018), representing the oldest wooden tool from southern Europe reported so far.[353]
- Cave art in Cave of La Pasiega, Maltravieso cave and Ardales cave (Spain) is dated as older than 64,000 years (thus predating the arrival of modern humans in Europe) by Hoffmann et al. (2018), who interpret their findings as indicative of Neandertal authorship of the art;[354] the study is subsequently criticized by Pearce & Bonneau (2018),[355][356] Aubert, Brumm & Huntley (2018)[357] and Slimak et al. (2018).[358]
- A study on the age of the flowstone capping the Cueva de los Aviones deposit in southeast Spain is published by Hoffmann et al. (2018), who report that Neanderthal-associated evidence of symbolic behavior found at the site is 115,000 to 120,000 years old and predates the earliest known comparable evidence associated with modern humans by 20,000 to 40,000 years.[359]
- Genomes of five Neanderthals from Belgium (Spy Cave and Goyet Caves), France (Les Cottés cave), Croatia (Vindija Cave) and Russia (Mezmaiskaya cave), who lived around 39,000 to 47,000 years ago, are sequenced by Hajdinjak et al. (2018).[360]
- A study evaluating three hypotheses forwarded to explain the distinctive Neanderthal face is published by Wroe et al. (2018).[361]
- A study evaluating ecological niche similarity between the datasets of morphologically diagnostic Neanderthal remains and of archaeological sites with Middle Paleolithic artifacts (but no diagnostic hominin remains), as well as assessing its implications for inferring whether those archaeological sites represent Neanderthal occurrences, is published by Bible & Peterson (2018).[362]
- Gaudzinski-Windheuser et al. (2018) report perforations observed on two fallow deer skeletons from the 120,000-year-old lake shore deposits from Neumark-Nord (Germany), interpreted as evidence of close-range use of thrusting spears by Neanderthals.[363]
- A review of evidence for recovery from serious illness and injury by Neanderthals will be published by Spikins et al. (2018), who argue that Neanderthal healthcare was widespread, knowledgeable and effective in reducing mortality risk, and that healthcare can be seen as part of several adaptations which allowed Neanderthals to survive in unique environments where they lived, rather than simply a cultural trait.[364]
- A study on the timing and duration of periods of climate deterioration in the interior of the Iberian Peninsula in the late Pleistocene, evaluating the impact of climate on the abandonment of inner Iberian territories by Neanderthals 42,000 years ago, is published by Wolf et al. (2018).[365]
- A study on pollen recovered from hyaena coprolites from Vanguard Cave (Gibraltar), and on its implications for reconstructing the vegetation landscapes in the environment inhabited by southern Iberian Neanderthals during the MIS 3, will be published by Carrión et al. (2018).[366]
- Evidence of bird and carnivore exploitation by Neanderthals (cut-marks in golden eagle, raven, wolf and lynx remains) is reported from the Axlor site (Spain) by Gómez-Olivencia et al. (2018).[367]
- The first direct artefactual evidence for regular, systematic fire production by Neanderthals is reported from archaeological layers attributed to late Mousterian industries at multiple sites throughout France by Sorensen, Claud & Soressi (2018).[368]
- A study on Neanderthal manual activities is published by Karakostis et al. (2018), who report evidence of habitual performance of precision grasping by Neanderthals.[369]
- A study aiming to determine whether metabolic differences between competing populations of Neanderthals and anatomically modern humans alone could have accounted for Neanderthal extinction, as well as investigating Neanderthal fire use, will be published by Goldfield, Booton & Marston (2018).[370]
- A study on the climate changes in Europe during the Middle–Upper Paleolithic transition (based on speleothem records from the Ascunsă Cave and from the Tăușoare Cave, Romania), and on their implications for the replacement of Neanderthals by modern humans in Europe, is published by Fernández et al. (2018).[371]
- A study aiming to reconstruct 3D brain shape of Neanderthals and early Homo sapiens is published by Kochiyama et al. (2018).[372]
- A study on the use of plants by early modern humans during the Middle Stone Age as indicated by analyses of phytoliths from the Pinnacle Point locality (South Africa) is published by Esteban et al. (2018).[373]
- A study on the climatic changes in the Lake Tana area in the last 150,000 years and their implications for early modern human dispersal out of Africa is published by Lamb et al. (2018).[374]
- A review of fossil, archaeological, genetic, and paleoenvironmental data on the origin of Homo sapiens is published by Scerri et al. (2018), who argue that Homo sapiens evolved within a set of interlinked groups living across Africa, whose connectivity changed through time, rather than from a single region/population in Africa.[375]
- A review of the archaeological and palaeoenvironmental datasets relating to the Middle–Late Pleistocene dispersal of Homo sapiens within and beyond Africa is published by Roberts & Stewart (2018), who argue that H. sapiens developed a new ecological niche.[376]
- A study on the evolution of modern human brain shape based on endocasts of Homo sapiens fossils from different geologic time periods is published by Neubauer, Hublin & Gunz (2018).[377]
- Late Pleistocene hominin tracks, probably produced by Homo sapiens, are described from the Waenhuiskrans Formation (South Africa) by Helm et al. (2018).[378]
- A study on the age of a modern human mandible with teeth from the Misliya cave (Mount Carmel, Israel) is published by Hershkovitz et al. (2018), who date the fossil as at least 177,000 years old, representing the oldest reported fossil of a member of the Homo sapiens clade found outside Africa.[379]
- A phalanx of a member of the species Homo sapiens is described from the ~95–86,000 years old Al Wusta site (An Nafud, Saudi Arabia) by Groucutt et al. (2018), representing the oldest directly dated fossil of Homo sapiens found outside Africa and the Levant.[380]
- A study on the effects of the Toba supereruption in East Africa is published by Yost et al. (2018), who find no evidence of the eruption causing a volcanic winter in East Africa or a population bottleneck among African populations of anatomically modern humans.[381]
- Microscopic glass shards characteristic of the Youngest Toba Tuff (ashfall from the Toba eruption), dated as approximately 74,000 years old, are described from two archaeological sites on the south coast of South Africa by Smith et al. (2018), who interpret their findings as indicating that humans in this region thrived through the Toba event and the ensuing full glacial conditions.[382]
- Evidence of human activity dating back to 78,000 years ago is reported from the Panga ya Saidi cave (Kenya) by Shipton et al. (2018), who describe a rich technological sequence that includes lithic forms elsewhere associated with the Middle Stone Age and the Later Stone Age.[383]
- A cross-hatched pattern drawn with an ochre crayon is reported from approximately 73,000-year-old Middle Stone Age levels at Blombos Cave (South Africa) by Henshilwood et al. (2018), pre-dating previously known abstract and figurative drawings by at least 30,000 years.[384]
- A study on the age of the cave art from the Kapova Cave (Russia) is published by Dublyansky et al. (2018).[385]
- A reassessment of the Late Pleistocene human occupation site at Leang Burung 2 (Sulawesi, Indonesia), presenting new stratigraphic information and dating evidence from the site, is published by Brumm et al. (2018).[386]
- A study on the timing of arrival of anatomically modern humans to Southeast Asia and Sahul is published by O’Connell et al. (2018), who consider it unlikely that the artifacts from Madjedbebe (northern Australia) reported by Clarkson et al. (2017)[387] are more than 50,000 years old.[388]
- A study on the results of re-excavation of Karnatukul (Serpent’s Glen rockshelter in the Australian Little Sandy Desert), as well as on the chronology of this site, is published by McDonald et al. (2018).[389]
- Genomic data from seven 15,000-year-old modern humans from Morocco, attributed to the Iberomaurusian culture, is presented by van de Loosdrecht et al. (2018), who report evidence of a genetic affinity of the studied individuals with early Holocene Near Easterners.[390]
- A study on charred food remains from Shubayqa 1, a Natufian hunter-gatherer site located in northeastern Jordan and dated to 14.6–11.6 ka cal BP, is published by Arranz-Otaegui et al. (2018), who interpret their findings as providing the earliest empirical evidence for the preparation of bread-like products by Natufian hunter-gatherers, predating the emergence of agriculture by at least 4,000 years.[391]
- A study on the timing of first human arrival in Madagascar, as indicated by evidence of prehistoric human modification of multiple elephant bird postcranial elements, is published by Hansford et al. (2018).[392]
- Description of the morphology of three partial human mandibles from the Niah Caves (Sarawak, Malaysia) and a study on the age of these bones is published by Curnoe et al. (2018).[393]
- A review of the genetic, archeological and paleoecological data on the course of the settlement of the Americas is published by Potter et al. (2018), who argue that available evidence is consistent with an inland migration through an ice-free corridor or with a migration through Pacific coastal routes (or both), but neither can be rejected.[394]
- A study on the timing of the latest Pleistocene glaciation in southeastern Alaska and its implication for inferring the route and timing of early human migration to the Americas is published by Lesnek et al. (2018).[395]
- A study on the technological traits of fluted projectile points from northern Alaska and Yukon, in combination with artifacts from further south in Canada, the Great Plains, and eastern United States, evaluating the plausibility of historical relatedness and evolutionary patterns in the spread of fluted-point technology in North America in the latest Pleistocene and earliest Holocene, is published by Smith & Goebel (2018).[396]
- Late Pleistocene human footprints left by a minimum of three people are described from the Calvert Island (British Columbia, Canada) by McLaren et al. (2018).[397]
- Associated human and ground sloth tracks are described from the Rancholabrean deposits in the White Sands National Monument (New Mexico, United States) by Bustos et al. (2018), who interpret their finding as evidence of humans actively stalking, harassing and likely hunting ground sloths in the late Pleistocene.[398]
- A study on the age of a series of sedimentary samples from the earliest cultural assemblage at the Gault Site (Texas, United States), including a previously unknown, early projectile point technology unrelated to Clovis, is published by Williams et al. (2018).[399]
- A study on the age of the Anzick burial site (Montana, United States) is published by Becerra-Valdivia et al. (2018).[400]
- The genome of two infants from the Upward Sun River site dated 11,500 years ago is sequenced, leading to the discovery of the Ancient Beringian ethnic group.[401][402]
- Scheib et al. (2018) sequence 91 ancient human genomes from California and southwestern Ontario, demonstrating the existence of two distinct ancestries in North America, and finding contribution from both of these ancestral populations in all modern Central and South Americans.[403]
- Evidence of plant domestication and food production from the early and middle Holocene site of Teotonio (southwestern Amazonia, Brazil) is presented by Watling et al. (2018).[404]
- A study on the morphological affinity of the late Paleolithic human skull from the Zlatý kůň site in the Bohemian Karst (Czech Republic) is published by Rmoutilová et al. (2018), who also evaluate whether it is possible to determine the sex of the Zlatý kůň individual based on its skull morphology.[405]
- A study on the Mesolithic site of Star Carr, indicating that there was intensive human activity at the site for several hundred years when the community was subject to multiple, severe, abrupt climate events that impacted air temperatures, the landscape and the ecosystem of the region, is published by Blockley et al. (2018).[406]
- A study on the tools preserved with Ötzi, evaluating their implications for inferring Ötzi's individual history, the reconstruction of his last days and his cultural and social background, is published by Wierer et al. (2018).[407]
- A study on the contents of Ötzi's stomach is published by Maixner et al. (2018).[408]
- A study on the compositions of the faunal and stone artifact assemblages at Liang Bua (Flores, Indonesia), aiming to determine the last appearance dates of Stegodon, giant marabou stork, Old World vulture belonging to the genus Trigonoceps, and Komodo dragon at the Liang Bua site, and to determine what raw materials were preferred by hominins from this site ∼50,000–13,000 years ago and whether these preferences were similar to those seen in the stone artifact assemblages attributed to Homo floresiensis or to those attributed to modern humans, will be published by Sutikna et al. (2018).[409]
- A study on genetic variation among a population of Rampasasa pygmies living close to the cave where remains of Homo floresiensis were discovered is published by Tucci et al. (2018), who find evidence of admixture with Denisovans and Neanderthals but no evidence for gene flow with other archaic hominins, and interpret their findings as indicating that at least two independent instances of hominin insular dwarfism occurred on Flores.[410]
New taxa
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Rose et al. |
Cambay Shale Formation |
|||||
Gen. et sp. nov |
In press |
Atwater & Kirk |
A member of the family Omomyidae. Genus includes new species B. cerutti. |
|||||
Gen. et sp. nov |
In press |
Atwater & Kirk |
A member of the family Omomyidae. Genus includes new species E. walshi. |
|||||
Gen. et sp. nov |
In press |
Atwater & Kirk |
A member of the family Omomyidae. Genus includes new species G. randalli. |
|||||
Gen. et sp. nov |
Valid |
Turvey et al. |
A gibbon. Genus includes new species J. imperialis. |
|||||
Gen. et sp. et comb. nov |
Valid |
López-Torres, Silcox & Holroyd |
Eocene (Uintan and Duchesnean) |
A member of the family Omomyidae. The type species is W. esmaraldensis; genus also includes W. mcgrewi (Robinson, 1968) and W. shifrae (Krishtalka, 1978). |
Other eutherians
- Putative Cretaceous metatherian Sinodelphys szalayi is reinterpreted as an early member of Eutheria by Bi et al. (2018).[415]
- A study on the anatomy of the Early Cretaceous eutherian Endotherium niinomii is published by Wang et al. (2018), who consider this species to be a valid taxon.[416]
- Napoli et al. (2018) digitally visualize and describe the endocast of a taeniodont Onychodectes tisonensis.[417]
- A study evaluating when solenodons split from other eulipotyphlans, based on updated fossil calibrations, is published by Springer, Murphy & Roca (2018), who place the split between solenodons and other eulipotyphlans in the Late Cretaceous.[418]
- A study comparing the size and morphology of the common shrew (Sorex araneus), Sorex runtonensis, the tundra shrew (S. tundrensis) and the Caucasian shrew (S. satununi) with the type material of the fossil shrew Sorex subaraneus (in order to either support or falsify the validity of S. subaraneus and the putative ancestry of the extant common shrew) is published by Rzebik-Kowalska & Pereswiet-Soltan (2018).[419]
- A study on the phylogenetic relationships of the gymnure Deinogalerix within the tribe Galericini is published by Borrani et al. (2018).[420][421]
- A study on the systematic usefulness of the humerus in proterotheriid litopterns is published by Corona, Perea & Ubilla (2018), who consider the species Proterotherium berroi Kraglievich (1930) to be a probable synonym of Neolicaphrium recens.[422]
- A study on the diversity of shapes of snout in notoungulates and on the evolution of the wide range of shapes of snout in this group of mammals is published by Gomes Rodrigues et al. (2018).[423]
- A study on the variation of teeth shape and on the factors affecting changes in the shape of teeth of notopithecid notoungulates is published by Scarano & Vera (2018).[424]
- A study on the variation of teeth shape in late Miocene members of the hegetotheriid notoungulate genus Paedotherium, as well as its implications for the systematics and phylogenetic relationships of the late Miocene species of Paedotherium, is published by Ercoli et al. (2018).[425]
- A study on the variability of the diagnostic characters in the fossils of members of the hegetotheriid notoungulate genus Tremacyllus will be published by Sostillo, Cerdeño & Montalvo (2018), who consider the species T. incipiens to be a junior synonym of the species T. impressus.[426]
- New fossil remains of pachyrukhine hegetotheriid notoungulates are described from the Huayquerías del Este (Mendoza, Argentina) by Vera & Ercoli (2018), who consider the species Tremacyllus subdiminutus to be a synonym of T. impressus.[427]
- A study on the braincase anatomy in mesotheriid notoungulates will be published by Fernández-Monescillo et al. (2018).[428]
- Fernández-Monescill et al. (2018) provide muscular reconstruction and infer functional properties of the forelimb of the mesotheriid notoungulate Plesiotypotherium achirense.[429]
- A study on the tooth wear, tooth replacement and enamel microstructure in a perissodactyl-like ungulate Cambaytherium will be published by von Koenigswald et al. (2018).[430]
- Anatomical redescription of the periptychid species Periptychus carinidens is published by Shelley, Williamson & Brusatte (2018).[431]
- A study comparing the teeth of Prionogale to the teeth of subadult hyaenodonts and carnivorans, as well as evaluating the phylogenetic affinities of Prionogale and Namasector within Hyaenodonta, will be published by Borths & Stevens (2018), who reinterpret the type specimen of Prionogale breviceps and some of the paratype materials as preserving deciduous teeth which were previously interpreted as permanent dentition.[432]
- Description of a partial skeleton of a medium-sized carnivorous mammal (classified as a machaeroidine oxyaenid) from the Uinta Formation (Utah, United States) and a study on machaeroidine locomotor habits and on phylogenetic affinities of machaeroidines and "creodonts" in general will be published by Zack (2018).[433]
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Valid |
Bi et al. |
An early eutherian. Genus includes new species A. zhoui. |
|||||
Sp. nov |
Valid |
López-Torres & Silcox |
Early Eocene |
Blackheath Beds |
A member of Plesiadapiformes belonging to the family Paromomyidae. |
|||
Sp. nov |
Valid |
López-Torres & Silcox |
Early Eocene |
A member of Plesiadapiformes belonging to the family Paromomyidae. |
||||
Sp. nov |
Valid |
De Bast, Gagnaison & Smith |
Late Paleocene |
A member of Plesiadapiformes belonging to the family Plesiadapidae. |
||||
Sp. nov |
Valid |
Hooker |
A member of the family Nyctitheriidae. |
|||||
Sp. nov |
Valid |
Solé et al. |
A member of the family Mesonychidae. |
|||||
Sp. nov |
Valid |
Solé et al. |
A member of the family Mesonychidae. |
|||||
Sp. nov |
Valid |
Wyss, Flynn & Croft |
Early Oligocene |
|||||
Sp. nov |
Valid |
Wyss, Flynn & Croft |
Early Oligocene |
|||||
Gen. et sp. nov |
Valid |
Carrillo et al. |
Early Pliocene–late Pliocene or early Pleistocene |
A member of Toxodontidae. Genus includes new species F. aguilerai. |
||||
Gen. et sp. nov |
Valid |
Scott |
A relative of Horolodectes. Genus includes new species F. sweeti. |
|||||
Sp. nov |
Valid |
Carrillo et al. |
Middle Miocene |
A member of Astrapotheriidae. |
||||
Gen. et sp. nov |
Valid |
Lopatin & Averianov |
Höovör locality |
|||||
Gen. et sp. nov |
Valid |
McGrath, Anaya & Croft |
A member of Litopterna belonging the family Macraucheniidae. Genus includes new species L. shockeyi. |
|||||
Sp. nov |
Valid |
De Bast, Gagnaison & Smith |
Late Paleocene |
A member of Plesiadapiformes belonging to the family Plesiadapidae. |
||||
Sp. nov |
Valid |
Jehle et al. |
Late Paleocene |
A member of Plesiadapiformes. |
||||
Sp. nov |
Valid |
De Bast, Gagnaison & Smith |
Late Paleocene |
A member of Plesiadapiformes belonging to the family Plesiadapidae. |
||||
Sp. nov |
Valid |
De Bonis et al. |
Middle Eocene |
Pondaung Formation |
A member of the family Hyaenodontidae. |
|||
Gen. et comb. nov |
Valid |
Wyss, Flynn & Croft |
Early Oligocene |
A notohippid notoungulate; a new genus for "Eomorphippus" pascuali Simpson (1967). |
||||
Gen. et comb. nov |
Valid |
Cerdeño, Vera & Combina |
Early Miocene |
A mesotheriid notoungulate; a new genus for "Trachytherus" mendocensis Simpson & Minoprio (1949). |
||||
Gen. et sp. nov |
Valid |
Angelone et al. |
Early Pleistocene |
A member of the family Leporidae. Genus includes new species S. obscurus. |
||||
Gen. et sp. nov |
Valid |
Zazhigin & Voyta |
Middle Miocene |
Oshin Suite |
A shrew belonging to the subfamily Crocidosoricinae. The type species is S. angustirostris. |
|||
Gen. et sp. nov |
Valid |
Wyss, Flynn & Croft |
Early Oligocene |
A leontiniid notoungulate. Genus includes new species T. flacoensis. |
||||
‘Theosodon’ arozquetai[442] |
Sp. nov |
Valid |
McGrath, Anaya & Croft |
A member of Litopterna belonging the family Macraucheniidae, tentatively referred to the genus Theosodon. |
||||
Sp. nov |
In press |
Hooker |
A member of the family Nyctitheriidae. |
|||||
Sp. nov |
Valid |
Armella, García-López & Dominguez |
||||||
Gen. et sp. nov |
Valid |
López-Torres & Fostowicz-Frelik |
Late Eocene |
A relative of Anagale. The type species is Z. ergilinensis. |
Other mammals
- A diverse footprint assemblage dominated by small mammal tracks is described from the Lower Cretaceous Patuxent Formation (Maryland, United States) by Stanford et al. (2018), who name a new mammal ichnotaxon Sederipes goddardensis.[451]
- A study on the anatomy of the petrosal of Borealestes was published by Panciroli, Schultz & Luo (2018), who also generated an endocast of the inner ear of Borealestes.[452]
- A revision of the teeth and mandibular fossils of members of the genus Docodon from Yale Quarry 9 at the Como Bluff site in the Upper Jurassic Morrison Formation will be published by Schultz, Bhullar & Luo (2018), who argue that the fossils from that quarry represent only one species, Docodon victor.[453]
- A description of the middle ear ossicles of Arboroharamiya is published by Meng et al. (2018).[454]
- Asymmetric bicrural stapes is reported in the Jurassic multituberculate Pseudobolodon oreas by Schultz, Ruf & Martin (2018).[455]
- New specimens of the cladotherian species Palaeoxonodon ooliticus (two partial dentaries) are described from the Middle Jurassic Kilmaluag Formation (Isle of Skye, Scotland, United Kingdom) by Panciroli, Benson & Butler (2018).[456]
- Description of new dental and dentary specimens of Reigitherium from the Upper Cretaceous La Colonia Formation (Argentina) and a study on the phylogenetic relationships of this taxon will be published by Harper, Parras & Rougier (2018).[457]
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Castro et al. |
An early member of Tribosphenida. The type species is B. stardusti. |
||||||
Sp. nov |
Valid |
Scott, Weil & Theodor |
Early Paleocene |
A multituberculate belonging to the group Taeniolabidoidea. |
||||
Gen. et sp. nov |
Valid |
Huttenlocker et al. |
A member of Haramiyida belonging to the family Hahnodontidae. The type species is C. wahkarmoosuch. |
|||||
Gen. et sp. nov |
Valid |
Averianov et al. |
A member of Docodonta belonging to the family Tegotheriidae. The type species is K. yakutensis. |
|||||
Gen. et sp. nov |
Valid |
Csiki-Sava et al. |
A multituberculate belonging to the family Kogaionidae. The type species is L. tholocephalos. |
|||||
Gen. et sp. nov |
Valid |
Averianov et al. |
A member of Eutriconodonta of uncertain phylogenetic placement. The type species is S. aquilonium. |
References
- ^ K. E. Jones; K. D. Angielczyk; P. D. Polly; J. J. Head; V. Fernandez; J. K. Lungmus; S. Tulga; S. E. Pierce (2018). "Fossils reveal the complex evolutionary history of the mammalian regionalized spine". Science. 361 (6408): 1249–1252. doi:10.1126/science.aar3126. PMID 30237356.
- ^ Stephan Lautenschlager; Pamela G. Gill; Zhe-Xi Luo; Michael J. Fagan; Emily J. Rayfield (2018). "The role of miniaturization in the evolution of the mammalian jaw and middle ear". Nature. 561 (7724): 533–537. doi:10.1038/s41586-018-0521-4. PMID 30224748.
- ^ A.W. Crompton; C. Musinsky; G.W. Rougier; B.-A.S. Bhullar; J. A. Miyamae (2018). "Origin of the lateral wall of the mammalian skull: fossils, monotremes and therians revisited". Journal of Mammalian Evolution. 25 (3): 301–313. doi:10.1007/s10914-017-9388-7.
- ^ Mathias M. Pires; Brian D. Rankin; Daniele Silvestro; Tiago B. Quental (2018). "Diversification dynamics of mammalian clades during the K–Pg mass extinction". Biology Letters. 14 (9): 20180458. doi:10.1098/rsbl.2018.0458.
- ^ Stephanie M. Smith; Courtney J. Sprain; William A. Clemens; Donald L. Lofgren; Paul R. Renne; Gregory P. Wilson (2018). "Early mammalian recovery after the end-Cretaceous mass extinction: A high-resolution view from McGuire Creek area, Montana, USA". GSA Bulletin. in press. doi:10.1130/B31926.1.
- ^ Felisa A. Smith; Rosemary E. Elliott Smith; S. Kathleen Lyons; Jonathan L. Payne (2018). "Body size downgrading of mammals over the late Quaternary". Science. 360 (6386): 310–313. doi:10.1126/science.aao5987. PMID 29674591.
- ^ Miranta Kouvari; Alexandra A.E. van der Geer (2018). "Biogeography of extinction: The demise of insular mammals from the Late Pleistocene till today". Palaeogeography, Palaeoclimatology, Palaeoecology. 505: 295–304. doi:10.1016/j.palaeo.2018.06.008.
- ^ Adrián Castro-Insua; Carola Gómez-Rodríguez; John J. Wiens; Andrés Baselga (2018). "Climatic niche divergence drives patterns of diversification and richness among mammal families". Scientific Reports. 8: Article number 8781. doi:10.1038/s41598-018-27068-y. PMC 5993713. PMID 29884843.
- ^ Julia V. Tejada-Lara; Bruce J. MacFadden; Lizette Bermudez; Gianmarco Rojas; Rodolfo Salas-Gismondi; John J. Flynn (2018). "Body mass predicts isotope enrichment in herbivorous mammals". Proceedings of the Royal Society B: Biological Sciences. 285 (1881): 20181020. doi:10.1098/rspb.2018.1020. PMC 6030519. PMID 30051854.
- ^ Jiekun He; Holger Kreft; Siliang Lin; Yang Xu; Haisheng Jiang (2018). "Cenozoic evolution of beta diversity and a Pleistocene emergence for modern mammal faunas in China". Global Ecology and Biogeography. in press. doi:10.1111/geb.12800.
- ^ C. Verity Bennett; Paul Upchurch; Francisco J. Goin; Anjali Goswami (2018). "Deep time diversity of metatherian mammals: implications for evolutionary history and fossil-record quality". Paleobiology. 44 (2): 171–198. doi:10.1017/pab.2017.34.
- ^ Darin A. Croft; Russell K. Engelman; Tatiana Dolgushina; Gina Wesley (2018). "Diversity and disparity of sparassodonts (Metatheria) reveal non-analogue nature of ancient South American mammalian carnivore guilds". Proceedings of the Royal Society B: Biological Sciences. 285 (1870): 20172012. doi:10.1098/rspb.2017.2012. PMC 5784193. PMID 29298933.
- ^ Christian de Muizon; Sandrine Ladevèze; Charlène Selva; Robin Vignaud; Florent Goussard (2018). "Allqokirus australis (Sparassodonta, Metatheria) from the early Palaeocene of Tiupampa (Bolivia) and the rise of the metatherian carnivorous radiation in South America". Geodiversitas. 40 (16): 363–459. doi:10.5252/geodiversitas2018v40a16.
- ^ Lauren C. White; Frédérik Saltré; Corey J. A. Bradshaw; Jeremy J. Austin (2018). "High-quality fossil dates support a synchronous, Late Holocene extinction of devils and thylacines in mainland Australia". Biology Letters. 14 (1): 20170642. doi:10.1098/rsbl.2017.0642. PMC 5803592. PMID 29343562.
- ^ Lauren C. White; Kieren J. Mitchell; Jeremy J. Austin (2018). "Ancient mitochondrial genomes reveal the demographic history and phylogeography of the extinct, enigmatic thylacine (Thylacinus cynocephalus)". Journal of Biogeography. 45 (1): 1–13. doi:10.1111/jbi.13101.
- ^ Anna Brüniche–Olsen; Menna E. Jones; Christopher P. Burridge; Elizabeth P. Murchison; Barbara R. Holland; Jeremy J. Austin (2018). "Ancient DNA tracks the mainland extinction and island survival of the Tasmanian devil". Journal of Biogeography. 45 (5): 963–976. doi:10.1111/jbi.13214.
- ^ Wendy den Boer; Benjamin P. Kear (2018). "Is the fossil rat-kangaroo Palaeopotorous priscus the most basally branching stem macropodiform?". Journal of Vertebrate Paleontology. 38 (2): e1428196. doi:10.1080/02724634.2017.1428196.
- ^ Kaylene Butler; Kenny J. Travouillon; Gilbert J. Price; Michael Archer; Suzanne J. Hand (2018). "Revision of Oligo-Miocene kangaroos, Ganawamaya and Nambaroo (Marsupialia: Macropodiformes, Balbaridae)". Palaeontologia Electronica. 21 (1): Article number 21.1.8A. doi:10.26879/747.
- ^ Russell K. Engelman; Federico Anaya; Darin A. Croft (2018). "Australogale leptognathus, gen. et sp. nov., a second species of small sparassodont (Mammalia: Metatheria) from the middle Miocene locality of Quebrada Honda, Bolivia". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-018-9443-z.
- ^ Leonardo M. Carneiro; Édison V. Oliveira; Francisco J. Goin (2018). "Austropediomys marshalli gen. et sp. nov., a new Pediomyoidea (Mammalia, Metatheria) from the Paleogene of Brazil: paleobiogeographic implications". Revista Brasileira de Paleontologia. 21 (2): 120–131. doi:10.4072/rbp.2018.2.03.
- ^ Laura Chornogubsky; A. Natalia Zimicz; Francisco J. Goin; Juan C. Fernicola; Patricio Payrola; Magalí Cárdenas (2018). "New Palaeogene metatherians from the Quebrada de Los Colorados Formation at Los Cardones National Park (Salta Province, Argentina)". Journal of Systematic Palaeontology. Online edition. doi:10.1080/14772019.2017.1417333.
- ^ a b Joshua E. Cohen (2018). "Earliest Divergence of Stagodontid (Mammalia: Marsupialiformes) Feeding Strategies from the Late Cretaceous (Turonian) of North America". Journal of Mammalian Evolution. 25 (2): 165–177. doi:10.1007/s10914-017-9382-0.
- ^ William W. Korth (2018). "Review of the marsupials (Mammalia: Metatheria) from the late Paleogene (Chadronian–Arikareean: late Eocene–late Oligocene) of North America". PalZ. 92 (3): 499–523. doi:10.1007/s12542-017-0396-y.
- ^ Michael Archer; Pippa Binfield; Suzanne J. Hand; Karen H. Black; Phillip Creaser; Troy J. Myers; Anna K. Gillespie; Derrick A. Arena; John Scanlon; Neville Pledge; Jenni Thurmer (2018). "Miminipossum notioplanetes, a Miocene forest-dwelling phalangeridan (Marsupialia; Diprotodontia) from northern and central Australia". Palaeontologia Electronica. 21 (1): Article number 21.1.2A. doi:10.26879/757.
- ^ Kenny J. Travouillon; Matthew J. Phillips (2018). "Total evidence analysis of the phylogenetic relationships of bandicoots and bilbies (Marsupialia: Peramelemorphia): reassessment of two species and description of a new species". Zootaxa. 4378 (2): 224–256. doi:10.11646/zootaxa.4378.2.3. PMID 29690027.
- ^ Francisco J. Goin; Emma C. Vieytes; Javier N. Gelfo; Laura Chornogubsky; Ana N. Zimicz; Marcelo A. Reguero (2018). "New metatherian mammal from the early Eocene of Antarctica". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-018-9449-6.
- ^ Philippa Brewer; Michael Archer; Suzanne Hand; Gilbert J. Price (2018). "A new species of Miocene wombat (Marsupialia, Vombatiformes) from Riversleigh, Queensland, Australia, and implications for the evolutionary history of the Vombatidae". Palaeontologia Electronica. 21 (2): Article number 21.2.27A. doi:10.26879/870.
- ^ Leonardo M. Carneiro (2018). "A new species of Varalphadon (Mammalia, Metatheria, Sparassodonta) from the upper Cenomanian of southern Utah, North America: Phylogenetic and biogeographic insights". Cretaceous Research. 84: 88–96. doi:10.1016/j.cretres.2017.11.004.
- ^ William Gearty; Craig R. McClain; Jonathan L. Payne (2018). "Energetic tradeoffs control the size distribution of aquatic mammals". Proceedings of the National Academy of Sciences of the United States of America. 115 (16): 4194–4199. doi:10.1073/pnas.1712629115. PMC 5910812. PMID 29581289.
- ^ María Cristina Cardonatto; Ricardo Néstor Melchor (2018). "Large mammal burrows in late Miocene calcic paleosols from central Argentina: paleoenvironment, taphonomy and producers". PeerJ. 6: e4787. doi:10.7717/peerj.4787. PMC 5969051. PMID 29844958.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Víctor Adrián Pérez-Crespo; César A. Laurito; Joaquín Arroyo-Cabrales; Ana L. Valerio; Pedro Morales-Puente; Edith Cienfuegos-Alvarado; Francisco J. Otero (2018). "Feeding habits and habitat of herbivorous mammals from the Early–Late Hemphillian (Miocene) of Costa Rica". Acta Palaeontologica Polonica. in press. doi:10.4202/app.00517.2018.
- ^ Ferhat Kaya; Faysal Bibi; Indrė Žliobaitė; Jussi T. Eronen; Tang Hui; Mikael Fortelius (2018). "The rise and fall of the Old World savannah fauna and the origins of the African savannah biome". Nature Ecology & Evolution. 2 (2): 241–246. doi:10.1038/s41559-017-0414-1. PMID 29292396.
- ^ Juan L. Cantalapiedra; M. Soledad Domingo; Laura Domingo (2018). "Multi-scale interplays of biotic and abiotic drivers shape mammalian sub-continental diversity over millions of years". Scientific Reports. 8: Article number 13413. doi:10.1038/s41598-018-31699-6. PMC 6128930. PMID 30194335.
- ^ Daniel De Miguel; Beatriz Azanza; Jorge Morales (2018). "Regional impacts of global climate change: a local humid phase in central Iberia in a late Miocene drying world". Palaeontology. in press. doi:10.1111/pala.12382.
- ^ J. Tyler Faith (2018). "Paleodietary change and its implications for aridity indices derived from δ18O of herbivore tooth enamel". Palaeogeography, Palaeoclimatology, Palaeoecology. 490: 571–578. doi:10.1016/j.palaeo.2017.11.045.
- ^ Scott A. Blumenthal; Naomi E. Levin; Francis H. Brown; Jean-Philip Brugal; Kendra L. Chritz; Thure E. Cerling (2018). "Diet and evaporation sensitivity in African ungulates: A comment on Faith (2018)". Palaeogeography, Palaeoclimatology, Palaeoecology. 506: 250–251. doi:10.1016/j.palaeo.2018.02.022.
- ^ J. Tyler Faith (2018). "We need to critically evaluate our assumptions: Reply to Blumenthal et al. (2018)". Palaeogeography, Palaeoclimatology, Palaeoecology. 506: 252–253. doi:10.1016/j.palaeo.2018.02.023.
- ^ Susanne Cote; John Kingston; Alan Deino; Alisa Winkler; Robert Kityo; Laura MacLatchy (2018). "Evidence for rapid faunal change in the early Miocene of East Africa based on revised biostratigraphic and radiometric dating of Bukwa, Uganda". Journal of Human Evolution. 116: 95–107. doi:10.1016/j.jhevol.2017.12.001. PMID 29477184.
- ^ Andrew Du; Zeresenay Alemseged (2018). "Diversity analysis of Plio-Pleistocene large mammal communities in the Omo-Turkana Basin, eastern Africa". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2018.07.004. PMID 30153945.
- ^ Justin W. Adams (2018). "Fossil mammals from the Gondolin Dump A ex situ hominin deposits, South Africa". PeerJ. 6: e5393. doi:10.7717/peerj.5393. PMC 6084286. PMID 30123713.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Kevin T. Uno; Florent Rivals; Faysal Bibi; Michael Pante; Jackson Njau; Ignacio de la Torre (2018). "Large mammal diets and paleoecology across the Oldowan–Acheulean transition at Olduvai Gorge, Tanzania from stable isotope and tooth wear analyses". Journal of Human Evolution. 120: 76–91. doi:10.1016/j.jhevol.2018.01.002. PMID 29752005.
- ^ Florent Rivals; Kevin T. Uno; Faysal Bibi; Michael C. Pante; Jackson Njau; Ignacio de la Torre (2018). "Dietary traits of the ungulates from the HWK EE site at Olduvai Gorge (Tanzania): Diachronic changes and seasonality". Journal of Human Evolution. 120: 203–214. doi:10.1016/j.jhevol.2017.08.011. PMID 28870375.
- ^ a b Faysal Bibi; Michael Pante; Antoine Souron; Kathlyn Stewart; Sara Varela; Lars Werdelin; Jean-Renaud Boisserie; Mikael Fortelius; Leslea Hlusko; Jackson Njau; Ignacio de la Torre (2018). "Paleoecology of the Serengeti during the Oldowan-Acheulean transition at Olduvai Gorge, Tanzania: The mammal and fish evidence". Journal of Human Evolution. 120: 48–75. doi:10.1016/j.jhevol.2017.10.009. PMID 29191415.
- ^ Mathias M. Pires; Paulo R. Guimarães; Mauro Galetti; Pedro Jordano (2018). "Pleistocene megafaunal extinctions and the functional loss of long-distance seed-dispersal services". Ecography. 41 (1): 153–163. doi:10.1111/ecog.03163.
- ^ Flavia Strani; Daniel DeMiguel; Fabio Bona; Raffaele Sardella; Italo Biddittu; Luciano Bruni; Adelaide De Castro; Francesco Guadagnoli; Luca Bellucci (2018). "Ungulate dietary adaptations and palaeoecology of the Middle Pleistocene site of Fontana Ranuccio (Anagni, Central Italy)". Palaeogeography, Palaeoclimatology, Palaeoecology. 496: 238–247. doi:10.1016/j.palaeo.2018.01.041.
- ^ Flavia Strani; Daniel DeMiguel; Luca Bellucci; Raffaele Sardella (2018). "Dietary response of early Pleistocene ungulate communities to the climate oscillations of the Gelasian/Calabrian transition in Central Italy". Palaeogeography, Palaeoclimatology, Palaeoecology. 499: 102–111. doi:10.1016/j.palaeo.2018.03.021.
- ^ Jesús Rodríguez; Ana Mateos (2018). "Carrying capacity, carnivoran richness and hominin survival in Europe". Journal of Human Evolution. 118: 72–88. doi:10.1016/j.jhevol.2018.01.004. PMID 29606204.
- ^ Zhou Xinying; Yang Jilong; Wang Shiqi; Xiao Guoqiao; Zhao Keliang; Zheng Yan; Shen Hui; Li Xiaoqiang (2018). "Vegetation change and evolutionary response of large mammal fauna during the Mid-Pleistocene Transition in temperate northern East Asia". Palaeogeography, Palaeoclimatology, Palaeoecology. 505: 287–294. doi:10.1016/j.palaeo.2018.06.007.
- ^ Dan Zhu; Philippe Ciais; Jinfeng Chang; Gerhard Krinner; Shushi Peng; Nicolas Viovy; Josep Peñuelas; Sergey Zimov (2018). "The large mean body size of mammalian herbivores explains the productivity paradox during the Last Glacial Maximum". Nature Ecology & Evolution. 2 (4): 640–649. doi:10.1038/s41559-018-0481-y. PMC 5868731. PMID 29483680.
- ^ F. Carotenuto; M. Di Febbraro; M. Melchionna; A. Mondanaro; S. Castiglione; C. Serio; L.Rook; A. Loy; M.S. Lima-Ribeiro; J.A.F. Diniz-Filho; P. Raia (2018). "The well-behaved killer: Late Pleistocene humans in Eurasia were significantly associated with living megafauna only". Palaeogeography, Palaeoclimatology, Palaeoecology. 500: 24–32. doi:10.1016/j.palaeo.2018.03.036.
- ^ Yahui Qiu; Hong Ao; Yunxiang Zhang; Peixian Shu; Yongxiang Li; Xingwen Li; Peng Zhang (2018). "Magnetostratigraphic dating of the Linyi Fauna and implications for sequencing the mammalian faunas on the Chinese Loess Plateau". Quaternary Research. 89 (3): 629–644. doi:10.1017/qua.2017.83.
- ^ Alexandra A. E. van der Geer; George A. Lyras; Philipp Mitteroecker; Ross D. E. MacPhee (2018). "From Jumbo to Dumbo: cranial shape changes in elephants and hippos during phyletic dwarfing". Evolutionary Biology. 45 (3): 303–317. doi:10.1007/s11692-018-9451-1.
- ^ Leonardo S. Avilla; Helena Machado; Herminio I. De Araújo-Júnior; Dimila Mothe; Alline Rotti; Karoliny De Oliveira-Nascimento; Victoria Maldonado; Ana M. Graciano Figueiredo; Angela Kinoshita; Oswaldo Baffa (2018). "Pleistocene Equus (Equidae: Mammalia) from northern Brazil: evidence of scavenger behavior by ursids on South American horses". Ameghiniana. in press. doi:10.5710/AMGH.05.07.2018.3069.
- ^ Luciano Varela; P. Sebastián Tambusso; Santiago J. Patiño; Mariana Di Giacomo; Richard A. Fariña (2018). "Potential distribution of fossil xenarthrans in South America during the late Pleistocene: co-pccurrence and provincialism". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9406-9.
- ^ Alessandro Marques de Oliveira; Charles Morphy D. Santos (2018). "Functional morphology and paleoecology of Pilosa (Xenarthra, Mammalia) based on a two‐dimensional geometric morphometrics study of the humerus". Journal of Morphology. in press. doi:10.1002/jmor.20882. PMID 30105869.
- ^ Daniela C. Kalthoff; Jeremy L. Green (2018). "Feeding ecology in Oligocene mylodontoid sloths (Mammalia, Xenarthra) as revealed by orthodentine microwear analysis". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9405-x.
- ^ Alberto Boscaini; Dawid A. Iurino; Guillaume Billet; Lionel Hautier; Raffaele Sardella; German Tirao; Timothy J. Gaudin; François Pujos (2018). "Phylogenetic and functional implications of the ear region anatomy of Glossotherium robustum (Xenarthra, Mylodontidae) from the Late Pleistocene of Argentina". The Science of Nature. 105 (3–4): Article 28. doi:10.1007/s00114-018-1548-y. PMID 29589123.
- ^ Alberto Boscaini; Dawid A. Iurino; Raffaele Sardella; German Tirao; Timothy J. Gaudin; François Pujos (2018). "Digital cranial endocasts of the extinct sloth Glossotherium robustum (Xenarthra, Mylodontidae) from the late Pleistocene of Argentina: description and comparison with the extant sloths". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-018-9441-1.
- ^ Alfredo A. Carlini; Diego Brandoni; Rodolfo Sánchez; Marcelo R. Sánchez-Villagra (2018). "A new Megatheriinae skull (Xenarthra, Tardigrada) from the Pliocene of Northern Venezuela – implications for a giant sloth dispersal to Central and North America". Palaeontologia Electronica. 21 (2): Article number 21.2.16A. doi:10.26879/771.
- ^ Néstor Toledo; Gerardo De Iuliis; Sergio F. Vizcaíno; M. Susana Bargo (2018). "The concept of a pedolateral pes revisited: the giant sloths Megatherium and Eremotherium (Xenarthra, Folivora, Megatheriinae) as a case study". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9410-0.
- ^ Diego Brandoni; Alfredo A. Carlini; Federico Anaya; Phil Gans; Darin A. Croft (2018). "New remains of Megathericulus patagonicus Ameghino, 1904 (Xenarthra, Tardigrada) from the Serravallian (middle Miocene) of Bolivia; chronological and biogeographical implications". Journal of Mammalian Evolution. 25 (3): 327–337. doi:10.1007/s10914-017-9384-y.
- ^ Federico L. Agnolin; Nicolás R. Chimento; Diego Brandoni; Daniel Boh; Denise H. Campo; Mariano Magnussen; Francisco De Cianni (2018). "New Pleistocene remains of Megatherium filholi Moreno, 1888 (Mammalia, Xenarthra) from the Pampean Region: Implications for the diversity of Megatheriinae of the Quaternary of South America". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 289 (3): 339–348. doi:10.1127/njgpa/2018/0777.
- ^ Eli Amson; Guillaume Billet; Christian de Muizon (2018). "Evolutionary adaptation to aquatic lifestyle in extinct sloths can lead to systemic alteration of bone structure". Proceedings of the Royal Society B: Biological Sciences. 285 (1878): 20180270. doi:10.1098/rspb.2018.0270. PMC 5966604. PMID 29743254.
- ^ Frédéric Delsuc; Melanie Kuch; Gillian C. Gibb; Jonathan Hughes; Paul Szpak; John Southon; Jacob Enk; Ana T. Duggan; Hendrik N. Poinar (2018). "Resolving the phylogenetic position of Darwin's extinct ground sloth (Mylodon darwinii) using mitogenomic and nuclear exon data". Proceedings of the Royal Society B: Biological Sciences. 285 (1878): 20180214. doi:10.1098/rspb.2018.0214. PMC 5966596. PMID 29769358.
- ^ Esteban Soibelzon (2018). "Using paleoclimate and the fossil record to explain past and present distributions of armadillos (Xenarthra, Dasypodidae)". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9395-8.
- ^ Carlos A. Luna; Ignacio A. Cerda; Alfredo E. Zurita; Romina Gonzalez; M. Cecilia Prieto; Dimila Mothé; Leonardo S. Avilla (2018). "Distinguishing Quaternary glyptodontine cingulates in South America: How informative are juvenile specimens?". Acta Palaeontologica Polonica. 63 (1): 159–170. doi:10.4202/app.00409.2017.
- ^ Pablo Toriño; Daniel Perea (2018). "New contributions to the systematics of the "Plohophorini" (Mammalia, Cingulata, Glyptodontidae) from Uruguay". Journal of South American Earth Sciences. 86: 410–430. doi:10.1016/j.jsames.2018.07.006.
- ^ Alfredo Eduardo Zurita; David D. Gillette; Francisco Cuadrelli; Alfredo Armando Carlini (2018). "A tale of two clades: Comparative study of Glyptodon Owen and Glyptotherium Osborn (Xenarthra, Cingulata, Glyptodontidae)". Geobios. 51 (3): 247–258. doi:10.1016/j.geobios.2018.04.004.
- ^ Martín Zamorano; Gustavo Juan Scillato-Yané; Esteban Soibelzon; Leopoldo Héctor Soibelzon; Ricardo Bonini; Sergio Gabriel Rodriguez (2018). "Hyoid apparatus of Panochthus sp. (Xenarthra; Glyptodontidae) from the Late Pleistocene of the Pampean Region (Argentina). Comparative description and muscle reconstruction". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 288 (2): 205–219. doi:10.1127/njgpa/2018/0733.
- ^ Juan C. Fernicola; Andrés Rinderknecht; Washington Jones; Sergio F. Vizcaíno; Kleberson Propino (2018). "A new species of Neoglyptatelus (Mammalia, Xenarthra, Cingulata) from the late Miocene of Uruguay provides new insights on the evolution of the dorsal armor in cingulates". Ameghiniana. 55 (3): 233–252. doi:10.5710/AMGH.02.12.2017.3150.
- ^ a b Ascanio D. Rincón; Andrés Solórzano; H. Gregory McDonald; Marisol Montellano-Ballesteros (2018). "Two new megalonychid sloths (Mammalia: Xenarthra) from the Urumaco Formation (late Miocene), and their phylogenetic affinities". Journal of Systematic Palaeontology. Online edition. doi:10.1080/14772019.2018.1427639.
- ^ Sarah R. Stinnesbeck; Eberhard Frey; Wolfgang Stinnesbeck (2018). "New insights on the paleogeographic distribution of the Late Pleistocene ground sloth genus Xibalbaonyx along the Mesoamerican Corridor". Journal of South American Earth Sciences. 85: 108–120. doi:10.1016/j.jsames.2018.05.004.
- ^ Rodolphe Tabuce (2018). "New remains of Chambius kasserinensis from the Eocene of Tunisia and evaluation of proposed affinities for Macroscelidea (Mammalia, Afrotheria)". Historical Biology: An International Journal of Paleobiology. 30 (1–2): 251–266. doi:10.1080/08912963.2017.1297433.
- ^ Matthew J. Mason; Nigel C. Bennett; Martin Pickford (2018). "The middle and inner ears of the Palaeogene golden mole Namachloris: A comparison with extant species". Journal of Morphology. 279 (3): 375–395. doi:10.1002/jmor.20779. PMID 29205455.
- ^ Pavel Gol’din; Oleksandr M. Kovalchuk; Tatiana Krakhmalnaya (2018). "The first record of Sirenia (Mammalia) from the early Oligocene of the Paratethys". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1454444.
- ^ Daryl P. Domning (2018). "Fossil Sirenia (Mammalia) of the Miocene Chesapeake Group, Eastern United States". Smithsonian Contributions to Paleobiology. 100: 241–265. doi:10.5479/si.1943-6688.100.
- ^ Advait M. Jukar; S. Kathleen Lyons; Mark D. Uhen (2018). "A cranial correlate of body mass in proboscideans". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlx108.
- ^ George E. Konidaris; George D. Koufos (2018). "Late Miocene proboscideans from Samos Island (Greece) revisited: new specimens from old collections". PalZ. in press. doi:10.1007/s12542-018-0432-6.
- ^ William J. Sanders (2018). "Horizontal tooth displacement and premolar occurrence in elephants and other elephantiform proboscideans". Historical Biology: An International Journal of Paleobiology. 30 (1–2): 137–156. doi:10.1080/08912963.2017.1297436.
- ^ Yan Wu; Tao Deng; Yaowu Hu; Jiao Ma; Xinying Zhou; Limi Mao; Hanwen Zhang; Jie Ye; Shi-Qi Wang (2018). "A grazing Gomphotherium in Middle Miocene Central Asia, 10 million years prior to the origin of the Elephantidae". Scientific Reports. 8: Article number 7640. doi:10.1038/s41598-018-25909-4. PMC 5956065. PMID 29769581.
- ^ Dimila Mothé; Marco P. Ferretti; Leonardo S. Avilla (2018). "Running Over the Same Old Ground: Stegomastodon Never Roamed South America". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9392-y.
- ^ Erwin González-Guarda; Alia Petermann-Pichincura; Carlos Tornero; Laura Domingo; Jordi Agustí; Mario Pino; Ana M. Abarzúa; José M. Capriles; Natalia A. Villavicencio; Rafael Labarca; Violeta Tolorza; Paloma Sevilla; Florent Rivals (2018). "Multiproxy evidence for leaf-browsing and closed habitats in extinct proboscideans (Mammalia, Proboscidea) from Central Chile". Proceedings of the National Academy of Sciences of the United States of America. 115 (37): 9258–9263. doi:10.1073/pnas.1804642115. PMC 6140480. PMID 30150377.
- ^ Gregory James Smith; Larisa R.G. Desantis (2018). "Dietary ecology of Pleistocene mammoths and mastodons as inferred from dental microwear textures". Palaeogeography, Palaeoclimatology, Palaeoecology. 492: 10–25. doi:10.1016/j.palaeo.2017.11.024.
- ^ Lee Koren; Devorah Matas; Patrícia Pečnerová; Love Dalén; Alexei Tikhonov; M. Thomas P. Gilbert; Katherine E. Wynne‐Edwards; Eli Geffen (2018). "Testosterone in ancient hair from an extinct species". Palaeontology. in press. doi:10.1111/pala.12391.
- ^ Adam Nadachowski; Grzegorz Lipecki; Mateusz Baca; Michał Żmihorski; Jarosław Wilczyński (2018). "Impact of climate and humans on the range dynamics of the woolly mammoth (Mammuthus primigenius) in Europe during MIS 2". Quaternary Research. in press. doi:10.1017/qua.2018.54.
- ^ Gary Haynes; Janis Klimowicz; Piotr Wojtal (2018). "A comparative study of woolly mammoths from the Gravettian site Kraków Spadzista (Poland), based on estimated shoulder heights, demography, and life conditions". Quaternary Research. in press. doi:10.1017/qua.2018.60.
- ^ Eleftheria Palkopoulou; Mark Lipson; Swapan Mallick; Svend Nielsen; Nadin Rohland; Sina Baleka; Emil Karpinski; Atma M. Ivancevic; Thu-Hien To; R. Daniel Kortschak; Joy M. Raison; Zhipeng Qu; Tat-Jun Chin; Kurt W. Alt; Stefan Claesson; Love Dalén; Ross D. E. MacPhee; Harald Meller; Alfred L. Roca; Oliver A. Ryder; David Heiman; Sarah Young; Matthew Breen; Christina Williams; Bronwen L. Aken; Magali Ruffier; Elinor Karlsson; Jeremy Johnson; Federica Di Palma; Jessica Alfoldi; David L. Adelson; Thomas Mailund; Kasper Munch; Kerstin Lindblad-Toh; Michael Hofreiter; Hendrik Poinar; David Reich (2018). "A comprehensive genomic history of extinct and living elephants". Proceedings of the National Academy of Sciences of the United States of America. 115 (11): E2566–E2574. doi:10.1073/pnas.1720554115. PMC 5856550. PMID 29483247.
- ^ Martin Pickford (2018). "Tenrecoid mandible from Elisabethfeld (Early Miocene) Namibia" (PDF). Communications of the Geological Survey of Namibia. 18: 87–92.
- ^ Ester Díaz-Berenguer; Ainara Badiola; Miguel Moreno-Azanza; José Ignacio Canudo (2018). "First adequately-known quadrupedal sirenian from Eurasia (Eocene, Bay of Biscay, Huesca, northeastern Spain)". Scientific Reports. 8: Article number 5127. doi:10.1038/s41598-018-23355-w. PMC 5865116. PMID 29572454.
- ^ Emmanuel Gheerbrant; Arnaud Schmitt; László Kocsis (2018). "Early African fossils elucidate the origin of embrithopod mammals". Current Biology. 28 (13): 2167–2173.e2. doi:10.1016/j.cub.2018.05.032. PMID 30008332.
- ^ Lucila Inés Amador; Norberto Pedro Giannini; Nancy B. Simmons; Virginia Abdala (2018). "Morphology and evolution of sesamoid elements in bats (Mammalia: Chiroptera)". American Museum Novitates. 3905: 1–40. doi:10.1206/3905.1. hdl:2246/6905.
- ^ Valéria da C. Tavares; Omar M. Warsi; Fernando Balseiro; Carlos A. Mancina; Liliana M. Dávalos (2018). "Out of the Antilles: Fossil phylogenies support reverse colonization of bats to South America". Journal of Biogeography. 45 (4): 859–873. doi:10.1111/jbi.13175.
- ^ Matthew F. Jones; Pauline M. C. Coster; Alexis Licht; Grégoire Métais; Faruk Ocakoğlu; Michael H. Taylor; K. Christopher Beard (2018). "A stem bat (Chiroptera: Palaeochiropterygidae) from the late middle Eocene of northern Anatolia: implications for the dispersal and palaeobiology of early bats". Palaeobiodiversity and Palaeoenvironments. Online edition. doi:10.1007/s12549-018-0338-z.
- ^ a b c d e Gregg F. Gunnell; Fredrick K. Manthi (2018). "Pliocene bats (Chiroptera) from Kanapoi, Turkana Basin, Kenya". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2018.01.001. PMID 29628118.
- ^ Lars W. Van Den Hoek Ostende; Delia Van Oijen; Stephen K. Donovan (2018). "A new bat record for the late Pleistocene of Jamaica: Pteronotus trevorjacksoni from the Red Hills Road Cave" (PDF). Caribbean Journal of Earth Science. 50: 31–35.
- ^ Suzanne J. Hand; Robin M. D. Beck; Michael Archer; Nancy B. Simmons; Gregg F. Gunnell; R. Paul Scofield; Alan J. D. Tennyson; Vanesa L. De Pietri; Steven W. Salisbury; Trevor H. Worthy (2018). "A new, large-bodied omnivorous bat (Noctilionoidea: Mystacinidae) reveals lost morphological and ecological diversity since the Miocene in New Zealand". Scientific Reports. 8: Article number 235. doi:10.1038/s41598-017-18403-w. PMC 5762892. PMID 29321543.
- ^ Christine Böhmer; Gertrud E. Rössner (2018). "Dental paleopathology in fossil rhinoceroses: etiology and implications". Journal of Zoology. 304 (1): 3–12. doi:10.1111/jzo.12518.
- ^ A. V. Shpansky; G. G. Boeskorov (2018). "Northernmost record of the Merck's rhinoceros Stephanorhinus kirchbergensis (Jäger) and taxonomic status of Coelodonta jacuticus Russanov (Mammalia, Rhinocerotidae)". Paleontological Journal. 52 (4): 445–462. doi:10.1134/S003103011804010X.
- ^ Bin Bai; Yuan-Qing Wang; Jin Meng (2018). "Postcranial morphology of Middle Eocene deperetellid Teleolophus (Perissodactyla, Tapiroidea) from Shara Murun region of the Erlian Basin, Nei Mongol, China". Vertebrata PalAsiatica. 56 (3): 193–215. doi:10.19615/j.cnki.1000-3118.171214.
- ^ Nikos Solounias; Melinda Danowitz; Elizabeth Stachtiaris; Abhilasha Khurana; Marwan Araim; Marc Sayegh; Jessica Natale (2018). "The evolution and anatomy of the horse manus with an emphasis on digit reduction". Royal Society Open Science. 5 (1): 171782. doi:10.1098/rsos.171782. PMC 5792948. PMID 29410871.
- ^ Abigail K. Parker; Brianna K. McHorse; Stephanie E. Pierce (2018). "Niche modeling reveals lack of broad-scale habitat partitioning in extinct horses of North America". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2018.07.017.
- ^ Boyang Sun; Xiaoxiao Zhang; Yan Liu; Raymond L. Bernor (2018). "Sivalhippus ptychodus and Sivalhippus platyodus (Perissodactyla, Mammalia) from the Late Miocene of China". Rivista Italiana di Paleontologia e Stratigrafia. 124 (1): 1–22. doi:10.13130/2039-4942/9523.
- ^ M. Soledad Domingo; Enrique Cantero; Isabel García-Real; Manuel J. Chamorro Sancho; David M. Martín Perea; M. Teresa Alberdi; Jorge Morales (2018). "First radiological study of a complete dental ontogeny sequence of an extinct equid: implications for Equidae life history and taphonomy". Scientific Reports. 8: Article number 8507. doi:10.1038/s41598-018-26817-3. PMC 5981301. PMID 29855587.
- ^ Youcef Sam (2018). "Révision des Équidés (Mammalia, Perissodactyla) du site pléistocène moyen du lac Karâr (Tlemcen, Algérie)". Geodiversitas. 40 (8): 171–182. doi:10.5252/geodiversitas2018v40a8.
- ^ Víctor Adrián Pérez-Crespo; José Luis Prado; Maria Teresa Alberdi; Joaquín Arroyo-Cabrales (2018). "Stable isotopes and diets of Pleistocene horses from southern North America and South America: similarities and differences". Palaeobiodiversity and Palaeoenvironments. in press. doi:10.1007/s12549-018-0330-7.
- ^ Michela Leonardi; Francesco Boschin; Konstantinos Giampoudakis; Robert M. Beyer; Mario Krapp; Robin Bendrey; Robert Sommer; Paolo Boscato; Andrea Manica; David Nogues-Bravo; Ludovic Orlando (2018). "Late Quaternary horses in Eurasia in the face of climate and vegetation change". Science Advances. 4 (7): eaar5589. doi:10.1126/sciadv.aar5589. PMC 6059734. PMID 30050986.
- ^ Bin Bai; Yuan-Qing Wang; Zhao-Qun Zhang (2018). "The late Eocene hyracodontid perissodactyl Ardynia from Saint Jacques, Inner Mongolia, China and its implications for the potential Eocene-Oligocene boundary". Palaeoworld. 27 (2): 247–257. doi:10.1016/j.palwor.2017.09.001.
- ^ Dan-Hui Sun; Yu Li; Tao Deng (2018). "A new species of Chilotherium (Perissodactyla, Rhinocerotidae) from the Late Miocene of Qingyang, Gansu, China". Vertebrata PalAsiatica. 56 (3): 216–228. doi:10.19615/j.cnki.1000-3118.180109.
- ^ a b Bin Bai; Yuan-Qing Wang; Jin Meng (2018). "The divergence and dispersal of early perissodactyls as evidenced by early Eocene equids from Asia". Communications Biology. 1: Article number 115. doi:10.1038/s42003-018-0116-5.
- ^ Shuo Li (2018). "A new species of Brontotheriidae from the Middle Eocene of Junggar Basin, Xinjiang, China". Vertebrata PalAsiatica. 56 (1): 25–44. doi:10.19615/j.cnki.1000-3118.170314.
- ^ Hai-Bing Wang; Bin Bai; Jin Meng; Yuan-Qing Wang (2018). "A new species of Forstercooperia (Perissodactyla: Paraceratheriidae) from northern China with a systematic revision of forstercooperiines". American Museum Novitates. 3897: 1–41. doi:10.1206/3897.1.
- ^ Bo-Yang Sun; Xiu-Xi Wang; Min-Xiao Ji; Li-Bo Pang; Qin-Qin Shi; Su-Kuan Hou; Dan-Hui Sun; Shi-Qi Wang (2018). "Miocene mammalian faunas from Wushan, China and their evolutionary, biochronological, and biogeographic significances". Palaeoworld. 27 (2): 258–270. doi:10.1016/j.palwor.2017.08.001.
- ^ Alexander Averianov; Igor Danilov; Wen Chen; Jianhua Jin (2018). "A new brontothere from the Eocene of South China". Acta Palaeontologica Polonica. 63 (1): 189–196. doi:10.4202/app.00431.2017.
- ^ Jérémy Tissier; Damien Becker; Vlad Codrea; Loïc Costeur; Cristina Fărcaş; Alexandru Solomon; Marton Venczel; Olivier Maridet (2018). "New data on Amynodontidae (Mammalia, Perissodactyla) from Eastern Europe: Phylogenetic and palaeobiogeographic implications around the Eocene-Oligocene transition". PLoS ONE. 13 (4): e0193774. doi:10.1371/journal.pone.0193774. PMC 5905962. PMID 29668673.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Raymond L. Bernor; Shiqi Wang; Yan Liu; Yu Chen; Boyang Sun (2018). "Shanxihippus dermatorhinus comb. nov. with comparisons to old world hipparions with specialized nasal apparati". Rivista Italiana di Paleontologia e Stratigrafia. 124 (2): 361–386. doi:10.13130/2039-4942/10202.
- ^ Meaghan M. Emery-Wetherell; Edward Byrd Davis (2018). "Dental measurements do not diagnose modern artiodactyl species: Implications for the systematics of Merycoidodontoidea". Palaeontologia Electronica. 21 (2): Article number 21.2.23A. doi:10.26879/748.
- ^ Pietro Martini; Denis Geraads (2018). "Camelus thomasi Pomel, 1893 from the Pleistocene type-locality Tighennif (Algeria). Comparisons with modern Camelus". Geodiversitas. 40 (5): 115–134. doi:10.5252/geodiversitas2018v40a5.
- ^ Germán Mariano Gasparini; Rodrigo Parisi Dutra; Guillermo N. Lamenza; Eduardo Pedro Tonni; Agustín Ruella (2018). "Parachoerus carlesi (Mammalia, Tayassuidae) in the Late Pleistocene (northern Argentina, South America): paleoecological and palaeobiogeographic considerations". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1418340.
- ^ Jennifer L. Bradham; Larisa R.G. DeSantis; Maria Luisa S.P. Jorge; Alexine Keuroghlian (2018). "Dietary variability of extinct tayassuids and modern white-lipped peccaries (Tayassu pecari) as inferred from dental microwear and stable isotope analysis". Palaeogeography, Palaeoclimatology, Palaeoecology. 499: 93–101. doi:10.1016/j.palaeo.2018.03.020.
- ^ Hailay G. Reda; Ignacio A. Lazagabaster; Yohannes Haile-Selassie (2018). "Newly discovered crania of Nyanzachoerus jaegeri (Tetraconodontinae, Suidae, Mammalia) from the Woranso-Mille (Ethiopia) and reappraisal of its generic status". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9398-5.
- ^ Sukuan Hou; Denise F. Su; Jay Kelley; Tao Deng; Nina G. Jablonski; Lawrence J. Flynn; Xueping Ji; Jiayong Cao; Xin Yang (2018). "New fossil suid specimens from the terminal Miocene hominoid locality of Shuitangba, Zhaotong, Yunnan Province, China". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-018-9431-3.
- ^ Ignacio A. Lazagabaster; Juliet Brophy; Oscar Sanisidro; Silvia Pineda-Munoz; Lee Berger (2018). "A new partial cranium of Metridiochoerus (Suidae, Mammalia) from Malapa, South Africa". Journal of African Earth Sciences. 145: 49–52. doi:10.1016/j.jafrearsci.2018.05.005.
- ^ Olja Toljagić; Kjetil L. Voje; Michael Matschiner; Lee Hsiang Liow; Thomas F. Hansen (2018). "Millions of years behind: Slow adaptation of ruminants to grasslands". Systematic Biology. 67 (1): 145–157. doi:10.1093/sysbio/syx059. PMID 28637223.
- ^ Mariana F. Rossi; Beatriz Mello; Carlos G. Schrago (2018). "Comparative evaluation of macroevolutionary regimes of Ruminantia and selected mammalian lineages". Biological Journal of the Linnean Society. 123 (4): 814–824. doi:10.1093/biolinnean/bly009.
- ^ Bastien Mennecart; Adrien de Perthuis; Gertrud E. Rössner; Jonathan A. Guzmán; Aude de Perthuis; Loïc Costeur (2018). "The first French tragulid skull (Mammalia, Ruminantia, Tragulidae) and associated tragulid remains from the Middle Miocene of Contres (Loir-et-Cher, France)". Comptes Rendus Palevol. 17 (3): 189–200. doi:10.1016/j.crpv.2017.08.004.
- ^ Roman Croitor; Montserrat Sanz; Joan Daura (2018). "The endemic deer Haploidoceros mediterraneus (Bonifay) (Cervidae, Mammalia) from the Late Pleistocene of Cova del Rinoceront (Iberian Peninsula): origin, ecomorphology, and paleobiology". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1499018.
- ^ Alline Rotti; Dimila Mothé; Leonardo dos Santos Avilla; Gina M. Semprebon (2018). "Diet reconstruction for an extinct deer (Cervidae: Cetartiodactyla) from the Quaternary of South America". Palaeogeography, Palaeoclimatology, Palaeoecology. 497: 244–252. doi:10.1016/j.palaeo.2018.02.026.
- ^ Émilie Berlioz; Dimitris S. Kostopoulos; Cécile Blondel; Gildas Merceron (2018). "Feeding ecology of Eucladoceros ctenoides as a proxy to track regional environmental variations in Europe during the early Pleistocene". Comptes Rendus Palevol. 17 (4–5): 320–332. doi:10.1016/j.crpv.2017.07.002.
- ^ Roman Croitor; Theodor Obada (2018). "On the presence of Late Pleistocene wapiti, Cervus canadensis Erxleben, 1777 (Cervidae, Mammalia) in the Palaeolithic site Climăuți II (Moldova)". Contributions to Zoology. 87 (1): 1–10.
- ^ Thekla Pfeiffer-Deml (2018). "The fossil fallow deer Dama geiselana (Cervidae, Mammalia, upgrade to species level) in the context of migration and local extinctions of fallow deer in the Late and Middle Pleistocene in Europe". PalZ. in press. doi:10.1007/s12542-018-0417-5.
- ^ Bastien Mennecart; Daniel Zoboli; Loïc Costeur; Gian Luigi Pillola (2018). "On the systematic position of the oldest insular ruminant Sardomeryx oschiriensis (Mammalia, Ruminantia) and the early evolution of the Giraffomorpha". Journal of Systematic Palaeontology. in press. doi:10.1080/14772019.2018.1472145.
- ^ Israel M. Sánchez; Jorge Morales; Juan López Cantalapiedra; Victoria Quiralte; Martin Pickford (2018). "Propalaeoryx Stromer 1926 (Ruminantia, Pecora, Giraffomorpha) revisited: systematics and phylogeny of an African palaeomerycoid" (PDF). Communications of the Geological Survey of Namibia. 19: 123–131.
- ^ Gildas Merceron; Marc Colyn; Denis Geraads (2018). "Browsing and non-browsing extant and extinct giraffids: Evidence from dental microwear textural analysis". Palaeogeography, Palaeoclimatology, Palaeoecology. 505: 128–139. doi:10.1016/j.palaeo.2018.05.036.
- ^ Charles Helm; Hayley Cawthra; Richard Cowling; Jan De Vynck; Curtis Marean; Richard McCrea; Renee Rust (2018). "Palaeoecology of giraffe tracks in Late Pleistocene aeolianites on the Cape south coast". South African Journal of Science. 114 (1/2): 67–74. doi:10.17159/sajs.2018/20170266.
- ^ Ismael Ferrusquía-Villafranca; Víctor Adrián Pérez-Crespo; José E. Ruiz-González; Enrique Martínez-Hernández; Pedro Morales-Puente (2018). "The diet of Leptomeryx sp. from the Late Eocene Yolomécatl Formation, NW Oaxaca, Sierra Madre del Sur Morphotectonic Province, SE México and its palaeoecological significance". Geological Magazine. 155 (1): 203–208. doi:10.1017/S0016756817000747.
- ^ Cécile Blondel; John Rowan; Gildas Merceron; Faysal Bibi; Enquye Negash; W. Andrew Barr; Jean-Renaud Boisserie (2018). "Feeding ecology of Tragelaphini (Bovidae) from the Shungura Formation, Omo Valley, Ethiopia: Contribution of dental wear analyses". Palaeogeography, Palaeoclimatology, Palaeoecology. 496: 103–120. doi:10.1016/j.palaeo.2018.01.027.
- ^ Yikun Li; Qinqin Shi; Shaokun Chen; Tao Deng (2018). ""Gazella" (Mammalia: Bovidae) from the late Miocene Qingyang area, Gansu, China". Palaeontologia Electronica. 21 (2): Article number 21.2.24A. doi:10.26879/838.
- ^ Michaela Ecker; Julia A. Lee-Thorp (2018). "The dietary ecology of the extinct springbok Antidorcas bondi". Quaternary International. in press. doi:10.1016/j.quaint.2018.09.012.
- ^ Jeff M. Martin; Jim I. Mead; Perry S. Barboza (2018). "Bison body size and climate change". Ecology and Evolution. 8 (9): 4564–4574. doi:10.1002/ece3.4019. PMC 5938452. PMID 29760897.
- ^ Roberto Díaz-Sibaja; Eduardo Jiménez-Hidalgo; Javier Ponce-Saavedra; María Luisa García-Zepeda (2018). "A combined mesowear analysis of Mexican Bison antiquus shows a generalist diet with geographical variation". Journal of Paleontology. in press. doi:10.1017/jpa.2018.19.
- ^ Laurent A. F. Frantz; Anna Rudzinski; Abang Mansyursyah Surya Nugraha; Allowen Evin; James Burton; Ardern Hulme-Beaman; Anna Linderholm; Ross Barnett; Rodrigo Vega; Evan K. Irving-Pease; James Haile; Richard Allen; Kristin Leus; Jill Shephard; Mia Hillyer; Sarah Gillemot; Jeroen van den Hurk; Sharron Ogle; Cristina Atofanei; Mark G. Thomas; Friederike Johansson; Abdul Haris Mustari; John Williams; Kusdiantoro Mohamad; Chandramaya Siska Damayanti; Ita Djuwita Wiryadi; Dagmar Obbles; Stephano Mona; Hally Day; Muhammad Yasin; Stefan Meker; Jimmy A. McGuire; Ben J. Evans; Thomas von Rintelen; Simon Y. W. Ho; Jeremy B. Searle; Andrew C. Kitchener; Alastair A. Macdonald; Darren J. Shaw; Robert Hall; Peter Galbusera; Greger Larson (2018). "Synchronous diversification of Sulawesi's iconic artiodactyls driven by recent geological events". Proceedings of the Royal Society B: Biological Sciences. 285 (1876): 20172566. doi:10.1098/rspb.2017.2566. PMC 5904307. PMID 29643207.
- ^ Stéphane Ducrocq (2018). "Pakkokuhyus and Progenitohyus (Artiodactyla, Mammalia) from the Eocene of Southeast Asia are not Helohyidae: paleobiogeographical implications". PalZ. in press. doi:10.1007/s12542-018-0425-5.
- ^ Bastien Mennecart; Denis Geraads; Nikolai Spassov; Ivan Zagorchev (2018). "Discovery of the oldest European ruminant in the latest Eocene of Bulgaria: Did tectonics influence the diachronic development of the Grande Coupure?". Palaeogeography, Palaeoclimatology, Palaeoecology. 498: 1–8. doi:10.1016/j.palaeo.2018.01.011.
- ^ a b c Alexandra A.E. van der Geer (2018). "Uniformity in variety: Antler morphology and evolution in a predator-free environment". Palaeontologia Electronica. 21 (1): Article number 21.1.9A. doi:10.26879/834.
- ^ Israel M. Sánchez; Jorge Morales; Juan López Cantalapiedra; Victoria Quiralte; Martin Pickford (2018). "Preliminary phylogenetic analysis of the Tragulidae (Mammalia, Cetartiodactyla, Ruminantia) from Arrisdrift: implications for the African Miocene tragulids" (PDF). Communications of the Geological Survey of Namibia. 19: 110–122.
- ^ Su-Kuan Hou; Tao Deng (2018). "A new species of Kubanochoerus (Suidae, Artiodactyla) from the Linxia Basin, Gansu Province, China". Vertebrata PalAsiatica. in press. doi:10.19615/j.cnki.1000-3118.180402.
- ^ Jan van der Made (2018). "The dwarfed "giant deer" Megaloceros matritensis n.sp. from the Middle Pleistocene of Madrid - A descendant of M. savini and contemporary to M. giganteus". Quaternary International. in press. doi:10.1016/j.quaint.2018.06.006.
- ^ Laureline Scherler; Fabrice Lihoreau; Damien Becker (2018). "To split or not to split Anthracotherium? A phylogeny of Anthracotheriinae (Cetartiodactyla: Hippopotamoidea) and its palaeobiogeographical implications". Zoological Journal of the Linnean Society. Online edition. doi:10.1093/zoolinnean/zly052.
- ^ a b Roman Croitor (2018). "A description of two new species of the genus Rucervus (Cervidae, Mammalia) from the Early Pleistocene of Southeast Europe, with comments on hominin and South Asian ruminants dispersals". Quaternary. 1 (2): Article 17. doi:10.3390/quat1020017.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Dimitris S. Kostopoulos; Juliette Soubise (2018). "Palaeoreas, Majoreas, and Stryfnotherium gen. nov. (Mammalia: Artiodactyla: Bovidae) from the Late Miocene of Greece". Annales de Paléontologie. 104 (3): 231–247. doi:10.1016/j.annpal.2018.04.002.
- ^ Ryan M. Bebej; Kathlyn M. Smith (2018). "Lumbar mobility in archaeocetes (Mammalia: Cetacea) and the evolution of aquatic locomotion in the earliest whales". Zoological Journal of the Linnean Society. 182 (3): 695–721. doi:10.1093/zoolinnean/zlx058.
- ^ Mickaël J. Mourlam; Maeva J. Orliac (2018). "Protocetid (Cetacea, Artiodactyla) bullae and petrosals from the middle Eocene locality of Kpogamé, Togo: new insights into the early history of cetacean hearing". Journal of Systematic Palaeontology. 16 (8): 621–644. doi:10.1080/14772019.2017.1328378.
- ^ Carlos Mauricio Peredo; Julio S. Peredo; Nicholas D. Pyenson (2018). "Convergence on dental simplification in the evolution of whales". Paleobiology. 44 (3): 434–443. doi:10.1017/pab.2018.9.
- ^ Morgan Churchill; Jonathan H. Geisler; Brian L. Beatty; Anjali Goswami (2018). "Evolution of cranial telescoping in echolocating whales (Cetacea: Odontoceti)". Evolution. 72 (5): 1092–1108. doi:10.1111/evo.13480. PMID 29624668.
- ^ Loïc Costeur; Camille Grohé; Gabriel Aguirre-Fernández; Eric Ekdale; Georg Schulz; Bert Müller; Bastien Mennecart (2018). "The bony labyrinth of toothed whales reflects both phylogeny and habitat preferences". Scientific Reports. 8: Article number 7841. doi:10.1038/s41598-018-26094-0. PMC 5959912. PMID 29777194.
- ^ Robert W. Boessenecker (2018). "Problematic archaic whale Phococetus (Cetacea: Odontoceti) from the Lee Creek Mine, North Carolina, USA, with comments on geochronology of the Pungo River Formation". PalZ. in press. doi:10.1007/s12542-018-0419-3.
- ^ Mariana Viglino; Mónica R. Buono; R. Ewan Fordyce; José I. Cuitiño; Erich M. G. Fitzgerald (2018). "Anatomy and phylogeny of the large shark-toothed dolphin Phoberodon arctirostris Cabrera, 1926 (Cetacea: Odontoceti) from the early Miocene of Patagonia (Argentina)". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zly053.
- ^ K. N. Gilbert; L. C. Ivany; M. D. Uhen (2018). "Living fast and dying young: Life history and ecology of a Neogene sperm whale". Journal of Vertebrate Paleontology. 38 (2): e1439038. doi:10.1080/02724634.2018.1439038.
- ^ Benjamin Ramassamy; Olivier Lambert; Alberto Collareta; Mario Urbina; Giovanni Bianucci (2018). "Description of the skeleton of the fossil beaked whale Messapicetus gregarius: searching potential proxies for deep-diving abilities". Fossil Record. 21 (1): 11–32. doi:10.5194/fr-21-11-2018.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ R. Ewan Fordyce; Felix G. Marx (2018). "Gigantism precedes filter feeding in baleen whale evolution". Current Biology. 28 (10): 1670–1676.e2. doi:10.1016/j.cub.2018.04.027. PMID 29754903.
- ^ Felix G. Marx; Travis Park; Erich M.G. Fitzgerald; Alistair R. Evans (2018). "A Miocene pygmy right whale fossil from Australia". PeerJ. 6: e5025. doi:10.7717/peerj.5025. PMC 6016540. PMID 29942692.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Indira S. Ritsche; Julia M. Fahlke; Frank Wieder; André Hilger; Ingo Manke; Oliver Hampe (2018). "Relationships of cochlear coiling shape and hearing frequencies in cetaceans, and the occurrence of infrasonic hearing in Miocene Mysticeti". Fossil Record. 21 (1): 33–45. doi:10.5194/fr-21-33-2018.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Alberto Collareta; Eleonora Regattieri; Giovanni Zanchetta; Olivier Lambert; Rita Catanzariti; Mark Bosselaers; Pablo Covelo; Angelo Varola; Giovanni Bianucci (2018). "New insights on ancient cetacean movement patterns from oxygenisotope analyses of a Mediterranean Pleistocene whale barnacle". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 288 (2): 143–159. doi:10.1127/njgpa/2018/0729.
- ^ Mariana Viglino; Mónica R. Buono; Carolina S. Gutstein; Mario A. Cozzuol; José I. Cuitiño (2018). "A new dolphin from the early Miocene of Patagonia, Argentina: Insights into the evolution of Platanistoidea in the Southern Hemisphere". Acta Palaeontologica Polonica. 63 (2): 261–277. doi:10.4202/app.00441.2017.
- ^ Toshiyuki Kimura; Yoshikazu Hasegawa; Naoki Kohno (2018). "A new species of the genus Eschrichtius (Cetacea: Mysticeti) from the Early Pleistocene of Japan". Paleontological Research. 22 (1): 1–19. doi:10.2517/2017PR007.
- ^ Olivier Lambert; Christian de Muizon; Guy Duhamel; Johannes van der Plicht (2018). "Neogene and Quaternary fossil remains of beaked whales (Cetacea, Odontoceti, Ziphiidae) from deep-sea deposits off Crozet and Kerguelen islands, Southern Ocean". Geodiversitas. 40 (6): 135–160. doi:10.5252/geodiversitas2018v40a6.
- ^ Olivier Lambert; Camille Auclair; Cirilo Cauxeiro; Michel Lopez (2018). "A close relative of the Amazon river dolphin in marine deposits: a new Iniidae from the late Miocene of Angola". PeerJ. 6: e5556. doi:10.7717/peerj.5556. PMC 6139015. PMID 30225172.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Giovanni Bianucci; Giulia Bosio; Elisa Malinverno; Christian de Muizon; Igor M. Villa; Mario Urbina; Olivier Lambert (2018). "A new large squalodelphinid (Cetacea, Odontoceti) from Peru sheds light on the Early Miocene platanistoid disparity and ecology". Royal Society Open Science. 5 (4): 172302. doi:10.1098/rsos.172302. PMC 5936943. PMID 29765678.
- ^ Carlos Mauricio Peredo; Nicholas D. Pyenson (2018). "Salishicetus meadi, a new aetiocetid from the late Oligocene of Washington State and implications for feeding transitions in early mysticete evolution". Royal Society Open Science. 5 (4): 172336. doi:10.1098/rsos.172336. PMC 5936946. PMID 29765681.
- ^ Yoshihiro Tanaka; Tatsuro Ando; Hiroshi Sawamura (2018). "A new species of Middle Miocene baleen whale from the Nupinai Group, Hikatagawa Formation of Hokkaido, Japan". PeerJ. 6: e4934. doi:10.7717/peerj.4934. PMC 6025157. PMID 29967715.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Atzcalli Ehécatl Hernández Cisneros (2018). "A new group of late Oligocene mysticetes from México". Palaeontologia Electronica. 21 (1): Article number 21.1.7A. doi:10.26879/746.
- ^ Cheng-Hsiu Tsai; R. Ewan Fordyce (2018). "A new archaic baleen whale Toipahautea waitaki (early Late Oligocene, New Zealand) and the origins of crown Mysticeti". Royal Society Open Science. 5 (4): 172453. doi:10.1098/rsos.172453. PMC 5936954. PMID 29765689.
- ^ Carlos Mauricio Peredo; Mark D. Uhen; Margot D. Nelson (2018). "A new kentriodontid (Cetacea: Odontoceti) from the early Miocene Astoria Formation and a revision of the stem delphinidan family Kentriodontidae". Journal of Vertebrate Paleontology. 38 (2): e1411357. doi:10.1080/02724634.2017.1411357.
- ^ Mairin Balisi; Xiaoming Wang; Julia Sankey; Jacob Biewer; Dennis Garber (2018). "Fossil canids from the Mehrten Formation, Late Cenozoic of Northern California". Journal of Vertebrate Paleontology. 38 (1): e1405009. doi:10.1080/02724634.2017.1405009.
- ^ Mairin Balisi; Corinna Casey; Blaire Van Valkenburgh (2018). "Dietary specialization is linked to reduced species durations in North American fossil canids". Royal Society Open Science. 5 (4): 171861. doi:10.1098/rsos.171861. PMC 5936914. PMID 29765649.
- ^ Brian P. Tanis; Larisa R.G. DeSantis; Rebecca C. Terry (2018). "Dental microwear textures across cheek teeth in canids: Implications for dietary studies of extant and extinct canids". Palaeogeography, Palaeoclimatology, Palaeoecology. 508: 129–138. doi:10.1016/j.palaeo.2018.07.028.
- ^ Xiaoming Wang; Stuart C. White; Mairin Balisi; Jacob Biewer; Julia Sankey; Dennis Garber; Z. Jack Tseng (2018). "First bone-cracking dog coprolites provide new insight into bone consumption in Borophagus and their unique ecological niche". eLife. 7: e34773. doi:10.7554/eLife.34773. PMC 5963924. PMID 29785931.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Alexandra A.E. van der Geer; George A. Lyras; Rebekka Volmer (2018). "Insular dwarfism in canids on Java (Indonesia) and its implication for the environment of Homo erectus during the Early and earliest Middle Pleistocene". Palaeogeography, Palaeoclimatology, Palaeoecology. 507: 168–179. doi:10.1016/j.palaeo.2018.07.009.
- ^ Jan Zrzavý; Pavel Duda; Jan Robovský; Isabela Okřinová; Věra Pavelková Řičánková (2018). "Phylogeny of the Caninae (Carnivora): Combining morphology, behaviour, genes and fossils". Zoologica Scripta. 47 (4): 373–389. doi:10.1111/zsc.12293.
- ^ Tom McCann; Irmgard Amaru; Effi-Laura Drews; Thanushika Gunatilake; Christina Johanna Knauf; Friedrich Rick; Darius Roohnikan; Robin Maximilian Schaumann; Simone Tillmann (2018). "The hunter and the hunted – first description of a jackal-like predator and associated bird and gazelle tracks from the Post-Messinian of the Sorbas Basin, SE Spain". Zeitschrift der Deutschen Gesellschaft für Geowissenschaften. 169 (1): 47–71. doi:10.1127/zdgg/2018/0131.
- ^ Qigao Jiangzuo; Jinyi Liu; Jan Wagner; Wei Dong; Jin Chen (2018). "Taxonomical revision of fossil Canis in Middle Pleistocene sites of Zhoukoudian, Beijing, China and a review of fossil records of Canis mosbachensis variabilis in China". Quaternary International. 482: 93–108. doi:10.1016/j.quaint.2018.04.003.
- ^ Susumu Tomiya; Julie A. Meachen (2018). "Postcranial diversity and recent ecomorphic impoverishment of North American gray wolves". Biology Letters. 14 (1): 20170613. doi:10.1098/rsbl.2017.0613. PMC 5803591. PMID 29343558.
- ^ Beniamino Mecozzi; Saverio Bartolini Lucenti (2018). "The Late Pleistocene Canis lupus (Canidae, Mammalia) from Avetrana (Apulia, Italy): reappraisal and new insights on the European glacial wolves". Italian Journal of Geosciences. 137 (1): 138–150. doi:10.3301/IJG.2017.22.
- ^ Máire Ní Leathlobhair; Angela R. Perri; Evan K. Irving-Pease; Kelsey E. Witt; Anna Linderholm; James Haile; Ophelie Lebrasseur; Carly Ameen; Jeffrey Blick; Adam R. Boyko; Selina Brace; Yahaira Nunes Cortes; Susan J. Crockford; Alison Devault; Evangelos A. Dimopoulos; Morley Eldridge; Jacob Enk; Shyam Gopalakrishnan; Kevin Gori; Vaughan Grimes; Eric Guiry; Anders J. Hansen; Ardern Hulme-Beaman; John Johnson; Andrew Kitchen; Aleksei K. Kasparov; Young-Mi Kwon; Pavel A. Nikolskiy; Carlos Peraza Lope; Aurélie Manin; Terrance Martin; Michael Meyer; Kelsey Noack Myers; Mark Omura; Jean-Marie Rouillard; Elena Y. Pavlova; Paul Sciulli; Mikkel-Holger S. Sinding; Andrea Strakova; Varvara V. Ivanova; Christopher Widga; Eske Willerslev; Vladimir V. Pitulko; Ian Barnes; M. Thomas P. Gilbert; Keith M. Dobney; Ripan S. Malhi; Elizabeth P. Murchison; Greger Larson; Laurent A. F. Frantz (2018). "The evolutionary history of dogs in the Americas". Science. 361 (6397): 81–85. doi:10.1126/science.aao4776. PMID 29976825.
- ^ Jane Balme; Sue O’Connor; Stewart Fallon (2018). "New dates on dingo bones from Madura Cave provide oldest firm evidence for arrival of the species in Australia". Scientific Reports. 8: Article number 9933. doi:10.1038/s41598-018-28324-x. PMC 6053400. PMID 30026564.
- ^ Deano D. Stynder; Larisa R. G. DeSantis; Shelly L. Donohue; Blaine W. Schubert; Peter S. Ungar (2018). "A dental microwear texture analysis of the early Pliocene African ursid Agriotherium africanum (Mammalia, Carnivora, Ursidae)". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-018-9436-y.
- ^ Albert Min-Shan Ko; Yingqi Zhang; Melinda A. Yang; Yibo Hu; Peng Cao; Xiaotian Feng; Lizhao Zhang; Fuwen Wei; Qiaomei Fu (2018). "Mitochondrial genome of a 22,000-year-old giant panda from southern China reveals a new panda lineage". Current Biology. 28 (12): R693–R694. doi:10.1016/j.cub.2018.05.008. PMID 29920259.
- ^ Martina L. Steffen; Tara L. Fulton (2018). "On the association of giant short-faced bear (Arctodus simus) and brown bear (Ursus arctos) in late Pleistocene North America". Geobios. 51 (1): 61–74. doi:10.1016/j.geobios.2017.12.001.
- ^ Dariusz Nowakowski (2018). "Frequency of appearance of transverse (Harris) lines reflects living conditions of the Pleistocene bear—Ursus ingressus—(Sudety Mts., Poland)". PLoS ONE. 13 (4): e0196342. doi:10.1371/journal.pone.0196342. PMC 5912778. PMID 29684086.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Marius Robu; Jonathan G. Wynn; Ionuţ C. Mirea; Alexandru Petculescu; Marius Kenesz; Cristina M. Puşcaş; Marius Vlaicu; Erik Trinkaus; Silviu Constantin (2018). "The diverse dietary profiles of MIS 3 cave bears from the Romanian Carpathians: insights from stable isotope (δ13C and δ15N) analysis". Palaeontology. 61 (2): 209–219. doi:10.1111/pala.12338.
- ^ Hervé Bocherens (2018). "Isotopic insights on cave bear palaeodiet". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1465419.
- ^ Anneke H. van Heteren; Mikel Arlegi; Elena Santos; Juan-Luis Arsuaga; Asier Gómez-Olivencia (2018). "Cranial and mandibular morphology of Middle Pleistocene cave bears (Ursus deningeri): implications for diet and evolution". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1487965.
- ^ Gabriele Terlato; Hervé Bocherens; Matteo Romandini; Nicola Nannini; Keith A. Hobson; Marco Peresani (2018). "Chronological and Isotopic data support a revision for the timing of cave bear extinction in Mediterranean Europe". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1448395.
- ^ Doris Döppes; Gernot Rabeder; Christine Frischauf; Nadja Kavcik-Graumann; Bernd Kromer; Susanne Lindauer; Ronny Friedrich; Wilfried Rosendahl (2018). "Extinction pattern of Alpine cave bears - new data and climatological interpretation". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1487422.
- ^ Axel Barlow; James A. Cahill; Stefanie Hartmann; Christoph Theunert; Georgios Xenikoudakis; Gloria G. Fortes; Johanna L. A. Paijmans; Gernot Rabeder; Christine Frischauf; Aurora Grandal-d’Anglade; Ana García-Vázquez; Marine Murtskhvaladze; Urmas Saarma; Peeter Anijalg; Tomaž Skrbinšek; Giorgio Bertorelle; Boris Gasparian; Guy Bar-Oz; Ron Pinhasi; Montgomery Slatkin; Love Dalén; Beth Shapiro; Michael Hofreiter (2018). "Partial genomic survival of cave bears in living brown bears". Nature Ecology & Evolution. 2 (10): 1563–1570. doi:10.1038/s41559-018-0654-8. PMID 30150744.
- ^ Qigao Jiangzuo; Jan Wagner; Jin Chen; Cuiping Dong; Jianhua Wei; Juan Ning; Jinyi Liu (2018). "Presence of the Middle Pleistocene cave bears in China confirmed – Evidence from Zhoukoudian area". Quaternary Science Reviews. 199: 1–17. doi:10.1016/j.quascirev.2018.09.012.
- ^ Chris J. Law; Graham J. Slater; Rita S. Mehta (2018). "Lineage diversity and size disparity in Musteloidea: Testing patterns of adaptive radiation using molecular and fossil-based methods". Systematic Biology. 67 (1): 127–144. doi:10.1093/sysbio/syx047. PMID 28472434.
- ^ Juliana Tarquini; Néstor Toledo; Leopoldo H. Soibelzon; Cecilia C. Morgan (2018). "Body mass estimation for †Cyonasua (Procyonidae, Carnivora) and related taxa based on postcranial skeleton". Historical Biology: An International Journal of Paleobiology. 30 (4): 496–506. doi:10.1080/08912963.2017.1295042.
- ^ Damián Ruiz-Ramoni; Ascanio Rincón; Marisol Montellano-Ballesteros (2018). "Evidencias del origen de Nasua y Procyon (Procyonidae: Carnivora) en América del Sur". Revista Brasileira de Paleontologia. 21 (1): 87–94. doi:10.4072/rbp.2018.1.07.
- ^ Jonathan J. Calede; Winifred A. Kehl; Edward B. Davis (2018). "Craniodental morphology and diet of Leptarctus oregonensis (Mammalia, Carnivora, Mustelidae) from the Mascall Formation (Miocene) of central Oregon". Journal of Paleontology. 92 (2): 289–304. doi:10.1017/jpa.2017.78.
- ^ Robert W. Boessenecker (2018). "A Middle Pleistocene Sea Otter from Northern California and the Antiquity of Enhydra in the Pacific Basin". Journal of Mammalian Evolution. 25 (1): 27–35. doi:10.1007/s10914-016-9373-6.
- ^ Ashley W. Poust; Robert W. Boessenecker (2018). "Expanding the geographic and geochronologic range of early pinnipeds: New specimens of Enaliarctos from Northern California and Oregon". Acta Palaeontologica Polonica. 63 (1): 25–40. doi:10.4202/app.00399.2017.
- ^ David P. Hocking; Felix G. Marx; Renae Sattler; Robert N. Harris; Tahlia I. Pollock; Karina J. Sorrell; Erich M. G. Fitzgerald; Matthew R. McCurry; Alistair R. Evans (2018). "Clawed forelimbs allow northern seals to eat like their ancient ancestors". Royal Society Open Science. 5 (4): 172393. doi:10.1098/rsos.172393. PMC 5936949. PMID 29765684.
- ^ Leonard Dewaele; Olivier Lambert; Michel Laurin; Tim De Kock; Stephen Louwye; Vivian de Buffrénil (2018). "Generalized osteosclerotic condition in the skeleton of Nanophoca vitulinoides, a dwarf seal from the Miocene of Belgium". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-018-9438-9.
- ^ Sulman Rahmat; Fernando Muñiz; Antonio Toscano; Raúl Esperante; Irina Koretsky (2018). "First European record of Homiphoca (Phocidae: Monachinae: Lobodontini) and its bearing on the paleobiogeography of the genus". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1507030.
- ^ Sarah J. Boessenecker; Robert W. Boessenecker; Jonathan H. Geisler (2018). "Youngest record of the extinct walrus Ontocetus emmonsi from the Early Pleistocene of South Carolina and a review of North Atlantic walrus biochronology". Acta Palaeontologica Polonica. 63 (2): 279–286. doi:10.4202/app.00454.2018.
- ^ Lindsay Renee Meador; Laurie Rohde Godfrey; Jean Claude Rakotondramavo; Lovasoa Ranivoharimanana; Andrew Zamora; Michael Reed Sutherland; Mitchell T. Irwin (2018). "Cryptoprocta spelea (Carnivora: Eupleridae): What Did It Eat and How Do We Know?". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9391-z.
- ^ Jim Williams; Peter Andrews; Sara García-Morato; Paola Villa; Yolanda Fernández-Jalvo (2018). "Hyena as a predator of small mammals? Taphonomic analysis from the site of Bois Roche, France". Paleobiology. 44 (3): 511–529. doi:10.1017/pab.2018.13.
- ^ Nicolás R. Chimento; Alejandro Dondas (2018). "First Record of Puma concolor (Mammalia, Felidae) in the Early-Middle Pleistocene of South America". Journal of Mammalian Evolution. 25 (3): 381–389. doi:10.1007/s10914-017-9385-x.
- ^ Camille Grohé; Beatrice Lee; John J. Flynn (2018). "Recent inner ear specialization for high-speed hunting in cheetahs". Scientific Reports. 8: Article number 2301. doi:10.1038/s41598-018-20198-3. PMC 5797172. PMID 29396425.
- ^ Marco Cherin; Dawid A. Iurino; Marco Zanatta; Vincent Fernandez; Alessandro Paciaroni; Caterina Petrillo; Roberto Rettori; Raffaele Sardella (2018). "Synchrotron radiation reveals the identity of the large felid from Monte Argentario (Early Pleistocene, Italy)". Scientific Reports. 8: Article number 8338. doi:10.1038/s41598-018-26698-6. PMC 5974229. PMID 29844540.
- ^ Martin Sabol; Juraj Gullár; Ján Horvát (2018). "Montane record of the late Pleistocene Panthera spelaea (Goldfuss, 1810) from the Západné Tatry Mountains (northern Slovakia)". Journal of Vertebrate Paleontology. 38 (3): e1467921. doi:10.1080/02724634.2018.1467921.
- ^ Fredrick K. Manthi; Francis H. Brown; Michael J. Plavcan; Lars Werdelin (2018). "Gigantic lion, Panthera leo, from the Pleistocene of Natodomeri, eastern Africa". Journal of Paleontology. 92 (2): 305–312. doi:10.1017/jpa.2017.68.
- ^ Sergio Gabriel Rodriguez; Cecilia Méndez; Esteban Soibelzon; Leopoldo Héctor Soibelzon; Silvina Contreras; Juan Friedrichs; Carlos Luna; Alfredo Eduardo Zurita (2018). "Panthera onca (Carnivora, Felidae) in the late Pleistocene-early Holocene of northern Argentina". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 289 (2): 177–187. doi:10.1127/njgpa/2018/0758.
- ^ Paolo Piras; Daniele Silvestro; Francesco Carotenuto; Silvia Castiglione; Anastassios Kotsakis; Leonardo Maiorino; Marina Melchionna; Alessandro Mondanaro; Gabriele Sansalone (2018). "Evolution of the sabertooth mandible: A deadly ecomorphological specialization". Palaeogeography, Palaeoclimatology, Palaeoecology. 496: 166–174. doi:10.1016/j.palaeo.2018.01.034.
- ^ Tomohiro Harano; Nobuyuki Kutsukake (2018). "Directional selection in the evolution of elongated upper canines in clouded leopards and sabre‐toothed cats". Journal of Evolutionary Biology. 31 (9): 1268–1283. doi:10.1111/jeb.13309. PMID 29904973.
- ^ Aldo Manzuetti; Daniel Perea; Martín Ubilla; Andrés Rinderknecht (2018). "First record of Smilodon fatalis Leidy, 1868 (Felidae, Machairodontinae) in the extra-Andean region of South America (late Pleistocene, Sopas Formation), Uruguay: Taxonomic and paleobiogeographic implications". Quaternary Science Reviews. 180: 57–62. doi:10.1016/j.quascirev.2017.11.024.
- ^ Federico L. Agnolin; Nicolás R. Chimento; Denise H. Campo; Mariano Magnussen; Daniel Boh; Francisco De Cianni (2018). "Large carnivore footprints from the Late Pleistocene of Argentina". Ichnos: an International Journal for Plant and Animal Traces. in press. doi:10.1080/10420940.2018.1479962.
- ^ Robert W. Boessenecker; Morgan Churchill (2018). "The last of the desmatophocid seals: a new species of Allodesmus from the upper Miocene of Washington, USA, and a revision of the taxonomy of Desmatophocidae". Zoological Journal of the Linnean Society. 184 (1): 211–235. doi:10.1093/zoolinnean/zlx098.
- ^ Wataru Tonomori; Hiroshi Sawamura; Tamaki Sato; Naoki Kohno (2018). "A new Miocene pinniped Allodesmus (Mammalia: Carnivora) from Hokkaido, northern Japan". Royal Society Open Science. 5 (5): 172440. doi:10.1098/rsos.172440. PMC 5990790. PMID 29892431.
- ^ a b Leonard Dewaele; Carlos Mauricio Peredo; Pjotr Meyvisch; Stephen Louwye (2018). "Diversity of late Neogene Monachinae (Carnivora, Phocidae) from the North Atlantic, with the description of two new species". Royal Society Open Science. 5 (3): 172437. doi:10.1098/rsos.172437. PMC 5882749. PMID 29657825.
- ^ Jean-Baptiste Fourvel (2018). "Civettictis braini nov. sp. (Mammalia: Carnivora), a new viverrid from the hominin-bearing site of Kromdraai (Gauteng, South Africa)". Comptes Rendus Palevol. 17 (6): 366–377. doi:10.1016/j.crpv.2017.11.005.
- ^ a b Leonard Dewaele; Olivier Lambert; Stephen Louwye (2018). "A critical revision of the fossil record, stratigraphy and diversity of the Neogene seal genus Monotherium (Carnivora, Phocidae)". Royal Society Open Science. 5 (5): 171669. doi:10.1098/rsos.171669. PMC 5990722. PMID 29892365.
- ^ Joshua X. Samuels; Keila E. Bredehoeft; Steven C. Wallace (2018). "A new species of Gulo from the Early Pliocene Gray Fossil Site (Eastern United States); rethinking the evolution of wolverines". PeerJ. 6: e4648. doi:10.7717/peerj.4648. PMC 5910791. PMID 29682423.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ a b Brent Adrian; Lars Werdelin; Aryeh Grossman (2018). "New Miocene Carnivora (Mammalia) from Moruorot and Kalodirr, Kenya". Palaeontologia Electronica. 21 (1): Article number 21.1.10A. doi:10.26879/778.
- ^ Manuel J. Salesa; Gema Siliceo; Mauricio Antón; Stéphane Peigné; Jorge Morales (2018). "Functional and systematic implications of the postcranial anatomy of a late Miocene feline (Carnivora, Felidae) from Batallones-1 (Madrid, Spain)". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9414-9.
- ^ Saverio Bartolini Lucenti (2018). "Revising the species "Mustela" ardea Gervais, 1848–1852 (Mammalia, Mustelidae): Martellictis gen. nov. and the systematics of the fossil "Galictinae" of Eurasia". Comptes Rendus Palevol. 17 (8): 522–535. doi:10.1016/j.crpv.2018.02.003.
- ^ Qi-Gao Jiangzuo; Jin-Yi Liu; Jan Wagner; Jin Chen (2018). "Taxonomical revision of "Arctonyx" fossil remains from the Liucheng Gigantopithecus Cave (South China) by means of morphotype and morphometrics, and a review of Late Pliocene and Early Pleistocene Meles fossil records in China". Palaeoworld. 27 (2): 282–300. doi:10.1016/j.palwor.2017.12.001.
- ^ Jorge Velez-Juarbe; Fernando M. Salinas-Márquez (2018). "A dwarf walrus from the Miocene of Baja California Sur, Mexico". Royal Society Open Science. 5 (8): 180423. doi:10.1098/rsos.180423. PMC 6124023. PMID 30225030.
- ^ a b c Laura G. Emmert; Rachel A. Short (2018). "Three new procyonids (Mammalia, Carnivora) from the Blancan of Florida" (PDF). Bulletin of the Florida Museum of Natural History. 55 (8): 157–173.
- ^ Louis de Bonis; Stéphane Peigné; Hassane Taisso Mackaye; Andossa Likius; Patrick Vignaud; Michel Brunet (2018). "New sabre toothed Felidae (Carnivora, Mammalia) in the hominid-bearing sites of Toros Menalla (late Miocene, Chad)". Geodiversitas. 40 (3): 69–86. doi:10.5252/geodiversitas2018v40a3.
- ^ Fernando Blanco; Ana Rosa Gómez Cano; Juan L. Cantalapiedra; M. Soledad Domingo; Laura Domingo; Iris Menéndez; Lawrence J. Flynn; Manuel Hernández Fernández (2018). "Differential responses of Miocene rodent metacommunities to global climatic changes were mediated by environmental context". Scientific Reports. 8: Article number 2502. doi:10.1038/s41598-018-20900-5. PMC 5802738. PMID 29410503.
- ^ Myriam Boivin; Laurent Marivaux; Rodolfo Salas-Gismondi; Emma C. Vieytes; Pierre-Olivier Antoine (2018). "Incisor enamel microstructure of Paleogene caviomorph rodents from Contamana and Shapaja (Peruvian Amazonia)". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-018-9430-4.
- ^ Laurent Marivaux; Myriam Boivin; Sylvain Adnet; Mohamed Benammi; Rodolphe Tabuce; Mouloud Benammi (2018). "Incisor enamel microstructure of hystricognathous and anomaluroid rodents from the earliest Oligocene of Dakhla, Atlantic Sahara (Morocco)". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9426-5.
- ^ Diego H. Verzi; A. Itatí Olivares; Cecilia C. Morgan (2018). "Morphology of the lower deciduous premolars of South American hystricomorph rodents and age of the Octodontoidea". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1427089.
- ^ Andrés Rinderknecht; Enrique Bostelmann; Martín Ubilla (2018). "Making a giant rodent: cranial anatomy and ontogenetic development in the genus Isostylomys (Mammalia, Hystricognathi, Dinomyidae)". Journal of Systematic Palaeontology. 16 (3): 245–261. doi:10.1080/14772019.2017.1285360.
- ^ Andrés Rinderknecht; Washington W. Jones; Ney Araújo; Gustavo Grinspan; R. Ernesto Blanco (2018). "Bite force and body mass of the fossil rodent Telicomys giganteus (Caviomorpha, Dinomyidae)". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1384475.
- ^ Adriana M. Candela; Nahuel A. Muñoz; César M. García-Esponda (2018). "Paleobiology of the basal hydrochoerine Cardiomys Ameghino, 1885 (Rodentia, Caviomorpha, late Miocene, South America) as inferred from its postcranial anatomy". Journal of Paleontology. 92 (5): 911–919. doi:10.1017/jpa.2018.12.
- ^ Diego H. Verzi; A. Itatí Olivares; Patricia Hadler; Juan C. Castro; Eduardo P. Tonni (2018). "Occurrence of Dicolpomys (Echimyidae) in the late Holocene of Argentina: The most recently extinct South American caviomorph genus". Quaternary International. 490: 123–131. doi:10.1016/j.quaint.2018.04.041.
- ^ Lazaro W. Viñola Lopez; Orlando H. Garrido; Alberto Bermúdez (2018). "Notes on Mesocapromys sanfelipensis (Rodentia: Capromyidae) from Cuba". Zootaxa. 4410 (1): 164–176. doi:10.11646/zootaxa.4410.1.9. PMID 29690162.
- ^ Luciano L. Rasia; Adriana M. Candela (2018). "Reappraisal of the giant caviomorph rodent Phoberomys burmeisteri (Ameghino, 1886) from the late Miocene of northeastern Argentina, and the phylogeny and diversity of Neoepiblemidae". Historical Biology: An International Journal of Paleobiology. 30 (4): 486–495. doi:10.1080/08912963.2017.1294168.
- ^ Leonardo Kerber; Marcelo R. Sánchez-Villagra (2018). "Morphology of the middle ear ossicles in the rodent Perimys (Neoepiblemidae) and a comprehensive anatomical and morphometric study of the phylogenetic transformations of these structures in caviomorphs". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9422-9.
- ^ Raúl I. Vezzosi; Leonardo Kerber (2018). "The southernmost record of a large erethizontid rodent (Hystricomorpha: Erethizontoidea) in the Pleistocene of South America: Biogeographic and paleoenvironmental implications". Journal of South American Earth Sciences. 82: 76–90. doi:10.1016/j.jsames.2017.12.015.
- ^ Ornella C. Bertrand; Farrah Amador-Mughal; Madlen M. Lang; Mary T. Silcox (2018). "New virtual endocasts of Eocene Ischyromyidae and their relevance in evaluating neurological changes occurring through time in Rodentia". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9425-6.
- ^ Maxim V. Sinitsa (2018). "Phylogenetic position of Sinotamias and the early evolution of Marmotini (Rodentia, Sciuridae, Xerinae)". Journal of Vertebrate Paleontology. 38 (1): e1419251. doi:10.1080/02724634.2017.1419251.
- ^ Jonathan J. M. Calede; John D. Orcutt; Winifred A. Kehl; Bill D. Richards (2018). "The first tetrapod from the mid-Miocene Clarkia lagerstätte (Idaho, USA)". PeerJ. 6: e4880. doi:10.7717/peerj.4880. PMC 5995101. PMID 29900070.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Ornella C. Bertrand; Farrah Amador‐Mughal; Madlen M. Lang; Mary T. Silcox (2018). "Virtual endocasts of fossil Sciuroidea: brain size reduction in the evolution of fossoriality". Palaeontology. in press. doi:10.1111/pala.12378.
- ^ Dariusz Nowakowski; Leonid Rekovets; Oleksandr Kovalchuk; Edward Pawlina; Vitalii Demeshkant (2018). "Enamel ultrastructure of molars in †Anomalomys gaillardi and some spalacid taxa (Rodentia, Mammalia)". Palaeontologia Electronica. 21 (2): Article number 21.2.18A. doi:10.26879/846.
- ^ Blanca Moncunill-Solé; Xavier Jordana; Meike Köhler (2018). "Where did Mikrotia magna originate? Drawing ecogeographical inferences from body mass reconstructions". Geobios. 51 (4): 359–366. doi:10.1016/j.geobios.2018.06.006.
- ^ a b Qiang Li; Thomas A. Stidham; Xijun Ni; Lüzhou Li (2018). "Two new Pliocene hamsters (Cricetidae, Rodentia) from southwestern Tibet (China), and their implications for rodent dispersal 'into Tibet'". Journal of Vertebrate Paleontology. 37 (6): e1403443. doi:10.1080/02724634.2017.1403443.
- ^ Qian Li (2018). "Additional cricetid and dipodid rodent material from the Erden Obo section, Erlian Basin (Nei Mongol, China) and its biochronological implications". Palaeoworld. in press. doi:10.1016/j.palwor.2018.09.003.
- ^ a b Hans de Bruijn; Zoran Marković; Wilma Wessels; Andrew A. van de Weerd (2018). "Pappocricetodontinae (Rodentia, Muridae) from the Paleogene of south-east Serbia". Palaeobiodiversity and Palaeoenvironments. Online edition. doi:10.1007/s12549-018-0343-2.
- ^ a b c d e María Encarnación Pérez; Michelle Arnal; Myriam Boivin; María Guiomar Vucetich; Adriana Candela; Felipe Busker; Bernardino Mamani Quispe (2018). "New caviomorph rodents from the late Oligocene of Salla, Bolivia: taxonomic, chronological, and biogeographic implications for the Deseadan faunas of South America". Journal of Systematic Palaeontology. Online edition. doi:10.1080/14772019.2018.1471622.
- ^ a b c d e f g Myriam Boivin; Laurent Marivaux; François Pujos; Rodolfo Salas-Gismondi; Julia V. Tejada-Lara; Rafael M. Varas-Malca; Pierre-Olivier Antoine (2018). "Early Oligocene caviomorph rodents from Shapaja, Peruvian Amazonia". Palaeontographica Abteilung A. in press.
- ^ Pablo Pelaez-Campomanes; Fikret Göktaş; Tanju Kaya; Peter Joniak; Melike Bilgin; Serdar Mayda; Lars W. van den Hoek Ostende (2018). "Gördes: a new early Miocene micromammal assemblage from western Anatolia". Palaeobiodiversity and Palaeoenvironments. Online edition. doi:10.1007/s12549-018-0346-z.
- ^ Thomas Mörs; Yukimitsu Tomida (2018). "Euroxenomys nanus sp. nov., a minute beaver (Rodentia, Castoridae) from the Early Miocene of Japan". Paleontological Research. 22 (2): 145–149. doi:10.2517/2017PR013.
- ^ Eduardo Jiménez-Hidalgo; Rosalía Guerrero-Arenas; Krister T. Smith (2018). "Gregorymys veloxikua, The Oldest Pocket Gopher (Rodentia: Geomyidae), and The Early Diversification of Geomyoidea". Journal of Mammalian Evolution. 25 (3): 427–439. doi:10.1007/s10914-017-9383-z.
- ^ Raquel López‐Antoñanzas; Pablo Peláez‐Campomanes; Jérôme Prieto; Fabien Knoll (2018). "New species of Karydomys (Rodentia) from the Miocene of Chios Island (Greece) and phylogenetic relationships of this rare democricetodontine genus". Papers in Palaeontology. Online edition. doi:10.1002/spp2.1224.
- ^ a b Jonathan Cramb; Gilbert J. Price; Scott A. Hocknull (2018). "Short-tailed mice with a long fossil record: the genus Leggadina (Rodentia: Muridae) from the Quaternary of Queensland, Australia". PeerJ. 6: e5639. doi:10.7717/peerj.5639.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Mary R. Dawson; Kurt N. Constenius (2018). "Mammalian fauna of the Middle Eocene Kishenehn Formation, Middle Fork of the Flathead River, Montana". Annals of Carnegie Museum. 85 (1): 25–60. doi:10.2992/007.085.0103.
- ^ Wilma Wessels; Andrew A. van de Weerd; Hans de Bruijn; Zoran Marković (2018). "New Melissiodontinae (Mammalia, Rodentia) from the Paleogene of south-east Serbia". Palaeobiodiversity and Palaeoenvironments. 98 (3): 471–487. doi:10.1007/s12549-017-0311-2.
- ^ Pierre Mein; Martin Pickford (2018). "Reithroparamyine rodent from the Eocene of Namibia" (PDF). Communications of the Geological Survey of Namibia. 18: 38–47.
- ^ M. Carolina Madozzo-Jaén; M. Encarnación Pérez; Claudia I. Montalvo; Rodrigo L. Tomassini (2018). "Systematic review of Neocavia from the Neogene of Argentina: Phylogenetic and evolutionary implications". Acta Palaeontologica Polonica. 63 (2): 241–260. doi:10.4202/app.00464.2018.
- ^ Robert A. Martin; Alexey Tesakov; Jordi Agustí; Karla Johnston (2018). "Orcemys, a new genus of arvicolid rodent from the early Pleistocene of the Guadix–Baza Basin, southern Spain". Comptes Rendus Palevol. 17 (4–5): 310–319. doi:10.1016/j.crpv.2017.06.006.
- ^ a b Andrew A. van de Weerd; Hans de Bruijn; Zoran Marković; Wilma Wessels (2018). "Paracricetodontinae (Mammalia, Rodentia) from the late Eocene and early Oligocene of south-east Serbia". Palaeobiodiversity and Palaeoenvironments. 98 (3): 489–508. doi:10.1007/s12549-017-0317-9.
- ^ Thijs van Kolfschoten; Alexey S. Tesakov; Christopher J. Bell (2018). "The first record of Phenacomys (Mammalia, Rodentia, Cricetidae) in Europe (early Pleistocene, Zuurland, The Netherlands)". Quaternary Science Reviews. 192: 274–281. doi:10.1016/j.quascirev.2018.06.005.
- ^ Martin Pickford (2018). "New Zegdoumyidae (Rodentia, Mammalia) from the Middle Eocene of Black Crow, Namibia : taxonomy, dental formula" (PDF). Communications of the Geological Survey of Namibia. 18: 48–63.
- ^ Martin Pickford (2018). "Tufamyidae, a new family of hystricognath rodents from the Palaeogene and Neogene of the Sperrgebiet, Namibia" (PDF). Communications of the Geological Survey of Namibia. 19: 71–109.
- ^ Maxim V. Sinitsa; Valentin A. Nesin (2018). "Systematics and phylogeny of Vasseuromys (Mammalia, Rodentia, Gliridae) with a description of a new species from the late Miocene of eastern Europe". Palaeontology. 61 (5): 679–701. doi:10.1111/pala.12359.
- ^ Gregg F. Gunnell; Doug M. Boyer; Anthony R. Friscia; Steven Heritage; Fredrick Kyalo Manthi; Ellen R. Miller; Hesham M. Sallam; Nancy B. Simmons; Nancy J. Stevens; Erik R. Seiffert (2018). "Fossil lemurs from Egypt and Kenya suggest an African origin for Madagascar's aye-aye". Nature Communications. 9: Article number 3193. doi:10.1038/s41467-018-05648-w. PMC 6104046. PMID 30131571.
- ^ Jonathan M. G. Perry (2018). "Inferring the diets of extinct giant lemurs from osteological correlates of muscle dimensions". The Anatomical Record. 301 (2): 343–362. doi:10.1002/ar.23719. PMID 29330948.
- ^ Laura K. Stroik; Gary T. Schwartz (2018). "The role of dietary competition in the origination and early diversification of North American euprimates". Proceedings of the Royal Society B: Biological Sciences. 285 (1884): 20181230. doi:10.1098/rspb.2018.1230. PMC 6111171. PMID 30068683.
- ^ Doug M. Boyer; Stephanie A. Maiolino; Patricia A. Holroyd; Paul E. Morse; Jonathan I. Bloch (2018). "Oldest evidence for grooming claws in euprimates". Journal of Human Evolution. 122: 1–22. doi:10.1016/j.jhevol.2018.03.010. PMID 29935935.
- ^ Daniele Silvestro; Marcelo F. Tejedor; Martha L. Serrano-Serrano; Oriane Loiseau; Victor Rossier; Jonathan Rolland; Alexander Zizka; Sebastian Höhna; Alexandre Antonelli; Nicolas Salamin (2018). "Early arrival and climatically-linked geographic expansion of New World monkeys from tiny African ancestors". Systematic Biology. in press. doi:10.1093/sysbio/syy046. PMID 29931325.
- ^ Thomas A. Püschel; Jordi Marcé-Nogué; Justin T. Gladman; René Bobe; William I. Sellers (2018). "Inferring locomotor behaviours in Miocene New World monkeys using finite element analysis, geometric morphometrics and machine-learning classification techniques applied to talar morphology". Journal of the Royal Society Interface. 15 (146): 20180520. doi:10.1098/rsif.2018.0520.
- ^ Myra F. Laird; Elaine E. Kozma; Amandus Kwekason; Terry Harrison (2018). "A new fossil cercopithecid tibia from Laetoli and its implications for positional behavior and paleoecology". Journal of Human Evolution. 118: 27–42. doi:10.1016/j.jhevol.2018.02.005. PMID 29606201.
- ^ Dimitris S. Kostopoulos; Franck Guy; Zoi Kynigopoulou; George D. Koufos; Xavier Valentin; Gildas Merceron (2018). "A 2Ma old baboon-like monkey from Northern Greece and new evidence to support the Paradolichopithecus – Procynocephalus synonymy (Primates: Cercopithecidae)". Journal of Human Evolution. 121: 178–192. doi:10.1016/j.jhevol.2018.02.012. PMID 29779686.
- ^ Kelsey D. Pugh; Christopher C. Gilbert (2018). "Phylogenetic relationships of living and fossil African papionins: Combined evidence from morphology and molecules". Journal of Human Evolution. 123: 35–51. doi:10.1016/j.jhevol.2018.06.002. PMID 30057325.
- ^ Christopher C. Gilbert; Stephen R. Frost; Kelsey D. Pugh; Monya Anderson; Eric Delson (2018). "Evolution of the modern baboon (Papio hamadryas): A reassessment of the African Plio-Pleistocene record". Journal of Human Evolution. 122: 38–69. doi:10.1016/j.jhevol.2018.04.012. PMID 29954592.
- ^ Florian Martin; Chris-Alexander Plastiras; Gildas Merceron; Antoine Souron; Jean-Renaud Boisserie (2018). "Dietary niches of terrestrial cercopithecines from the Plio-Pleistocene Shungura Formation, Ethiopia: evidence from Dental Microwear Texture Analysis". Scientific Reports. 8: Article number 14052. doi:10.1038/s41598-018-32092-z. PMC 6145942. PMID 30232366.
- ^ Daniel DeMiguel; Lorenzo Rook (2018). "Understanding climate's influence on the extinction of Oreopithecus (late Miocene, Tusco-Sardinian paleobioprovince, Italy)". Journal of Human Evolution. 116: 14–26. doi:10.1016/j.jhevol.2017.11.008. PMID 29477179.
- ^ Yasuhiro Kikuchi; Masato Nakatsukasa; Hiroshi Tsujikawa; Yoshihiko Nakano; Yutaka Kunimatsu; Naomichi Ogihara; Daisuke Shimizu; Tomo Takano; Hideo Nakaya; Yoshihiro Sawada; Hidemi Ishida (2018). "Sexual dimorphism of body size in an African fossil ape, Nacholapithecus kerioi". Journal of Human Evolution. 123: 129–140. doi:10.1016/j.jhevol.2018.07.003. PMID 30119896.
- ^ Stephanie N. Spehar; Douglas Sheil; Terry Harrison; Julien Louys; Marc Ancrenaz; Andrew J. Marshall; Serge A. Wich; Michael W. Bruford; Erik Meijaard (2018). "Orangutans venture out of the rainforest and into the Anthropocene". Science Advances. 4 (6): e1701422. doi:10.1126/sciadv.1701422. PMC 6021148. PMID 29963619.
- ^ Jochen Fuss; Gregor Uhlig; Madelaine Böhme (2018). "Earliest evidence of caries lesion in hominids reveal sugar-rich diet for a Middle Miocene dryopithecine from Europe". PLoS ONE. 13 (8): e0203307. doi:10.1371/journal.pone.0203307. PMC 6117023. PMID 30161214.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Julien Benoit; Francis J. Thackeray (2017). "A cladistic analysis of Graecopithecus". South African Journal of Science. 113 (11/12): #a0238. doi:10.17159/sajs.2017/a0238.
- ^ Jochen Fuss; Nikolai Spassov; Madelaine Böhme; David R. Begun (2018). "Response to Benoit and Thackeray (2017): "A cladistic analysis of Graecopithecus"". South African Journal of Science. 114 (5/6): 11–12. doi:10.17159/sajs.2018/a0267.
- ^ Tesla A. Monson; David W. Armitage; Leslea J. Hlusko (2018). "Using machine learning to classify extant apes and interpret the dental morphology of the chimpanzee-human last common ancestor". PaleoBios. 35: ucmp_paleobios_40776.
- ^ Christopher B. Ruff; M. Loring Burgess; Nicole Squyres; Juho-Antti Junno; Erik Trinkaus (2018). "Lower limb articular scaling and body mass estimation in Pliocene and Pleistocene hominins". Journal of Human Evolution. 115: 85–111. doi:10.1016/j.jhevol.2017.10.014. PMID 29331230.
- ^ Andrew Du; Andrew M. Zipkin; Kevin G. Hatala; Elizabeth Renner; Jennifer L. Baker; Serena Bianchi; Kallista H. Bernal; Bernard A. Wood (2018). "Pattern and process in hominin brain size evolution are scale-dependent". Proceedings of the Royal Society B: Biological Sciences. 285 (1873): 20172738. doi:10.1098/rspb.2017.2738. PMC 5832710. PMID 29467267.
- ^ P. Raia; M. Boggioni; F. Carotenuto; S. Castiglione; M. Di Febbraro; F. Di Vincenzo; M. Melchionna; A. Mondanaro; A. Papini; A. Profico; C. Serio; A. Veneziano; V. A. Vero; L. Rook; C. Meloro; G. Manzi (2018). "Unexpectedly rapid evolution of mandibular shape in hominins". Scientific Reports. 8: Article number 7340. doi:10.1038/s41598-018-25309-8. PMC 5943523. PMID 29743608.
- ^ Marc R. Meyer; Charles Woodward; Amy Tims; Markus Bastir (2018). "Neck function in early hominins and suspensory primates: Insights from the uncinate process". American Journal of Physical Anthropology. 166 (3): 613–637. doi:10.1002/ajpa.23448. PMID 29492962.
- ^ Biren A. Patel; Tea Jashashvili; Stephanie H. Bui; Kristian J. Carlson; Nicole L. Griffin; Ian J. Wallace; Caley M. Orr; Randall L. Susman (2018). "Inter-ray variation in metatarsal strength properties in humans and African apes: Implications for inferring bipedal biomechanics in the Olduvai Hominid 8 foot". Journal of Human Evolution. 121: 147–165. doi:10.1016/j.jhevol.2018.02.013. PMID 29764690.
- ^ Peter J. Fernández; Carrie S. Mongle; Louise Leakey; Daniel J. Proctor; Caley M. Orr; Biren A. Patel; Sergio Almécija; Matthew W. Tocheri; William L. Jungers (2018). "Evolution and function of the hominin forefoot". Proceedings of the National Academy of Sciences of the United States of America. 115 (35): 8746–8751. doi:10.1073/pnas.1800818115. PMC 6126759. PMID 30104373.
- ^ Manuel Domínguez-Rodrigo; Enrique Baquedano (2018). "Distinguishing butchery cut marks from crocodile bite marks through machine learning methods". Scientific Reports. 8: Article number 5786. doi:10.1038/s41598-018-24071-1. PMC 5893542. PMID 29636550.
- ^ Jennifer A. Parkinson (2018). "Revisiting the hunting-versus-scavenging debate at FLK Zinj: A GIS spatial analysis of bone surface modifications produced by hominins and carnivores in the FLK 22 assemblage, Olduvai Gorge, Tanzania". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2018.06.044.
- ^ Gerard D. Gierliński; Grzegorz Niedźwiedzki; Martin G. Lockley; Athanassios Athanassiou; Charalampos Fassoulas; Zofia Dubicka; Andrzej Boczarowski; Matthew R. Bennett; Per Erik Ahlberg (2017). "Possible hominin footprints from the late Miocene (c. 5.7 Ma) of Crete?". Proceedings of the Geologists' Association. 128 (5–6): 697–710. doi:10.1016/j.pgeola.2017.07.006.
- ^ Jeff Meldrum; Esteban Sarmiento (2018). "Comments on possible Miocene hominin footprints". Proceedings of the Geologists' Association. 129 (4): 577–580. doi:10.1016/j.pgeola.2018.05.006.
- ^ Mark Grabowski; Kevin G. Hatala; William L. Jungers (2018). "Body mass estimates of the earliest possible hominins and implications for the last common ancestor". Journal of Human Evolution. 122: 84–92. doi:10.1016/j.jhevol.2018.05.001. PMID 29910044.
- ^ Thibaut Caley; Thomas Extier; James A. Collins; Enno Schefuß; Lydie Dupont; Bruno Malaizé; Linda Rossignol; Antoine Souron; Erin L. McClymont; Francisco J. Jimenez-Espejo; Carmen García-Comas; Frédérique Eynaud; Philippe Martinez; Didier M. Roche; Stephan J. Jorry; Karine Charlier; Mélanie Wary; Pierre-Yves Gourves; Isabelle Billy; Jacques Giraudeau (2018). "A two-million-year-long hydroclimatic context for hominin evolution in southeastern Africa". Nature. 560 (7716): 76–79. doi:10.1038/s41586-018-0309-6. PMID 29988081.
- ^ Richard S. Meindl; Morgan E. Chaney; C. Owen Lovejoy (2018). "Early hominids may have been weed species". Proceedings of the National Academy of Sciences of the United States of America. 115 (6): 1244–1249. doi:10.1073/pnas.1719669115. PMC 5819451. PMID 29358388.
- ^ Simon J. Maxwell; Philip J. Hopley; Paul Upchurch; Christophe Soligo (2018). "Sporadic sampling, not climatic forcing, drives observed early hominin diversity". Proceedings of the National Academy of Sciences of the United States of America. 115 (19): 4891–4896. doi:10.1073/pnas.1721538115. PMC 5948983. PMID 29686074.
- ^ Elaine E. Kozma; Nicole M. Webb; William E. H. Harcourt-Smith; David A. Raichlen; Kristiaan D'Août; Mary H. Brown; Emma M. Finestone; Stephen R. Ross; Peter Aerts; Herman Pontzer (2018). "Hip extensor mechanics and the evolution of walking and climbing capabilities in humans, apes, and fossil hominins". Proceedings of the National Academy of Sciences of the United States of America. 115 (16): 4134–4139. doi:10.1073/pnas.1715120115. PMC 5910817. PMID 29610309.
- ^ C.V. Ward; J.M. Plavcan; F.K. Manthi (2018). "New fossils of Australopithecus anamensis from Kanapoi, West Turkana, Kenya (2012–2015)". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2017.07.008. PMID 28844328.
- ^ Amélie Beaudet; Jean Dumoncel; Frikkie de Beer; Stanley Durrleman; Emmanuel Gilissen; Anna Oettlé; Gérard Subsol; John Francis Thackeray; José Braga (2018). "The endocranial shape of Australopithecus africanus: surface analysis of the endocasts of Sts 5 and Sts 60". Journal of Anatomy. 232 (2): 296–303. doi:10.1111/joa.12745. PMID 29148040.
- ^ Alexandria Peterson; Elicia F. Abella; Frederick E. Grine; Mark F. Teaford; Peter S. Ungar (2018). "Microwear textures of Australopithecus africanus and Paranthropus robustus molars in relation to paleoenvironment and diet". Journal of Human Evolution. 119: 42–63. doi:10.1016/j.jhevol.2018.02.004. PMID 29685753.
- ^ Kornelius Kupczik; Viviana Toro-Ibacache; Gabriele A. Macho (2018). "On the relationship between maxillary molar root shape and jaw kinematics in Australopithecus africanus and Paranthropus robustus". Royal Society Open Science. 5 (8): 180825. doi:10.1098/rsos.180825. PMC 6124107. PMID 30225074.
- ^ Timothy M. Ryan; Kristian J. Carlson; Adam D. Gordon; Nina Jablonski; Colin N. Shaw; Jay T. Stock (2018). "Human-like hip joint loading in Australopithecus africanus and Paranthropus robustus". Journal of Human Evolution. 121: 12–24. doi:10.1016/j.jhevol.2018.03.008. PMID 29706230.
- ^ Gaokgatlhe M. Tawane; J. Francis Thackeray (2018). "The cranium of Sts 5 ('Mrs Ples') in relation to sexual dimorphism of Australopithecus africanus". South African Journal of Science. 114 (1/2): 13–16. doi:10.17159/sajs.2018/a0249.
- ^ Tracy L. Kivell; Rebecca Davenport; Jean‐Jacques Hublin; J. Francis Thackeray; Matthew M. Skinner (2018). "Trabecular architecture and joint loading of the proximal humerus in extant hominoids, Ateles, and Australopithecus africanus". American Journal of Physical Anthropology. in press. doi:10.1002/ajpa.23635. PMID 30129074.
- ^ Jeremy M. DeSilva; Corey M. Gill; Thomas C. Prang; Miriam A. Bredella; Zeresenay Alemseged (2018). "A nearly complete foot from Dikika, Ethiopia and its implications for the ontogeny and function of Australopithecus afarensis". Science Advances. 4 (7): eaar7723. doi:10.1126/sciadv.aar7723. PMC 6031372. PMID 29978043.
- ^ Chris Robinson; Timothy L. Campbell; Susanne Cote; Darryl J. de Ruiter (2018). "Temporal ranges and ancestry in the hominin fossil record: The case of Australopithecus sediba". South African Journal of Science. 114 (3/4): 92–98. doi:10.17159/sajs.2018/20170327.
- ^ R. Hanon; S. Péan; S. Prat (2018). "Reassessment of anthropic modifications on the Early Pleistocene hominin specimen Stw53 (Sterkfontein, South Africa)". Bulletins et Mémoires de la Société d’Anthropologie de Paris. 30 (1–2): 49–58. doi:10.3166/bmsap-2018-0013.
- ^ Kathleen Kuman; Morris B. Sutton; Travis Rayne Pickering; Jason L.Heaton (2018). "The Oldowan industry from Swartkrans cave, South Africa, and its relevance for the African Oldowan". Journal of Human Evolution. 123: 52–69. doi:10.1016/j.jhevol.2018.06.004. PMID 30097184.
- ^ Caroline VanSickle; Zachary Cofran; Daniel García-Martínez; Scott A. Williams; Steven E. Churchill; Lee R. Berger; John Hawks (2018). "Homo naledi pelvic remains from the Dinaledi Chamber, South Africa". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2017.10.001. PMID 29169681.
- ^ Debra R. Bolter; John Hawks; Barry Bogin; Noel Cameron (2018). "Palaeodemographics of individuals in Dinaledi Chamber using dental remains". South African Journal of Science. 114 (1/2): 37–42. doi:10.17159/sajs.2018/20170066.
- ^ Peter S. Ungar; Lee R. Berger (2018). "Brief communication: Dental microwear and diet of Homo naledi". American Journal of Physical Anthropology. 166 (1): 228–235. doi:10.1002/ajpa.23418. PMID 29399788.
- ^ Michael A. Berthaume; Lucas K. Delezene; Kornelius Kupczik (2018). "Dental topography and the diet of Homo naledi". Journal of Human Evolution. 118: 14–26. doi:10.1016/j.jhevol.2018.02.006. PMID 29606200.
- ^ Ralph L. Holloway; Shawn D. Hurst; Heather M. Garvin; P. Thomas Schoenemann; William B. Vanti; Lee R. Berger; John Hawks (2018). "Endocast morphology of Homo naledi from the Dinaledi Chamber, South Africa". Proceedings of the National Academy of Sciences of the United States of America. 115 (22): 5738–5743. doi:10.1073/pnas.1720842115. PMC 5984505. PMID 29760068.
- ^ Joel D. Irish; Shara E. Bailey; Debbie Guatelli-Steinberg; Lucas K. Delezene; Lee R. Berger (2018). "Ancient teeth, phenetic affinities, and African hominins: Another look at where Homo naledi fits in". Journal of Human Evolution. 122: 108–123. doi:10.1016/j.jhevol.2018.05.007. PMID 29887210.
- ^ Marina C. Elliott; Rolf Quam; Shahed Nalla; Darryl J. de Ruiter; John Hawks; Lee R.Berger (2018). "Description and analysis of three Homo naledi incudes from the Dinaledi Chamber, Rising Star cave (South Africa)". Journal of Human Evolution. 122: 146–155. doi:10.1016/j.jhevol.2018.06.008. PMID 30001870.
- ^ Charles P. Egeland; Manuel Domínguez-Rodrigo; Travis Rayne Pickering; Colin G. Menter; Jason L. Heaton (2018). "Hominin skeletal part abundances and claims of deliberate disposal of corpses in the Middle Pleistocene". Proceedings of the National Academy of Sciences of the United States of America. 115 (18): 4601–4606. doi:10.1073/pnas.1718678115. PMC 5939076. PMID 29610322.
- ^ Amélie Vialet; Sandrine Prat; Patricia Wilms; Mehmet Cihat Alçiçek (2018). "The Kocabaş hominin (Denizli Basin, Turkey) at the crossroads of Eurasia: New insights from morphometric and cladistic analyses". Comptes Rendus Palevol. 17 (1–2): 17–32. doi:10.1016/j.crpv.2017.11.003.
- ^ Simon Neubauer; Philipp Gunz; Louise Leakey; Meave Leakey; Jean-Jacques Hublin; Fred Spoor (2018). "Reconstruction, endocranial form and taxonomic affinity of the early Homo calvaria KNM-ER 42700". Journal of Human Evolution. 121: 25–39. doi:10.1016/j.jhevol.2018.04.005. PMID 29706231.
- ^ Michael C. Pante; Jackson K. Njau; Blaire Hensley-Marschand; Trevor L. Keevil; Carmen Martín-Ramos; Renata Franco Peters; Ignacio de la Torre (2018). "The carnivorous feeding behavior of early Homo at HWK EE, Bed II, Olduvai Gorge, Tanzania". Journal of Human Evolution. 120: 215–235. doi:10.1016/j.jhevol.2017.06.005. PMID 28797516.
- ^ Deborah L. Cunningham; Ronda R. Graves; Daniel J. Wescott; Robert C. McCarthy (2018). "The effect of ontogeny on estimates of KNM-WT 15000's adult body size". Journal of Human Evolution. 121: 119–127. doi:10.1016/j.jhevol.2018.04.002. PMID 29754743.
- ^ Neil T. Roach; Andrew Du; Kevin G. Hatala; Kelly R. Ostrofsky; Jonathan S. Reeves; David R. Braun; John W.K. Harris; Anna K. Behrensmeyer; Brian G. Richmond (2018). "Pleistocene animal communities of a 1.5 million-year-old lake margin grassland and their relationship to Homo erectus paleoecology". Journal of Human Evolution. 122: 70–83. doi:10.1016/j.jhevol.2018.04.014. PMID 29970233.
- ^ Ashley S. Hammond; Sergio Almécija; Yosief Libsekal; Lorenzo Rook; Roberto Macchiarelli (2018). "A partial Homo pelvis from the Early Pleistocene of Eritrea". Journal of Human Evolution. 123: 109–128. doi:10.1016/j.jhevol.2018.06.010. PMID 30017175.
- ^ Song Xing; Kristian J. Carlson; Pianpian Wei; Jianing He; Wu Liu (2018). "Morphology and structure of Homo erectus humeri from Zhoukoudian, Locality 1". PeerJ. 6: e4279. doi:10.7717/peerj.4279. PMC 5777375. PMID 29372121.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Song Xing; María Martinón-Torres; José María Bermúdez de Castro (2018). "The fossil teeth of the Peking Man". Scientific Reports. 8: Article number 2066. doi:10.1038/s41598-018-20432-y. PMC 5794973. PMID 29391445.
- ^ Feng Li; Christopher J. Bae; Christopher B. Ramsey; Fuyou Chen; Xing Gao (2018). "Re-dating Zhoukoudian Upper Cave, northern China and its regional significance". Journal of Human Evolution. 121: 170–177. doi:10.1016/j.jhevol.2018.04.014. PMID 29778246.
- ^ Yanfen Kong; Chenglong Deng; Wu Liu; Xiujie Wu; Shuwen Pei; Lu Sun; Junyi Ge; Liang Yi; Rixiang Zhu (2018). "Magnetostratigraphic dating of the hominin occupation of Bailong Cave, central China". Scientific Reports. 8: Article number 9699. doi:10.1038/s41598-018-28065-x. PMC 6018768. PMID 29946102.
- ^ Zhaoyu Zhu; Robin Dennell; Weiwen Huang; Yi Wu; Shifan Qiu; Shixia Yang; Zhiguo Rao; Yamei Hou; Jiubing Xie; Jiangwei Han; Tingping Ouyang (2018). "Hominin occupation of the Chinese Loess Plateau since about 2.1 million years ago". Nature. 559 (7715): 608–612. doi:10.1038/s41586-018-0299-4. PMID 29995848.
- ^ Amélie Vialet; Mario Modesto-Mata; María Martinón-Torres; Marina Martínez de Pinillos; José-María Bermúdez de Castro (2018). "A reassessment of the Montmaurin-La Niche mandible (Haute Garonne, France) in the context of European Pleistocene human evolution". PLoS ONE. 13 (1): e0189714. doi:10.1371/journal.pone.0189714. PMC 5770020. PMID 29337994.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Alison S. Brooks; John E. Yellen; Richard Potts; Anna K. Behrensmeyer; Alan L. Deino; David E. Leslie; Stanley H. Ambrose; Jeffrey R. Ferguson; Francesco d’Errico; Andrew M. Zipkin; Scott Whittaker; Jeffrey Post; Elizabeth G. Veatch; Kimberly Foecke; Jennifer B. Clark (2018). "Long-distance stone transport and pigment use in the earliest Middle Stone Age". Science. 360 (6384): 90–94. doi:10.1126/science.aao2646. PMID 29545508.
- ^ Richard Potts; Anna K. Behrensmeyer; J. Tyler Faith; Christian A. Tryon; Alison S. Brooks; John E. Yellen; Alan L. Deino; Rahab Kinyanjui; Jennifer B. Clark; Catherine Haradon; Naomi E. Levin; Hanneke J. M. Meijer; Elizabeth G. Veatch; R. Bernhart Owen; Robin W. Renaut (2018). "Environmental dynamics during the onset of the Middle Stone Age in eastern Africa". Science. 360 (6384): 86–90. doi:10.1126/science.aao2200. PMID 29545506.
- ^ Alan L. Deino; Anna K. Behrensmeyer; Alison S. Brooks; John E. Yellen; Warren D. Sharp; Richard Potts (2018). "Chronology of the Acheulean to Middle Stone Age transition in eastern Africa". Science. 360 (6384): 95–98. doi:10.1126/science.aao2216. PMID 29545510.
- ^ Ceri Shipton; James Blinkhorn; Paul S. Breeze; Patrick Cuthbertson; Nick Drake; Huw S. Groucutt; Richard P. Jennings; Ash Parton; Eleanor M. L. Scerri; Abdullah Alsharekh; Michael D. Petraglia (2018). "Acheulean technology and landscape use at Dawadmi, central Arabia". PLoS ONE. 13 (7): e0200497. doi:10.1371/journal.pone.0200497. PMC 6063418. PMID 30052630.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Kumar Akhilesh; Shanti Pappu; Haresh M. Rajapara; Yanni Gunnell; Anil D. Shukla; Ashok K. Singhvi (2018). "Early Middle Palaeolithic culture in India around 385–172 ka reframes Out of Africa models". Nature. 554 (7690): 97–101. doi:10.1038/nature25444. PMID 29388951.
- ^ T. Ingicco; G. D. van den Bergh; C. Jago-on; J.-J. Bahain; M. G. Chacón; N. Amano; H. Forestier; C. King; K. Manalo; S. Nomade; A. Pereira; M. C. Reyes; A.-M. Sémah; Q. Shao; P. Voinchet; C. Falguères; P. C. H. Albers; M. Lising; G. Lyras; D. Yurnaldi; P. Rochette; A. Bautista; J. de Vos (2018). "Earliest known hominin activity in the Philippines by 709 thousand years ago". Nature. 557 (7704): 233–237. doi:10.1038/s41586-018-0072-8. PMID 29720661.
- ^ Steven R. Holen; Thomas A. Deméré; Daniel C. Fisher; Richard Fullagar; James B. Paces; George T. Jefferson; Jared M. Beeton; Richard A. Cerutti; Adam N. Rountrey; Lawrence Vescera; Kathleen A. Holen (2017). "A 130,000-year-old archaeological site in southern California, USA". Nature. 544 (7651): 479–483. doi:10.1038/nature22065. PMID 28447646.
- ^ Joseph V. Ferraro; Katie M. Binetti; Logan A. Wiest; Donald Esker; Lori E. Baker; Steven L. Forman (2018). "Contesting early archaeology in California". Nature. 554 (7691): E1–E2. doi:10.1038/nature25165. PMID 29420468.
- ^ Steven R. Holen; Thomas A. Deméré; Daniel C. Fisher; Richard Fullagar; James B. Paces; George T. Jefferson; Jared M. Beeton; Richard A. Cerutti; Adam N. Rountrey; Lawrence Vescera; Kathleen A. Holen (2018). "Holen et al. reply". Nature. 554 (7691): E3. doi:10.1038/nature25166. PMID 29420475.
- ^ Luc Doyon; Zhanyang Li; Hao Li; Francesco d’Errico (2018). "Discovery of circa 115,000-year-old bone retouchers at Lingjing, Henan, China". PLoS ONE. 13 (3): e0194318. doi:10.1371/journal.pone.0194318. PMC 5847243. PMID 29529079.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Mathieu Duval; Rainer Grün; Josep M. Parés; Laura Martín-Francés; Isidoro Campaña; Jordi Rosell; Qingfeng Shao; Juan Luis Arsuaga; Eudald Carbonell; José María Bermúdez de Castro (2018). "The first direct ESR analysis of a hominin tooth from Atapuerca Gran Dolina TD-6 (Spain) supports the antiquity of Homo antecessor". Quaternary Geochronology. 47: 120–137. doi:10.1016/j.quageo.2018.05.001.
- ^ Flavio Altamura; Matthew R. Bennett; Kristiaan D’Août; Sabine Gaudzinski-Windheuser; Rita T. Melis; Sally C. Reynolds; Margherita Mussi (2018). "Archaeology and ichnology at Gombore II-2, Melka Kunture, Ethiopia: everyday life of a mixed-age hominin group 700,000 years ago". Scientific Reports. 8: Article number 2815. doi:10.1038/s41598-018-21158-7. PMC 5809588. PMID 29434269.
- ^ Ricardo Miguel Godinho; Penny Spikins; Paul O’Higgins (2018). "Supraorbital morphology and social dynamics in human evolution". Nature Ecology & Evolution. 2 (6): 956–961. doi:10.1038/s41559-018-0528-0. PMID 29632349.
- ^ Sharon R. Browning; Brian L. Browning; Ying Zhou; Serena Tucci; Joshua M. Akey (2018). "Analysis of human sequence data reveals two pulses of archaic Denisovan admixture". Cell. 173 (1): 53–61.e9. doi:10.1016/j.cell.2018.02.031. PMC 5866234. PMID 29551270.
- ^ Viviane Slon; Fabrizio Mafessoni; Benjamin Vernot; Cesare de Filippo; Steffi Grote; Bence Viola; Mateja Hajdinjak; Stéphane Peyrégne; Sarah Nagel; Samantha Brown; Katerina Douka; Tom Higham; Maxim B. Kozlikin; Michael V. Shunkov; Anatoly P. Derevianko; Janet Kelso; Matthias Meyer; Kay Prüfer; Svante Pääbo (2018). "The genome of the offspring of a Neanderthal mother and a Denisovan father". Nature. 561 (7721): 113–116. doi:10.1038/s41586-018-0455-x. PMID 30135579.
- ^ José María Bermúdez de Castro; María Martinón-Torres; Marina Martínez de Pinillos; Cecilia García-Campos; Mario Modesto-Mata; Laura Martín-Francés; Juan Luis Arsuaga (2018). "Metric and morphological comparison between the Arago (France) and Atapuerca-Sima de los Huesos (Spain) dental samples, and the origin of Neanderthals". Quaternary Science Reviews. in press. doi:10.1016/j.quascirev.2018.04.003.
- ^ Bruce L. Hardy; Marie-Hélène Moncel; Jackie Despriée; Gilles Courcimault; Pierre Voinchet (2018). "Middle Pleistocene hominin behavior at the 700ka Acheulean site of la Noira (France)". Quaternary Science Reviews. 199: 60–82. doi:10.1016/j.quascirev.2018.09.013.
- ^ Daniel García-Martínez; Nicole Torres-Tamayo; Isabel Torres-Sánchez; Francisco García-Río; Antonio Rosas; Markus Bastir (2018). "Ribcage measurements indicate greater lung capacity in Neanderthals and Lower Pleistocene hominins compared to modern humans". Communications Biology. 1: Article number 117. doi:10.1038/s42003-018-0125-4.
- ^ Biancamaria Aranguren; Anna Revedin; Nicola Amico; Fabio Cavulli; Gianna Giachi; Stefano Grimaldi; Nicola Macchioni; Fabio Santaniello (2018). "Wooden tools and fire technology in the early Neanderthal site of Poggetti Vecchi (Italy)". Proceedings of the National Academy of Sciences of the United States of America. 115 (9): 2054–2059. doi:10.1073/pnas.1716068115. PMC 5834685. PMID 29432163.
- ^ Joseba Rios-Garaizar; Oriol López-Bultó; Eneko Iriarte; Carlos Pérez-Garrido; Raquel Piqué; Arantza Aranburu; María José Iriarte-Chiapusso; Illuminada Ortega-Cordellat; Laurence Bourguignon; Diego Garate; Iñaki Libano (2018). "A Middle Palaeolithic wooden digging stick from Aranbaltza III, Spain". PLoS ONE. 13 (3): e0195044. doi:10.1371/journal.pone.0195044. PMC 5874079. PMID 29590205.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ D. L. Hoffmann; C. D. Standish; M. García-Diez; P. B. Pettitt; J. A. Milton; J. Zilhão; J. J. Alcolea-González; P. Cantalejo-Duarte; H. Collado; R. de Balbín; M. Lorblanchet; J. Ramos-Muñoz; G.-Ch. Weniger; A. W. G. Pike (2018). "U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art". Science. 359 (6378): 912–915. doi:10.1126/science.aap7778. PMID 29472483.
- ^ David G. Pearce; Adelphine Bonneau (2018). "Trouble on the dating scene". Nature Ecology & Evolution. 2 (6): 925–926. doi:10.1038/s41559-018-0540-4. PMID 29632350.
- ^ Dirk L. Hoffmann; Christopher D. Standish; Alistair W. G. Pike; Marcos García-Diez; Paul B. Pettitt; Diego E. Angelucci; Valentín Villaverde; Josefina Zapata; James A. Milton; Javier Alcolea-González; Pedro Cantalejo-Duarte; Hipolito Collado; Rodrigo de Balbín; Michel Lorblanchet; José Ramos-Muñoz; Gerd-Christian Weniger; João Zilhão (2018). "Dates for Neanderthal art and symbolic behaviour are reliable". Nature Ecology & Evolution. 2 (7): 1044–1045. doi:10.1038/s41559-018-0598-z. PMID 29942018.
- ^ Maxime Aubert; Adam Brumm; Jillian Huntley (2018). "Early dates for 'Neanderthal cave art' may be wrong". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2018.08.004. PMID 30173883.
- ^ Ludovic Slimak; Jan Fietzke; Jean-Michel Geneste; Roberto Ontañón (2018). "Comment on "U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art"". Science. 361 (6408): eaau1371. doi:10.1126/science.aau1371. PMID 30237321.
- ^ Dirk L. Hoffmann; Diego E. Angelucci; Valentín Villaverde; Josefina Zapata; João Zilhão (2018). "Symbolic use of marine shells and mineral pigments by Iberian Neandertals 115,000 years ago". Science Advances. 4 (2): eaar5255. doi:10.1126/sciadv.aar5255. PMC 5833998. PMID 29507889.
- ^ Mateja Hajdinjak; Qiaomei Fu; Alexander Hübner; Martin Petr; Fabrizio Mafessoni; Steffi Grote; Pontus Skoglund; Vagheesh Narasimham; Hélène Rougier; Isabelle Crevecoeur; Patrick Semal; Marie Soressi; Sahra Talamo; Jean-Jacques Hublin; Ivan Gušić; Željko Kućan; Pavao Rudan; Liubov V. Golovanova; Vladimir B. Doronichev; Cosimo Posth; Johannes Krause; Petra Korlević; Sarah Nagel; Birgit Nickel; Montgomery Slatkin; Nick Patterson; David Reich; Kay Prüfer; Matthias Meyer; Svante Pääbo; Janet Kelso (2018). "Reconstructing the genetic history of late Neanderthals". Nature. 555 (7698): 652–656. doi:10.1038/nature26151. PMID 29562232.
- ^ Stephen Wroe; William C. H. Parr; Justin A. Ledogar; Jason Bourke; Samuel P. Evans; Luca Fiorenza; Stefano Benazzi; Jean-Jacques Hublin; Chris Stringer; Ottmar Kullmer; Michael Curry; Todd C. Rae; Todd R. Yokley (2018). "Computer simulations show that Neanderthal facial morphology represents adaptation to cold and high energy demands, but not heavy biting". Proceedings of the Royal Society B: Biological Sciences. 285 (1876): 20180085. doi:10.1098/rspb.2018.0085. PMC 5904316. PMID 29618551.
- ^ Rachael C. Bible; A. Townsend Peterson (2018). "Compatible ecological niche signals between biological and archaeological datasets for late‐surviving Neandertals". American Journal of Physical Anthropology. 166 (4): 968–974. doi:10.1002/ajpa.23482. PMID 29664998.
- ^ Sabine Gaudzinski-Windheuser; Elisabeth S. Noack; Eduard Pop; Constantin Herbst; Johannes Pfleging; Jonas Buchli; Arne Jacob; Frieder Enzmann; Lutz Kindler; Radu Iovita; Martin Street; Wil Roebroeks (2018). "Evidence for close-range hunting by last interglacial Neanderthals". Nature Ecology & Evolution. 2 (7): 1087–1092. doi:10.1038/s41559-018-0596-1. PMID 29942012.
- ^ Penny Spikins; Andy Needham; Barry Wright; Calvin Dytham; Maurizio Gatta; Gail Hitchens (2018). "Living to fight another day: The ecological and evolutionary significance of Neanderthal healthcare". Quaternary Science Reviews. in press. doi:10.1016/j.quascirev.2018.08.011.
- ^ D. Wolf; T. Kolb; M. Alcaraz-Castaño; S. Heinrich; P. Baumgart; R. Calvo; J. Sánchez; K. Ryborz; I. Schäfer; M. Bliedtner; R. Zech; L. Zöller; D. Faust (2018). "Climate deteriorations and Neanderthal demise in interior Iberia". Scientific Reports. 8: Article number 7048. doi:10.1038/s41598-018-25343-6. PMC 5935692. PMID 29728579.
- ^ J.S. Carrión; J. Ochando; S. Fernández; R. Blasco; J. Rosell; M. Munuera; G. Amorós; I. Martín-Lerma; S. Finlayson; F. Giles; R. Jennings; G. Finlayson; F. Giles-Pacheco; J. Rodríguez-Vidal; C. Finlayson (2018). "Last Neanderthals in the warmest refugium of Europe: Palynological data from Vanguard Cave". Review of Palaeobotany and Palynology. in press. doi:10.1016/j.revpalbo.2018.09.007.
- ^ Asier Gómez-Olivencia; Nohemi Sala; Carmen Núñez-Lahuerta; Alfred Sanchis; Mikel Arlegi; Joseba Rios-Garaizar (2018). "First data of Neandertal bird and carnivore exploitation in the Cantabrian Region (Axlor; Barandiaran excavations; Dima, Biscay, Northern Iberian Peninsula)". Scientific Reports. 8: Article number 10551. doi:10.1038/s41598-018-28377-y. PMC 6043621. PMID 30002396.
- ^ A. C. Sorensen; E. Claud; M. Soressi (2018). "Neandertal fire-making technology inferred from microwear analysis". Scientific Reports. 8: Article number 10065. doi:10.1038/s41598-018-28342-9. PMC 6053370. PMID 30026576.
- ^ Fotios Alexandros Karakostis; Gerhard Hotz; Vangelis Tourloukis; Katerina Harvati (2018). "Evidence for precision grasping in Neandertal daily activities". Science Advances. 4 (9): eaat2369. doi:10.1126/sciadv.aat2369.
- ^ Anna E. Goldfield; Ross Booton; John M. Marston (2018). "Modeling the role of fire and cooking in the competitive exclusion of Neanderthals". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2018.07.006. PMID 30177445.
- ^ Michael Staubwasser; Virgil Drăgușin; Bogdan P. Onac; Sergey Assonov; Vasile Ersek; Dirk L. Hoffmann; Daniel Veres (2018). "Impact of climate change on the transition of Neanderthals to modern humans in Europe". Proceedings of the National Academy of Sciences of the United States of America. 115 (37): 9116–9121. doi:10.1073/pnas.1808647115. PMC 6140518. PMID 30150388.
- ^ Takanori Kochiyama; Naomichi Ogihara; Hiroki C. Tanabe; Osamu Kondo; Hideki Amano; Kunihiro Hasegawa; Hiromasa Suzuki; Marcia S. Ponce de León; Christoph P. E. Zollikofer; Markus Bastir; Chris Stringer; Norihiro Sadato; Takeru Akazawa (2018). "Reconstructing the Neanderthal brain using computational anatomy". Scientific Reports. 8: Article number 6296. doi:10.1038/s41598-018-24331-0. PMC 5919901. PMID 29700382.
- ^ Irene Esteban; Curtis W. Marean; Erich C. Fisher; Panagiotis Karkanas; Dan Cabanes; Rosa M. Albert (2018). "Phytoliths as an indicator of early modern humans plant gathering strategies, fire fuel and site occupation intensity during the Middle Stone Age at Pinnacle Point 5-6 (south coast, South Africa)". PLoS ONE. 13 (6): e0198558. doi:10.1371/journal.pone.0198558. PMC 5986156. PMID 29864147.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Henry F. Lamb; C. Richard Bates; Charlotte L. Bryant; Sarah J. Davies; Dei G. Huws; Michael H. Marshall; Helen M. Roberts (2018). "150,000-year palaeoclimate record from northern Ethiopia supports early, multiple dispersals of modern humans from Africa". Scientific Reports. 8: Article number 1077. doi:10.1038/s41598-018-19601-w. PMC 5773494. PMID 29348464.
- ^ Eleanor M.L. Scerri; Mark G. Thomas; Andrea Manica; Philipp Gunz; Jay T. Stock; Chris Stringer; Matt Grove; Huw S. Groucutt; Axel Timmermann; G. Philip Rightmire; Francesco d’Errico; Christian A. Tryon; Nick A. Drake; Alison S. Brooks; Robin W. Dennell; Richard Durbin; Brenna M. Henn; Julia Lee-Thorp; Peter deMenocal; Michael D. Petraglia; Jessica C. Thompson; Aylwyn Scally; Lounès Chikhi (2018). "Did our species evolve in subdivided populations across Africa, and why does it matter?". Trends in Ecology & Evolution. 33 (8): 582–594. doi:10.1016/j.tree.2018.05.005. PMC 6092560. PMID 30007846.
- ^ Patrick Roberts; Brian A. Stewart (2018). "Defining the 'generalist specialist' niche for Pleistocene Homo sapiens". Nature Human Behaviour. 2 (8): 542–550. doi:10.1038/s41562-018-0394-4.
- ^ Simon Neubauer; Jean-Jacques Hublin; Philipp Gunz (2018). "The evolution of modern human brain shape". Science Advances. 4 (1): eaao5961. doi:10.1126/sciadv.aao5961. PMC 5783678. PMID 29376123.
- ^ Charles W. Helm; Richard T. McCrea; Hayley C. Cawthra; Martin G. Lockley; Richard M. Cowling; Curtis W. Marean; Guy H. H. Thesen; Tammy S. Pigeon; Sinèad Hattingh (2018). "A new Pleistocene hominin tracksite from the Cape south coast, South Africa". Scientific Reports. 8: Article number 3772. doi:10.1038/s41598-018-22059-5. PMC 5830700. PMID 29491482.
- ^ Israel Hershkovitz; Gerhard W. Weber; Rolf Quam; Mathieu Duval; Rainer Grün; Leslie Kinsley; Avner Ayalon; Miryam Bar-Matthews; Helene Valladas; Norbert Mercier; Juan Luis Arsuaga; María Martinón-Torres; José María Bermúdez de Castro; Cinzia Fornai; Laura Martín-Francés; Rachel Sarig; Hila May; Viktoria A. Krenn; Viviane Slon; Laura Rodríguez; Rebeca García; Carlos Lorenzo; Jose Miguel Carretero; Amos Frumkin; Ruth Shahack-Gross; Daniella E. Bar-Yosef Mayer; Yaming Cui; Xinzhi Wu; Natan Peled; Iris Groman-Yaroslavski; Lior Weissbrod; Reuven Yeshurun; Alexander Tsatskin; Yossi Zaidner; Mina Weinstein-Evron (2018). "The earliest modern humans outside Africa". Science. 359 (6374): 456–459. doi:10.1126/science.aap8369. PMID 29371468.
- ^ Huw S. Groucutt; Rainer Grün; Iyad A. S. Zalmout; Nick A. Drake; Simon J. Armitage; Ian Candy; Richard Clark-Wilson; Julien Louys; Paul S. Breeze; Mathieu Duval; Laura T. Buck; Tracy L. Kivell; Emma Pomeroy; Nicholas B. Stephens; Jay T. Stock; Mathew Stewart; Gilbert J. Price; Leslie Kinsley; Wing Wai Sung; Abdullah Alsharekh; Abdulaziz Al-Omari; Muhammad Zahir; Abdullah M. Memesh; Ammar J. Abdulshakoor; Abdu M. Al-Masari; Ahmed A. Bahameem; Khaled M. S. Al Murayyi; Badr Zahrani; Eleanor L. M. Scerri; Michael D. Petraglia (2018). "Homo sapiens in Arabia by 85,000 years ago". Nature Ecology & Evolution. 2 (5): 800–809. doi:10.1038/s41559-018-0518-2. PMC 5935238. PMID 29632352.
- ^ Chad L. Yost; Lily J. Jackson; Jeffery R. Stone; Andrew S. Cohen (2018). "Subdecadal phytolith and charcoal records from Lake Malawi, East Africa imply minimal effects on human evolution from the ∼74 ka Toba supereruption". Journal of Human Evolution. 116: 75–94. doi:10.1016/j.jhevol.2017.11.005. PMID 29477183.
- ^ Eugene I. Smith; Zenobia Jacobs; Racheal Johnsen; Minghua Ren; Erich C. Fisher; Simen Oestmo; Jayne Wilkins; Jacob A. Harris; Panagiotis Karkanas; Shelby Fitch; Amber Ciravolo; Deborah Keenan; Naomi Cleghorn; Christine S. Lane; Thalassa Matthews; Curtis W. Marean (2018). "Humans thrived in South Africa through the Toba eruption about 74,000 years ago". Nature. 555 (7697): 511–515. doi:10.1038/nature25967. PMID 29531318.
- ^ Ceri Shipton; Patrick Roberts; Will Archer; Simon J. Armitage; Caesar Bita; James Blinkhorn; Colin Courtney-Mustaphi; Alison Crowther; Richard Curtis; Francesco d’ Errico; Katerina Douka; Patrick Faulkner; Huw S. Groucutt; Richard Helm; Andy I. R Herries; Severinus Jembe; Nikos Kourampas; Julia Lee-Thorp; Rob Marchant; Julio Mercader; Africa Pitarch Marti; Mary E. Prendergast; Ben Rowson; Amini Tengeza; Ruth Tibesasa; Tom S. White; Michael D. Petraglia; Nicole Boivin (2018). "78,000-year-old record of Middle and Later stone age innovation in an East African tropical forest". Nature Communications. 9: Article number 1832. doi:10.1038/s41467-018-04057-3. PMC 5943315. PMID 29743572.
- ^ Christopher S. Henshilwood; Francesco d’Errico; Karen L. van Niekerk; Laure Dayet; Alain Queffelec; Luca Pollarolo (2018). "An abstract drawing from the 73,000-year-old levels at Blombos Cave, South Africa". Nature. in press. doi:10.1038/s41586-018-0514-3. PMID 30209394.
- ^ Yuri Dublyansky; Gina E. Moseley; Yuri Lyakhnitsky; Hai Cheng; Lawrence R. Edwards; Denis Scholz; Gabriella Koltai; Christoph Spötl (2018). "Late Palaeolithic cave art and permafrost in the Southern Ural". Scientific Reports. 8: Article number 12080. doi:10.1038/s41598-018-30049-w. PMC 6089975. PMID 30104606.
- ^ Adam Brumm; Budianto Hakim; Muhammad Ramli; Maxime Aubert; Gerrit D. van den Bergh; Bo Li; Basran Burhan; Andi Muhammad Saiful; Linda Siagian; Ratno Sardi; Andi Jusdi; Abdullah; Andi Pampang Mubarak; Mark W. Moore; Richard G. Roberts; Jian-xin Zhao; David McGahan; Brian G. Jones; Yinika Perston; Katherine Szabó; M. Irfan Mahmud; Kira Westaway; Jatmiko; E. Wahyu Saptomo; Sander van der Kaars; Rainer Grün; Rachel Wood; John Dodson; Michael J. Morwood (2018). "A reassessment of the early archaeological record at Leang Burung 2, a Late Pleistocene rock-shelter site on the Indonesian island of Sulawesi". PLoS ONE. 13 (4): e0193025. doi:10.1371/journal.pone.0193025. PMC 5894965. PMID 29641524.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Chris Clarkson; Zenobia Jacobs; Ben Marwick; Richard Fullagar; Lynley Wallis; Mike Smith; Richard G. Roberts; Elspeth Hayes; Kelsey Lowe; Xavier Carah; S. Anna Florin; Jessica McNeil; Delyth Cox; Lee J. Arnold; Quan Hua; Jillian Huntley; Helen E. A. Brand; Tiina Manne; Andrew Fairbairn; James Shulmeister; Lindsey Lyle; Makiah Salinas; Mara Page; Kate Connell; Gayoung Park; Kasih Norman; Tessa Murphy; Colin Pardoe (2017). "Human occupation of northern Australia by 65,000 years ago". Nature. 547 (7663): 306–310. doi:10.1038/nature22968. PMID 28726833.
- ^ James F. O’Connell; Jim Allen; Martin A. J. Williams; Alan N. Williams; Chris S. M. Turney; Nigel A. Spooner; Johan Kamminga; Graham Brown; Alan Cooper (2018). "When did Homo sapiens first reach Southeast Asia and Sahul?". Proceedings of the National Academy of Sciences of the United States of America. 115 (34): 8482–8490. doi:10.1073/pnas.1808385115. PMC 6112744. PMID 30082377.
- ^ Jo McDonald; Wendy Reynen; Fiona Petchey; Kane Ditchfield; Chae Byrne; Dorcas Vannieuwenhuyse; Matthias Leopold; Peter Veth (2018). "Karnatukul (Serpent's Glen): A new chronology for the oldest site in Australia's Western Desert". PLoS ONE. 13 (9): e0202511. doi:10.1371/journal.pone.0202511. PMID 30231025.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Marieke van de Loosdrecht; Abdeljalil Bouzouggar; Louise Humphrey; Cosimo Posth; Nick Barton; Ayinuer Aximu-Petri; Birgit Nickel; Sarah Nagel; El Hassan Talbi; Mohammed Abdeljalil El Hajraoui; Saaïd Amzazi; Jean-Jacques Hublin; Svante Pääbo; Stephan Schiffels; Matthias Meyer; Wolfgang Haak; Choongwon Jeong; Johannes Krause (2018). "Pleistocene North African genomes link Near Eastern and sub-Saharan African human populations". Science. 360 (6388): 548–552. doi:10.1126/science.aar8380. PMID 29545507.
- ^ Amaia Arranz-Otaegui; Lara Gonzalez Carretero; Monica N. Ramsey; Dorian Q. Fuller; Tobias Richter (2018). "Archaeobotanical evidence reveals the origins of bread 14,400 years ago in northeastern Jordan". Proceedings of the National Academy of Sciences of the United States of America. 115 (31): 7925–7930. doi:10.1073/pnas.1801071115. PMC 6077754. PMID 30012614.
- ^ James Hansford; Patricia C. Wright; Armand Rasoamiaramanana; Ventura R. Pérez; Laurie R. Godfrey; David Errickson; Tim Thompson; Samuel T. Turvey (2018). "Early Holocene human presence in Madagascar evidenced by exploitation of avian megafauna". Science Advances. 4 (9): eaat6925. doi:10.1126/sciadv.aat6925. PMC 6135541. PMID 30214938.
- ^ Darren Curnoe; Ipoi Datan; Jian-xin Zhao; Charles Leh Moi Ung; Maxime Aubert; Mohammed S. Sauffi; Goh Hsiao Mei; Raynold Mendoza; Paul S. C. Taçon (2018). "Rare Late Pleistocene-early Holocene human mandibles from the Niah Caves (Sarawak, Borneo)". PLoS ONE. 13 (6): e0196633. doi:10.1371/journal.pone.0196633. PMC 5991356. PMID 29874227.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Ben A. Potter; James F. Baichtal; Alwynne B. Beaudoin; Lars Fehren-Schmitz; C. Vance Haynes; Vance T. Holliday; Charles E. Holmes; John W. Ives; Robert L. Kelly; Bastien Llamas; Ripan S. Malhi; D. Shane Miller; David Reich; Joshua D. Reuther; Stephan Schiffels; Todd A. Surovell (2018). "Current evidence allows multiple models for the peopling of the Americas". Science Advances. 4 (8): eaat5473. doi:10.1126/sciadv.aat5473. PMC 6082647. PMID 30101195.
- ^ Alia J. Lesnek; Jason P. Briner; Charlotte Lindqvist; James F. Baichtal; Timothy H. Heaton (2018). "Deglaciation of the Pacific coastal corridor directly preceded the human colonization of the Americas". Science Advances. 4 (5): eaar5040. doi:10.1126/sciadv.aar5040. PMC 5976267. PMID 29854947.
- ^ Heather L. Smith; Ted Goebel (2018). "Origins and spread of fluted-point technology in the Canadian Ice-Free Corridor and eastern Beringia". Proceedings of the National Academy of Sciences of the United States of America. 115 (16): 4116–4121. doi:10.1073/pnas.1800312115. PMC 5910867. PMID 29610336.
- ^ Duncan McLaren; Daryl Fedje; Angela Dyck; Quentin Mackie; Alisha Gauvreau; Jenny Cohen (2018). "Terminal Pleistocene epoch human footprints from the Pacific coast of Canada". PLoS ONE. 13 (3): e0193522. doi:10.1371/journal.pone.0193522. PMC 5873988. PMID 29590165.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ David Bustos; Jackson Jakeway; Tommy M. Urban; Vance T. Holliday; Brendan Fenerty; David A. Raichlen; Marcin Budka; Sally C. Reynolds; Bruce D. Allen; David W. Love; Vincent L. Santucci; Daniel Odess; Patrick Willey; H. Gregory McDonald; Matthew R. Bennett (2018). "Footprints preserve terminal Pleistocene hunt? Human-sloth interactions in North America". Science Advances. 4 (4): eaar7621. doi:10.1126/sciadv.aar7621. PMC 5916513. PMID 29707640.
- ^ Thomas J. Williams; Michael B. Collins; Kathleen Rodrigues; William Jack Rink; Nancy Velchoff; Amanda Keen-Zebert; Anastasia Gilmer; Charles D. Frederick; Sergio J. Ayala; Elton R. Prewitt (2018). "Evidence of an early projectile point technology in North America at the Gault Site, Texas, USA". Science Advances. 4 (7): eaar5954. doi:10.1126/sciadv.aar5954. PMC 6040843. PMID 30009257.
- ^ Lorena Becerra-Valdivia; Michael R. Waters; Thomas W. Stafford Jr.; Sarah L. Anzick; Daniel Comeskey; Thibaut Devièse; Thomas Higham (2018). "Reassessing the chronology of the archaeological site of Anzick". Proceedings of the National Academy of Sciences of the United States of America. 115 (27): 7000–7003. doi:10.1073/pnas.1803624115. PMID 29915063.
- ^ Moreno-Mayar, J. Víctor; Potter, Ben A.; Vinner, Lasse; Steinrücken, Matthias; Rasmussen, Simon; et al. (2018). "Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans". Nature. 553 (7687): 203–207. doi:10.1038/nature25173. PMID 29323294.
- ^ Becker, Rachel (January 3, 2018). "Ancient baby's DNA reveals completely unknown branch of Native American family tree". The Verge. Retrieved January 4, 2018.
- ^ C. L. Scheib; Hongjie Li; Tariq Desai; Vivian Link; Christopher Kendall; Genevieve Dewar; Peter William Griffith; Alexander Mörseburg; John R. Johnson; Amiee Potter; Susan L. Kerr; Phillip Endicott; John Lindo; Marc Haber; Yali Xue; Chris Tyler-Smith; Manjinder S. Sandhu; Joseph G. Lorenz; Tori D. Randall; Zuzana Faltyskova; Luca Pagani; Petr Danecek; Tamsin C. O’Connell; Patricia Martz; Alan S. Boraas; Brian F. Byrd; Alan Leventhal; Rosemary Cambra; Ronald Williamson; Louis Lesage; Brian Holguin; Ernestine Ygnacio-De Soto; JohnTommy Rosas; Mait Metspalu; Jay T. Stock; Andrea Manica; Aylwyn Scally; Daniel Wegmann; Ripan S. Malhi; Toomas Kivisild (2018). "Ancient human parallel lineages within North America contributed to a coastal expansion". Science. 360 (6392): 1024–1027. doi:10.1126/science.aar6851. PMID 29853687.
- ^ Jennifer Watling; Myrtle P. Shock; Guilherme Z. Mongeló; Fernando O. Almeida; Thiago Kater; Paulo E. De Oliveira; Eduardo G. Neves (2018). "Direct archaeological evidence for Southwestern Amazonia as an early plant domestication and food production centre". PLoS ONE. 13 (7): e0199868. doi:10.1371/journal.pone.0199868. PMC 6059402. PMID 30044799.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Rebeka Rmoutilová; Pierre Guyomarc’h; Petr Velemínský; Alena Šefčáková; Mathilde Samsel; Frédéric Santos; Bruno Maureille; Jaroslav Brůžek (2018). "Virtual reconstruction of the Upper Palaeolithic skull from Zlatý Kůň, Czech Republic: Sex assessment and morphological affinity". PLoS ONE. 13 (8): e0201431. doi:10.1371/journal.pone.0201431. PMC 6116938. PMID 30161127.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Simon Blockley; Ian Candy; Ian Matthews; Pete Langdon; Cath Langdon; Adrian Palmer; Paul Lincoln; Ashley Abrook; Barry Taylor; Chantal Conneller; Alex Bayliss; Alison MacLeod; Laura Deeprose; Chris Darvill; Rebecca Kearney; Nancy Beavan; Richard Staff; Michael Bamforth; Maisie Taylor; Nicky Milner (2018). "The resilience of postglacial hunter-gatherers to abrupt climate change". Nature Ecology & Evolution. 2 (5): 810–818. doi:10.1038/s41559-018-0508-4. PMID 29581589.
- ^ Ursula Wierer; Simona Arrighi; Stefano Bertola; Günther Kaufmann; Benno Baumgarten; Annaluisa Pedrotti; Patrizia Pernter; Jacques Pelegrin (2018). "The Iceman's lithic toolkit: Raw material, technology, typology and use". PLoS ONE. 13 (6): e0198292. doi:10.1371/journal.pone.0198292. PMC 6010222. PMID 29924811.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Frank Maixner; Dmitrij Turaev; Amaury Cazenave-Gassiot; Marek Janko; Ben Krause-Kyora; Michael R. Hoopmann; Ulrike Kusebauch; Mark Sartain; Gea Guerriero; Niall O’Sullivan; Matthew Teasdale; Giovanna Cipollini; Alice Paladin; Valeria Mattiangeli; Marco Samadelli; Umberto Tecchiati; Andreas Putzer; Mine Palazoglu; John Meissen; Sandra Lösch; Philipp Rausch; John F. Baines; Bum Jin Kim; Hyun-Joo An; Paul Gostner; Eduard Egarter-Vigl; Peter Malfertheiner; Andreas Keller; Robert W. Stark; Markus Wenk; David Bishop; Daniel G. Bradley; Oliver Fiehn; Lars Engstrand; Robert L. Moritz; Philip Doble; Andre Franke; Almut Nebel; Klaus Oeggl; Thomas Rattei; Rudolf Grimm; Albert Zink (2018). "The Iceman's last meal consisted of fat, wild meat, and cereals". Current Biology. 28 (14): 2348–2355.e9. doi:10.1016/j.cub.2018.05.067. PMC 6065529. PMID 30017480.
- ^ Thomas Sutikna; Matthew W. Tocheri; J. Tyler Faith; Jatmiko; Rokus Due Awe; Hanneke J. M.Meijer; E. Wahyu Saptomo; Richard G. Roberts (2018). "The spatio-temporal distribution of archaeological and faunal finds at Liang Bua (Flores, Indonesia) in light of the revised chronology for Homo floresiensis". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2018.07.001. PMID 30173885.
- ^ Serena Tucci; Samuel H. Vohr; Rajiv C. McCoy; Benjamin Vernot; Matthew R. Robinson; Chiara Barbieri; Brad J. Nelson; Wenqing Fu; Gludhug A. Purnomo; Herawati Sudoyo; Evan E. Eichler; Guido Barbujani; Peter M. Visscher; Joshua M. Akey; Richard E. Green (2018). "Evolutionary history and adaptation of a human pygmy population of Flores Island, Indonesia". Science. 361 (6401): 511–516. doi:10.1126/science.aar8486. PMID 30072539.
- ^ Kenneth D. Rose; Rachel H. Dunn; Kishor Kumar; Jonathan M.G. Perry; Kristen A. Prufrock; Rajendra S. Rana; Thierry Smith (2018). "New fossils from Tadkeshwar Mine (Gujarat, India) increase primate diversity from the early Eocene Cambay Shale". Journal of Human Evolution. 122: 93–107. doi:10.1016/j.jhevol.2018.05.006. PMID 29886006.
- ^ a b c Amy L. Atwater; E. Christopher Kirk (2018). "New middle Eocene omomyines (Primates, Haplorhini) from San Diego County, California". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2018.04.010. PMID 30149995.
- ^ Samuel T. Turvey; Kristoffer Bruun; Alejandra Ortiz; James Hansford; Songmei Hu; Yan Ding; Tianen Zhang; Helen J. Chatterjee (2018). "New genus of extinct Holocene gibbon associated with humans in Imperial China". Science. 360 (6395): 1346–1349. doi:10.1126/science.aao4903. PMID 29930136.
- ^ Sergi López-Torres; Mary T. Silcox; Patricia A. Holroyd (2018). "New omomyoids (Euprimates, Mammalia) from the late Uintan of southern California, USA, and the question of the extinction of the Paromomyidae (Plesiadapiformes, Primates)" (PDF). Palaeontologia Electronica. 21 (3): Article number 21.3.37A. doi:10.26879/756.
- ^ a b Shundong Bi; Xiaoting Zheng; Xiaoli Wang; Natalie E. Cignetti; Shiling Yang; John R. Wible (2018). "An Early Cretaceous eutherian and the placental–marsupial dichotomy". Nature. 558 (7710): 390–395. doi:10.1038/s41586-018-0210-3. PMID 29899454.
- ^ Yuan-Qing Wang; Nao Kusuhashi; Xun Jin; Chuan-Kui Li; Takeshi Setoguchi; Chun-Ling Gao; Jin-Yuan Liu (2018). "Reappraisal of Endotherium niinomii Shikama, 1947, a eutherian mammal from the Lower Cretaceous Fuxin Formation, Fuxin-Jinzhou Basin, Liaoning, China". Vertebrata PalAsiatica. 56 (3): 180–192. doi:10.19615/j.cnki.1000-3118.180226.
- ^ James G. Napoli; Thomas E. Williamson; Sarah L. Shelley; Stephen L. Brusatte (2018). "A Digital Endocranial Cast of the Early Paleocene (Puercan) 'Archaic' Mammal Onychodectes tisonensis (Eutheria: Taeniodonta)". Journal of Mammalian Evolution. 25 (2): 179–195. doi:10.1007/s10914-017-9381-1. PMC 5938319. PMID 29755252.
- ^ Mark S. Springer; William J. Murphy; Alfred L. Roca (2018). "Appropriate fossil calibrations and tree constraints uphold the Mesozoic divergence of solenodons from other extant mammals". Molecular Phylogenetics and Evolution. 121: 158–165. doi:10.1016/j.ympev.2018.01.007. PMID 29331683.
- ^ Barbara Rzebik-Kowalska; Andrea Pereswiet-Soltan (2018). "Contribution to the validity and taxonomic status of the European fossil shrew Sorex subaraneus and the origin of Sorex araneus (Soricidae, Eulipotyphla, Insectivora, Mammalia)". Palaeontologia Electronica. 21 (2): Article number 21.2.33A. doi:10.26879/788.
- ^ Antonio Borrani; Andrea Savorelli; Federico Masini; Paul P. A. Mazza (2018). "The tangled cases of Deinogalerix (Late Miocene endemic erinaceid of Gargano) and Galericini (Eulipotyphla, Erinaceidae): a cladistic perspective". Cladistics. 34 (5): 542–561. doi:10.1111/cla.12215.
- ^ Lars W. van den Hoek Ostende (2018). "Cladistics and insular evolution, an unfortunate marriage? Another tangle in the Deinogalerix analysis of Borrani et al. (2017)". Cladistics. in press. doi:10.1111/cla.12238.
- ^ Andrea Corona; Daniel Perea; Martín Ubilla (2018). "The humerus of Proterotheriidae (Mammalia, Litopterna) and its systematic usefulness: the case of "Proterotherium berroi" Kraglievich, 1930". Ameghiniana. 55 (2): 150–161. doi:10.5710/AMGH.10.12.2017.3148.
- ^ Helder Gomes Rodrigues; Raphaël Cornette; Julien Clavel; Guillermo Cassini; Bhart-Anjan S. Bhullar; Marcos Fernández-Monescillo; Karen Moreno; Anthony Herrel; Guillaume Billet (2018). "Differential influences of allometry, phylogeny and environment on the rostral shape diversity of extinct South American notoungulates". Royal Society Open Science. 5 (1): 171816. doi:10.1098/rsos.171816. PMC 5792951. PMID 29410874.
- ^ Alejo C. Scarano; Bárbara Vera (2018). "Geometric morphometric analysis as a proxy to evaluate age-related change in molar shape variation of low-crowned Notoungulata (Mammalia)". Journal of Morphology. 279 (2): 216–227. doi:10.1002/jmor.20766. PMID 29068070.
- ^ M. D. Ercoli; A. M. Candela; L. L. Rasia; M. A. Ramírez (2018). "Dental shape variation of Neogene Pachyrukhinae (Mammalia, Notoungulata, Hegetotheriidae): systematics and evolutionary implications for the late Miocene Paedotherium species". Journal of Systematic Palaeontology. 16 (13): 1073–1095. doi:10.1080/14772019.2017.1366956.
- ^ Renata Sostillo; Esperanza Cerdeño; Claudia I. Montalvo (2018). "Taxonomic implications from a large sample of Tremacyllus (Hegetotheriidae: Pachyrukhinae) from the late Miocene Cerro Azul Formation of La Pampa, Argentina". Ameghiniana. in press. doi:10.5710/AMGH.18.12.2017.3146.
- ^ Bárbara Vera; Marcos D. Ercoli (2018). "Systematic and morphogeometric analyses of Pachyrukhinae (Mammalia, Hegetotheriidae) from the Huayquerías, Mendoza (Argentina): biostratigraphic and evolutionary implications". Journal of Vertebrate Paleontology. 38 (3): e1473410. doi:10.1080/02724634.2018.1473410.
- ^ Marcos Fernández-Monescillo; Pierre-Olivier Antoine; François Pujos; Helder Gomes Rodrigues; Bernardino Mamani Quispe; Maeva Orliac (2018). "Virtual endocast morphology of Mesotheriidae (Mammalia, Notoungulata, Typotheria): new insights and implications on notoungulate encephalization and brain evolution". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9416-7.
- ^ Marcos Fernández-Monescillo; Bernardino Mamani Quispe; François Pujos; Pierre-Olivier Antoine (2018). "Functional anatomy of the forelimb of Plesiotypotherium achirense (Mammalia, Notoungulata, Mesotheriidae) and evolutionary insights at the family level". Journal of Mammalian Evolution. 25 (2): 197–211. doi:10.1007/s10914-016-9372-7.
- ^ Wighart von Koenigswald; Kenneth D. Rose; Luke T. Holbrook; Kishor Kumar; Rajendra S. Rana; Thierry Smith (2018). "Mastication and enamel microstructure in Cambaytherium, a perissodactyl-like ungulate from the early Eocene of India". PalZ. in press. doi:10.1007/s12542-018-0422-8.
- ^ Sarah L. Shelley; Thomas E. Williamson; Stephen L. Brusatte (2018). "The osteology of Periptychus carinidens: A robust, ungulate-like placental mammal (Mammalia: Periptychidae) from the Paleocene of North America". PLoS ONE. 13 (7): e0200132. doi:10.1371/journal.pone.0200132. PMC 6051615. PMID 30020948.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Matthew R. Borths; Nancy J. Stevens (2018). "Taxonomic affinities of the enigmatic Prionogale breviceps, early Miocene, Kenya". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1393075.
- ^ Shawn P. Zack (2018). "A skeleton of a Uintan machaeroidine 'creodont' and the phylogeny of carnivorous eutherian mammals". Journal of Systematic Palaeontology. in press. doi:10.1080/14772019.2018.1466374.
- ^ a b Sergi López-Torres; Mary T. Silcox (2018). "The European Paromomyidae (Primates, Mammalia): taxonomy, phylogeny, and biogeographic implications". Journal of Paleontology. 92 (5): 920–937. doi:10.1017/jpa.2018.10.
- ^ a b c Eric De Bast; Cyril Gagnaison; Thierry Smith (2018). "Plesiadapid mammals from the latest Paleocene of France offer new insights on the evolution of Plesiadapis during the Paleocene-Eocene transition". Journal of Vertebrate Paleontology. 38 (3): e1460602. doi:10.1080/02724634.2018.1460602.
- ^ Jerry J. Hooker (2018). "Eocene antiquity of the European nyctitheriid euarchontan mammal Darbonetus". Acta Palaeontologica Polonica. 63 (2): 235–239. doi:10.4202/app.00457.2018.
- ^ a b Floréal Solé; Marc Godinot; Yves Laurent; Alain Galoyer; Thierry Smith (2018). "The European Mesonychid Mammals: Phylogeny, Ecology, Biogeography, and Biochronology". Journal of Mammalian Evolution. 25 (3): 339–379. doi:10.1007/s10914-016-9371-8.
- ^ a b c d André R. Wyss; John J. Flynn; Darin A. Croft (2018). "New Paleogene notohippids and leontiniids (Toxodontia; Notoungulata; Mammalia) from the Early Oligocene Tinguiririca Fauna of the Andean Main Range, central Chile". Journal of South American Earth Sciences. 3903: 1–42. doi:10.1206/3903.1.
- ^ a b Juan D. Carrillo; Eli Amson; Carlos Jaramillo; Rodolfo Sánchez; Luis Quiroz; Carlos Cuartas; Aldo F. Rincón; Marcelo R. Sánchez-Villagra (2018). "The Neogene record of northern South American native ungulates". Smithsonian Contributions to Paleobiology. 101: 1–67. doi:10.5479/si.1943-6688.101.
- ^ Craig S. Scott (2018). "Horolodectidae: a new family of unusual eutherians (Mammalia: Theria) from the Palaeocene of Alberta, Canada". Zoological Journal of the Linnean Society. Online edition. doi:10.1093/zoolinnean/zly040.
- ^ A. V. Lopatin; A. O. Averianov (2018). "A new stem placental mammal from the Early Cretaceous of Mongolia". Doklady Biological Sciences. 478 (1): 8–11. doi:10.1134/S0012496618010027. PMID 29536398.
- ^ a b Andrew J. McGrath; Federico Anaya; Darin A. Croft (2018). "Two new macraucheniids (Mammalia: Litopterna) from the late middle Miocene (Laventan South American Land Mammal Age) of Quebrada Honda, Bolivia". Journal of Vertebrate Paleontology. 38 (3): e1461632. doi:10.1080/02724634.2018.1461632.
- ^ Martin Jehle; Marc Godinot; Dominique Delsate; Alain Phélizon; Jean-Louis Pellouin (2018). "Evolution of plesiadapid mammals (Eutheria, Euarchonta, Plesiadapiformes) in Europe across the Paleocene/Eocene boundary: implications for phylogeny, biochronology and scenarios of dispersal". Palaeobiodiversity and Palaeoenvironments. Online edition. doi:10.1007/s12549-018-0331-6.
- ^ Louis de Bonis; Floreal Solé; Yaowalak Chaimanee; Aung Naing Soe; Chit Sein; Vincent Lazzari; Olivier Chavasseau; Jean-Jacques Jaeger (2018). "New Hyaenodonta (Mammalia) from the middle Eocene of Myanmar". Comptes Rendus Palevol. 17 (6): 357–365. doi:10.1016/j.crpv.2017.12.003.
- ^ Esperanza Cerdeño; Bárbara Vera; Ana María Combina (2018). "A new early Miocene Mesotheriidae (Notoungulata) from the Mariño Formation (Argentina): Taxonomic and biostratigraphic implications". Journal of South American Earth Sciences. 88: 118–131. doi:10.1016/j.jsames.2018.06.016.
- ^ Chiara Angelone; Stanislav Čermák; Blanca Moncunill-Solé; Josep Quintana; Caterinella Tuveri; Marisa Arca; Tassos Kotsakis (2018). "Systematics and paleobiogeography of Sardolagus obscurus n. gen. n. sp. (Leporidae, Lagomorpha) from the early Pleistocene of Sardinia". Journal of Paleontology. 92 (3): 506–522. doi:10.1017/jpa.2017.144.
- ^ Vladimir S. Zazhigin; Leonid L. Voyta (2018). "A new middle Miocene crocidosoricine shrew from the Mongolian Shargain Gobi Desert". Acta Palaeontologica Polonica. 63 (1): 171–187. doi:10.4202/app.00396.2017.
- ^ Jerry J. Hooker (2018). "A mammal fauna from the Paleocene-Eocene Thermal Maximum of Croydon, London, UK". Proceedings of the Geologists' Association. in press. doi:10.1016/j.pgeola.2018.01.001.
- ^ Matías A. Armella; Daniel A. García-López; Lucía Dominguez (2018). "A new species of Xotodon (Notoungulata, Toxodontidae) from northwestern Argentina". Journal of Vertebrate Paleontology. 38 (1): e1425882. doi:10.1080/02724634.2017.1425882.
- ^ Sergi López-Torres; Łucja Fostowicz-Frelik (2018). "A new Eocene anagalid (Mammalia: Euarchontoglires) from Mongolia and its implications for the group's phylogeny and dispersal". Scientific Reports. 8: Article number 13955. doi:10.1038/s41598-018-32086-x. PMC 6141491. PMID 30224674.
{{cite journal}}
: no-break space character in|pages=
at position 15 (help) - ^ Ray Stanford; Martin G. Lockley; Compton Tucker; Stephen Godfrey; Sheila M. Stanford (2018). "A diverse mammal-dominated, footprint assemblage from wetland deposits in the Lower Cretaceous of Maryland". Scientific Reports. 8: Article number 741. doi:10.1038/s41598-017-18619-w. PMC 5792599. PMID 29386519.
- ^ Elsa Panciroli; Julia A. Schultz; Zhe‐Xi Luo (2018). "Morphology of the petrosal and stapes of Borealestes (Mammaliaformes, Docodonta) from the Middle Jurassic of Skye, Scotland". Papers in Palaeontology. in press. doi:10.1002/spp2.1233.
- ^ Julia A. Schultz; Bhart-Anjan S. Bhullar; Zhe-Xi Luo (2018). "Re-examination of the Jurassic mammaliaform Docodon victor by computed tomography and occlusal functional analysis". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9418-5.
- ^ Jin Meng; Shundong Bi; Xiaoting Zheng; Xiaoli Wang (2018). "Ear ossicle morphology of the Jurassic euharamiyidan Arboroharamiya and evolution of mammalian middle ear". Journal of Morphology. 279 (4): 441–457. doi:10.1002/jmor.20565. PMID 27228358.
- ^ Julia A. Schultz; Irina Ruf; Thomas Martin (2018). "Oldest known multituberculate stapes suggests an asymmetric bicrural pattern as ancestral for Multituberculata". Proceedings of the Royal Society B: Biological Sciences. 285 (1873): 20172779. doi:10.1098/rspb.2017.2779. PMC 5832711. PMID 29467266.
- ^ Elsa Panciroli; Roger B.J. Benson; Richard J. Butler (2018). "New partial dentaries of amphitheriid mammalian Palaeoxonodon ooliticus from Scotland, and posterior dentary morphology in early cladotherians". Acta Palaeontologica Polonica. 63 (2): 197–206. doi:10.4202/app.00434.2017.
- ^ Tony Harper; Ana Parras; Guillermo W. Rougier (2018). "Reigitherium (Meridiolestida, Mesungulatoidea) an enigmatic Late Cretaceous mammal from Patagonia, Argentina: morphology, affinities, and dental evolution". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-018-9437-x.
- ^ Mariela C. Castro; Francisco J. Goin; Edgardo Ortiz-Jaureguizar; E. Carolina Vieytes; Kaori Tsukui; Jahandar Ramezani; Alessandro Batezelli; Júlio C. A. Marsola; Max C. Langer (2018). "A Late Cretaceous mammal from Brazil and the first radioisotopic age for the Bauru Group". Royal Society Open Science. 5 (5): 180482. doi:10.1098/rsos.180482. PMC 5990825. PMID 29892465.
- ^ Craig S. Scott; Anne Weil; Jessica M. Theodor (2018). "A new, diminutive species of Catopsalis (Mammalia, Multituberculata, Taeniolabidoidea) from the early Paleocene of southwestern Alberta, Canada". Journal of Paleontology. 92 (5): 896–910. doi:10.1017/jpa.2018.2.
- ^ Adam K. Huttenlocker; David M. Grossnickle; James I. Kirkland; Julia A. Schultz; Zhe-Xi Luo (2018). "Late-surviving stem mammal links the lowermost Cretaceous of North America and Gondwana". Nature. 558 (7708): 108–112. doi:10.1038/s41586-018-0126-y. PMID 29795343.
- ^ a b Alexander Averianov; Thomas Martin; Alexey Lopatin; Pavel Skutschas; Rico Schellhorn; Petr Kolosov; Dmitry Vitenko (2018). "A high-latitude fauna of mid-Mesozoic mammals from Yakutia, Russia". PLoS ONE. 13 (7): e0199983. doi:10.1371/journal.pone.0199983. PMC 6059412. PMID 30044817.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Zoltán Csiki-Sava; Mátyás Vremir; Jin Meng; Stephen L. Brusatte; Mark A. Norell (2018). "Dome-headed, small-brained island mammal from the Late Cretaceous of Romania". Proceedings of the National Academy of Sciences of the United States of America. 115 (19): 4857–4862. doi:10.1073/pnas.1801143115. PMC 5948999. PMID 29686084.