2018 in paleontology: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
Line 3,949: Line 3,949:
* A study evaluating how distribution patterns of non-lithistid spiculate [[sponge]]s changed during the [[Cambrian explosion]] and the [[Ordovician radiation|Great Ordovician Biodiversification Event]] is published by Botting & Muir (2018).<ref>{{Cite journal|author1=Joseph P. Botting |author2=Lucy A. Muir |year=2018 |title=Dispersal and endemic diversification: Differences in non-lithistid spiculate sponge faunas between the Cambrian Explosion and the GOBE |journal=Palaeoworld |volume=in press |issue= |pages= |doi=10.1016/j.palwor.2018.03.002 }}</ref>
* A study evaluating how distribution patterns of non-lithistid spiculate [[sponge]]s changed during the [[Cambrian explosion]] and the [[Ordovician radiation|Great Ordovician Biodiversification Event]] is published by Botting & Muir (2018).<ref>{{Cite journal|author1=Joseph P. Botting |author2=Lucy A. Muir |year=2018 |title=Dispersal and endemic diversification: Differences in non-lithistid spiculate sponge faunas between the Cambrian Explosion and the GOBE |journal=Palaeoworld |volume=in press |issue= |pages= |doi=10.1016/j.palwor.2018.03.002 }}</ref>
* Diverse, abundant sponge fossils from the Ordovician–Silurian boundary interval are reported from seven localities in South China by Botting ''et al.'' (2018), who produce a model for the distribution and preservation of the sponge fauna.<ref>{{Cite journal|author1=Joseph P. Botting |author2=Lucy A. Muir |author3=Wenhui Wang |author4=Wenkun Qie |author5=Jingqiang Tan |author6=Linna Zhang |author7=Yuandong Zhang |year=2018 |title=Sponge-dominated offshore benthic ecosystems across South China in the aftermath of the end-Ordovician mass extinction |journal=Gondwana Research |volume=in press |pages= |doi=10.1016/j.gr.2018.04.014 }}</ref>
* Diverse, abundant sponge fossils from the Ordovician–Silurian boundary interval are reported from seven localities in South China by Botting ''et al.'' (2018), who produce a model for the distribution and preservation of the sponge fauna.<ref>{{Cite journal|author1=Joseph P. Botting |author2=Lucy A. Muir |author3=Wenhui Wang |author4=Wenkun Qie |author5=Jingqiang Tan |author6=Linna Zhang |author7=Yuandong Zhang |year=2018 |title=Sponge-dominated offshore benthic ecosystems across South China in the aftermath of the end-Ordovician mass extinction |journal=Gondwana Research |volume=in press |pages= |doi=10.1016/j.gr.2018.04.014 }}</ref>
* A study on the phylogenetic relationships of extant and fossil [[demosponge]]s is published by Schuster ''et al.'' (2018).<ref>{{Cite journal|author1=Astrid Schuster |author2=Sergio Vargas |author3=Ingrid S. Knapp |author4=Shirley A. Pomponi |author5=Robert J. Toonen |author6=Dirk Erpenbeck |author7=Gert Wörheide |year=2018 |title=Divergence times in demosponges (Porifera): first insights from new mitogenomes and the inclusion of fossils in a birth-death clock model |journal=BMC Evolutionary Biology |volume=18 |pages=114 |doi=10.1186/s12862-018-1230-1 }}</ref>
* An assemblage of animal fossils, including the oldest known [[Pterobranchia|pterobranchs]], preserved in the form of [[small carbonaceous fossil]]s is described from the Cambrian [[Buen Formation]] ([[Greenland]]) by Slater ''et al.'' (2018).<ref>{{Cite journal|author1=Ben J. Slater |author2=Sebastian Willman |author3=Graham E. Budd |author4=John S. Peel |year=2018 |title=Widespread preservation of small carbonaceous fossils (SCFs) in the early Cambrian of North Greenland |journal=Geology |volume=46 |issue=2 |pages=107–110 |doi=10.1130/G39788.1 }}</ref>
* An assemblage of animal fossils, including the oldest known [[Pterobranchia|pterobranchs]], preserved in the form of [[small carbonaceous fossil]]s is described from the Cambrian [[Buen Formation]] ([[Greenland]]) by Slater ''et al.'' (2018).<ref>{{Cite journal|author1=Ben J. Slater |author2=Sebastian Willman |author3=Graham E. Budd |author4=John S. Peel |year=2018 |title=Widespread preservation of small carbonaceous fossils (SCFs) in the early Cambrian of North Greenland |journal=Geology |volume=46 |issue=2 |pages=107–110 |doi=10.1130/G39788.1 }}</ref>
* Description of new morphological features of the Cambrian [[Mobergellidae|mobergellan]] ''[[Discinella micans]]'' is published by Skovsted & Topper (2018).<ref>{{Cite journal|author1=Christian B. Skovsted |author2=Timothy P. Topper |year=2018 |title=Mobergellans from the early Cambrian of Greenland and Labrador: new morphological details and implications for the functional morphology of mobergellans |journal=Journal of Paleontology |volume=92 |issue=1 |pages=71–79 |doi=10.1017/jpa.2017.41 }}</ref>
* Description of new morphological features of the Cambrian [[Mobergellidae|mobergellan]] ''[[Discinella micans]]'' is published by Skovsted & Topper (2018).<ref>{{Cite journal|author1=Christian B. Skovsted |author2=Timothy P. Topper |year=2018 |title=Mobergellans from the early Cambrian of Greenland and Labrador: new morphological details and implications for the functional morphology of mobergellans |journal=Journal of Paleontology |volume=92 |issue=1 |pages=71–79 |doi=10.1017/jpa.2017.41 }}</ref>
Line 6,131: Line 6,132:
* A study on the environmental changes during the global warming following the brief impact winter at the Cretaceous-Paleogene boundary, based on geochemical, micropaleontological and palynological data from Cretaceous-Paleogene boundary sections in [[Texas]], [[Denmark]] and [[Spain]], is published by Vellekoop ''et al.'' (2018).<ref>{{Cite journal|author1=Johan Vellekoop |author2=Lineke Woelders |author3=Niels A.G.M. van Helmond |author4=Simone Galeotti |author5=Jan Smit |author6=Caroline P. Slomp |author7=Henk Brinkhuis |author8=Philippe Claeys |author9=Robert P. Speijer |year=2018 |title=Shelf hypoxia in response to global warming after the Cretaceous-Paleogene boundary impact |journal=Geology |volume=in press |issue= |pages= |doi=10.1130/G45000.1 }}</ref>
* A study on the environmental changes during the global warming following the brief impact winter at the Cretaceous-Paleogene boundary, based on geochemical, micropaleontological and palynological data from Cretaceous-Paleogene boundary sections in [[Texas]], [[Denmark]] and [[Spain]], is published by Vellekoop ''et al.'' (2018).<ref>{{Cite journal|author1=Johan Vellekoop |author2=Lineke Woelders |author3=Niels A.G.M. van Helmond |author4=Simone Galeotti |author5=Jan Smit |author6=Caroline P. Slomp |author7=Henk Brinkhuis |author8=Philippe Claeys |author9=Robert P. Speijer |year=2018 |title=Shelf hypoxia in response to global warming after the Cretaceous-Paleogene boundary impact |journal=Geology |volume=in press |issue= |pages= |doi=10.1130/G45000.1 }}</ref>
* A record of [[foraminifera]], calcareous nannoplankton, trace fossils and elemental abundance data from within the Chicxulub crater, dated to approximately the first 200,000 years of the [[Paleocene]], is presented by Lowery ''et al.'' (2018), who report evidence indicating that life reappeared in the basin just years after the Chicxulub impact and a high-productivity ecosystem was established within 30,000 years.<ref>{{Cite journal|author1=Christopher M. Lowery |author2=Timothy J. Bralower |author3=Jeremy D. Owens |author4=Francisco J. Rodríguez-Tovar |author5=Heather Jones |author6=Jan Smit |author7=Michael T. Whalen |author8=Phillipe Claeys |author9=Kenneth Farley |author10=Sean P. S. Gulick |author11=Joanna V. Morgan |author12=Sophie Green |author13=Elise Chenot |author14=Gail L. Christeson |author15=Charles S. Cockell |author16=Marco J. L. Coolen |author17=Ludovic Ferrière |author18=Catalina Gebhardt |author19=Kazuhisa Goto |author20=David A. Kring |author21=Johanna Lofi |author22=Rubén Ocampo-Torres |author23=Ligia Perez-Cruz |author24=Annemarie E. Pickersgill |author25=Michael H. Poelchau |author26=Auriol S. P. Rae |author27=Cornelia Rasmussen |author28=Mario Rebolledo-Vieyra |author29=Ulrich Riller |author30=Honami Sato |author31=Sonia M. Tikoo |author32=Naotaka Tomioka |author33=Jaime Urrutia-Fucugauchi |author34=Johan Vellekoop |author35=Axel Wittmann |author36=Long Xiao |author37=Kosei E. Yamaguchi |author38=William Zylberman |year=2018 |title=Rapid recovery of life at ground zero of the end-Cretaceous mass extinction |journal=Nature |volume=558 |issue=7709 |pages=288–291 |doi=10.1038/s41586-018-0163-6 |pmid=29849143 }}</ref>
* A record of [[foraminifera]], calcareous nannoplankton, trace fossils and elemental abundance data from within the Chicxulub crater, dated to approximately the first 200,000 years of the [[Paleocene]], is presented by Lowery ''et al.'' (2018), who report evidence indicating that life reappeared in the basin just years after the Chicxulub impact and a high-productivity ecosystem was established within 30,000 years.<ref>{{Cite journal|author1=Christopher M. Lowery |author2=Timothy J. Bralower |author3=Jeremy D. Owens |author4=Francisco J. Rodríguez-Tovar |author5=Heather Jones |author6=Jan Smit |author7=Michael T. Whalen |author8=Phillipe Claeys |author9=Kenneth Farley |author10=Sean P. S. Gulick |author11=Joanna V. Morgan |author12=Sophie Green |author13=Elise Chenot |author14=Gail L. Christeson |author15=Charles S. Cockell |author16=Marco J. L. Coolen |author17=Ludovic Ferrière |author18=Catalina Gebhardt |author19=Kazuhisa Goto |author20=David A. Kring |author21=Johanna Lofi |author22=Rubén Ocampo-Torres |author23=Ligia Perez-Cruz |author24=Annemarie E. Pickersgill |author25=Michael H. Poelchau |author26=Auriol S. P. Rae |author27=Cornelia Rasmussen |author28=Mario Rebolledo-Vieyra |author29=Ulrich Riller |author30=Honami Sato |author31=Sonia M. Tikoo |author32=Naotaka Tomioka |author33=Jaime Urrutia-Fucugauchi |author34=Johan Vellekoop |author35=Axel Wittmann |author36=Long Xiao |author37=Kosei E. Yamaguchi |author38=William Zylberman |year=2018 |title=Rapid recovery of life at ground zero of the end-Cretaceous mass extinction |journal=Nature |volume=558 |issue=7709 |pages=288–291 |doi=10.1038/s41586-018-0163-6 |pmid=29849143 }}</ref>
* Evidence from sulfur-isotope data indicative of a large-scale ocean deoxygenation during the [[Paleocene–Eocene Thermal Maximum]] is presented by Yao, Paytan & Wortmann (2018).<ref>{{Cite journal|author1=Weiqi Yao |author2=Adina Paytan |author3=Ulrich G. Wortmann |year=2018 |title=Large-scale ocean deoxygenation during the Paleocene-Eocene Thermal Maximum |journal=Science |volume=in press |issue= |pages= |doi=10.1126/science.aar8658 }}</ref>
* A study on the tropical sea-surface temperatures in the [[Eocene]] is published by Evans ''et al.'' (2018).<ref>{{Cite journal|author1=David Evans |author2=Navjit Sagoo |author3=Willem Renema |author4=Laura J. Cotton |author5=Wolfgang Müller |author6=Jonathan A. Todd |author7=Pratul Kumar Saraswati |author8=Peter Stassen |author9=Martin Ziegler |author10=Paul N. Pearson |author11=Paul J. Valdes |author12=Hagit P. Affek |year=2018 |title=Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=115 |issue=6 |pages=1174–1179 |doi=10.1073/pnas.1714744115 |pmid=29358374 |pmc=5819407 }}</ref>
* A study on the tropical sea-surface temperatures in the [[Eocene]] is published by Evans ''et al.'' (2018).<ref>{{Cite journal|author1=David Evans |author2=Navjit Sagoo |author3=Willem Renema |author4=Laura J. Cotton |author5=Wolfgang Müller |author6=Jonathan A. Todd |author7=Pratul Kumar Saraswati |author8=Peter Stassen |author9=Martin Ziegler |author10=Paul N. Pearson |author11=Paul J. Valdes |author12=Hagit P. Affek |year=2018 |title=Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=115 |issue=6 |pages=1174–1179 |doi=10.1073/pnas.1714744115 |pmid=29358374 |pmc=5819407 }}</ref>
* A continuous Eocene equatorial sea surface temperature record is presented by Cramwinckel ''et al.'' (2018), who also construct a 26-million-year multi-proxy, multi-site stack of Eocene tropical climate evolution.<ref>{{Cite journal|author1=Margot J. Cramwinckel |author2=Matthew Huber |author3=Ilja J. Kocken |author4=Claudia Agnini |author5=Peter K. Bijl |author6=Steven M. Bohaty |author7=Joost Frieling |author8=Aaron Goldner |author9=Frederik J. Hilgen |author10=Elizabeth L. Kip |author11=Francien Peterse |author12=Robin van der Ploeg |author13=Ursula Röhl |author14=Stefan Schouten |author15=Appy Sluijs |year=2018 |title=Synchronous tropical and polar temperature evolution in the Eocene |journal=Nature |volume=559 |issue=7714 |pages=382–386 |doi=10.1038/s41586-018-0272-2 |pmid=29967546 }}</ref>
* A continuous Eocene equatorial sea surface temperature record is presented by Cramwinckel ''et al.'' (2018), who also construct a 26-million-year multi-proxy, multi-site stack of Eocene tropical climate evolution.<ref>{{Cite journal|author1=Margot J. Cramwinckel |author2=Matthew Huber |author3=Ilja J. Kocken |author4=Claudia Agnini |author5=Peter K. Bijl |author6=Steven M. Bohaty |author7=Joost Frieling |author8=Aaron Goldner |author9=Frederik J. Hilgen |author10=Elizabeth L. Kip |author11=Francien Peterse |author12=Robin van der Ploeg |author13=Ursula Röhl |author14=Stefan Schouten |author15=Appy Sluijs |year=2018 |title=Synchronous tropical and polar temperature evolution in the Eocene |journal=Nature |volume=559 |issue=7714 |pages=382–386 |doi=10.1038/s41586-018-0272-2 |pmid=29967546 }}</ref>
Line 6,163: Line 6,165:
* A novel non-invasive and label-free [[Tomography|tomographic]] approach to reconstruct the three-dimensional architecture of [[microfossils]] based on stimulated [[Raman scattering]] is presented by Golreihan ''et al.'' (2018).<ref>{{cite journal |author1=Asefeh Golreihan |author2=Christian Steuwe |author3=Lineke Woelders |author4=Arne Deprez |author5=Yasuhiko Fujita |author6=Johan Vellekoop |author7=Rudy Swennen |author8=Maarten B. J. Roeffaers |year=2018 |title=Improving preservation state assessment of carbonate microfossils in paleontological research using label-free stimulated Raman imaging |journal=PLoS ONE |volume=13 |issue=7 |pages=e0199695 |doi=10.1371/journal.pone.0199695 |pmid=29995961 }}</ref>
* A novel non-invasive and label-free [[Tomography|tomographic]] approach to reconstruct the three-dimensional architecture of [[microfossils]] based on stimulated [[Raman scattering]] is presented by Golreihan ''et al.'' (2018).<ref>{{cite journal |author1=Asefeh Golreihan |author2=Christian Steuwe |author3=Lineke Woelders |author4=Arne Deprez |author5=Yasuhiko Fujita |author6=Johan Vellekoop |author7=Rudy Swennen |author8=Maarten B. J. Roeffaers |year=2018 |title=Improving preservation state assessment of carbonate microfossils in paleontological research using label-free stimulated Raman imaging |journal=PLoS ONE |volume=13 |issue=7 |pages=e0199695 |doi=10.1371/journal.pone.0199695 |pmid=29995961 }}</ref>
* Mürer ''et al.'' (2018) report on the results of the use of a combination of [[X-ray diffraction]] and [[computed tomography]] to gain insight into the microstructure of fossil bones of ''[[Eusthenopteron]] foordi'' and ''[[Discosauriscus]] austriacus''.<ref>{{cite journal |author1=Fredrik K. Mürer |author2=Sophie Sanchez |author3=Michelle Álvarez-Murga |author4=Marco Di Michiel |author5=Franz Pfeiffer |author6=Martin Bech |author7=Dag W. Breiby |year=2018 |title=3D maps of mineral composition and hydroxyapatite orientation in fossil bone samples obtained by X-ray diffraction computed tomography |journal=Scientific Reports |volume=8 |pages=Article number 10052 |doi=10.1038/s41598-018-28269-1 |pmid=29968761 |pmc=6030225 }}</ref>
* Mürer ''et al.'' (2018) report on the results of the use of a combination of [[X-ray diffraction]] and [[computed tomography]] to gain insight into the microstructure of fossil bones of ''[[Eusthenopteron]] foordi'' and ''[[Discosauriscus]] austriacus''.<ref>{{cite journal |author1=Fredrik K. Mürer |author2=Sophie Sanchez |author3=Michelle Álvarez-Murga |author4=Marco Di Michiel |author5=Franz Pfeiffer |author6=Martin Bech |author7=Dag W. Breiby |year=2018 |title=3D maps of mineral composition and hydroxyapatite orientation in fossil bone samples obtained by X-ray diffraction computed tomography |journal=Scientific Reports |volume=8 |pages=Article number 10052 |doi=10.1038/s41598-018-28269-1 |pmid=29968761 |pmc=6030225 }}</ref>
* A mechanistic model that simulates the history of life on the South American continent, driven by modeled climates of the past 800,000 years, is presented by Rangel ''et al.'' (2018).<ref>{{Cite journal|author1=Thiago F. Rangel |author2=Neil R. Edwards |author3=Philip B. Holden |author4=José Alexandre F. Diniz-Filho |author5=William D. Gosling |author6=Marco Túlio P. Coelho |author7=Fernanda A. S. Cassemiro |author8=Carsten Rahbek |author9=Robert K. Colwell |year=2018 |title=Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves |journal=Science |volume=361 |issue=6399 |pages=eaar5452 |doi=10.1126/science.aar5452 }}</ref>


==References==
==References==

Revision as of 18:29, 19 July 2018

List of years in paleontology (table)
In science
2015
2016
2017
2018
2019
2020
2021
+...

Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils.[1] This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2018.

Plants

Cnidarians

Research

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Actinoseris riyadhensis[4]

Sp. nov

In press

Gameil, El-Sorogy & Al-Kahtany

Late Cretaceous (Campanian)

Aruma Formation

 Saudi Arabia

A solitary coral.

Asteroseris arabica[4]

Sp. nov

In press

Gameil, El-Sorogy & Al-Kahtany

Late Cretaceous (Campanian)

Aruma Formation

 Saudi Arabia

A solitary coral.

Cambrorhytium gracilis[5]

Sp. nov

Valid

Chang et al.

Early Cambrian

 China

Catenipora jingyangensis[6]

Sp. nov

In press

Liang, Elias & Lee

Late Ordovician

 China

A tabulate coral.

Catenipora tiewadianensis[6]

Sp. nov

In press

Liang, Elias & Lee

Late Ordovician

 China

A tabulate coral.

Catenipora tongchuanensis[6]

Sp. nov

In press

Liang, Elias & Lee

Ordovician (Sandbian)

Jinghe Formation

 China

A tabulate coral.

Cunnolites (Plesiocunnolites) riyadhensis[4]

Sp. nov

In press

Gameil, El-Sorogy & Al-Kahtany

Late Cretaceous (Campanian)

Aruma Formation

 Saudi Arabia

A solitary coral.

Kozaniastrea[7]

Gen. et sp. nov

Valid

Löser, Steuber & Löser

Late Cretaceous (Cenomanian)

 Greece

A stony coral belonging to the superfamily Felixaraeoidea and the family Lamellofungiidae. The type species is K. pachysepta.

Opolestraea[8]

Gen. et comb. nov

In press

Morycowa

Middle Triassic (Anisian)

Karchowice Beds

 Poland

A stony coral belonging to the family Eckastraeidae. The type species is "Coelocoenia" exporrecta Weissermel (1925).

Plesiolites[7]

Gen. et sp. nov

Valid

Löser, Steuber & Löser

Late Cretaceous (Cenomanian)

 Greece

A stony coral belonging to the superfamily Misistelloidea. The type species is P. winnii.

Styloheterocoenia[7]

Gen. et 2 sp. nov

Valid

Löser, Steuber & Löser

Late Cretaceous (Cenomanian)

 Greece

A stony coral belonging to the superfamily Heterocoenioidea and the family Heterocoeniidae. The type species is S. hellenensis; genus also includes S. brunni.

Xystriphylloides distinctus[9]

Sp. nov

Valid

Yu

Early Devonian

 China

A rugose coral.

Arthropods

Brachiopods

Research

  • Studies on the ontogenetic development of early acrotretoid brachiopods based on well preserved specimens of the earliest Cambrian species Eohadrotreta zhenbaensis and Eohadrotreta? zhujiahensis from the Shuijingtuo Formation (China) are published by Zhang et al. (2018).[10][11]
  • A study on the body size of several brachiopod assemblages recorded into the extinction interval prior to the Toarcian turnover, collected from representative localities around the Iberian Massif (Spain and Portugal), is published by García Joral, Baeza-Carratalá & Goy (2018).[12]

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Adygella socotrana[13]

Sp. nov

Valid

Gaetani in Gaetani et al.

Middle Triassic

 Yemen

A member of Terebratulida belonging to the family Dielasmatidae.

Ahtiella famatiniana[14]

Sp. nov

Valid

Benedetto

Ordovician

 Argentina

Ahtiella tunaensis[14]

Sp. nov

Valid

Benedetto

Ordovician

 Argentina

Broggeria omaguaca[15]

Sp. nov

Valid

Benedetto, Lavie & Muñoz

Ordovician (Tremadocian)

 Argentina

Cyrtiorina houi[16]

Sp. nov

Valid

Zong & Ma

Devonian (Famennian)

Hongguleleng Formation

 China

A brachiopod belonging to the group Spiriferida.

Datnella[17]

Gen. et comb. nov

Valid

Baranov

Early Devonian

 Russia

A member of Atrypida. The type species is D. datnensis (Baranov, 1995).

Jagtithyris[18]

Gen. et comb. nov

Valid

Simon & Mottequin

Late Cretaceous (Maastrichtian)

 Netherlands

A relative of Leptothyrellopsis, assigned to the new family Jagtithyrididae. Genus includes "Terebratella (Morrisia?)" suessi Bosquet (1859).

Kukulkanus[19]

Gen. et sp. nov

Valid

Torres-Martínez, Sour-Tovar & Barragán

Permian (ArtinskianKungurian)

Paso Hondo Formation

 Mexico

A brachiopod belonging to the group Productida and the family Productidae. The type species is K. spinosus.

Misunithyris[20]

Gen. et sp. nov

Valid

Baeza-Carratalá, Pérez-Valera & Pérez-Valera

Middle Triassic (Ladinian)

Siles Formation

 Spain

A brachiopod belonging to the group Terebratellidina and to the superfamily Zeillerioidea. The type species is M. goyi.

Musalitinispira[17]

Gen. et sp. nov

Valid

Baranov

Early Devonian

 Russia

A member of Atrypida. The type species is M. dogdensis.

Schizambon langei[21]

Sp. nov

Valid

Freeman, Miller & Dattilo

Cambrian–Ordovician boundary

 United States
( Texas)

A linguliform brachiopod.

Spinatrypina (Spinatrypina) krivensis[17]

Sp. nov

Valid

Baranov

Early Devonian

 Russia

A member of Atrypida.

Zaigunrostrum nakhichevanense[22]

Sp. nov

Valid

Pakhnevich

Devonian (Famennian)

 Azerbaijan

A brachiopod belonging to the group Rhynchonellida and the family Trigonirhynchiidae.

Zezinia[22]

Gen. et sp. nov

Valid

Pakhnevich

Devonian (Frasnian)

 Azerbaijan

A brachiopod belonging to the group Rhynchonellida and the family Uncinulidae. The type species is Z. multicostata.

Molluscs

Echinoderms

Research

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Amphiope caronei[33]

Sp. nov

Valid

Stara & Marini

Miocene (late Tortonian)

 Italy

A sand dollar belonging to the family Astriclypeidae.

Anomalocrinus astrictus[34]

Sp. nov

Valid

Ausich et al.

Ordovician (Katian)

Brechin Lagerstätte

 Canada
( Ontario)

A disparid crinoid belonging to the family Anomalocrinidae.

Antiquaster apertisulcus[35]

Sp. nov

Valid

Gladwell

Silurian (Ludlow)

Leintwardine Beds

 United Kingdom

A stenurid brittle star.

Arabicodiadema romani[36]

Sp. nov

Valid

Smith & Jagt in Jagt et al.

Cretaceous

Dhalqut Formation

 Oman

A sea urchin.

Archaeocrinus maraensis[37]

Sp. nov

Valid

Cole et al.

Ordovician (Katian)

 Canada
( Ontario)

A camerate crinoid.

Archaeocrinus sundayae[37]

Sp. nov

Valid

Cole et al.

Ordovician (Katian)

 Canada
( Ontario)

A camerate crinoid.

Artichthyocrinus limani[38]

Sp. nov

Valid

Mao et al.

Permian (Asselian)

Taiyuan Formation

 China

A crinoid.

Assericrinus[39]

Gen. et sp. nov

Valid

Gale

Late Cretaceous (early Campanian)

 United Kingdom

A crinoid. The type species is A. portusadernensis.

Bdellacoma fortispina[35]

Sp. nov

Valid

Gladwell

Silurian (Ludlow)

Leintwardine Beds

 United Kingdom

A stenurid brittle star.

Becuaster[40]

Gen. et sp. nov

In press

Gale

Late Jurassic (Oxfordian)

 France

A starfish belonging to the family Korethrasteridae. The type species is B. fusiliformis

Betelgeusia brezinai[41]

Sp. nov

Valid

Blake, Halligan & Larson

Late Cretaceous

 United States
( South Dakota)

Binocalix[42]

Gen. et sp. nov

In press

McDermott & Paul

Late Ordovician

 United Kingdom

An aristocystitid diploporite. Genus includes new species B. dichotomus.

Birgenelocrinus jagti[43]

Sp. nov

Valid

Gale in Gale, Sadorf & Jagt

Late Cretaceous (Maastrichtian)

Peedee Formation

 United States
( North Carolina)

A crinoid belonging to the group Roveacrinida.

Brezinacantha[44]

Gen. et sp. nov

Valid

Thuy et al.

Late Cretaceous (Campanian)

Pierre Shale

 United States
( South Dakota)

A brittle star belonging to the family Ophiacanthidae. The type species is B. tolis.

Camachoaster[45]

Gen. et sp. nov

Valid

Mooi et al.

Early Miocene

Chenque Formation

 Argentina

A sand dollar belonging to the group Scutelliformes. The type species is C. maquedensis

Cleiocrinus lepidotus[37]

Sp. nov

Valid

Cole et al.

Ordovician (Katian)

 Canada
( Ontario)

A camerate crinoid.

Elgaecrinus[46]

Gen. et sp. nov

Valid

Rozhnov

Devonian (Lochkovian)

Katnikov Beds

 Russia
( Sverdlovsk Oblast)

A cladid crinoid related to Crotalocrinites. The type species is E. uralicus

Goniopygus dhalqutensis[36]

Sp. nov

Valid

Smith & Jagt in Jagt et al.

Cretaceous

Dhalqut Formation

 Oman

A sea urchin.

Hansaster[40]

Gen. et comb. nov

In press

Gale

Late Jurassic (Oxfordian)

 France
 Germany
  Switzerland

A starfish belonging to the family Pterasteridae. Genus includes "Savignaster" trimbachensis Gale (2011).

Hessicrinus apertus[39]

Sp. nov

Valid

Gale

Late Cretaceous (early Campanian)

 United Kingdom

A crinoid.

Hessicrinus cooperi[39]

Sp. nov

Valid

Gale

Late Cretaceous (early Campanian)

 United Kingdom

A crinoid.

Hyattechinus anglicus[47]

Sp. nov

In press

Thompson & Ewin

Late Devonian

North Devon Basin

 United Kingdom

A sea urchin.

Hypselaster strougoi[48]

Sp. nov

In press

Elattaar

Eocene (Lutetian)

Midawara Formation

 Egypt

A heart urchin.

Lazarechinus[49]

Gen. et sp. nov

Valid

Hagdorn

Middle Triassic (late Anisian)

Calcaire à entroques

 France

A stem-sea urchin belonging to the family Proterocidaridae. Genus includes new species L. mirabeti.

Longwyaster[40]

Gen. et sp. nov

In press

Gale

Middle Jurassic (Bajocian)

 France

A starfish belonging to the family Pterasteridae. Genus includes new species L. delsatei

Loriolaster fragilicalceus[35]

Sp. nov

Valid

Gladwell

Silurian (Ludlow)

Leintwardine Beds

 United Kingdom

An oegophiurid brittle star.

Lucernacrinus multispinosus[43]

Sp. nov

Valid

Gale in Gale, Sadorf & Jagt

Late Cretaceous (Maastrichtian)

Peedee Formation

 United States
( North Carolina)

A crinoid belonging to the group Roveacrinida.

Magnuscrinus cumberlandensis[50]

Sp. nov

Valid

Ausich, Rhenberg & Meyer

Carboniferous (Viséan)

Fort Payne Formation

 United States
( Kentucky)

A crinoid belonging to the family Batocrinidae.

Melusinaster[51]

Gen. et 2 sp. nov

Valid

Thuy & Stöhr

Early and Middle Jurassic (Toarcian to Bajocian)

 Germany
 Luxembourg

A basket star. The type species is M. alissawhitegluzae; genus also includes M. arcusinimicus.

Micraster woodi[52]

Sp. nov

Valid

Schlüter & Wiese

Late Cretaceous (Turonian)

 Germany

A sea urchin.

Muicrinus[53]

Gen. et sp. nov

Valid

Lin et al.

Ordovician (latest Floian-earliest Dapingian)

Dawan Formation

 China

A crinoid related to Iocrinus. The type species is M. dawanensis.

Neoprotencrinus anyangensis[38]

Sp. nov

Valid

Mao et al.

Permian (Asselian)

Taiyuan Formation

 China

A crinoid.

Ophioculina[54]

Gen. et sp. nov

Valid

Rousseau & Thuy in Rousseau, Gale & Thuy

Late Jurassic (Tithonian)

Agardhfjellet Formation

 Norway

A brittle star belonging to the group Ophiurina and the family Ophiopyrgidae. The type species is O. hoybergia.

Pachycephalocrinus[55]

Gen. et sp. nov

Valid

Cole & Toom

Ordovician (Katian)

 Estonia

A camerate crinoid belonging to the group Monobathrida. Genus includes new species P. jaanussoni.

Pahvanticystis[56]

Gen. et sp. nov

Valid

Lefebvre & Lerosey-Aubril

Cambrian (Guzhangian)

Weeks Formation

 United States
( Utah)

A solutan echinoderm. Genus includes new species P. utahensis.

Peedeecrinus[43]

Gen. et sp. nov

Valid

Gale in Gale, Sadorf & Jagt

Late Cretaceous (Maastrichtian)

Peedee Formation

 United States
( North Carolina)

A crinoid belonging to the group Roveacrinida. Genus includes new species P. sadorfi.

Petalobrissus lehugueurae[57]

Sp. nov

Valid

Alves et al.

Late Cretaceous

Jandaíra Formation

 Brazil

A sea urchin belonging to the family Faujasiidae.

Placatenella[45]

Gen. et comb. nov

Valid

Mooi et al.

Early Miocene

Pirabas Formation

 Brazil

A sand dollar belonging to the group Scutelliformes. The type species is "Abertella" complanata Brito (1981).

Pliotoxaster andinum[58]

Sp. nov

In press

Fouquet, Roney & Wilke

Early Cretaceous

Way Group

 Chile

A sea urchin.

Polarasterias[54]

Gen. et sp. nov

Valid

Rousseau & Gale in Rousseau, Gale & Thuy

Late Jurassic (Tithonian)

Agardhfjellet Formation

 Norway

A starfish belonging to the family Asteriidae. The type species is P. janusensis.

Priscillacrinus[37]

Gen. et sp. nov

Valid

Cole et al.

Ordovician (Katian)

 Canada
( Ontario)

A camerate crinoid belonging to Order Diplobathrida. Genus includes new species P. elegans.

Prokopius[59]

Gen. et comb. nov

In press

Paul

Ordovician (Sandbian)

 Czech Republic

A member of Diploporita belonging to the family Aristocystitidae; a new genus for "Aristocystites" sculptus Barrande (1887).

Propteraster[40]

Gen. et sp. nov

In press

Gale

Late Jurassic (Oxfordian)

 France

A starfish belonging to the family Pterasteridae. Genus includes new species P. amourensis

Rautangaroa[60]

Gen. et comb. nov

Valid

Baumiller & Fordyce

Oligocene

 New Zealand

A feather star. Genus includes "Cypelometra" aotearoa Eagle (2007).

Sagittacrinus alifer[39]

Sp. nov

Valid

Gale

Late Cretaceous (early Campanian)

 United Kingdom

A crinoid.

Sagittacrinus longirostris[39]

Sp. nov

Valid

Gale

Late Cretaceous (early Campanian)

 United Kingdom

A crinoid.

Sakucrinus[55]

Gen. et sp. nov

Valid

Cole & Toom

Ordovician (Katian)

 Estonia

A camerate crinoid belonging to the group Diplobathrida and the family Opsiocrinidae. Genus includes new species S. krossi.

Savignaster septemtrionalis[54]

Sp. nov

Valid

Rousseau & Gale in Rousseau, Gale & Thuy

Late Jurassic (Tithonian)

Agardhfjellet Formation

 Norway

A starfish belonging to the family Pterasteridae.

Synbathocrinus chenae[38]

Sp. nov

Valid

Mao et al.

Permian (Asselian)

Taiyuan Formation

 China

A crinoid.

Thuyaster[40]

Gen. et sp. nov

In press

Gale

Early Jurassic (Hettangian)

 Belgium

A starfish belonging to the family Korethrasteridae. Genus includes new species T. fontenoillensis

Trombonicrinus[61]

Gen. et sp. nov

In press

Donovan, Waters & Pankowski

Devonian

 Morocco

A crinoid. Genus includes new species T. (col.) hanshessi

Ulocrinus qiaoi[38]

Sp. nov

Valid

Mao et al.

Permian (Asselian)

Taiyuan Formation

 China

A crinoid.

Weitschataster[62]

Gen. et sp. nov

In press

Neumann & Girod

Late Cretaceous (late Campanian)

 Germany

A starfish belonging to the family Goniasteridae. Genus includes new species W. intermedius.

Yunnanechinus[63]

Gen. et sp. nov

Valid

Thompson et al.

Middle Triassic (Anisian)

Guanling Formation

 China

A stem-sea urchin. The type species is Y. luopingensis.

Conodonts

Research

  • A study on the histological sections of Ordovician and Permian conodont dental elements from the Bell Canyon Formation (Texas, United States), Harding Sandstone (Colorado, United States), Ali Bashi Formation (Iran) and Canadian Arctic, examining those fossils for the presence and distribution of soft tissue biomarkers, is published by Terrill, Henderson & Anderson (2018).[64]
  • A study evaluating the δ18O variation within a species-rich conodont assemblage from the Ordovician (Floian) Factory Cove Member of the Shallow Bay Formation, Cow Head Group (western Newfoundland, Canada), as well as assessing the implications of these data for determining the paleothermometry of ancient oceans and conodont ecologic models, is published by Wheeley et al. (2018).[65]
  • A study on the body size and diversity of Carnian conodonts from South China and their implications for inferring the biotic and environmental changes during the Carnian Pluvial Event is published by Zhang et al. (2018).[66]
  • A study on fossils of members of the genus Alternognathus from the Upper Devonian of the Kowala quarry (central Poland), attempting to calibrate the course of their ontogeny in days and documenting cyclic mortality events, is published by Świś (2018).[67]
  • A study assess the similarity of late Paleozoic to Triassic conodont faunas known from the Cache Creek Terrane (Canada) is published by Golding (2018).[68]
  • Reconstruction of the multi-element apparatus of the Middle Triassic conodont from British Columbia (Canada) belonging to the Neogondolella regalis group within the genus Neogondolella is presented by Golding (2018).[69]
  • Reconstruction of the number and arrangement of elements in the apparatus of Hindeodus parvus published by Zhang et al. (2017)[70] is criticized by Agematsu, Golding & Orchard (2018);[71] Purnell et al. (2018) defend their original conclusions.[72]
  • A cluster of icriodontid conodonts belonging to the species Caudicriodus woschmidti, providing new information on the apparatus structure of icriodontid conodonts, is described from the Lower Devonian sediments in southern Burgenland (Austria) by Suttner, Kido & Briguglio (2018).[73]

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Baltoniodus cooperi[74]

Sp. nov

Valid

Carlorosi, Sarmiento & Heredia

Ordovician (Dapingian)

Santa Gertrudis Formation

 Argentina

Declinognathodus intermedius[75]

Sp. nov

Valid

Hu, Qi & Nemyrovska

Carboniferous

 China

Declinognathodus tuberculosus[75]

Sp. nov

Valid

Hu, Qi & Nemyrovska

Carboniferous

 China

Gedikella[76]

Gen. et sp. nov

Valid

Kılıç, Plasencia & Önder

Middle Triassic (Anisian)

 Turkey

A member of the family Gondolellidae. The type species is G. quadrata.

Kamuellerella rectangularis[76]

Sp. nov

Valid

Kılıç, Plasencia & Önder

Middle Triassic (Anisian)

 Turkey

A member of the family Gondolellidae.

Ketinella goermueshi[76]

Sp. nov

Valid

Kılıç, Plasencia & Önder

Middle Triassic (Anisian)

 Turkey

A member of the family Gondolellidae.

Magnigondolella[77]

Gen. et 5 sp. et comb. nov

Valid

Golding & Orchard

Middle Triassic (Anisian)

Favret Formation
Toad Formation

 Canada
( British Columbia)
 China
 United States
( Nevada)

A member of the family Gondolellidae. The type species is M. salomae;
genus also includes new species M. alexanderi, M. cyri, M. julii and M. nebuchadnezzari,
as well as "Neogondolella" regale Mosher (1970) and "Neogondolella" dilacerata Golding & Orchard (2016).

Mesogondolella hendersoni[78]

Sp. nov

Valid

Yuan, Zhang & Shen

Permian (Changhsingian)

Selong Group

 China

Neopolygnathus fibula[79]

Sp. nov

Valid

Hartenfels & Becker

Devonian (Famennian)

 Morocco

‘Ozarkodina’? chenae[80]

Sp. nov

Valid

Lu et al.

Devonian (Emsian)

Ertang Formation

 China

‘Ozarkodina’? wuxuanensis[80]

Sp. nov

Valid

Lu et al.

Devonian (Emsian)

Ertang Formation

 China

Polygnathus linguiformis saharicus[81]

Subsp. nov

In press

Narkiewicz & Königshof

Middle Devonian

 Vietnam

Polygnathus linguiformis vietnamicus[81]

Subsp. nov

In press

Narkiewicz & Königshof

Middle Devonian

 Vietnam

Polygnathus praeinversus[80]

Sp. nov

Valid

Lu et al.

Devonian (Emsian)

Ertang Formation

 China

Polygnathus rhenanus siphai[81]

Subsp. nov

In press

Narkiewicz & Königshof

Middle Devonian

 Vietnam

Polygnathus xylus bacbo[81]

Subsp. nov

In press

Narkiewicz & Königshof

Middle Devonian

 Vietnam

Pseudopolygnathus primus tafilensis[79]

Subsp. nov

Valid

Hartenfels & Becker

Devonian (Famennian)

 Morocco

Quadralella (Quadralella) postica[82]

Sp. nov

Valid

Zhang et al.

Late Triassic (Carnian)

 China

Quadralella robusta[82]

Sp. nov

Valid

Zhang et al.

Late Triassic (Carnian)

 China

Quadralella wignalli[82]

Sp. nov

Valid

Zhang et al.

Late Triassic (Carnian)

 China

Quadralella yongningensis[82]

Sp. nov

Valid

Zhang et al.

Late Triassic (Carnian)

 China

Walliserognathus[83]

Gen. et comb. nov

Valid

Corradini & Corriga

Silurian (Ludlow)

Henryhouse Formation
Roberts Mountains Formation

 Austria
 China
 Hungary
 Italy
 Spain
 Sweden
 United States
( Nevada
 Oklahoma)

A member of the family Spathognathodontidae; a new genus for Spathognathodus inclinatus posthamatus Walliser (1964), raised to the rank of the species Walliserognathus posthamatus.

Fish

Amphibians

Research

  • Evidence from multi-stable isotope data indicating that some Devonian vertebrates, including early tetrapods, were euryhaline and inhabited aquatic environments subject to rapid changes in salinity is presented by Goedert et al. (2018).[84]
  • A study on the evolution of forelimb musculature from the lobe-finned fish to early tetrapods is published by Molnar et al. (2018).[85]
  • A study on the fossil record of amphibians, aiming to identify traits that influenced the extinction risk of species, and using this data to predict the extinction risk for living amphibian species, is published by Tietje & Rödel (2018).[86]
  • A study on the structure of stapes of Edops craigi is published by Schoch (2018).[87]
  • A study on the morphology and phylogenetic relationships of Neldasaurus is published by Schoch (2018).[88]
  • A study on the morphological changes in the skull that have been considered related to size reduction in dissorophoids, evaluating whether these changes are consistent with the consequences of miniaturization according to the studies in extant miniature amphibians, is published by Pérez-Ben, Schoch & Báez (2018).[89]
  • Well-preserved postcranial skeletons of two dissorophids are described from the early Permian karst deposits near Richards Spur (Oklahoma, United States) by Gee & Reisz (2018).[90]
  • Redescription of the holotype specimen of the dissorophid species Alegeinosaurus aphthitos will be published by Gee (2018), who considers Alegeinosaurus to be a junior synonym of Aspidosaurus.[91]
  • New skull remains of Cacops morrisi, as well as the first known postcranial remains of the taxon, are described from the Permian of the Richards Spur locality (Oklahoma, United States) by Gee & Reisz (2018).[92]
  • Redescription of the Angusaurus, based on a new specimen providing new information of the skull anatomy of this taxon, will be published by Fernández-Coll et al. (2018).[93]
  • Partial mandible of a large-bodied metoposaurid is described from the Upper Triassic Chinle Formation exposures at Petrified Forest National Park (Arizona, United States) by Gee & Parker (2018).[94]
  • Morphological description of two new small-bodied metoposaurid specimens from Petrified Forest National Park (Arizona, United States) and a histological analysis of the vertebra of these specimens will be published by Gee & Parker (2018), who argue that their findings support the interpretation of Apachesaurus as a juvenile metoposaurid.[95]
  • A study on the histology of the humeri of members of the species Metoposaurus krasiejowensis, revealing the occurrence of two different growth patterns (histotypes), is published by Teschner, Sander & Konietzko-Meier (2018).[96]
  • A study on the feeding mode of Metoposaurus krasiejowensis as indicated by bone microstructure and computational biomechanics is published by Konietzko-Meier et al. (2018).[97]
  • A study on the morphology of the mandibular sutures in Metoposaurus krasiejowensis, using histological thin sections, will be published by Gruntmejer et al. (2018).[98]
  • Redescription of Regalerpeton weichangensis based on eight new specimens and a study on the phylogenetic relationships of the species is published by Rong (2018).[99]
  • An incomplete vertebra of a member of Caudata is described from the Algerian part of the Cretaceous Kem Kem Beds by Alloul et al. (2018).[100]
  • Description of bone anomalies in specimens of the cryptobranchid Eoscapherpeton asiaticum from the Upper Cretaceous Bissekty Formation (Uzbekistan) and a study on their possible origin is published by Skutschas et al. (2018).[101]
  • Description of new specimens of the fossil salamandrids Taricha oligocenica and Taricha lindoei from the Oligocene of Oregon, providing new information on the morphology of these taxa, and a study on the phylogenetic relationships of these species is published by Jacisin & Hopkins (2018).[102]
  • Cretaceous frog tracks are described from the Saok Island (South Korea) by Park et al. (2018), who name a new ichnotaxon Ranipes saokensis.[103]
  • Fossils of the painted frog Latonia gigantea will be described from the Miocene of the Vallès-Penedès Basin (Spain) by Villa et al. (2018), representing the first known record of the species from the Iberian Peninsula.[104]
  • Fossils of Latonia cf. gigantea will be described from the early Miocene of Greece (representing the first record of the species from that country) by Georgalis et al. (2018), along with other amphibian and reptile fossils.[105]
  • A redescription of Pelobates praefuscus from the Pliocene of Moldova will be published by Syromyatnikova (2018), who considers this taxon to be a species distinct from Pelobates fuscus.[106]
  • A redescription and a study of the phylogenetic relationships of Baurubatrachus pricei is published by Báez & Gómez (2018).[107]
  • Frog fossils, including the first known fossils of shovelnose frogs, will be described from the early Pliocene of Kanapoi (Kenya) by Delfino (2018).[108]
  • A study on the anatomy of regenerating tails in two specimens of the Carboniferous lepospondyl Microbrachis pelikani, comparing tail regeneration in this taxon and in extant seal salamander and Ocoee salamander, is published by van der Vos, Witzmann & Fröbisch (2018).[109]
  • Description of the anatomy of the skeleton of the chroniosuchian species Bystrowiella schumanni and a study on the phylogenetic relationships of chroniosuchians is published by Witzmann & Schoch (2018).[110]
  • A study on the variation of digit proportions and trackway parameters in diadectomorph tracks with a relatively short pedal digit V, representing ichnogenus Ichniotherium, is published by Buchwitz & Voight (2018).[111]

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Electrorana[112]

Gen. et sp. nov

Valid

Xing et al.

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A frog of uncertain phylogenetic placement, possibly a member of Alytoidea. The type species is E. limoae.

Shirerpeton[113]

Gen. et sp. nov

Valid

Matsumoto & Evans

Early Cretaceous (Barremian)

Kuwajima Formation

 Japan

A member of the family Albanerpetontidae. The type species is S. isajii.

Tantallognathus[114]

Gen. et sp. nov

In press

Chen et al.

Carboniferous (late Tournaisian or earliest Viséan)

Ballagan Formation

 United Kingdom

An early tetrapod of uncertain phylogenetic placement. The type species is T. woodi.

Tutusius[115]

Gen. et sp. nov

Valid

Gess & Ahlberg

Devonian (late Famennian)

Witpoort Formation

 South Africa

An early tetrapod. The type species is T. umlambo.

Umzantsia[115]

Gen. et sp. nov

Valid

Gess & Ahlberg

Devonian (late Famennian)

Witpoort Formation

 South Africa

An early tetrapod. The type species is U. amazana.

Lizards and snakes

Research

  • Triassic reptile Megachirella wachtleri is reinterpreted as the oldest known stem-squamate by Simões et al. (2018).[116]
  • Fossil trackways probably made by lizards running bipedally are described from the Lower Cretaceous (Aptian-early Albian) Hasandong Formation (South Korea) by Lee et al. (2018), who name a new ichnotaxon Sauripes hadongensis.[117]
  • A study on the manus of a putative stem-gekkotan from the Cretaceous amber from Myanmar is published by Fontanarrosa, Daza & Abdala (2018), who report the presence of adaptations to climbing, including adhesive structures.[118]
  • A maxilla of a gekkotan of uncertain phylogenetic placement is described from the Late Oligocene Nsungwe Formation (Tanzania) by Müller et al. (2018), representing the second record of a Paleogene gekkotan from Africa and the first one from the central part of the continent.[119]
  • A revision of the lizard fossils from the Upper Cretaceous of Mongolia and China which were originally assigned to the genus Bainguis is published by Dong et al. (2018), who transfer some of this fossil material to the stem-scincoid genus Parmeosaurus.[120]
  • New specimen of the Late Jurassic lizard Ardeosaurus brevipes is described from the Solnhofen area (Germany) by Tałanda (2018), who interprets this species as a probable member of the crown group of Scincoidea.[121]
  • Fossils of a member of the genus Timon are described from the Pleistocene of Monte Tuttavista (Sardinia, Italy) by Tschopp et al. (2018), representing the first reported fossil occurrence of this genus from Sardinia.[122]
  • A dentary of an amphisbaenian belonging or related to the species Blanus strauchi is described from the middle Miocene locality of Gebeceler (Turkey) by Georgalis et al. (2018), representing the first fossil find of a member of the Blanus strauchi species complex and the sole confirmed fossil occurrence of the genus Blanus in the eastern Mediterranean region reported so far.[123]
  • Amphisbaenian vertebral material is described from the Pliocene of northern Greece by Georgalis, Villa & Delfino (2018), representing the youngest occurrence of amphisbaenians in continental Eastern Europe reported so far.[124]
  • A premaxilla of a member of the genus Elgaria is described from the Miocene Split Rock Formation (Wyoming, United States) by Scarpetta (2018), representing the oldest known fossil of a member of this genus reported so far.[125]
  • Fossil anguine material is described from the lower Miocene locality Ulm – Westtangente (Germany) for the first time by Klembara, Hain & Čerňanský (2018).[126]
  • Two specimens assigned to the species Saniwa ensidens, preserving an accessory foramen in the skull indicative of the presence of fourth eye, are described from the Eocene Bridger Formation (Wyoming, United States) by Smith et al. (2018).[127]
  • Fossil vertebrae of varanid lizards are described from the early Miocene Loire Basin (France) by Augé & Guével (2018).[128]
  • A basal mosasauroid specimen including a rib and a vertebra, representing a larger individual than the holotype of Phosphorosaurus ponpetelegans and predating P. ponpetelegans by approximately 10 million years, is reported from the Upper Cretaceous (lower Campanian) of Hokkaido (Japan) by Sato et al. (2018).[129]
  • A study evaluating the fossil record of mosasaurs in terms of fossil completeness as a measure of fossil quality is published by Driscoll et al. (2018).[130]
  • A study on the evolution of the skull shape in snakes and on its implications for inferring the ancestral ecology of snakes is published by Da Silva et al. (2018).[131]
  • New method of evaluating the age of fossil snake specimens at the time of death is proposed by Petermann & Gauthier (2018), who also test whether their method can be used to identify isolated fossil remains of the Eocene snake Boavus occidentalis from the Willwood Formation (Wyoming, United States) at the level of individual organisms.[132]
  • Digital endocasts of the inner ears of the madtsoiid snakes Yurlunggur and Wonambi are reconstructed by Palci et al. (2018), who also study the implications of the inner ear morphology of these taxa for inferring their ecology.[133]
  • A natural cast of the posterior brain, skull vessels and nerves, and the inner ear of Dinilysia patagonica is described by Triviño et al. (2018).[134]
  • A study on the phylogenetic relationships of the Miocene snake Pseudoepicrates stanolseni is published by Onary & Hsiou (2018), who transfer this species to the boid genus Chilabothrus.[135]
  • Snake fauna from the Miocene of the Baikadam and Malyi Kalkaman 1 and 2 localities in northeastern Kazakhstan, representing the best-documented Miocene snake assemblage in Central Asia, will be described by Ivanov et al. (2018).[136]
  • Revision of lizard and snake fossils from the Pliocene site of Kanapoi (Kenya) is published by Head & Müller (2018).[137]

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Amananulam[138]

Gen. et sp. nov

Valid

McCartney et al.

Paleocene

 Mali

A snake belonging to the family Nigerophiidae. The type species is A. sanogoi.

Amaru[139]

Gen. et sp. nov

Valid

Albino

Early Eocene

Lumbrera Formation

 Argentina

A macrostomatan snake. Genus includes new species A. scagliai.

Anguis rarus[140]

Sp. nov

Valid

Klembara & Rummel

Early Miocene

 Germany

A slow worm.

Boa blanchardensis[141]

Sp. nov

Valid

Bochaton & Bailon

Late Pleistocene

 France
(Marie-Galante Island)

A species of Boa.

Euleptes klembarai[142]

Sp. nov

Valid

Čerňanský, Daza & Bauer

Miocene (Astaracian)

 Slovakia

A relative of the European leaf-toed gecko.

Primitivus[143]

Gen. et sp. nov

Valid

Paparella et al.

Late Cretaceous (late Campanian–early Maastrichtian)

 Italy

A member of the family Dolichosauridae. The type species is P. manduriensis.

Tylosaurus saskatchewanensis[144]

Sp. nov

Valid

Jiménez-Huidobro et al.

Late Cretaceous (late Campanian)

Bearpaw Formation

 Canada
( Saskatchewan)

A mosasaur

Xiaophis[145]

Gen. et sp. nov

Xing et al.

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A snake described on the basis of a fossilized embryo or neonate. The type species is X. myanmarensis.

Ichthyosauromorphs

  • A study on the phylogenetic relationships of ichthyosaurs will be published by Moon (2018).[146]
  • A survey of the form and distribution of pathological structures in the skeletons of ichthyosaurs is published by Pardo-Pérez et al. (2018).[147]
  • A study on the microanatomy of vertebral centra of ichthyosaurs, aiming to establish whether there is any variation between the primitive and the most derived forms, is published by Houssaye, Nakajima & Sander (2018).[148]
  • A large, isolated jaw fragment of a giant ichthyosaur is described from the Upper Triassic (Rhaetian) Westbury Mudstone Formation (United Kingdom) by Lomax et al. (2018), who also reinterpret some putative dinosaur limb bone shafts from the Upper Triassic of Aust Cliff as more likely to be ichthyosaur fossils.[149]
  • Remains of ichthyosaur embryos, still situated within a fragment of the rib-cage of the parent animal, are described from the Lower Jurassic (Toarcian) Whitby Mudstone Formation (United Kingdom) by Boyd & Lomax (2018).[150]
  • Ichthyosaur remains from the Lower Cretaceous Agrio Formation (Neuquén Basin, Argentina) are described by Lazo et al. (2018).[151]
  • Redescription of the relocated holotype of Suevoleviathan integer is published by Maxwell (2018), who considers the species Suevoleviathan disinteger to be a junior synonym of S. integer.[152]
  • Second specimen of Wahlisaurus massarae is reported from a quarry in Somerset (United Kingdom), from the base of the Blue Lias Formation (TriassicJurassic boundary) by Lomax, Evans & Carpenter (2018), extending known geographic and stratigraphic range of the species.[153]
  • Four isolated partial skulls from the Lower Jurassic of the United Kingdom, previously identified as Ichthyosaurus communis, are assigned to the species Protoichthyosaurus prostaxalis and P. applebyi by Lomax & Massare (2018), providing new information on the anatomy of these taxa.[154]
  • A reassessment of Ichthyosaurus communis and I. intermedius is published by Massare & Lomax (2018), who consider the latter species to be a junior synonym of the former.[155]
  • A neonate specimen of Ichthyosaurus communis will be described by Lomax et al. (2018).[156]
  • A study on the variation of the hindfin morphology in the specimens of Ichthyosaurus and on its taxonomic utility is published by Massare & Lomax (2018).[157]

Sauropterygians

Research

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Arminisaurus[173]

Gen. et sp. nov

In press

Sachs & Kear

Early Jurassic (Pliensbachian)

Amaltheenton Formation

 Germany

An early relative of pliosaurids. The type species is A. schuberti.

Microcleidus melusinae [174]

Sp. nov

In press

Vincent et al.

Early Jurassic (Toarcian)

 Luxembourg

A microcleidid plesiosaur.

Parahenodus[175]

Gen. et sp. nov

Valid

De Miguel Chaves, Ortega & Pérez‐García

Late Triassic

 Spain

A placodont related to Henodus. Genus includes new species P. atancensis.

Pliosaurus almanzaensis [176]

Sp. nov

Valid

O’Gorman, Gasparini & Spalletti

Late Jurassic (Jurassic)

Vaca Muerta Formation

 Argentina

Turtles

Research

  • A study on the phylogenetic relationships of living and fossil turtles is published by Evers & Benson (2018).[177]
  • A study on the Early and Middle Triassic turtle tracks and their implications for the origin of turtles will be published by Lichtig et al. (2018).[178]
  • Fossil turtle footprints are described from the Triassic (Carnian) localities in eastern Spain by Reolid et al. (2018), who interpret the findings as indicating a freshwater semi-aquatic habit for some early turtles during the early Late Triassic.[179]
  • A clutch of 15 turtle eggs, found in close association with a partial skeleton of the dinosaur Mosaiceratops azumai, is described from the Upper Cretaceous Xiaguan Formation (China) by Jackson et al. (2018), who report that the size of these eggs exceeds that of all previously reported fossil turtle eggs.[180]
  • A study on the anatomy of the brain, inner ear, nasal cavity and skull nerves of Proganochelys quenstedti, and on its implications for inferring the sensory capabilities and ecology of the species and for the evolution of turtle brains is published by Lautenschlager, Ferreira & Werneburg (2018).[181]
  • A study on the anatomy and phylogenetic relationships of Kallokibotion bajazidi based on well-preserved new fossil material is published by Pérez-García & Codrea (2018).[182]
  • A study on the phylogenetic relationships of extant and fossil pleurodirans is published by Ferreira et al. (2018).[183]
  • A review of the araripemydid fossil record from Africa is published by Pérez-García (2018), who considers Laganemys tenerensis to be a junior synonym of Taquetochelys decorata.[184]
  • New fossil material of the bothremydid Algorachelus peregrinus, providing new information on the anatomy and intraspecific variability of the species, is described from the Upper Cretaceous (Cenomanian) of the Arenas de Utrillas Formation (Spain) by Pérez-García (2018), who also transfers the species "Podocnemis" parva Haas (1978) and "Paiutemys" tibert Joyce, Lyson & Kirkland (2016) to the genus Algorachelus.[185]
  • A study on the anatomy of the shell of the bothremydid species Taphrosphys congolensis, and on its implications for inferring the taxonomic composition of the genus Taphrosphys, will be published by Pérez García, Mees & Smith (2018).[186]
  • A restudy of the type material of the Late Cretaceous pan-chelid Linderochelys rinconensis and a description of new fossils of the species is published by Jannello et al. (2018).[187]
  • Redescription of the Eocene chelid Hydromedusa casamayorensis based on twenty‐seven new specimens recovered from lower levels of the Sarmiento Formation (Argentina) and a study on the phylogenetic relationships of this species will be published by Maniel et al. (2018).[188]
  • A study on the skull innervation and circulation of Eubaena cephalica, based on data from a new specimen, is published by Rollot, Lyson & Joyce (2018).[189]
  • Fragmentary trionychid specimen is described from the Upper Cretaceous (Turonian to Maastrichtian) Nanaimo Group (Vancouver Island, British Columbia, Canada) by Vavrek & Brinkman (2018), representing the first trionychid reported from Cretaceous deposits along the Pacific Coast of North America.[190]
  • A study on the phylogenetic relationships and body size evolution of extant and extinct tortoises will be published by Vlachos & Rabi (2018).[191]
  • Description of new specimens of the tortoise Manouria oyamai from the Pleistocene of the Okinawa Island (Japan) and a study on the phylogenetic relationships of this species is published by Takahashi, Hirayama & Otsuka (2018).[192]
  • A study on the sources of variation in the morphology of the carapaces of extant and fossil common box turtles (Terrapene carolina) is published by Vitek (2018).[193]
  • Redescription of the holotype of Rhinochelys amaberti from the Cretaceous (Albian) of France and a study on the phylogenetic relationships of this species is published by Scavezzoni & Fischer (2018).[194]
  • An isolated costal bone of a sea turtle is described from the Oligocene Dos Bocas Formation (Ecuador) by Cadena, Abella & Gregori (2018), representing the first record of Oligocene Pancheloniidae in South America.[195]

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Basilemys morrinensis[196]

Sp. nov

Valid

Mallon & Brinkman

Late Cretaceous (early Maastrichtian)

Horseshoe Canyon Formation

 Canada
( Alberta)

A member of Cryptodira belonging to the family Nanhsiungchelyidae.

Owadowia[197]

Gen. et sp. nov

Valid

Szczygielski, Tyborowski & Błażejowski

Late Jurassic (Tithonian)

Kcynia Formation

 Poland

A member of Pancryptodira. The type species is O. borsukbialynickae.

Peritresius martini[198]

Sp. nov

Valid

Gentry et al.

Late Cretaceous (late Campanian)

Lower Ripley Formation

 United States
( Alabama)

A member of Pancheloniidae.

Sinemys chabuensis[199]

Sp. nov

Valid

Ji & Chen

Early Cretaceous

Jingchuan Formation

 China

Trachemys haugrudi[200]

Sp. nov

Valid

Jasinski

Late Hemphillian

Gray Fossil Site

 United States
( Tennessee)

A species of Trachemys.

Wutuchelys[201]

Gen. et sp. nov

In press

Tong et al.

Early Eocene

Wutu Formation

 China

A stem-testudinoid. Genus includes new species W. eocenica.

Yuraramirim[202]

Gen. et sp. nov

In press

Ferreira et al.

Late Cretaceous

Adamantina Formation

 Brazil

A member of Pleurodira related to Peiropemys. Genus includes new species Y. montealtensis.

Archosauriformes

General research

Pseudosuchians

Research

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Anteophthalmosuchus epikrator[248]

Sp. nov

Valid

Ristevski et al.

Early Cretaceous

Wessex Formation

 United Kingdom

A goniopholidid.

Kinesuchus[249]

Gen. et sp. nov

Valid

Filippi, Barrios & Garrido

Late Cretaceous (Santonian)

Bajo de la Carpa Formation

 Argentina

A peirosaurid crocodyliform. The type species is K. overoi.

Magyarosuchus[250]

Gen. et sp. nov

Valid

Ősi et al.

Early Jurassic (Toarcian)

Kisgerecse Marl Formation

 Hungary

A member of Metriorhynchoidea. The type species is M. fitosi.

Mandasuchus[251]

Gen. et sp. nov

Valid

Butler et al.

Triassic

Manda Formation

 Tanzania

An early member of Paracrocodylomorpha belonging to the group Loricata. The type species is M. tanyauchen.

Pagosvenator[252]

Gen. et sp. nov

In press

Lacerda, de França & Schultz

MiddleLate Triassic

Dinodontosaurus Assemblage Zone of the Santa Maria Supersequence

 Brazil

A member of the family Erpetosuchidae. Genus includes new species P. candelariensis.

Wahasuchus[253]

Gen. et sp. nov

Valid

Saber et al.

Late Cretaceous (Campanian)

Quseir Formation

 Egypt

A member of Mesoeucrocodylia of uncertain phylogenetic placement, possibly a neosuchian. Genus includes new species W. egyptensis.

Non-avian dinosaurs

Research

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Acantholipan[360]

Gen. et sp. nov

Valid

Rivera-Sylva et al.

Late Cretaceous (Santonian)

Pen Formation

 Mexico

A member of the family Nodosauridae. Genus includes new species A. gonzalezi.

Akainacephalus[361]

Gen. et sp. nov

Valid

Wiersma & Irmis

Late Cretaceous (late Campanian)

Kaiparowits Formation

 United States
( Utah)

A member of the family Ankylosauridae. The type species is A. johnsoni.

Anodontosaurus inceptus[362]

Sp. nov

Valid

Penkalski

Late Cretaceous

Dinosaur Park Formation

 Canada
( Alberta)

A member of the family Ankylosauridae.

Skull of TMP 1997.132.1, the holotype specimen of Anodontosaurus inceptus[362]

Anomalipes[363]

Gen. et sp. nov

Valid

Yu et al.

Late Cretaceous

Wangshi Group

 China

A caenagnathid theropod. The type species is A. zhaoi.

Arkansaurus[364]

Gen. et sp. nov

Valid

Hunt & Quinn

Early Cretaceous (AlbianAptian)

Trinity Group

 United States
( Arkansas)

An ornithomimosaur theropod. Genus includes new species A. fridayi.

Avimimus nemegtensis[365]

Sp. nov

Valid

Funston et al.

Late Cretaceous

Nemegt Formation

 Mongolia

An oviraptorosaurian.

Bagualosaurus[366]

Gen. et sp. nov

Valid

Pretto, Langer & Schultz

Late Triassic

Santa Maria Formation

 Brazil

An early member of Sauropodomorpha. Genus includes new species B. agudoensis.

Bayannurosaurus[367]

Gen. et sp. nov

Valid

Xu et al.

Early Cretaceous

Bayin-Gobi Formation

 China

A non-hadrosauriform ankylopollexian ornithopod. Genus includes new species B. perfectus.

Caihong[368]

Gen. et sp. nov

Valid

Hu et al.

Late Jurassic (Oxfordian)

Tiaojishan Formation

 China

A paravian theropod. The type species is C. juji.

Choconsaurus[369]

Gen. et sp. nov

Valid

Simón, Salgado & Calvo

Late Cretaceous (Cenomanian)

Huincul Formation

 Argentina

A titanosaur sauropod. The type species is C. baileywillisi.

Diluvicursor[370]

Gen. et sp. nov

Valid

Herne et al.

Early Cretaceous (Albian)

Eumeralla Formation

 Australia

A small-bodied ornithopod. The type species is D. pickeringi.

Ingentia[371]

Gen. et sp. nov

In press

Apaldetti et al.

Late Triassic (late NorianRhaetian)

Quebrada del Barro Formation

 Argentina

An early member of Sauropodomorpha related to Lessemsaurus. Genus includes new species I. prima.

Jinyunpelta[372]

Gen. et sp. nov

Zheng et al.

Cretaceous (AlbianCenomanian)

Liangtoutang Formation

 China

A member of the family Ankylosauridae belonging to the subfamily Ankylosaurinae. The type species is J. sinensis.

Laiyangosaurus[373]

Gen. et sp. nov

In press

Zhang et al.

Late Cretaceous

Jingangkou Formation

 China

A hadrosaurid ornithopod belonging to the subfamily Saurolophinae and the tribe Edmontosaurini. The type species is L. youngi.

Mansourasaurus[374]

Gen. et sp. nov

Valid

Sallam et al.

Late Cretaceous (Campanian)

Quseir Formation

 Egypt

A titanosaur sauropod. The type species is M. shahinae.

Platypelta[362]

Gen. et sp. nov

Valid

Penkalski

Late Cretaceous

Dinosaur Park Formation

 Canada
( Alberta)

A member of the family Ankylosauridae. Genus includes new species P. coombsi.

Skull of AMNH 5337, the holotype specimen of Platypelta coombsi[362]

Scolosaurus thronus[362]

Sp. nov

Valid

Penkalski

Late Cretaceous

Dinosaur Park Formation

 Canada
( Alberta)

A member of the family Ankylosauridae.

Skull of ROM 1930, the holotype specimen of Scolosaurus thronus[362]

Sibirotitan[375]

Gen. et sp. nov

Valid

Averianov et al.

Early Cretaceous (probably Barremian)

Ilek Formation

 Russia

A non-titanosaurian somphospondyl sauropod. Genus includes new species S. astrosacralis.

Tratayenia[376]

Gen. et sp. nov

Valid

Porfiri et al.

Late Cretaceous (Santonian)

Bajo de la Carpa Formation

 Argentina

A megaraptoran theropod. Genus includes new species T. rosalesi.

Birds

Research

  • A study evaluating whether eggs of early birds from the Mesozoic could have borne the weight of incubating adults is published by Deeming & Mayr (2018).[377]
  • A study on the total mass of the dentition of Mesozoic birds, and on the impact of the reduction and loss of teeth on total body mass of Mesozoic birds, is published by Zhou, Sullivan & Zhang (2018).[378]
  • A study on the formation of the pygostyle in extant birds and its evolution in Mesozoic birds is published by Rashid et al. (2018), who interpret their findings as indicating that the lack of pygostyle in Zhongornis haoae and other juvenile Mesozoic birds does not necessarily indicate that they are intermediate species in the long- to short-tailed evolutionary transition, and that feathered coelurosaur tail preserved in Burmese amber which was described by Xing et al. (2016)[379] might be avian.[380]
  • A study on Praeornis sharovi from the Late Jurassic of Kazakhstan will be published by Agnolin, Rozadilla & Carvalho (2018), who interpret the fossil as a tail feather of a basal bird.[381]
  • A redescription of the bird trackway originally labeled Aquatilavipes anhuiensis from the Lower Cretaceous Qiuzhuang Formation (Anhui, China) is published by Xing et al. (2018), who transfer this ichnospecies to the ichnogenus Koreanaornis.[382]
  • New avian ichnospecies Ignotornis canadensis is described from the Lower Cretaceous (Albian) Gates Formation (Canada) by Buckley, McCrea & Xing (2018).[383]
  • Ignotornid tracks are described from the Lower Cretaceous of Jiangsu (China) by Xing et al. (2018), representing the first known record of the ichnogenus Goseongornipes from China.[384]
  • The twelfth specimen of Archaeopteryx, the oldest reported so far, is described by Rauhut, Foth & Tischlinger (2018).[385]
  • A study on the geometric properties of the wing bones of Archaeopteryx is published by Voeten et al. (2018), who interpret their findings as indicating that Archaeopteryx was able to actively use its wings to take to the air (using a different flight stroke than used by extant birds).[386]
  • A review of the available evidence of the diet of Mesozoic birds, especially those known from the Lower Cretaceous Jehol Lagerstätte (China), is published by O’Connor (2018).[387]
  • Gastrolith masses preserved in five specimens of Jeholornis will be described by O'Connor et al. (2018).[388]
  • A new confuciusornithid specimen, most similar to Eoconfuciusornis zhengi but also sharing traits with Confuciusornis, will be described from the Upper Cretaceous Huajiying Formation (China) by Navalón et al. (2018).[389]
  • A study on the morphology of the skull of Confuciusornis sanctus is published by Elżanowski, Peters & Mayr (2018).[390]
  • A comparative study of all named taxa referred to Confuciusornithiformes, taxonomic revision of the group and a study on the phylogenetic relationships of members of the group will be published by Wang, O'Connor & Zhou (2018).[391]
  • An articulated skeleton of an enantiornithine bird preserved in the Cretaceous amber from Myanmar is described by Xing et al. (2018).[392]
  • An early juvenile enantiornithine specimen, providing new information on the osteogenesis in members of Enantiornithes, is described from the Lower Cretaceous Las Hoyas deposits of Spain by Knoll et al. (2018).[393]
  • A study evaluating the capacity of the enantiornithines Concornis lacustris and Eoalulavis hoyasi to use intermittent flight (alternating flapping and gliding phases) is published by Serrano et al. (2018).[394]
  • A study on the morphology and diversity of enantiornithine coracoids from the Upper Cretaceous Bissekty Formation (Dzharakuduk locality, Uzbekistan) is published by Panteleev (2018).[395]
  • Wang et al. (2018) report the presence of distinct salt gland fossa on the frontal of a bird similar to Iteravis huchzermeyeri and Gansus zheni from the Lower Cretaceous Sihedang locality (Jiufotang Formation, China); the authors also consider I. huchzermeyeri and G. zheni to be probably synonymous.[396]
  • Abundant black flies, thought to have inhabited the same environments as Cretaceous ornithurine birds and most likely fed on them, are described from the Santonian Taimyr amber (Russia) by Perkovsky, Sukhomlin & Zelenkov (2018), who use these insects as an indicator of a bird community, and argue that advanced ornithuromorph birds might have originated at higher latitudes.[397]
  • Field et al. (2018) report new specimens and previously overlooked elements of the holotype of Ichthyornis dispar, and generate a nearly complete three-dimensional reconstruction of the skull of this species.[398]
  • A study comparing the hindlimb morphology of hesperornithiforms and modern foot-propelled diving birds is published by Bell, Wu & Chiappe (2018).[399]
  • A study on the impact of the widespread destruction of forests during the Cretaceous–Paleogene extinction event on bird evolution, as indicated by ancestral state reconstructions of neornithine ecology and inferences about enantiornithine ecology, is published by Field et al. (2018), who interpret their findings as indicating that the global forest collapse at the end of the Cretaceous caused extinction of predominantly tree-dwelling birds, while bird groups that survived the extinction and gave rise to extant birds were non-arboreal.[400]
  • A study on the evolution of the anatomy of the crown-bird skull is published by Felice & Goswami (2018), who also present a hypothetical reconstruction of the ancestral crown-bird skull.[401]
  • A fossil tinamou belonging to the genus Eudromia, exceeding the size range of living species of the genus, will be described from the Lujanian sediments in Marcos Paz County (Buenos Aires Province, Argentina) by Cenizo et al. (2018).[402]
  • A study on the dietary behavior of four species of the moa and their interactions with parasites based on data from their coprolites is published by Boast et al. (2018).[403]
  • A study on the seeds preserved in moa coprolites is published by Carpenter et al. (2018), who question the hypothesis that some of the largest-seeded plants of New Zealand were dispersed by moas.[404]
  • A study on the genetic and morphological diversity of the emus, including extinct island populations, is published by Thomson et al. (2018).[405]
  • A study on the phylogenetic relationships of the taxa assigned to the family Vegaviidae by Agnolín et al. (2017)[406] is published by Mayr et al. (2018).[407]
  • A study on the microstructure of the bones of Vegavis iaai will be published by Garcia Marsà, Agnolín & Novas (2018).[408]
  • A study on the phylogenetic relationships of the species Chendytes lawi and the Labrador duck (Camptorhynchus labradorius) is published by Buckner et al. (2018).[409]
  • Schmidt (2018) interprets more than 1000 large, near-circular gravel mounds from western New South Wales (Australia) as likely to be nest mounds constructed by an extinct bird, similar to the malleefowl but larger.[410]
  • A study on the phylogenetic relationships of Foro panarium is published by Field & Hsiang (2018), who consider this species to be a stem-turaco.[411]
  • A nearly complete tarsometatarsus of the least seedsnipe (Thinocorus rumicivorus) will be described from the Ensenadan of Argentina by Picasso, De Mendoza & Gelfo (2018).[412]
  • Petralca austriaca, originally thought to be an auk, is reinterpreted as a member of Gaviiformes by Göhlich & Mayr (2018).[413]
  • Pedal phalanx of a penguin affected by osteomyelitis will be described from the Eocene of West Antarctica by Jadwiszczak & Rothschild (2018).[414]
  • Redescription of the anatomy of the fossil penguin Madrynornis mirandus and a study on the phylogenetic relationships of this species is published by Degrange, Ksepka & Tambussi (2018).[415]
  • Fossil material attributed to the extinct Hunter Island penguin (Tasidyptes hunteri) is reinterpreted as assemblage of remains from three extant penguin species by Cole et al. (2018).[416]
  • A study on the history of penguin colonization of the Vestfold Hills (Antarctica), indicating that penguins started colonizing the northern Vestfold Hills around 14.6 thousand years before present, is published by Gao et al. (2018).[417]
  • A study on the history of active and abandoned Adélie penguin colonies at Cape Adare (Antarctica), based on new excavations and radiocarbon dating, is published by Emslie, McKenzie & Patterson (2018).[418]
  • New bird fossils, including the first reported tarsometatarsus of the plotopterid Tonsala hildegardae are described from the late Eocene/early Oligocene Makah Formation and the Oligocene Pysht Formation (Washington State, United States) by Mayr & Goedert (2018), who name a new plotopterid subfamily Tonsalinae.[419]
  • Fossil remains of the spectacled cormorant (Phalacrocorax perspicillatus) are described from the upper Pleistocene of Shiriya (northeast Japan) by Watanabe, Matsuoka & Hasegawa (2018).[420]
  • Extinct lowland kagu (Rhynochetos orarius) is reinterpreted as synonymous with extant kagu (Rhynochetos jubatus) by Theuerkauf & Gula (2018).[421]
  • New fossils of stem-mousebirds belonging to the family Sandcoleidae, providing new information on the anatomy of members of this family, will be described from the Eocene of the Messel pit (Germany) by Mayr (2018).[422]
  • New phorusrhacid fossils are described from the Pleistocene of Uruguay by Jones et al. (2018), providing evidence of survival of phorusrhacids until the end of the Pleistocene.[423]
  • A study on the phylogenetic relationships of the extinct Cuban macaw (Ara tricolor) is published by Johansson et al. (2018).[424]
  • A review of the bird fossil assemblage from the Paleocene locality of Menat (Puy-de-Dôme, France), including a new fossil specimen with exceptional soft tissue preservation, is published by Mayr, Hervet & Buffetaut (2018).[425]
  • A study on the fossil bird remains from the Pliocene locality of Kanapoi (Kenya), indicating presence of many aquatic birds, will be published by Field (2018).[426]
  • A study on the bird fossils from the Olduvai Gorge site (Tanzania) and their implications for inferring the environmental context of the site during the Oldowan-Acheulean transitional period is published by Prassack et al. (2018).[427]
  • A study on the bird fossil assemblage from the Pleistocene of the Rio Secco Cave (north-eastern Italy) and its implications for the palaeoenvironmental reconstructions of the site is published by Carrera et al. (2018).[428]
  • Oswald & Steadman (2018) report nearly 500 (probably late Pleistocene) bird fossils collected on New Providence (The Bahamas) in 1958 and 1960.[429]
  • A study on the fossils of Pleistocene birds collected on Picard Island (Seychelles) in 1987 is published by Hume, Martill & Hing (2018).[430]

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Chenoanas asiatica[431]

Sp. nov

Valid

Zelenkov et al.

Middle Miocene

 China
 Mongolia

A duck.

Cinclosoma elachum[432]

Sp. nov

In press

Nguyen, Archer & Hand

Miocene

Riversleigh World Heritage Area

 Australia

A quail-thrush.

Eogranivora[433]

Gen. et sp. nov

Valid

Zheng et al.

Early Cretaceous

Yixian Formation

 China

An early member of Ornithuromorpha. Genus includes new species E. edentulata.

Kischinskinia[434]

Gen. et sp. nov

Valid

Volkova & Zelenkov

Early Miocene

 Russia

A passerine belonging to the group Certhioidea. Genus includes new species K. scandens.

Litorallus[435]

Gen. et sp. nov

Valid

Mather et al.

Early Miocene (Altonian)

Bannockburn Formation

 New Zealand

A rail. The type species is L. livezeyi.

Muriwaimanu[436]

Gen. et comb. nov

Valid

Mayr et al.

Late Paleocene

Waipara Greensand

 New Zealand

An early penguin; a new genus for "Waimanu" tuatahi Ando, Jones & Fordyce in Slack et al. (2006).

Panraogallus[437]

Gen. et sp. nov

Li et al.

Late Miocene

Liushu Formation

 China

A member of the family Phasianidae. The type species is P. hezhengensis.

Priscaweka[435]

Gen. et sp. nov

Valid

Mather et al.

Early Miocene (Altonian)

Bannockburn Formation

 New Zealand

A rail. The type species is P. parvales.

Proardea? deschutteri[438]

Sp. nov

In press

Mayr et al.

Early Oligocene

 Belgium

A heron.

Rallus gracilipes[439]

Sp. nov

Valid

Takano & Steadman

Late Pleistocene

 The Bahamas

A rail, a species of Rallus.

Scolopax mira ohyamai [440]

Subsp. nov.

Valid

Matsuoka & Hasegawa

Late Pleistocene

 Japan

An extinct subspecies of the Amami woodcock (Scolopax mira).

Sequiwaimanu[436]

Gen. et sp. nov

Valid

Mayr et al.

Middle Paleocene

Waipara Greensand

 New Zealand

An early penguin. Genus includes new species S. rosieae.

Vanellus liffyae[441]

Sp. nov.

Valid

De Pietri et al.

Late Pliocene

 Australia

A species of Vanellus.

Zygodactylus grandei[442]

Sp. nov.

Valid

Smith, DeBee & Clarke

Early Eocene

Green River Formation

 United States
( Wyoming)

A member of the family Zygodactylidae.

Pterosaurs

Research

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Alcione[457]

Gen. et sp. nov

Valid

Longrich, Martill & Andres

Late Cretaceous (late Maastrichtian)

Ouled Abdoun Basin

 Morocco

A member of the family Nyctosauridae. The type species is A. elainus.

Barbaridactylus[457]

Gen. et sp. nov

Valid

Longrich, Martill & Andres

Late Cretaceous (late Maastrichtian)

Ouled Abdoun Basin

 Morocco

A member of the family Nyctosauridae. The type species is B. grandis.

Serradraco[458]

Gen. et comb. nov

Valid

Rigal, Martill & Sweetman

Early Cretaceous (late Valanginian or early Hauterivian)

Upper Tunbridge Wells Sand Formation

 United Kingdom

A pterodactyloid pterosaur; a new genus for "Pterodactylus" sagittirostris Owen (1874).

Simurghia[457]

Gen. et sp. nov

Valid

Longrich, Martill & Andres

Late Cretaceous (late Maastrichtian)

Ouled Abdoun Basin

 Morocco

A member of the family Nyctosauridae. The type species is S. robusta.

Tethydraco[457]

Gen. et sp. nov

Valid

Longrich, Martill & Andres

Late Cretaceous (late Maastrichtian)

Ouled Abdoun Basin

 Morocco

A member of the family Pteranodontidae. The type species is T. regalis.

Vesperopterylus[459]

Gen. et sp. nov

Valid

et al.

Early Cretaceous

Jiufotang Formation

 China

A member of the family Anurognathidae. Genus includes new species V. lamadongensis.

Xericeps [460]

Gen. et sp. nov

Valid

Martill et al.

Cretaceous (Albian or early Cenomanian)

Kem Kem Beds

 Morocco

A member of Azhdarchoidea. The type species is X. curvirostris.

Other archosauriforms

  • A study on the anatomy of Teleocrater rhadinus is published by Nesbitt et al. (2018).[461]
  • A study on the phylogenetic relationships of lagerpetid dinosauromorphs is published by Müller, Langer & Dias-da-Silva (2018).[462]
  • A study on the microstructure of the long bones (femur and tibiae) of Lewisuchus admixtus will be published by Garcia Marsà, Agnolín & Novas (2018).[463]
  • A study on the anatomy of the braincase of Silesaurus opolensis will be published by Piechowski, Niedźwiedzki & Tałanda (2018).[464]
  • Studies on the phylogenetic relationships of Pisanosaurus mertii will be published by Agnolín & Rozadilla (2018) and Baron (2018), who interpret the taxon as a likely silesaurid.[465][466]
  • Reevaluation of Caseosaurus crosbyensis and a study on the phylogenetic relationships of the species is published by Baron & Williams (2018).[467]

Other reptiles

Research

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Clevosaurus cambrica[485]

Sp. nov

Valid

Keeble, Whiteside & Benton

Late Triassic

 United Kingdom

Colobops[486]

Gen. et sp. nov

Valid

Pritchard et al.

Late Triassic (Norian)

Newark Supergroup

 United States
( Connecticut)

A reptile of uncertain phylogenetic placement, possibly a rhynchosaur. The type species is C. noviportensis.

Elginia wuyongae[487]

Sp. nov

Valid

Liu & Bever

Late Permian

Naobaogou Formation

 China

A pareiasaurid parareptile

Fraserosphenodon[488]

Gen. et comb. nov

Valid

Herrera-Flores et al.

Late Triassic

 United Kingdom

A rhynchocephalian belonging to the group Opisthodontia; a new genus for "Clevosaurus" latidens Fraser (1993).

Fraxinisaura[489]

Gen. et sp. nov

Valid

Schoch & Sues

Middle Triassic (Ladinian)

 Germany

A member of Lepidosauromorpha, probably a relative of Marmoretta oxoniensis. Genus includes new species F. rozynekae.

Labidosauriscus[490]

Gen. et sp. nov

Valid

Modesto, Scott & Reisz

Early Permian

Richards Spur locality

 United States
( Oklahoma)

A member of the family Captorhinidae. Genus includes new species L. richardi.

Mandaphon[491]

Gen. et sp. nov

Valid

Tsuji

Triassic

Manda Formation

 Tanzania

A member of the family Procolophonidae. The type species is M. nadra.

Synapsids

Non-mammalian synapsids

Research

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Ascendonanus[516]

Gen. et sp. nov

Valid

Spindler et al.

Permian (Sakmarian-Artinskian transition)

Chemnitz petrified forest
(Leukersdorf Formation)

 Germany

A member of the family Varanopidae. Genus includes new species A. nestleri.

Gorynychus[517]

Gen. et sp. nov

Valid

Kammerer & Masyutin

Permian

Kotelnich red beds

 Russia
( Kirov Oblast)

A therocephalian. The type species is G. masyutinae.

Leucocephalus[518]

Gen. et sp. nov

Valid

Day et al.

Permian (early Wuchiapingian)

Tropidostoma Assemblage Zone of the Main Karoo Basin

 South Africa

A biarmosuchian belonging to the family Burnetiidae. The type species is L. wewersi.

Microvaranops[516]

Gen. et sp. nov

Valid

Spindler et al.

Permian (Guadalupian)

Abrahamskraal Formation

 South Africa

A member of the family Varanopidae. Genus includes new species M. parentis.

Nochnitsa[519]

Gen. et sp. nov

Valid

Kammerer & Masyutin

Permian

Kotelnich red beds

 Russia
( Kirov Oblast)

A gorgonopsian. The type species is N. geminidens.

Pentasaurus[520]

Gen. et sp. nov

Valid

Kammerer

Late Triassic

Elliot Formation

 South Africa

A dicynodont belonging to the family Stahleckeriidae. The type species is P. goggai.

Polonodon[521]

Gen. et sp. nov

In press

Sulej et al.

Late Triassic (Carnian)

 Poland

A non-mammaliaform eucynodont. Genus includes new species P. woznikiensis.

Mammals

Other animals

Research

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Acanthodesia variegata[565]

Sp. nov

Valid

Di Martino & Taylor

Holocene

 Indonesia

A bryozoan belonging to the group Cheilostomata and the family Membraniporidae.

Acoscinopleura albaruthenica[566]

Sp. nov

Valid

Koromyslova, Martha & Pakhnevich

Late Cretaceous (late Campanian)

 Belarus

A bryozoan belonging to the group Flustrina and the family Coscinopleuridae.

Acoscinopleura crassa[566]

Sp. nov

Valid

Koromyslova, Martha & Pakhnevich

Late Cretaceous (Maastrichtian)

 Germany

A bryozoan belonging to the group Flustrina and the family Coscinopleuridae.

Acoscinopleura dualis[566]

Sp. nov

Valid

Koromyslova, Martha & Pakhnevich

Late Cretaceous (Maastrichtian)

 Germany

A bryozoan belonging to the group Flustrina and the family Coscinopleuridae.

Acoscinopleura occulta[566]

Sp. nov

Valid

Koromyslova, Martha & Pakhnevich

Late Cretaceous (Maastrichtian)

 Germany

A bryozoan belonging to the group Flustrina and the family Coscinopleuridae.

‘Aechmella’ viskovae[567]

Sp. nov

In press

Koromyslova, Baraboshkin & Martha

Late Cretaceous

 Kazakhstan

A bryozoan.

Aechmellina[568]

Gen. et comb. nov

Valid

Taylor, Martha & Gordon

Cretaceous (Cenomanian) to Paleocene (Danian).

 Denmark
 France
 Germany
 United Kingdom
 United States

A bryozoan belonging to the group Flustrina and the family Onychocellidae. The type species is "Aechmella" falcifera Voigt (1949); genus also includes "Homalostega" anglica Brydone (1909), "Aechmella" bassleri Voigt (1924), "Homalostega" biconvexa Brydone (1909), "Cellepora" hippocrepis Goldfuss (1826), "Aechmella" indefessa Taylor & McKinney (2006), "Aechmella" latistoma Berthelsen (1962), "Aechmella" linearis Voigt (1924), "Aechmella" parvilabris Voigt (1924), "Aechmella" pindborgi Berthelsen (1962), "Semieschara" proteus Brydone (1912), "Monoporella" seriata Levinsen (1925), "Aechmella" stenostoma Voigt (1930), "Reptescharinella" transversa d’Orbigny (1852) and "Aechmella" ventricosa Voigt (1924).

Alacaris[569]

Gen. et sp. nov

Valid

Yang et al.

Cambrian Stage 3

Hongjingshao Formation

 China

A stem-arthropod related to Chengjiangocaris. The type species is A. mirabilis.

Allonnia nuda[570]

Sp. nov

Valid

Cong et al.

Cambrian Stage 3

Chengjiang Lagerstätte

 China

A chancelloriid.

Arnaopora[571]

Gen. et sp. nov

Valid

Suárez Andrés & Wyse Jackson

Devonian

Moniello Formation

 Spain

A bryozoan belonging to the group Fenestrata. Genus includes new species A. sotoi.

Aspidostoma armatum[572]

Sp. nov

Valid

Pérez, López-Gappa & Griffin

Early Miocene

Monte León Formation

 Argentina

A cheilostome bryozoan belonging to the family Aspidostomatidae.

Aspidostoma roveretoi[572]

Sp. nov

Valid

Pérez, López-Gappa & Griffin

Late Miocene

Puerto Madryn Formation

 Argentina

A cheilostome bryozoan belonging to the family Aspidostomatidae.

Aspidostoma tehuelche[572]

Sp. nov

Valid

Pérez, López-Gappa & Griffin

Early to middle Miocene

Chenque Formation

 Argentina

A cheilostome bryozoan belonging to the family Aspidostomatidae.

Austroscolex sinensis[573]

Sp. nov

Valid

Liu et al.

Cambrian (Paibian)

 China

A palaeoscolecid.

Axilosoecia[574]

Gen. et 2 sp. nov

In press

Taylor & Brezina

Paleocene (Danian) to early Miocene

Roca Formation

 Argentina
 New Zealand

A bryozoan belonging to the group Tubuliporina and the family Oncousoeciidae. The type species is A. giselae; genus also includes A. mediorubiensis.

Catenagraptus[575]

Gen. et sp. nov

Valid

VandenBerg

Ordovician (late Floian)

 Australia

A graptolite belonging to the group Sinograptina and the family Sigmagraptidae. The type species is C. communalis.

Characodoma wesselinghi[565]

Sp. nov

Valid

Di Martino & Taylor

Holocene

 Indonesia

A bryozoan belonging to the group Cheilostomata and the family Cleidochasmatidae.

Cheethamia aktolagayensis[567]

Sp. nov

In press

Koromyslova, Baraboshkin & Martha

Late Cretaceous

 Kazakhstan

A bryozoan.

Codositubulus[576]

Gen. et sp. nov

In press

Gámez Vintaned et al.

Cambrian

 Spain

A tubicolous animal of uncertain phylogenetic placement. The type species is C. grioensis.

Colospongia lenis[577]

Sp. nov

Valid

Malysheva

Late Permian

 Russia
( Primorsky Krai)

A sponge.

Cornulites gondwanensis[578]

Sp. nov

Valid

Gutiérrez-Marco & Vinn

Ordovician (Hirnantian)

 Morocco

A member of Cornulitida.

Cupitheca convexa[579]

Sp. nov

Valid

Sun et al.

Cambrian

Manto Formation

 China

A member of Hyolitha.

Cystomeson[580]

Gen. et sp. nov

Valid

Ernst, Krainer & Lucas

Carboniferous (Mississippian)

Lake Valley Formation

 United States
( New Mexico)

A bryozoan belonging to the group Cystoporata. Genus includes new species C. sierraensis.

Decoritheca? hageni[581]

Sp. nov

Valid

Peel & Willman

Cambrian Series 2

Buen Formation

 Greenland

A member of Hyolitha.

Didymograptellus kremastus[582]

Sp. nov

Valid

Vandenberg

Ordovician (Floian)

 Australia
 New Zealand
 Norway
 United States

A graptolite belonging to the group Dichograptina and the family Pterograptidae.

‘Escharoides’ charbonnieri[583]

Sp. nov

Valid

Di Martino, Martha & Taylor

Late Cretaceous (Maastrichtian)

 Madagascar

A bryozoan.

Fehiborypora[583]

Gen. et comb. nov

Valid

Di Martino, Martha & Taylor

Late Cretaceous (Maastrichtian)

 Madagascar

A bryozoan; a new genus for "Cribilina" labiatula Canu (1922).

Gibbavasis[584]

Gen. et sp. nov

Vaziri, Majidifard & Laflamme

Ediacaran

Kushk Series

 Iran

A vase-shaped organism of uncertain phylogenetic placement, possibly a poriferan-grade animal. The type species is G. kushkii.

Homoctenus katzerii[585]

Sp. nov

Valid

Comniskey & Ghilardi

Devonian (late Pragian or late Emsian)

Ponta Grossa Formation

 Brazil

A member of Tentaculitoidea belonging to the order Homoctenida and the family Homoctenidae.

Kamilocella[568]

Gen. et comb. nov

Valid

Taylor, Martha & Gordon

Late Cretaceous (Cenomanian) to Campanian).

 Czech Republic
 France
 Germany

A bryozoan belonging to the group Flustrina and the family Onychocellidae. The type species is "Eschara" latilabris Reuss (1872); genus also includes "Eschara" acis d’Orbigny (1851), "Onychocella" barbata Martha, Niebuhr & Scholz (2017), "Eschara" cenomana d’Orbigny (1851) and "Eschara" labiata Počta (1892).

Kenocharixa[586]

Gen. et sp. et comb. nov

Valid

Dick, Sakamoto & Komatsu

Cretaceous to Eocene

 Japan
 New Zealand

A cheilostome bryozoan. Genus includes new species K. kashimaensis, as well as "Charixa goshouraensis Dick, Komatsu, Takashima & Ostrovsky (2013) and "Conopeum" stamenocelloides Gordon & Taylor (2015).

Khmeria minima[587]

Sp. nov

Valid

Wendt

Late Triassic (Carnian)

 Italy

An ascidian belonging to the new order Khmeriamorpha.

Khmeria stolonifera[587]

Sp. nov

Valid

Wendt

Late Permian, possibly also Carboniferous

 Cambodia
 Thailand
 Vietnam

An ascidian belonging to the new order Khmeriamorpha.

Kimberella persii[584]

Sp. nov

Vaziri, Majidifard & Laflamme

Ediacaran

Kushk Series

 Iran

A stem-mollusc bilaterian.

Kootenayscolex[588]

Gen. et sp. nov

Valid

Nanglu & Caron

Cambrian

Burgess Shale

 Canada
( British Columbia)

A polychaete. Genus includes new species K. barbarensis.

Marginaria prolixa[586]

Sp. nov

Valid

Dick, Sakamoto & Komatsu

Late Cretaceous (Campanian)

Himenoura Group

 Japan

A cheilostome bryozoan.

Matteolaspongia[589]

Gen. et sp. nov

In press

Botting, Zhang & Muir

Ordovician (Hirnantian)

Wenchang Formation

 China

A sponge, possibly a stem-rossellid. The type species is M. hemiglobosa.

Melychocella biperforata[572]

Sp. nov

Valid

Pérez, López-Gappa & Griffin

Early Miocene

Chenque Formation
Monte León Formation

 Argentina

A cheilostome bryozoan belonging to the family Aspidostomatidae.

Micrascidites gothicus[590]

Sp. nov

Valid

Sagular, Yümün & Meriç

Quaternary

 Turkey

A didemnid ascidian.

Minitaspongia[591]

Gen. et sp. nov

Valid

Carrera et al.

Carboniferous (Tournaisian)

Agua de Lucho Formation

 Argentina

A hexactinellid sponge belonging to the family Dictyospongiidae. The type species is M. parvis.

Monniotia minutula[590]

Sp. nov

Valid

Sagular, Yümün & Meriç

Quaternary

 Turkey

A didemnid ascidian.

Nasaaraqia[581]

Gen. et sp. nov

Valid

Peel & Willman

Cambrian Series 2

Buen Formation

 Greenland

Genus includes new species N. hyptiotheciformis.

Nevadotheca boerglumensis[581]

Sp. nov

Valid

Peel & Willman

Cambrian Series 2

Buen Formation

 Greenland

A member of Hyolitha.

Nogrobs moroccensis[592]

Sp. nov

Valid

Schlögl et al.

Middle Jurassic (Bajocian)

 Morocco

A serpulid polychaete.

Normalograptus baridaensis[593]

Sp. nov

In press

Štorch, Roqué Bernal & Gutiérrez-Marco

Ordovician (Hirnantian)

 Spain

A graptolite.

Normalograptus ednae[593]

Sp. nov

In press

Štorch, Roqué Bernal & Gutiérrez-Marco

Silurian (Rhuddanian)

 Spain

A graptolite.

‘Plagioecia’ antanihodiensis[583]

Sp. nov

Valid

Di Martino, Martha & Taylor

Late Cretaceous (Maastrichtian)

 Madagascar

A bryozoan.

Pleurocodonellina javanensis[565]

Sp. nov

Valid

Di Martino & Taylor

Early Pleistocene

Pucangan Formation

 Indonesia

A bryozoan belonging to the group Cheilostomata and the family Smittinidae.

Protohertzina compressa[594]

Sp. nov

Valid

Slater, Harvey & Butterfield

Cambrian (Terreneuvian)

Lontova Formation
Voosi Formation

 Estonia

A member of the total group of Chaetognatha.

Ramskoeldia[595]

Gen. et 2 sp. nov

Valid

Cong et al.

Cambrian

Maotianshan Shales

 China

A member of Radiodonta related to Amplectobelua. Genus includes new species R. platyacantha and R. consimilis.

Seqineqia[596]

Gen. et sp. nov

Valid

Peel

Cambrian (Guzhangian)

Holm Dal Formation

 Greenland

A sponge. The type species is S. bottingi.

Shaanxiscolex[597]

Gen. et sp. nov

Valid

Yang et al.

Cambrian Stage 4

 China

A palaeoscolecid. The type species is S. xixiangensis.

Sisamatispongia[596]

Gen. et sp. nov

Valid

Peel

Cambrian (Guzhangian)

Holm Dal Formation

 Greenland

A sponge. The type species is S. erecta.

Sonarina[598]

Gen. et sp. nov

Valid

Taylor & Di Martino

Late Cretaceous (late Campanian or early Maastrichtian)

Kallankurichchi Formation

 India

A cheilostome bryozoan belonging to the family Onychocellidae. Genus includes new species S. tamilensis.

Stanleycaris[548]

Gen. et sp. nov

Valid

Pates, Daley & Ortega-Hernández

Cambrian

Stephen Formation
Wheeler Formation

 Canada
( British Columbia)
 United States
( Utah)

A member of Radiodonta belonging to the group Hurdiidae. The type species is S. hirpex. The original description of the taxon appeared in an online supplement to the article published by Caron et al. (2010),[599] making in invalid until it was validated by Pates, Daley & Ortega-Hernández (2018).[547][548]

Styliolina langenii[585]

Sp. nov

Valid

Comniskey & Ghilardi

Devonian (middle to late Emsian)

Ponta Grossa Formation

 Brazil

A member of Tentaculitoidea belonging to the order Dacryoconarida and the family Styliolinidae.

Sullulika[581]

Gen. et sp. nov

Valid

Peel & Willman

Cambrian Series 2

Buen Formation

 Greenland

A selkirkiid stem-priapulid. Genus includes new species S. broenlundi.

Tallitaniqa[596]

Gen. et sp. nov

Valid

Peel

Cambrian (Guzhangian)

Holm Dal Formation

 Greenland

A sponge. The type species is T. petalliformis.

Tentaculites kozlowskii[585]

Sp. nov

Valid

Comniskey & Ghilardi

Devonian (late Pragian or late Emsian)

Ponta Grossa Formation

 Brazil

A member of Tentaculitoidea belonging to the order Tentaculitida and the family Tentaculitidae.

Tentaculites paranaensis[585]

Sp. nov

Valid

Comniskey & Ghilardi

Devonian (late Pragian or late Emsian)

Ponta Grossa Formation

 Brazil

A member of Tentaculitoidea belonging to the order Tentaculitida and the family Tentaculitidae.

Trapezovitus malinkyi[581]

Sp. nov

Valid

Peel & Willman

Cambrian Series 2

Buen Formation

 Greenland

A member of Hyolitha.

Turbicellepora yasuharai[565]

Sp. nov

Valid

Di Martino & Taylor

Holocene

 Indonesia

A bryozoan belonging to the group Cheilostomata and the family Celleporidae.

Uniconus ciguelii[585]

Sp. nov

Valid

Comniskey & Ghilardi

Devonian (late Pragian or late Emsian)

Ponta Grossa Formation

 Brazil

A member of Tentaculitoidea belonging to the order Tentaculitida and the family Uniconidae.

Zardinisoma[587]

Gen. et 5 sp. nov

Valid

Wendt

Permian (Wordian) to Triassic (Carnian)

San Cassiano Formation

 Italy
 Japan

An ascidian belonging to the new order Khmeriamorpha. The type species is Z. cassianum; genus also includes Z. japonicum, Z. pauciplacophorum, Z. pyriforme and Z. polyplacophorum.

Zhijinites tumourifomis[600]

Sp. nov

Valid

Pan, Feng & Chang

Cambrian (Terreneuvian)

Yanjiahe Formation

 China

A small shelly fossil.

Other organisms

Research

  • Carbon isotope analyses of 11 microbial fossils from the ∼3,465-million-year-old Apex chert (Australia) are published by Schopf et al. (2018), who interpret two of the five studied species as primitive photosynthesizers, one as an Archaeal methane producer, and two as methane consumers.[601]
  • Carbonaceous microstructures interpreted as evidence of early life are described from the ~3,472-million-year-old Middle Marker horizon, Barberton Greenstone Belt (South Africa) by Hickman-Lewis et al. (2018).[602]
  • A study on the chemical, isotopic and molecular structural characteristics of the putative multicellular eukaryote fossils from carbonaceous compressions in the 1.63 billion years old Tuanshanzi Formation (China) is published by Qu et al. (2018).[603]
  • Intact porphyrins, the molecular fossils of chlorophylls, are described from 1,100-million-year-old marine black shales of the Taoudeni Basin (Mauritania) by Gueneli et al. (2018), who also study the nitrogen isotopic values of the fossil pigments, and interpret their findings as indicating that the oceans of that time were dominated by cyanobacteria, while larger planktonic algae were scarce.[604]
  • Bobrovskiy et al. (2018) report molecular fossils from organically preserved specimens of Beltanelliformis, and interpret the fossils as representing large spherical colonies of cyanobacteria.[605]
  • A study on the age of the fossil red alga Bangiomorpha pubescens is published by Gibson et al. (2018).[606]
  • A study on the positions of fossil specimens in the assemblages of Ediacaran fossils from Mistaken Point (Canada), as well as on their implications for inferring the interactions and associations between the Ediacaran organisms, is published by Mitchell & Butterfield (2018).[607]
  • A study on the height of Ediacaran organisms from Mistaken Point, evaluating the link between the increase of height and resource competition or greater offspring dispersal, is published by Mitchell & Kenchington (2018).[608]
  • Evidence of a radiation of the Ediacaran biota that witnessed the emergence and widespread implementation of novel, animal-style ecologies is presented by Tarhan et al. (2018), who argue that this transition was linked to the expansion of Ediacaran taxa into dynamic, shallow marine environments characterized by episodic disturbance and complex and diverse organically-bound substrates, and propose that younger, second-wave Ediacaran communities resulting from said radiation were part of an ecological and evolutionary continuum with Phanerozoic ecosystems.[609]
  • Elliptical body fossils are described from the Ediacaran–Fortunian deposits of central Brittany (France) by Néraudeau et al. (2018), representing the first body fossils described from these deposits.[610]
  • Fossils interpreted as threads of filamentous cyanobacteria are described from the Cambrian (Guzhangian) Alum Shale Formation (Sweden) by Castellani et al. (2018).[611]
  • A study on the phylogenetic relationships of the rangeomorphs will be published by Dececchi et al. (2018).[612]
  • Enigmatic Devonian taxon Protonympha is interpreted as a possible post-Ediacaran vendobiont by Retallack (2018).[613]
  • Taxonomic compilation and partial revision of early Eocene deep-sea benthic Foraminifera is presented by Arreguín-Rodríguez et al. (2018).[614]
  • A study on the responses of two species of foraminifera (extant Truncorotalia crassaformis and extinct Globoconella puncticulata) to climate change during the the late Pliocene to earliest Pleistocene intensification of Northern Hemisphere glaciation (3.6–2.4 million years ago) is published by Brombacher et al. (2018).[615]
  • Description of fossils of nonmarine diatoms belonging to the genus Actinocyclus from the Lower to Middle Miocene lacustrine deposits in Japan and a study on the possible causal links between the evolution of nonmarine planktonic diatoms and the climatic and environmental changes that occurred during the Miocene is published by Hayashi et al. (2018).[616]

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Alabamina heyae[617]

Sp. nov

Valid

Fox et al.

Oligocene

 Germany

A foraminifer belonging to the group Rotaliida and the family Alabaminidae.

Alievium mangalensiense[618]

Sp. nov

Valid

Bragina & Bragin

Late Cretaceous

 Cyprus

A radiolarian belonging to the family Pseudoaulophacidae.

Ammobaculoides dhrumaensis[619]

Sp. nov

Valid

Kaminski, Malik & Setoyama

Middle Jurassic (Bajocian)

Dhruma Formation

 Saudi Arabia

A foraminifer belonging to the group Lituolida and the family Spiroplectamminidae.

Amsassia yushanensis[620]

Sp. nov

In press

Lee et al.

Late Ordovician

Xiazhen Formation

 China

A coral-like organism.

Anhuithrix[621]

Gen. et comb. nov

Pang et al.

Tonian

Liulaobei Formation

 China

A member of Cyanobacteria; a new genus for "Omalophyma" magna Steiner (1994).

Baculiphyca brevistipitata[622]

Sp. nov

In press

Ye et al.

Ediacaran

 China

A macroalga.

Doulia[623]

Gen. et sp. nov

Valid

Lian et al.

Cambrian Stage 3

Hongjingshao Formation

 China

A possible planktonic alga of uncertain phylogenetic placement. Genus includes new species D. rara.

Doushantuophyton? laticladus[622]

Sp. nov

In press

Ye et al.

Ediacaran

 China

A macroalga.

Enteromorphites magnus[622]

Sp. nov

In press

Ye et al.

Ediacaran

 China

A macroalga.

Eolaminaria simigladiola[623]

Sp. nov

Valid

Lian et al.

Cambrian Stage 3

Hongjingshao Formation

 China

A macroalga of uncertain phylogenetic placement.

Epistacheoides bozorgniai[624]

Sp. nov

Valid

Falahatgar, Vachard & Sarfi

Carboniferous (Viséan)

 Iran

An alga of uncertain phylogenetic placement.

Girvanella lianiformis[625]

Sp. nov

In press

Peel

Cambrian (Drumian)

Ekspedition Bræ Formation

 Greenland

A member of Cyanobacteria belonging to the family Cyanophyceae.

Girvanella pituutaq[625]

Sp. nov

In press

Peel

Cambrian (Drumian)

Ekspedition Bræ Formation

 Greenland

A member of Cyanobacteria belonging to the family Cyanophyceae.

Hemisphaerammina apta[626]

Sp. nov

Valid

McNeil & Neville

Early Eocene

Beaufort Sea

A foraminifer belonging to the order Astrorhizida and the suborder Hemisphaeramminineae.

Ichnusella senerae[627]

Sp. nov

Valid

Rigaud, Schlagintweit & Bucur

Early Cretaceous (Barremian–early Aptian)

 Austria
 France
 Italy
 Romania
 Turkey
 Croatia?
 Serbia?
 Ukraine?

A foraminifer belonging to the group Spirillinida and the family Spirillinidae.

Konglingiphyton? laterale[622]

Sp. nov

In press

Ye et al.

Ediacaran

 China

A macroalga.

Leiosphaeridia gorda[628]

Sp. nov

Valid

Loron & Moczydłowska

Tonian

Visingsö Group
Wynniatt Formation

 Canada
 Sweden

An unicellular microorganism of algal affinities.

Lenticulina stewarti[617]

Sp. nov

Valid

Fox et al.

Oligocene (Rupelian)

 Germany

A foraminifer belonging to the group Nodosariacea and the family Vaginulinidae.

Lontohystrichosphaera[594]

Gen. et sp. nov

Valid

Slater, Harvey & Butterfield

Cambrian (Terreneuvian)

Lontova Formation

 Estonia

A large ornamented acritarch of unresolved biological affinity, probably an ontogenetically and metabolically active eukaryotic organism rather than a dormant protistan cyst. Genus includes new species L. grandis.

Mallomonas aperturae[629]

Sp. nov

Valid

Siver

Middle Eocene

Giraffe Pipe locality

 Canada

A synurid, a species of Mallomonas.

Maxiphyton[622]

Gen. et sp. nov

In press

Ye et al.

Ediacaran

 China

A macroalga. Genus includes new species M. stipitatum.

Mispertonia[630]

Gen. et sp. nov

Valid

McLean et al.

Carboniferous (Mississippian) to Late Permian or Early Triassic

 India
 United Kingdom

An organic-walled microfossil of uncertain phylogenetic placement. Genus includes new species M. desiccata.

Moorodinium crispa[631]

Sp. nov

In press

Wainman et al.

Late Jurassic (late Kimmeridgian–early Tithonian)

Surat Basin

 Australia

A dinoflagellate.

Neotrocholina theodori[627]

Sp. nov

Valid

Rigaud, Schlagintweit & Bucur

Early Cretaceous (Barremian–early Aptian)

 Austria
 France
 Iran
 Poland
 Romania
 Turkey

A foraminifer belonging to the group Spirillinida and the family Spirillinidae.

Nonion cepa[617]

Sp. nov

Valid

Fox et al.

Late Oligocene to early Miocene

Central North Sea basin
 Netherlands

A foraminifer belonging to the group Rotaliida and the family Nonionidae.

Obamus[632]

Gen. et sp. nov

In press

Dzaugis et al.

Ediacaran

Rawnsley Quartzite

 Australia

A torus-shaped organism, similar in gross morphology to some poriferans and benthic cnidarians. Genus includes new species O. coronatus.

Omphalocyclus macroporus ellipsoides[633]

Subsp. nov

Valid

Al Nuaimy

Late Cretaceous (Maastrichtian)

Aqra Formation

 Iraq

A foraminifer.

Omphalocyclus macroporus maukabensis[633]

Subsp. nov

Valid

Al Nuaimy

Late Cretaceous (Maastrichtian)

Aqra Formation

 Iraq

A foraminifer.

Orpikania[625]

Gen. et sp. nov

In press

Peel

Cambrian (Drumian)

Ekspedition Bræ Formation

 Greenland

A member of the family Epiphytaceae (a group of organisms of uncertain phylogenetic placement). Genus includes new species O. freucheni.

Pakupaku[634]

Gen. et sp. nov

In press

Riedman, Porter & Calver

Tonian

Black River Dolomite

 Australia

A vase-shaped microfossil. Genus includes new species P. kabin.

Palaeoelphidium[635]

Gen. et comb. nov

Valid

Consorti, Schlagintweit & Rashidi

Late Cretaceous (Maastrichtian)

 Iran
 Iraq
 Qatar

A foraminifer belonging to the family Elphidiellidae; a new genus for "Elphidiella" multiscissurata Smout (1955).

Palaeomycus[636]

Gen. et sp. nov

In press

Poinar

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A fungus described on the basis of pycnidia. Genus includes new species P. epallelus.

Perexiflasca[637]

Gen. et sp. nov

Valid

Krings, Harper & Taylor

Devonian (Pragian)

Rhynie chert

 United Kingdom

A small, chytrid-like organism. Genus includes new species P. tayloriana.

Phyllopsora magna[638]

Sp. nov

Valid

Kaasalainen, Rikkinen & Schmidt in Kaasalainen et al.

Miocene

Dominican amber

 Dominican Republic

A lichenized fungus, a species of Phyllopsora.

Pseudoalievium[618]

Gen. et 2 sp. nov

Valid

Bragina & Bragin

Late Cretaceous

 Cyprus

A radiolarian belonging to the family Pseudoaulophacidae. Genus includes new species P. parekklisiense and P. inflatum.

Pseudoaulophacus decoratus[618]

Sp. nov

Valid

Bragina & Bragin

Late Cretaceous

 Cyprus

A radiolarian belonging to the family Pseudoaulophacidae.

Retesporangicus[639]

Gen. et sp. nov

Valid

Strullu-Derrien in Strullu-Derrien et al.

Early Devonian

Rhynie chert

 United Kingdom

A fungus belonging to the group Blastocladiomycota, of uncertain phylogenetic placement within the latter group. Genus includes new species R. lyonii.

Retiranus[594]

Gen. et sp. nov

Valid

Slater, Harvey & Butterfield

Cambrian (Terreneuvian)

Lontova Formation
Voosi Formation

 Estonia
 Lithuania

A sheet-like or funnel-shaped organism of unresolved biological affinity. Genus includes new species R. balticus.

Rugophyca[623]

Gen. et sp. nov

Valid

Lian et al.

Cambrian Stage 3

Hongjingshao Formation

 China

A macroalga of uncertain phylogenetic placement. Genus includes new species R. longa.

Singulariphyca[623]

Gen. et sp. nov

Valid

Lian et al.

Cambrian Stage 3

Hongjingshao Formation

 China

A macroalga of uncertain phylogenetic placement. Genus includes new species S. ramosa.

Sinocylindra linearis[622]

Sp. nov

In press

Ye et al.

Ediacaran

 China

An organism of uncertain phylogenetic placement, possibly an alga or an exceptionally large prokaryote.

Skuadinium fusum[631]

Sp. nov

In press

Wainman et al.

Late Jurassic (late Kimmeridgian–early Tithonian)

Surat Basin

 Australia

A dinoflagellate.

Synsphaeridium parahioense[640]

Sp. nov

Valid

Yin et al.

Cambrian Series 3

 India

An acritarch.

Tristratothallus[641]

Gen. et sp. nov

Valid

Edwards et al.

Silurian (Ludfordian)

Downton Castle Sandstone Formation

 United Kingdom

A nematophyte belonging to the family Nematothallaceae. Genus includes new species T. ludfordensis.

Uvigerina kingi[617]

Sp. nov

Valid

Fox et al.

Middle Miocene

 Netherlands
Southern and central North Sea

A foraminifer belonging to the group Rotaliida and the family Uvigerinidae.

Vendotaenia pavimentpes[642]

Sp. nov

Valid

Yang & Qin in Yang et al.

Ediacaran

Dengying Formation

 China

An alga.

Vendotaenia sixiense[642]

Sp. nov

Valid

Yang & Qin in Yang et al.

Ediacaran

Dengying Formation

 China

An alga.

Vizellopsidites[643]

Gen. et sp. nov

In press

Khan, Bera & Bera

Late Pliocene to early Pleistocene

Kimin Formation

 India

A fossil fungus found on the surface of fossilized leaf fragments. Genus includes new species V. siwalika.

Windipila pumila[644]

Sp. nov

Valid

Krings & Harper

Early Devonian

Rhynie chert

 United Kingdom

A fungal reproductive unit.

General paleontology

Research related to paleontology that either does not concern any of the groups of the organisms listed above, or concerns multiple groups.

  • A study on the geologic record of Milankovitch climate cycles, extending their analysis into the Proterozoic and aiming to reconstruct the history of solar system characteristics, is published by Meyers & Malinverno (2018).[645]
  • A study on the effect of different forms of primitive photosynthesis on Earth’s early atmospheric chemistry and climate is published by Ozaki et al. (2018).[646]
  • A study on the history of life on Earth is published by McMahon & Parnell (2018), who argue that the subsurface “deep biosphere” outweighed the surface biosphere by about one order of magnitude for at least half of the history of life.[647]
  • A study on the nitrogen isotope ratios, selenium abundances, and selenium isotope ratios from the ∼2.66 billion years old Jeerinah Formation (Australia), providing evidence of transient surface ocean oxygenation ∼260 million years before the Great Oxygenation Event, is published by Koehler et al. (2018).[648]
  • A study on living cyanobacteria, testing the hypothesis that planktonic single-celled cyanobacteria could drive the export of organic carbon from the surface to deep ocean in the Paleoproterozoic, is published by Kamennaya et al. (2018).[649]
  • A study on the abundance of bio-essential trace elements during the period in Earth's history known as the "Boring Billion" is published by Mukherjee et al. (2018), who interpret their findings as incidacting that key biological innovations in eukaryote evolution (the appearance of first eukaryotes, the acquisition of certain cell organelles, the origin of multicellularity and the origin of sexual reproduction) probably occurred during the period of a scarcity of trace elements, followed by a broad-scale diversification of eukaryotes during the period of a relative abundance of trace elements.[650]
  • A study on the ocean chemistry at the start of the Mesoproterozoic as indicated by rare earth element, iron-speciation and inorganic carbon isotope data from the 1,600–1,550 million years old Yanliao Basin, North China Craton is published by Zhang et al. (2018), who report evidence of a progressive oxygenation event starting at ~1,570 million years ago, immediately prior to the occurrence of complex multicellular eukaryotes in shelf areas of the Yanliao Basin.[651]
  • A study on the Earth's atmosphere and the productivity of global biosphere 1.4 billion years ago, based on triple oxygen isotope measurements sedimentary sulfates from the Sibley basin (Ontario, Canada), is published by Crockford et al. (2018).[652]
  • A study on the timing of the onset of the Sturtian glaciation, based on new stratigraphic and geochronological data from the upper Tambien Group (Ethiopia), is published by Scott MacLennan et al. (2018).[653]
  • A study on wave ripples and tidal laminae in the Elatina Formation (Australia), interpreted as evidence of rapid sea level rise in the aftermath of the Marinoan glaciation, is published by Myrow, Lamb & Ewing (2018).[654]
  • A study on the environments and food sources that sustained the Ediacaran biota is published by Pehr et al. (2018), who present the lipid biomarker and nitrogen and carbon isotopic data obtained from late Ediacaran (<560  million years old) strata from seven drill cores and three outcrops spanning Baltica.[655]
  • A study on the global ocean redox conditions at a time when the Ediacaran biota began to decline, based on analysis of uranium isotopes in carbonates from the Dengying Formation (China), is published by Zhang et al. (2018), who interpret their findings as indicative of an episode of extensive oceanic anoxia at the end of the Ediacaran.[656]
  • New uranium isotope data from upper Ediacaran to lower Cambrian marine carbonate successions, indicative of short-lived episodes of widespread marine anoxia near the Ediacaran-Cambrian transition and during Cambrian Stage 2, is presented by Wei et al. (2018), who argue that the Cambrian explosion might have been triggered by marine redox fluctuations rather than progressive oxygenation.[657]
  • A review of the evidence for shell crushing (durophagy), drilling and puncturing predation in the Cambrian (and possibly the Ediacaran) is published by Bicknell & Paterson (2018).[658]
  • A study on the timing and process of ocean oxygenation in the early Cambrian and its impact on the diversification of early Cambrian animals, based on data from the Cambrian Niutitang Formation (China), is published by Zhao et al. (2018).[659]
  • A study on the isotopic composition and surface temperatures of early Cambrian seas, based on stable oxygen isotope data from the small shelly fossils from the Comley limestones (United Kingdom), is published by Hearing et al. (2018).[660]
  • Gougeon et al. (2018) report evidence from the Lower Cambrian Chapel Island Formation (Canada) indicating that a mixed layer of sediment, of similar structure to that of modern marine sediments (which results from bioturbation by epifaunal and shallow infaunal organisms), was well established in shallow marine settings by the early Cambrian.[661]
  • A study on the effects of the rise of bioturbation on global elemental cycles during the Cambrian is published by van de Velde et al. (2018).[662]
  • A study on the timing of the Sauk transgression in the Grand Canyon region is published by Karlstrom et al. (2018).[663]
  • A study on the oxygen isotope composition of seawater throughout the Phanerozoic is published by Ryb & Eiler (2018).[664]
  • A study on the evolution of marine animal communities over the Phanerozoic, evaluating the ecological changes caused by major radiations and mass extinctions, is published by Muscente et al. (2018).[665]
  • A study on the impact of mass extinctions on the global biogeographical structure, as indicated by data on time-traceable bioregions for benthic marine species across the Phanerozoic, is published by Kocsis, Reddin & Kiessling (2018).[666]
  • A study on the nektic and eunektic diversity and occurrences throughout the Paleozoic is published by Whalen & Briggs (2018).[667]
  • A study analyzing the link between net latitudinal range shifts of marine invertebrates and seawater temperature over the (post-Cambrian) Phanerozoic Eon is published by Reddin, Kocsis & Kiessling (2018).[668]
  • A study evaluating the link between macroevolutionary success (evolving many species) and macroecological success (the occupation of an unusually high number of areas by a species or clade) in fossil echinoid, cephalopod, bivalve, gastropod, brachiopod and trilobite species is published by Wagner, Plotnick & Lyons (2018).[669]
  • A review of the history of the definition of the Great Ordovician Biodiversification Event, aiming to clarify its concept and duration, is published by Servais & Harper (2018).[670]
  • A study comparing the extinction events which occurred at the end of the Ordovician and at the end of the Capitanian (middle Permian) is published by Isozaki & Servais (2018).[671]
  • Evidence from uranium isotopes from Upper Ordovician–lower Silurian marine limestones of Anticosti Island (Canada), indicative of an abrupt global-ocean anoxic event coincident with the Late Ordovician mass extinction, is presented by Bartlett et al. (2018).[672]
  • A study on the ocean redox conditions and climate change across a Late Ordovician to Early Silurian on the Yangtze Shelf Sea (China) and their implications for inferring the causes of the Late Ordovician mass extinction is published by Zou et al. (2018).[673]
  • A study on the Devonian strata in the Zachełmie Quarry (Poland) preserving tracks of early tetrapods is published by Qvarnström et al. (2018), who reinterpret the tracks as produced in non-marine environment.[674]
  • Evidence of multiple mercury enrichments in the two-step late Frasnian crisis interval from paleogeographically distant successions in Morocco, Germany and northern Russia is presented by Racki et al. (2018), who interpret their findings as indicating that the Late Devonian extinction was caused by rapid climatic perturbations promoted in turn by volcanic cataclysm.[675]
  • A study on the sedimentary facies, oxygen isotopes and the generic conodont composition in two continuous Devonian (late Frasnian to the end-Famennian) outcrops in the Montagne Noire (Col des Tribes section, France, part of the Armorica microcontinent in the Devonian) and in the Buschteich section (Germany, part of the Saxo-Thuringian microplate in the Devonian), assessing the water depth, approximate position relative to the shore and paleotemperatures in the Late Devonian, and evaluating whether environmental changes affected both areas similarly and at the same pace in the Late Devonian, is published by Girard et al. (2018).[676]
  • A study on the climate changes during the period of the Late Devonian extinction (and possibly causing it), inferred from a high-resolution oxygen isotope record based on conodont apatite from the FrasnianFamennian transition in South China, is published by Huang, Joachimski & Gong (2018).[677]
  • A study on the age of a bentonite layer from Bed 36 in the Frasnian–Famennian succession at the abandoned Steinbruch Schmidt Quarry (Germany), aiming to determine the precise age of the Frasnian–Famennian boundary and the precise timing of the Late Devonian extinction, is published by Percival et al. (2018).[678]
  • A study on the atmospheric oxygen levels through the Phanerozoic, evaluating whether Romer's gap and the concurrent gap in the fossil record of insects were caused by low oxygen levels, is published by Schachat et al. (2018).[679]
  • A study on the early tetrapod diversity and biogeography in the Carboniferous and early Permian, evaluating the impact of the Carboniferous rainforest collapse on early tetrapod communities, is published by Dunne et al. (2018).[680]
  • O’Connor et al. (2018) reconstruct the most likely karyotype of the diapsid common ancestor based on data from extant reptiles and birds, and argue that most features of a typical ‘avian-like’ karyotype were in place before the divergence of birds and turtles ~255 million years ago.[681]
  • A study evaluating whether the fossil record supports the reality of the Permian Olson's Extinction, based on an analysis of the tetrapod species richness in the tetrapod-bearing formations of Texas preserving fossils from the time of the extinction, is published by Brocklehurst (2018).[682]
  • A study on the environmental changes and faunal turnover in the Karoo Basin (South Africa) during the late Permian is published by Viglietti, Smith & Rubidge (2018).[683]
  • A study on carbonate microfacies and foraminifer abundances in three Upper Permian sections from isolated carbonate platforms of the Nanpanjiang Basin (China), indicative of a marine environmental instability up to 60,000 years preceding Permian–Triassic extinction event, is published by Tian et al. (2018).[684]
  • A study on the changes of distribution of terrestrial tetrapods from the Permian (Guadalupian) to the Middle Triassic and on the impact of the Permian–Triassic extinction event on the palaeobiogeography of terrestrial tetrapods is published by Bernardi, Petti & Benton (2018).[685]
  • First tetrapod tracks from the Upper Permian–Lower Triassic (LopingianInduan) eolian strata of southern Brazil, assigned to the ichnotaxa Dicynodontipus isp. and Chelichnus bucklandi, are described by Francischini et al. (2018).[686]
  • A study on the recovery of benthic invertebrates following the Permian–Triassic extinction event, based on analysis of changes in the species richness, functional richness, evenness, composition, and ecological complexity of benthic marine communities from the Lower Triassic Servino Formation (Italy), is published by Foster et al. (2018).[687]
  • Evidence of multiple episodes of oceanic anoxia in the Early Triassic, based on U-isotope data from carbonates of the uppermost Permian to lowermost Middle Triassic Zal section (Iran), is presented by Zhang et al. (2018).[688]
  • Marine faunas characterized by unusually high levels of both benthic and nektonic taxonomic richness are described from two Early Triassic sections from South China by Dai et al. (2018).[689]
  • A study on the historical shifts in geographical ranges and climatic niches of terrestrial vertebrates (both endotherms and ectotherms) based on data from extant and fossil vertebrates is published by Rolland et al. (2018).[690]
  • A study on the age of the dinosaur-bearing Triassic Santa Maria Formation and Caturrita Formation (Brazil) is published by Langer, Ramezani & Da Rosa (2018).[691]
  • Paleomagnetic and geochronologic study on the Chinle Formation (Petrified Forest National Park, Arizona, United States) is published by Kent et al. (2018), who report evidence indicating that a 405,000-year orbital eccentricity cycle linked to gravitational interactions with Jupiter and Venus was already influencing Earth's climate in the Late Triassic.[692]
  • A study on the patterns of diversity change and extinction selectivity in marine ecosystems during the TriassicJurassic interval, especially in relation to the Triassic–Jurassic extinction event, is published by Dunhill et al. (2018).[693]
  • Evidence of sill intrusions which were likely cause of the Triassic–Jurassic extinction event is reported from the Amazonas and Solimões basins (Brazil) by Heimdal et al. (2018).[694]
  • A study on changes in global bottom water oxygen contents over the Toarcian Oceanic Anoxic Event, based on thallium isotope records from two ocean basins, is published by Them et al. (2018), who report evidence of global marine deoxygenation of ocean water some 600,000 years before the classically defined Toarcian Oceanic Anoxic Event.[695]
  • A study on the impact of changes in ocean chemistry beginning in the Mesozoic on the nutritional quality of planktonic algal biomass compared to earlier phytoplankton is published by Giordano et al. (2018).[696]
  • A study on the morphological, ecological and behavioural traits linked to the evolution of tail weaponization in extant and fossil amniotes is published by Arbour & Zanno (2018).[697]
  • A study on the factors which led to the colonization of marine environments in the evolution of amniotes is published by Vermeij & Motani (2018).[698]
  • A review of marine reptile (plesiosaur, ichthyosaur and thalattosuchian) fossils from the Oxfordian sedimentary rocks in Great Britain (United Kingdom), focusing on the Corallian Group, is published by Foffa, Young & Brusatte (2018), who report evidence of a severe reduction in observed marine reptile diversity during the Oxfordian.[699]
  • A diverse footprint assemblage dominated by small mammal tracks is described from the Lower Cretaceous Patuxent Formation (Maryland, United States) by Stanford et al. (2018), who name a new mammal ichnotaxon Sederipes goddardensis.[700]
  • Description of an assemblage of Early Cretaceous (Barremian) coprolites from the Las Hoyas Konservat-Lagerstätte (Spain) and a study on their biological and environmental affinities is published by Barrios-de Pedro et al. (2018).[701]
  • A study on the atmospheric carbon dioxide concentration levels in the Early Cretaceous based on data from specimens of the fossil conifer species Pseudofrenelopsis papillosa is published by Jing & Bainian (2018).[702]
  • A study on the rainfall seasonality and freshwater discharge on the Indian subcontinent in the Late Cretaceous (Maastrichtian), based on data from specimens of the mollusc species Phygraea (Phygraea) vesicularis from the Kallankuruchchi Formation (India), is published by Ghosh et al. (2018).[703]
  • Evidence of increased crustal production at mid-ocean ridges at the Cretaceous-Paleogene boundary, indicative of magmatism triggered by Chicxulub impact, is presented by Byrnes & Karlstrom (2018).[704]
  • A study on the terrestrial climate in northern China at the Cretaceous-Paleogene boundary, indicating the occurrence of a warming caused by the onset of Deccan Traps volcanism and the occurrence of extinctions prior to the Chicxulub impact, is published by Zhang et al. (2018).[705]
  • A study on the oxygen isotopic composition of fish debris from the Global Boundary Stratotype Section and Point for the Cretaceous/Paleogene boundary at El Kef (Tunisia), indicative of a greenhouse warming in the aftermath of the Chicxulub impact, is published by MacLeod et al. (2018).[706]
  • A study on the environmental changes during the global warming following the brief impact winter at the Cretaceous-Paleogene boundary, based on geochemical, micropaleontological and palynological data from Cretaceous-Paleogene boundary sections in Texas, Denmark and Spain, is published by Vellekoop et al. (2018).[707]
  • A record of foraminifera, calcareous nannoplankton, trace fossils and elemental abundance data from within the Chicxulub crater, dated to approximately the first 200,000 years of the Paleocene, is presented by Lowery et al. (2018), who report evidence indicating that life reappeared in the basin just years after the Chicxulub impact and a high-productivity ecosystem was established within 30,000 years.[708]
  • Evidence from sulfur-isotope data indicative of a large-scale ocean deoxygenation during the Paleocene–Eocene Thermal Maximum is presented by Yao, Paytan & Wortmann (2018).[709]
  • A study on the tropical sea-surface temperatures in the Eocene is published by Evans et al. (2018).[710]
  • A continuous Eocene equatorial sea surface temperature record is presented by Cramwinckel et al. (2018), who also construct a 26-million-year multi-proxy, multi-site stack of Eocene tropical climate evolution.[711]
  • A 25-million-year-long alkenone-based record of surface temperature change in the Paleogene from the North Atlantic Ocean is presented by Liu et al. (2018).[712]
  • A study on changes in local climate and habitat conditions in central Spain in a period from 9.1 to 6.3 million years ago, and on the diet and ecology of large mammals from this area in this time period as indicated by tooth wear patterns, is published by De Miguel, Azanza & Morales (2018).[713]
  • Faith (2018) evaluates the aridity index, a widely used technique for reconstructing local paleoclimate and water deficits from oxygen isotope composition of fossil mammal teeth, arguing that in some taxa altered drinking behavior (influencing oxygen isotope composition of teeth) might have been caused by dietary change rather than water deficits.[714][715][716]
  • A study on the likely magnitude of the sea-level drawdown during the Messinian salinity crisis, based on the analysis of the late Neogene faunas of the Balearic Islands, is published by Mas et al. (2018).[717]
  • An extensive, buried sedimentary body deposited by the passage of a megaflood from the western to the eastern Mediterranean Sea in the Pliocene (Zanclean), at the end of the Messinian salinity crisis, is identified in the western Ionian Basin by Micallef et al. (2018).[718]
  • A study evaluating when the island of Sulawesi (Indonesia) gained its modern shape and size, and determining the timings of diversification of the three largest endemic mammals on the island (the babirusa, the Celebes warty pig and the anoa) is published by Frantz et al. (2018).[719]
  • A study on the Pliocene fish fossils from the Kanapoi site (Kenya) and their implications for reconstructing lake and river environments in the Kanapoi Formation is published by Stewart & Rufolo (2018).[720]
  • A study on the hydrological changes in the Limpopo River catchment and in sea surface temperature in the southwestern Indian Ocean for the past 2.14 million years, and on their implications for inferring the palaeoclimatic changes in southeastern Africa in this time period and their possible impact on the evolution of early hominins, is published by Caley et al. (2018).[721]
  • A study on the reptile and amphibian fossils from the early Pleistocene site of the Russel-Tiglia-Egypte pit near Tegelen (Netherlands) is published by Villa et al. (2018).[722]
  • Domínguez-Rodrigo & Baquedano (2018) evaluate the ability of successful machine learning methods to compare and distinguish various types of bone surface modifications (trampling marks, crocodile bite marks and cut marks made with stone tools) in archaeofaunal assemblages.[723]
  • Description of new mammal and fish remains from the Olduvai Gorge site (Tanzania), comparing the mammal assemblage from this site to the present mammal community of Serengeti, and a study on their implications for reconstructing the paleoecology of this site at ∼1.7–1.4 million years ago, is published by Bibi et al. (2018).[724]
  • A study on the structure of the animal community known from the Okote Member of the Koobi Fora Formation at East Turkana (Kenya) as indicated by tracks and skeletal assemblages, and on the interactions of Homo erectus with environment and associated faunas from this site, is published by Roach et al. (2018).[725]
  • A study on the environmental dynamics before and after the onset of the early Middle Stone Age in the Olorgesailie Basin (Kenya) is published by Potts et al. (2018).[726]
  • A study on the chronology of the Acheulean and early Middle Stone Age sedimentary deposits in the Olorgesailie Basin (Kenya) is published by Deino et al. (2018).[727]
  • A study on the climatic changes in the Lake Tana area in the last 150,000 years and their implications for early modern human dispersal out of Africa is published by Lamb et al. (2018).[728]
  • A study on the effects of the Toba supereruption in East Africa is published by Yost et al. (2018), who find no evidence of the erupton causing a volcanic winter in East Africa or a population bottleneck among African populations of anatomically modern humans.[729]
  • A study on the timing and duration of periods of climate deterioration in the interior of the Iberian Peninsula in the late Pleistocene, evaluating the impact of climate on the abandonment of inner Iberian territories by Neanderthals 42,000 years ago, is published by Wolf et al. (2018).[730]
  • Evidence of bird and carnivore exploitation by Neanderthals (cut-marks in golden eagle, raven, wolf and lynx remains) is reported from the Axlor site (Spain) by Gómez-Olivencia et al. (2018).[731]
  • The first reconstructions of terrestrial temperature and hydrologic changes in the south-central margin of the Bering land bridge from the Last Glacial Maximum to the present are presented by Wooller et al. (2018).[732]
  • A study on the timing of the latest Pleistocene glaciation in southeastern Alaska and its implication for inferring the route and timing of early human migration to the Americas is published by Lesnek et al. (2018).[733]
  • A study on the fossil Sporormiella, pollen and microscopic particles of charcoal recovered from sediments of Lake Mares and Lake Olhos d’Agua (Brazil) which spanned the time of megafaunal extinction and human arrival in southeastern Brazil, and on their implications for inferring the timing of the decline of local megafauna and its ecological implications, is published by Raczka, Bush & De Oliveira (2018).[734]
  • A study evaluating how mega‐herbivore animal species controlled plant community composition and nutrient cycling, relative to other factors during and after the Late Quaternary extinction event in Great Britain and Ireland, is published by Jeffers et al. (2018).[735]
  • A study on the impact of the late Quaternary extinction of megafauna on the megafauna-deprived ecosystems is published by Galetti et al. (2018).[736]
  • A study on the impact of major, abrupt environmental changes over the past 30,000 years on the Great Barrier Reef is published by Webster et al. (2018).[737]
  • A study on the past biodiversity, population dynamics, extinction processes, and the impact of subsistence practices on the vertebrate fauna of New Zealand, based on analysis of bone fragments from archaeological and paleontological sites covering the last 20,000 years of New Zealand’s past, is published by Seersholm et al. (2018).[738]
  • A study on the parsimony and Bayesian-derived phylogenies of fossil tetrapods, evaluating which of them are in closer agreement with stratigraphic range data, is published by Sansom et al. (2018).[739]
  • A review of extinction theory and the fossil record of terrestrial diversity crises, comparing past diversity crises of terrestrial vertebrate faunas with the ongoing Holocene extinction, will be published by Padian (2018).[740]
  • A new metric, which can be used to quantify the term "living fossil" and determine which organisms can be reasonably referred to as such, is proposed by Bennett, Sutton & Turvey (2018).[741]
  • A novel non-invasive and label-free tomographic approach to reconstruct the three-dimensional architecture of microfossils based on stimulated Raman scattering is presented by Golreihan et al. (2018).[742]
  • Mürer et al. (2018) report on the results of the use of a combination of X-ray diffraction and computed tomography to gain insight into the microstructure of fossil bones of Eusthenopteron foordi and Discosauriscus austriacus.[743]
  • A mechanistic model that simulates the history of life on the South American continent, driven by modeled climates of the past 800,000 years, is presented by Rangel et al. (2018).[744]

References

  1. ^ Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN 9780070887398. OCLC 46769716.
  2. ^ Jian Han; Guoxiang Li; Xing Wang; Xiaoguang Yang; Junfeng Guo; Osamu Sasaki; Tsuyoshi Komiya (2018). "Olivooides-like tube aperture in early Cambrian carinachitids (Medusozoa, Cnidaria)". Journal of Paleontology. 92 (1): 3–13. doi:10.1017/jpa.2017.10.
  3. ^ Rosemarie Christine Baron-Szabo (2018). "Scleractinian corals from the upper Berriasian of central Europe and comparison with contemporaneous coral assemblages". Zootaxa. 4383 (1): 1–98. doi:10.11646/zootaxa.4383.1.1. PMID 29689916.
  4. ^ a b c Mohamed Gameil; Abdelbaset S. El-Sorogy; Khaled Al-Kahtany (2018). "Solitary corals of the Campanian Hajajah Limestone Member, Aruma Formation, Central Saudi Arabia". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1461217.
  5. ^ Shan Chang; Sébastien Clausen; Lei Zhang; Qinglai Feng; Michael Steiner; David J. Bottjer; Yan Zhang; Min Shi (2018). "New probable cnidarian fossils from the lower Cambrian of the Three Gorges area, South China, and their ecological implications". Palaeogeography, Palaeoclimatology, Palaeoecology. 505: 150–166. doi:10.1016/j.palaeo.2018.05.039.
  6. ^ a b c Kun Liang; Robert J. Elias; Dong‐Jin Lee (2018). "The early record of halysitid tabulate corals, and morphometrics of Catenipora from the Ordovician of north‐central China". Papers in Palaeontology. Online edition. doi:10.1002/spp2.1111.
  7. ^ a b c Hannes Löser; Thomas Steuber; Christian Löser (2018). "Early Cenomanian coral faunas from Nea Nikopoli (Kozani, Greece; Cretaceous)". Carnets de Géologie. 18 (3): 23–121. doi:10.4267/2042/66094.
  8. ^ Elżbieta Morycowa (2018). "Supplemental data on Triassic (Anisian) corals from Upper Silesia (Poland)". Annales Societatis Geologorum Poloniae. in press. doi:10.14241/asgp.2018.001.
  9. ^ Chang-Min Yu (2018). "Restudy of the Early Devonian rugose coral Xystriphylloides from South China". Palaeoworld. 27 (2): 159–169. doi:10.1016/j.palwor.2017.06.001.
  10. ^ Zhiliang Zhang; Leonid E. Popov; Lars E. Holmer; Zhifei Zhang (2018). "Earliest ontogeny of early Cambrian acrotretoid brachiopods — first evidence for metamorphosis and its implications". BMC Evolutionary Biology. 18: 42. doi:10.1186/s12862-018-1165-6. PMC 5880059. PMID 29609541.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  11. ^ Zhiliang Zhang; Zhifei Zhang; Lars E. Holmer; Feiyang Chen (2018). "Post‐metamorphic allometry in the earliest acrotretoid brachiopods from the lower Cambrian (Series 2) of South China, and its implications". Palaeontology. 61 (2): 183–207. doi:10.1111/pala.12333.
  12. ^ Fernando García Joral; José Francisco Baeza-Carratalá; Antonio Goy (2018). "Changes in brachiopod body size prior to the Early Toarcian (Jurassic) Mass Extinction". Palaeogeography, Palaeoclimatology, Palaeoecology. 506: 242–249. doi:10.1016/j.palaeo.2018.06.045.
  13. ^ Maurizio Gaetani; Marco Balini; Alda Nicora; Martino Giorgioni; Giulio Pavia (2018). "The Himalayan connection of the Middle Triassic brachiopod fauna from Socotra (Yemen)". Bulletin of Geosciences. 93 (2): 247–268. doi:10.3140/bull.geosci.1665.
  14. ^ a b Juan L. Benedetto (2018). "The strophomenide brachiopod Ahtiella Öpik in the Ordovician of Gondwana and the early history of the plectambonitoids". Journal of Paleontology. Online edition. doi:10.1017/jpa.2018.9.
  15. ^ Juan L. Benedetto; Fernando J. Lavie; Diego F. Muñoz (2018). "Broeggeria Walcott and other upper Cambrian and Tremadocian linguloid brachiopods from NW Argentina". Geological Journal. 53 (1): 102–119. doi:10.1002/gj.2880.
  16. ^ Pu Zong; Xue-Ping Ma (2018). "Spiriferide brachiopods from the Famennian (Late Devonian) Hongguleleng Formation of western Junggar, Xinjiang, northwestern China". Palaeoworld. 27 (1): 66–89. doi:10.1016/j.palwor.2017.07.002.
  17. ^ a b c V.V. Baranov (2018). "New atrypids (Brachiopoda) from the Lower Devonian of Northeast Russia". Paleontological Journal. 52 (3): 255–264. doi:10.1134/S0031030118030024.
  18. ^ Eric Simon; Bernard Mottequin (2018). "Extreme reduction of morphological characters: a type of brachidial development found in several Late Cretaceous and Recent brachiopod species—new relationships between taxa previously listed as incertae sedis". Zootaxa. 4444 (1): 1–24. doi:10.11646/zootaxa.4444.1.1.
  19. ^ Miguel A. Torres-Martínez; Francisco Sour-Tovar; Ricardo Barragán (2018). "Kukulkanus, a new genus of buxtoniin brachiopod from the Artinskian–Kungurian (Early Permian) of Mexico". Alcheringa: an Australasian Journal of Palaeontology. 42 (2): 268–275. doi:10.1080/03115518.2017.1395073.
  20. ^ José Francisco Baeza-Carratalá; Fernando Pérez-Valera; Juan Alberto Pérez-Valera (2018). "The oldest post-Paleozoic (Ladinian, Triassic) brachiopods from the Betic Range, SE Spain". Acta Palaeontologica Polonica. 63 (1): 71–85. doi:10.4202/app.00415.2017.
  21. ^ Rebecca L. Freeman; James F. Miller; Benjamin F. Dattilo (2018). "Linguliform brachiopods across a Cambrian–Ordovician (Furongian, Early Ordovician) biomere boundary: the Sunwaptan–Skullrockian North American Stage boundary in the Wilberns and Tanyard formations of central Texas". Journal of Paleontology. Online edition. doi:10.1017/jpa.2018.8.
  22. ^ a b A. V. Pakhnevich (2018). "New Upper Devonian rhynchonellids (Brachiopoda) from Transcaucasia". Paleontological Journal. 52 (2): 131–136. doi:10.1134/S0031030118020077.
  23. ^ Ryan FitzGerald Morgan (2018). "Niche partitioning as a mechanism for locally high species diversity within a geographically limited genus of blastoid". PLoS ONE. 13 (5): e0197512. doi:10.1371/journal.pone.0197512. PMC 5955570. PMID 29768486.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  24. ^ Valerie J. P. Syverson; Carlton E. Brett; Forest J. Gahn; Tomasz K. Baumiller (2018). "Spinosity, regeneration, and targeting among Paleozoic crinoids and their predators". Paleobiology. 44 (2): 290–305. doi:10.1017/pab.2017.38.
  25. ^ Catalina Pimiento; Kit Lam Tang; Samuel Zamora; Christian Klug; Marcelo R. Sánchez-Villagra (2018). "Assessing canalisation of intraspecific variation on a macroevolutionary scale: the case of crinoid arms through the Phanerozoic". PeerJ. 6: e4899. doi:10.7717/peerj.4899. PMC 5985148. PMID 29868289.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  26. ^ Krzysztof R. Brom; Mariusz A. Salamon; Przemysław Gorzelak (2018). "Body-size increase in crinoids following the end-Devonian mass extinction". Scientific Reports. 8: Article number 9606. doi:10.1038/s41598-018-27986-x. PMC 6018515. PMID 29942036.
  27. ^ William I. Ausich (2018). "Morphological paradox of disparid crinoids (Echinodermata): phylogenetic analysis of a Paleozoic clade". Swiss Journal of Palaeontology. in press. doi:10.1007/s13358-018-0147-z.
  28. ^ Przemysław Gorzelak (2018). "Microstructural evidence for stalk autotomy in Holocrinus – The oldest stem-group isocrinid". Palaeogeography, Palaeoclimatology, Palaeoecology. 506: 202–207. doi:10.1016/j.palaeo.2018.06.036.
  29. ^ Rowan J. Whittle; Aaron W. Hunter; David J. Cantrill; Kenneth J. McNamara (2018). "Globally discordant Isocrinida (Crinoidea) migration confirms asynchronous Marine Mesozoic Revolution". Communications Biology. 1: Article number 46. doi:10.1038/s42003-018-0048-0.
  30. ^ Daniel B. Blake (2018). "Toward a history of the Paleozoic Asteroidea (Echinodermata)". Bulletins of American Paleontology. 394: 1–96.
  31. ^ Jeffrey R. Thompson; David J. Bottjer (2018). "Quantitative analysis of substrate preference in Carboniferous stem group echinoids". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2018.06.018.
  32. ^ Simon Boivin; Thomas Saucède; Rémi Laffont; Emilie Steimetz; Pascal Neige (2018). "Diversification rates indicate an early role of adaptive radiations at the origin of modern echinoid fauna". PLoS ONE. 13 (3): e0194575. doi:10.1371/journal.pone.0194575. PMC 5864014. PMID 29566024.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  33. ^ Paolo Stara; Federico Marini (2018). "Amphiope caronei n. sp. (Echinoidea Astriclypeidae) from the Tortonian of Cessaniti, Vibo Valentia Province, Calabria, Italy" (PDF). Biodiversity Journal. 9 (1): 73–88.
  34. ^ William I. Ausich; David F. Wright; Selina R. Cole; Joseph M. Koniecki (2018). "Disparid and hybocrinid crinoids (Echinodermata) from the Upper Ordovician (lower Katian) Brechin Lagerstätte of Ontario". Journal of Paleontology. Online edition. doi:10.1017/jpa.2017.154.
  35. ^ a b c David J. Gladwell (2018). "Asterozoans from the Ludlow Series (upper Silurian) of Leintwardine, Herefordshire, UK". Papers in Palaeontology. 4 (1): 101–160. doi:10.1002/spp2.1101.
  36. ^ a b John W.M. Jagt; Osman Salad Hersi; Hilal S. Al-Zeidi; Andrew B. Smith (2018). "Mid-Cretaceous echinoids from the Dhalqut Formation of Dhofar, southern Oman – Taxonomy and biostratigraphical implications". Cretaceous Research. 89: 75–91. doi:10.1016/j.cretres.2018.03.012.
  37. ^ a b c d Selina R. Cole; William I. Ausich; David F. Wright; Joseph M. Koniecki (2018). "An echinoderm Lagerstätte from the Upper Ordovician (Katian), Ontario: taxonomic re-evaluation and description of new dicyclic camerate crinoids". Journal of Paleontology. 92 (3): 488–505. doi:10.1017/jpa.2017.151.
  38. ^ a b c d Yingyan Mao; Gary D. Webster; William I. Ausich; Yue Li; Qiulai Wang; Mike Reich (2018). "A new crinoid fauna from the Taiyuan Formation (early Permian) of Henan, North China". Journal of Paleontology. Online edition. doi:10.1017/jpa.2018.27.
  39. ^ a b c d e Andrew Scott Gale (2018). "An integrated microcrinoid zonation for the lower Campanian chalks of southern England, and its implications for correlation". Cretaceous Research. 87: 312–357. doi:10.1016/j.cretres.2017.02.002.
  40. ^ a b c d e Andy S. Gale (2018). "Origin and phylogeny of velatid asteroids (Echinodermata, Neoasteroidea)—new evidence from the Jurassic". Swiss Journal of Palaeontology. in press. doi:10.1007/s13358-018-0155-z.
  41. ^ Daniel B. Blake; William K. Halligan; Neal L. Larson (2018). "A new species of the asteroid genus Betelgeusia (Echinodermata) from methane seep settings, Late Cretaceous of South Dakota". Journal of Paleontology. 92 (2): 196–206. doi:10.1017/jpa.2017.96.
  42. ^ Patrick D. McDermott; Christopher R. C. Paul (2018). "A new Upper Ordovician aristocystitid diploporite genus (Echinodermata) from the Llanddowror district, South Wales". Geological Journal. in press. doi:10.1002/gj.3203.
  43. ^ a b c Andrew S. Gale; Eric Sadorf; John W.M. Jagt (2018). "Roveacrinida (Crinoidea, Articulata) from the upper Maastrichtian Peedee Formation (upper Cretaceous) of North Carolina, USA – The last pelagic microcrinoids". Cretaceous Research. 85: 176–192. doi:10.1016/j.cretres.2018.01.008.
  44. ^ Ben Thuy; Neil H. Landman; Neal L. Larson; Lea D. Numberger-Thuy (2018). "Brittle-star mass occurrence on a Late Cretaceous methane seep from South Dakota, USA". Scientific Reports. 8: Article number 9617. doi:10.1038/s41598-018-27326-z. PMC 6018167. PMID 29941907.
  45. ^ a b Rich Mooi; Sergio A. Martínez; Claudia J. Del Río; Maria Inês Feijó Ramos (2018). "Late Oligocene–Miocene non-lunulate sand dollars of South America: Revision of abertellid taxa and descriptions of two new families, two new genera, and a new species". Zootaxa. 4369 (3): 301–326. doi:10.11646/zootaxa.4369.3.1. PMID 29689876.
  46. ^ Sergey V. Rozhnov (2018). "Elgaecrinus uralicus gen. et sp. nov., a new crotalocrinitid (Crinoidea, Echinodermata) from the Lower Devonian (Lochkovian) of the Middle Urals". Estonian Journal of Earth Sciences. 67 (1): 12–18. doi:10.3176/earth.2017.23.
  47. ^ Jeffrey R. Thompson; Timothy A. M. Ewin (2018). "A new species of Hyattechinus (Echinoidea) from the type Devonian of the United Kingdom and implications for the distribution of Devonian proterocidarid echinoids". Geological Magazine. in press. doi:10.1017/S0016756818000109.
  48. ^ Atef A. Elattaar (2018). "A new species of Hypselaster (Echinoidea, Spatangoida) from the Middle Eocene Midawara Formation of the Eastern Desert, Egypt". Swiss Journal of Palaeontology. in press. doi:10.1007/s13358-018-0156-y.
  49. ^ Hans Hagdorn (2018). "Slipped through the bottleneck: Lazarechinus mirabeti gen. et sp. nov., a Paleozoic-like echinoid from the Triassic Muschelkalk (late Anisian) of East France". PalZ. 92 (2): 267–282. doi:10.1007/s12542-017-0393-1.
  50. ^ William I. Ausich; Elizabeth C. Rhenberg; David L. Meyer (2018). "Batocrinidae (Crinoidea) from the Lower Mississippian (lower Viséan) Fort Payne Formation of Kentucky, Tennessee, and Alabama: systematics, geographic occurrences, and facies distribution". Journal of Paleontology. 92 (4): 681–712. doi:10.1017/jpa.2017.135.
  51. ^ Ben Thuy; Sabine Stöhr (2018). "Unravelling the origin of the basket stars and their allies (Echinodermata, Ophiuroidea, Euryalida)". Scientific Reports. 8: Article number 8493. doi:10.1038/s41598-018-26877-5. PMC 5981468. PMID 29855566.
  52. ^ Nils Schlüter; Frank Wiese (2018). "The variable echinoid Micraster woodi sp. nov. – Trait variability patterns in a taxonomic nightmare". Cretaceous Research. 87: 194–205. doi:10.1016/j.cretres.2017.05.019.
  53. ^ Jih-Pai Lin; William I. Ausich; Andrzej Baliński; Stig M. Bergström; Yuanlin Sun (2018). "The oldest iocrinid crinoids from the Early/Middle Ordovician of China: Possible paleogeographic implications". Journal of Asian Earth Sciences. 151: 324–333. doi:10.1016/j.jseaes.2017.10.041.
  54. ^ a b c Julie Rousseau; Andrew Scott Gale; Ben Thuy (2018). "New articulated asteroids (Echinodermata, Asteroidea) and ophiuroids (Echinodermata, Ophiuroidea) from the Late Jurassic (Volgian / Tithonian) of central Spitsbergen". European Journal of Taxonomy. 411: 1–26. doi:10.5852/ejt.2018.411.
  55. ^ a b Selina R. Cole; Ursula Toom (2018). "New camerate crinoid genera from the Upper Ordovician (Katian) of Estonia: evolutionary origin of family Opsiocrinidae and a phylogenetic assessment of Ordovician Monobathrida". Journal of Systematic Palaeontology. Online edition. doi:10.1080/14772019.2018.1447519.
  56. ^ Bertrand Lefebvre; Rudy Lerosey-Aubril (2018). "Laurentian origin of solutan echinoderms: new evidence from the Guzhangian (Cambrian Series 3) Weeks Formation of Utah, USA". Geological Magazine. 155 (5): 1190–1204. doi:10.1017/S0016756817000152.
  57. ^ Jessika Alves; Felipe A. C. Monteiro; Helena Matthews-Cascon; Rodrigo Johnsson; Elizabeth G. Neves (2018). "A new species of Petalobrissus Lambert 1916 (Echinoidea: Faujasiidae) from the Jandaíra Formation, Potiguar Basin (Brazil)". Zootaxa. 4422 (4): 581–590. doi:10.11646/zootaxa.4422.4.8.
  58. ^ Nathalia Fouquet; Ryan Roney; Hans G. Wilke (2018). "Echinoid fauna from the Coloso Basin, Lower Cretaceous, northern Chile". Ameghiniana. in press. doi:10.5710/AMGH.13.03.2018.3153.
  59. ^ Christopher R.C. Paul (2018). "Prokopius, a new name for "Hippocystis sculptus" Prokop, 1965, and the status of the genus Hippocystis Bather, 1919 (Echinodermata; Diploporita)". Bulletin of Geosciences. in press. doi:10.3140/bull.geosci.1697.
  60. ^ Tomasz K. Baumiller; R. Ewan Fordyce (2018). "Rautangaroa, a new genus of feather star (Echinodermata, Crinoidea) from the Oligocene of New Zealand". Journal of Paleontology. Online edition. doi:10.1017/jpa.2018.17.
  61. ^ Stephen K. Donovan; Johnny A. Waters; Mark S. Pankowski (2018). "Form and function of the strangest crinoid stem: Devonian of Morocco". Swiss Journal of Palaeontology. in press. doi:10.1007/s13358-018-0149-x.
  62. ^ Christian Neumann; Peter Girod (2018). "Weitschataster intermedius gen. et sp. nov., a goniasterid starfish (Echinodermata: Asteroidea) from the Upper Cretaceous of Germany". PalZ. in press. doi:10.1007/s12542-018-0404-x.
  63. ^ Jeffrey R. Thompson; Shi-xue Hu; Qi-Yue Zhang; Elizabeth Petsios; Laura J. Cotton; Jin-Yuan Huang; Chang-yong Zhou; Wen Wen; David J. Bottjer (2018). "A new stem group echinoid from the Triassic of China leads to a revised macroevolutionary history of echinoids during the end-Permian mass extinction". Royal Society Open Science. 5 (1): 171548. doi:10.1098/rsos.171548. PMC 5792935. PMID 29410858.
  64. ^ D. F. Terrill; C. M. Henderson; J. S. Anderson (2018). "New applications of spectroscopy techniques reveal phylogenetically significant soft tissue residue in Paleozoic conodonts". Journal of Analytical Atomic Spectrometry. 33 (6): 992–1002. doi:10.1039/C7JA00386B.
  65. ^ James R. Wheeley; Phillip E. Jardine; Robert J. Raine; Ian Boomer; M. Paul Smith (2018). "Paleoecologic and paleoceanographic interpretation of δ18O variability in Lower Ordovician conodont species". Geology. 46 (5): 467–470. doi:10.1130/G40145.1.
  66. ^ Z. T. Zhang; Y. D. Sun; P. B. Wignall; J. L. Fu; H. X. Li; M. Y. Wang; X. L. Lai (2018). "Conodont size reduction and diversity losses during the Carnian (Late Triassic) Humid Episode in SW China". Journal of the Geological Society. in press. doi:10.1144/jgs2018-002.
  67. ^ Przemysław Świś (2018). "Population dynamics of the Late Devonian conodont Alternognathus calibrated in days". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1427088.
  68. ^ M.L. Golding (2018). "Heterogeneity of conodont faunas in the Cache Creek Terrane, Canada; significance for tectonic reconstructions of the North American Cordillera". Palaeogeography, Palaeoclimatology, Palaeoecology. 506: 208–216. doi:10.1016/j.palaeo.2018.06.038.
  69. ^ Martyn Lee Golding (2018). "Reconstruction of the multielement apparatus of Neogondolella ex gr. regalis Mosher, 1970 (Conodonta) from the Anisian (Middle Triassic) in British Columbia, Canada". Journal of Micropalaeontology. 37 (1): 21–24. doi:10.5194/jm-37-21-2018.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  70. ^ Muhui Zhang; Haishui Jiang; Mark A. Purnell; Xulong Lai (2017). "Testing hypotheses of element loss and instability in the apparatus composition of complex conodonts: articulated skeletons of Hindeodus". Palaeontology. 60 (4): 595–608. doi:10.1111/pala.12305.
  71. ^ Sachiko Agematsu; Martyn L. Golding; Michael J. Orchard (2018). "Comments on: Testing hypotheses of element loss and instability in the apparatus composition of complex conodonts (Zhang et al.)". Palaeontology. in press. doi:10.1111/pala.12372.
  72. ^ Mark A. Purnell; Muhui Zhang; Haishui Jiang; Xulong Lai (2018). "Reconstruction, composition and homology of conodont skeletons: a response to Agematsu et al.". Palaeontology. in press. doi:10.1111/pala.12387.
  73. ^ Thomas J. Suttner; Erika Kido; Antonino Briguglio (2018). "A new icriodontid conodont cluster with specific mesowear supports an alternative apparatus motion model for Icriodontidae". Journal of Systematic Palaeontology. 16 (11): 909–926. doi:10.1080/14772019.2017.1354090.
  74. ^ Josefina Carlorosi; Graciela Sarmiento; Susana Heredia (2018). "Selected Middle Ordovician key conodont species from the Santa Gertrudis Formation (Salta, Argentina): an approach to its biostratigraphical significance". Geological Magazine. 155 (4): 878–892. doi:10.1017/S0016756816001035.
  75. ^ a b Keyi Hu; Yuping Qi; Tamara I. Nemyrovska (2018). "Mid-Carboniferous conodonts and their evolution: new evidence from Guizhou, South China". Journal of Systematic Palaeontology. Online edition. doi:10.1080/14772019.2018.1440255.
  76. ^ a b c Ali Murat Kılıç; Pablo Plasencia; Fuat Önder (2018). "Debate on skeletal elements of the Triassic conodont Cornudina Hirschmann". Acta Geologica Polonica. 68 (2): 147–159. doi:10.1515/agp-2017-0034.
  77. ^ Martyn L. Golding; Michael J. Orchard (2018). "Magnigondolella, a new conodont genus from the Triassic of North America". Journal of Paleontology. 92 (2): 207–220. doi:10.1017/jpa.2017.123.
  78. ^ Dong-Xun Yuan; Yi-Chun Zhang; Shu-Zhong Shen (2018). "Conodont succession and reassessment of major events around the Permian-Triassic boundary at the Selong Xishan section, southern Tibet, China". Global and Planetary Change. 161: 194–210. doi:10.1016/j.gloplacha.2017.12.024.
  79. ^ a b Sven Hartenfels; Ralph Thomas Becker (2018). "Age and correlation of the transgressive Gonioclymenia Limestone (Famennian, Tafilalt, eastern Anti-Atlas, Morocco)". Geological Magazine. 155 (3): 586–629. doi:10.1017/S0016756816000893.
  80. ^ a b c Jianfeng Lu; José Ignacio Valenzuela-Ríos; Chengyuan Wang; Jau-Chyn Liao; Yi Wang (2018). "Emsian (Lower Devonian) conodonts from the Lufengshan section (Guangxi, South China)". Palaeobiodiversity and Palaeoenvironments. Online edition. doi:10.1007/s12549-018-0325-4.
  81. ^ a b c d Katarzyna Narkiewicz; Peter Königshof (2018). "New Middle Devonian conodont data from the Dong Van area, NE Vietnam (South China Terrane)". PalZ. in press. doi:10.1007/s12542-018-0408-6.
  82. ^ a b c d Zaitian Zhang; Yadong Sun; Xulong Lai; Paul B. Wignall (2018). "Carnian (Late Triassic) conodont faunas from south‐western China and their implications". Papers in Palaeontology. Online edition. doi:10.1002/spp2.1116.
  83. ^ Carlo Corradini; Maria G. Corriga (2018). "The new genus Walliserognathus and the origin of Polygnathoides siluricus (Conodonta, Silurian)". Estonian Journal of Earth Sciences. 67 (2): 113–121. doi:10.3176/earth.2018.08.
  84. ^ Jean Goedert; Christophe Lécuyer; Romain Amiot; Florent Arnaud-Godet; Xu Wang; Linlin Cui; Gilles Cuny; Guillaume Douay; François Fourel; Gérard Panczer; Laurent Simon; J.-Sébastien Steyer; Min Zhu (2018). "Euryhaline ecology of early tetrapods revealed by stable isotopes". Nature. 558 (7708): 68–72. doi:10.1038/s41586-018-0159-2. PMID 29849142.
  85. ^ Julia L. Molnar; Rui Diogo; John R. Hutchinson; Stephanie E. Pierce (2018). "Reconstructing pectoral appendicular muscle anatomy in fossil fish and tetrapods over the fins-to-limbs transition". Biological Reviews. 93 (2): 1077–1107. doi:10.1111/brv.12386. PMID 29125205.
  86. ^ Melanie Tietje; Mark‐Oliver Rödel (2018). "Evaluating the predicted extinction risk of living amphibian species with the fossil record". Ecology Letters. 21 (8): 1135–1142. doi:10.1111/ele.13080. PMID 29790283.
  87. ^ Rainer R. Schoch (2018). "The stapes of Edops craigi and ear evolution in the lissamphibian stem group". Acta Zoologica. in press. doi:10.1111/azo.12238.
  88. ^ Rainer R. Schoch (2018). "Osteology of the temnospondyl Neldasaurus and the evolution of basal dvinosaurians". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 287 (1): 1–16. doi:10.1127/njgpa/2018/0700.
  89. ^ Celeste M. Pérez-Ben; Rainer R. Schoch; Ana M. Báez (2018). "Miniaturization and morphological evolution in Paleozoic relatives of living amphibians: a quantitative approach". Paleobiology. 44 (1): 58–75. doi:10.1017/pab.2017.22.
  90. ^ Bryan M. Gee; Robert R. Reisz (2018). "Postcrania of large dissorophid temnospondyls from Richards Spur, Oklahoma". Fossil Record. 21 (1): 79–91. doi:10.5194/fr-21-79-2018.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  91. ^ Bryan M. Gee (2018). "Reappraisal of the early Permian dissorophid Alegeinosaurus from Texas, USA". PalZ. in press. doi:10.1007/s12542-018-0421-9.
  92. ^ Bryan M. Gee; Robert R. Reisz (2018). "Cranial and postcranial anatomy of Cacops morrisi, a eucacopine dissorophid from the early Permian of Oklahoma". Journal of Vertebrate Paleontology. 38 (2): e1433186. doi:10.1080/02724634.2018.1433186.
  93. ^ Meritxell Fernández-Coll; Thomas Arbez; Federico Bernardini; Josep Fortuny (2018). "Cranial anatomy of the Early Triassic trematosaurine Angusaurus (Temnospondyli: Stereospondyli): 3D endocranial insights and phylogenetic implications". Journal of Iberian Geology. in press. doi:10.1007/s41513-018-0064-4.
  94. ^ Bryan M. Gee; William G. Parker (2018). "A large-bodied metoposaurid from the Revueltian (late Norian) of Petrified Forest National Park (Arizona, USA)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 287 (1): 61–73. doi:10.1127/njgpa/2018/0706.
  95. ^ Bryan M. Gee; William G. Parker (2018). "Morphological and histological description of small metoposaurids from Petrified Forest National Park, AZ, USA and the taxonomy of Apachesaurus". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1480616.
  96. ^ Elżbieta M. Teschner; P. Martin Sander; Dorota Konietzko-Meier (2018). "Variability of growth pattern observed in Metoposaurus krasiejowensis humeri and its biological meaning". Journal of Iberian Geology. 44 (1): 99–111. doi:10.1007/s41513-017-0038-y.
  97. ^ Dorota Konietzko-Meier; Kamil Gruntmejer; Jordi Marcé-Nogué; Adam Bodzioch; Josep Fortuny (2018). "Merging cranial histology and 3D-computational biomechanics: a review of the feeding ecology of a Late Triassic temnospondyl amphibian". PeerJ. 6: e4426. doi:10.7717/peerj.4426. PMC 5831156. PMID 29503770.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  98. ^ Kamil Gruntmejer; Dorota Konietzko-Meier; Adam Bodzioch; Josep Fortuny (2018). "Morphology and preliminary biomechanical interpretation of mandibular sutures in Metoposaurus krasiejowensis (Temnospondyli, Stereospondyli) from the Upper Triassic of Poland". Journal of Iberian Geology. in press. doi:10.1007/s41513-018-0072-4.
  99. ^ Yu-Fen Rong (2018). "Restudy of Regalerpeton weichangensis (Amphibia: Urodela) from the Lower Cretaceous of Hebei, China". Vertebrata PalAsiatica. 56 (2): 121–136. doi:10.19615/j.cnki.1000-3118.170627.
  100. ^ Tannina Alloul; Jean-Claude Rage; Rachid Hamdidouche; Nour-Eddine Jalil (2018). "First report on Cretaceous vertebrates from the Algerian Kem Kem beds. A new procoelous salamander from the Cenomanian, with remarks on African Caudata". Cretaceous Research. 84: 384–388. doi:10.1016/j.cretres.2017.11.019.
  101. ^ Pavel Skutschas; Veniamin Kolchanov; Elizaveta Boitsova; Ivan Kuzmin (2018). "Osseous anomalies of the cryptobranchid Eoscapherpeton asiaticum (Amphibia: Caudata) from the Late Cretaceous of Uzbekistan". Fossil Record. 21 (1): 159–169. doi:10.5194/fr-21-159-2018.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  102. ^ John J. Jacisin; Samantha S.B. Hopkins (2018). "A redescription and phylogenetic analysis based on new material of the fossil newts Taricha oligocenica Van Frank, 1955 and Taricha lindoei Naylor, 1979 (Amphibia, Salamandridae) from the Oligocene of Oregon". Journal of Paleontology. 92 (4): 713–733. doi:10.1017/jpa.2017.85.
  103. ^ Won Mi Park; Martin G. Lockley; Jeong Yul Kim; Kyung Soo Kim (2018). "Anuran (frog) trackways from the Cretaceous of Korea". Cretaceous Research. 86: 135–148. doi:10.1016/j.cretres.2018.02.002.
  104. ^ Andrea Villa; Massimo Delfino; Àngel H. Luján; Sergio Almécija; David M. Alba (2018). "First record of Latonia gigantea (Anura, Alytidae) from the Iberian Peninsula". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1371712.
  105. ^ Georgios L. Georgalis; Andrea Villa; Martin Ivanov; Socrates Roussiakis; Panagiotis Skandalos; Massimo Delfino (2018). "Early Miocene herpetofaunas from the Greek localities of Aliveri and Karydia – bridging a gap in the knowledge of amphibians and reptiles from the early Neogene of southeastern Europe". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1417404.
  106. ^ Elena V. Syromyatnikova (2018). "Redescription of Pelobates praefuscus Khosatzky, 1985 and new records of Pelobates from the late Miocene–Pleistocene of Eastern Europe". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1402015.
  107. ^ Ana María Báez; Raúl Orencio Gómez (2018). "Dealing with homoplasy: osteology and phylogenetic relationships of the bizarre neobatrachian frog Baurubatrachus pricei from the Upper Cretaceous of Brazil". Journal of Systematic Palaeontology. 16 (4): 279–308. doi:10.1080/14772019.2017.1287130.
  108. ^ Massimo Delfino (2018). "Early Pliocene anuran fossils from Kanapoi, Kenya, and the first fossil record for the African burrowing frog Hemisus (Neobatrachia: Hemisotidae)". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2017.06.008. PMID 28712471.
  109. ^ W. van der Vos; F. Witzmann; N. B. Fröbisch (2018). "Tail regeneration in the Paleozoic tetrapod Microbrachis pelikani and comparison with extant salamanders and squamates". Journal of Zoology. 304 (1): 34–44. doi:10.1111/jzo.12516.
  110. ^ Florian Witzmann; Rainer R. Schoch (2018). "Skull and postcranium of the bystrowianid Bystrowiella schumanni from the Middle Triassic of Germany, and the position of chroniosuchians within Tetrapoda". Journal of Systematic Palaeontology. 16 (9): 711–739. doi:10.1080/14772019.2017.1336579.
  111. ^ Michael Buchwitz; Sebastian Voigt (2018). "On the morphological variability of Ichniotherium tracks and evolution of locomotion in the sistergroup of amniotes". PeerJ. 6: e4346. doi:10.7717/peerj.4346. PMC 5797465. PMID 29404225.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  112. ^ Lida Xing; Edward L. Stanley; Ming Bai; David C. Blackburn (2018). "The earliest direct evidence of frogs in wet tropical forests from Cretaceous Burmese amber". Scientific Reports. 8: Article number: 8770. doi:10.1038/s41598-018-26848-w. PMC 6002357. PMID 29904068.
  113. ^ Ryoko Matsumoto; Susan E. Evans (2018). "The first record of albanerpetontid amphibians (Amphibia: Albanerpetontidae) from East Asia". PLoS ONE. 13 (1): e0189767. doi:10.1371/journal.pone.0189767. PMC 5752013. PMID 29298317.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  114. ^ Donglei Chen; Yasaman Alavi; Martin D. Brazeau; Henning Blom; David Millward; Per E. Ahlberg (2018). "A partial lower jaw of a tetrapod from "Romer's Gap"". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. in press. doi:10.1017/S1755691018000099.
  115. ^ a b Robert Gess; Per Erik Ahlberg (2018). "A tetrapod fauna from within the Devonian Antarctic Circle". Science. 360 (6393): 1120–1124. doi:10.1126/science.aaq1645. PMID 29880689.
  116. ^ Tiago R. Simões; Michael W. Caldwell; Mateusz Tałanda; Massimo Bernardi; Alessandro Palci; Oksana Vernygora; Federico Bernardini; Lucia Mancini; Randall L. Nydam (2018). "The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps". Nature. 557 (7707): 706–709. doi:10.1038/s41586-018-0093-3. PMID 29849156.
  117. ^ Hang-Jae Lee; Yuong-Nam Lee; Anthony R. Fiorillo; Junchang Lü (2018). "Lizards ran bipedally 110 million years ago". Scientific Reports. 8: Article number 2617. doi:10.1038/s41598-018-20809-z. PMC 5814403. PMID 29449576.
  118. ^ Gabriela Fontanarrosa; Juan D. Daza; Virginia Abdala (2018). "Cretaceous fossil gecko hand reveals a strikingly modern scansorial morphology: Qualitative and biometric analysis of an amber-preserved lizard hand". Cretaceous Research. 84: 120–133. doi:10.1016/j.cretres.2017.11.003.
  119. ^ Johannes Müller; Eric Roberts; Emily Naylor; Nancy Stevens (2018). "A fossil gekkotan (Squamata) from the Late Oligocene Nsungwe Formation, Rukwa Rift Basin, Tanzania". Journal of Herpetology. 52 (2): 223–227. doi:10.1670/17-123.
  120. ^ Liping Dong; Xing Xu; Yuan Wang; Susan E. Evans (2018). "The lizard genera Bainguis and Parmeosaurus from the Upper Cretaceous of China and Mongolia". Cretaceous Research. 85: 95–108. doi:10.1016/j.cretres.2018.01.002.
  121. ^ Mateusz Tałanda (2018). "An exceptionally preserved Jurassic skink suggests lizard diversification preceded fragmentation of Pangaea". Palaeontology. in press. doi:10.1111/pala.12358.
  122. ^ Emanuel Tschopp; Andrea Villa; Marco Camaiti; Letizia Ferro; Caterinella Tuveri; Lorenzo Rook; Marisa Arca; Massimo Delfino (2018). "The first fossils of Timon (Squamata: Lacertinae) from Sardinia (Italy) and potential causes for its local extinction in the Pleistocene". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zly003.
  123. ^ Georgios L. Georgalis; Kazim Halaçlar; Serdar Mayda; Tanju Kaya; Dinçer Ayaz (2018). "First fossil find of the Blanus strauchi complex (Amphisbaenia, Blanidae) from the Miocene of Anatolia". Journal of Vertebrate Paleontology. 38 (2): e1437044. doi:10.1080/02724634.2018.1437044.
  124. ^ Georgios L. Georgalis; Andrea Villa; Massimo Delfino (2018). "The last amphisbaenian (Squamata) from continental Eastern Europe". Annales de Paléontologie. 104 (2): 155–159. doi:10.1016/j.annpal.2018.03.002.
  125. ^ Simon Scarpetta (2018). "The earliest known occurrence of Elgaria (Squamata: Anguidae) and a minimum age for crown Gerrhonotinae: Fossils from the Split Rock Formation, Wyoming, USA". Palaeontologia Electronica. 21 (1): Article number 21.1.1FC. doi:10.26879/837.
  126. ^ Jozef Klembara; Miroslav Hain; Andrej Čerňanský (2018). "The first record of anguine lizards (Anguimorpha, Anguidae) from the early Miocene locality Ulm – Westtangente in Germany". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1416469.
  127. ^ Krister T. Smith; Bhart-Anjan S. Bhullar; Gunther Köhler; Jörg Habersetzer (2018). "The only known jawed vertebrate with four eyes and the Bauplan of the pineal complex". Current Biology. 28 (7): 1101–1107.e2. doi:10.1016/j.cub.2018.02.021. PMID 29614279.
  128. ^ Marc Louis Augé; Bruno Guével (2018). "New varanid remains from the Miocene (MN4–MN5) of France: inferring fossil lizard phylogeny from subsets of large morphological data sets". Journal of Vertebrate Paleontology. 38 (1): e1410483. doi:10.1080/02724634.2017.1410483.
  129. ^ Tamaki Sato; Takuya Konishi; Tomohiro Nishimura; Takeru Yoshimura (2018). "A basal mosasauroid from the Campanian (Upper Cretaceous) of Hokkaido, northern Japan". Paleontological Research. 22 (2): 156–166. doi:10.2517/2017PR018.
  130. ^ Daniel A. Driscoll; Alexander M. Dunhill; Thomas L. Stubbs; Michael J. Benton (2018). "The mosasaur fossil record through the lens of fossil completeness". Palaeontology. in press. doi:10.1111/pala.12381.
  131. ^ Filipe O. Da Silva; Anne-Claire Fabre; Yoland Savriama; Joni Ollonen; Kristin Mahlow; Anthony Herrel; Johannes Müller; Nicolas Di-Poï (2018). "The ecological origins of snakes as revealed by skull evolution". Nature Communications. 9: Article number 376. doi:10.1038/s41467-017-02788-3. PMC 5785544. PMID 29371624.
  132. ^ Holger Petermann; Jacques A. Gauthier (2018). "Fingerprinting snakes: paleontological and paleoecological implications of zygantral growth rings in Serpentes". PeerJ. 6: e4819. doi:10.7717/peerj.4819. PMC 5971835. PMID 29844972.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  133. ^ Alessandro Palci; Mark N. Hutchinson; Michael W. Caldwell; John D. Scanlon; Michael S. Y. Lee (2018). "Palaeoecological inferences for the fossil Australian snakes Yurlunggur and Wonambi (Serpentes, Madtsoiidae)". Royal Society Open Science. 5 (3): 172012. doi:10.1098/rsos.172012. PMC 5882723. PMID 29657799.
  134. ^ Laura N. Triviño; Adriana M. Albino; María T. Dozo; Jorge D. Williams (2018). "First natural endocranial cast of a fossil snake (Cretaceous of Patagonia, Argentina)". The Anatomical Record. 301 (1): 9–20. doi:10.1002/ar.23686. PMID 28921909.
  135. ^ Silvio Onary; Annie S. Hsiou (2018). "Systematic revision of the early Miocene fossil Pseudoepicrates (Serpentes: Boidae): implications for the evolution and historical biogeography of the West Indian boid snakes (Chilabothrus)". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zly002.
  136. ^ Martin Ivanov; Davit Vasilyan; Madelaine Böhme; Vladimir S. Zazhigin (2018). "Miocene snakes from northeastern Kazakhstan: new data on the evolution of snake assemblages in Siberia". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1446086.
  137. ^ Jason J. Head; Johannes Müller (2018). "Squamate reptiles from Kanapoi: Faunal evidence for hominin paleoenvironments". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2018.01.007. PMID 29910043.
  138. ^ Jacob A. McCartney; Eric M. Roberts; Leif Tapanila; Maureen A. O’Leary (2018). "Large palaeophiid and nigerophiid snakes from Paleogene Trans-Saharan Seaway deposits of Mali". Acta Palaeontologica Polonica. 63 (2): 207–220. doi:10.4202/app.00442.2017.
  139. ^ Adriana María Albino (2018). "New macrostomatan snake from the Paleogene of northwestern Argentina". Geobios. 51 (3): 175–179. doi:10.1016/j.geobios.2018.04.005.
  140. ^ Jozef Klembara; Michael Rummel (2018). "New material of Ophisaurus, Anguis and Pseudopus (Squamata, Anguidae, Anguinae) from the Miocene of the Czech Republic and Germany and systematic revision and palaeobiogeography of the Cenozoic Anguinae". Geological Magazine. 155 (1): 20–44. doi:10.1017/S0016756816000753.
  141. ^ Corentin Bochaton; Salvador Bailon (2018). "A new fossil species of Boa Linnaeus, 1758 (Squamata, Boidae), from the Pleistocene of Marie-Galante Island (French West Indies)". Journal of Vertebrate Paleontology. 38 (3): e1462829. doi:10.1080/02724634.2018.1462829.
  142. ^ Andrej Čerňanský; Juan D. Daza; Aaron M. Bauer (2018). "Geckos from the middle Miocene of Devínska Nová Ves (Slovakia): new material and a review of the previous record". Swiss Journal of Geosciences. 111 (1–2): 183–190. doi:10.1007/s00015-017-0292-1.
  143. ^ Ilaria Paparella; Alessandro Palci; Umberto Nicosia; Michael W. Caldwell (2018). "A new fossil marine lizard with soft tissues from the Late Cretaceous of southern Italy". Royal Society Open Science. 5 (6): 172411. doi:10.1098/rsos.172411. PMC 6030324.
  144. ^ Paulina Jiménez-Huidobro; Michael W. Caldwell; Ilaria Paparella; Timon S. Bullard (2018). "A new species of tylosaurine mosasaur from the upper Campanian Bearpaw Formation of Saskatchewan, Canada". Journal of Systematic Palaeontology. Online edition. doi:10.1080/14772019.2018.1471744.
  145. ^ Lida Xing; Michael W. Caldwell; Rui Chen; Randall L. Nydam; Alessandro Palci; Tiago R. Simões; Ryan C. McKellar; Michael S. Y. Lee; Ye Liu; Hongliang Shi; Kuan Wang; Ming Bai (2018). "A mid-Cretaceous embryonic-to-neonate snake in amber from Myanmar". Science Advances. 4 (7): eaat5042. doi:10.1126/sciadv.aat5042.
  146. ^ Benjamin C. Moon (2018). "A new phylogeny of ichthyosaurs (Reptilia: Diapsida)". Journal of Systematic Palaeontology. in press. doi:10.1080/14772019.2017.1394922.
  147. ^ J. M. Pardo-Pérez; B. P. Kear; M. Gómez; M. Moroni; E. E. Maxwell (2018). "Ichthyosaurian palaeopathology: evidence of injury and disease in fossil 'fish lizards'". Journal of Zoology. 304 (1): 21–33. doi:10.1111/jzo.12517.
  148. ^ Alexandra Houssaye; Yasuhisa Nakajima; P. Martin Sander (2018). "Structural, functional, and physiological signals in ichthyosaur vertebral centrum microanatomy and histology". Geodiversitas. 40 (7): 161–170. doi:10.5252/geodiversitas2018v40a7.
  149. ^ Dean R. Lomax; Paul De la Salle; Judy A. Massare; Ramues Gallois (2018). "A giant Late Triassic ichthyosaur from the UK and a reinterpretation of the Aust Cliff 'dinosaurian' bones". PLoS ONE. 13 (4): e0194742. doi:10.1371/journal.pone.0194742. PMC 5890986. PMID 29630618.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  150. ^ M. J. Boyd; D. R. Lomax (2018). "The youngest occurrence of ichthyosaur embryos in the UK: A new specimen from the Early Jurassic (Toarcian) of Yorkshire". Proceedings of the Yorkshire Geological Society. in press. doi:10.1144/pygs2017-008.
  151. ^ Darío G. Lazo; Marianella Talevi; Cecilia S. Cataldo; Beatriz Aguirre-Urreta; Marta S. Fernández (2018). "Description of ichthyosaur remains from the Lower Cretaceous Agrio Formation (Neuquén Basin, west-central Argentina) and their paleobiological implications". Cretaceous Research. 89: 8–21. doi:10.1016/j.cretres.2018.02.019.
  152. ^ Erin E. Maxwell (2018). "Redescription of the 'lost' holotype of Suevoleviathan integer (Bronn, 1844) (Reptilia: Ichthyosauria)". Journal of Vertebrate Paleontology. 38 (2): e1439833. doi:10.1080/02724634.2018.1439833.
  153. ^ Dean R. Lomax; Mark Evans; Simon Carpenter (2018). "An ichthyosaur from the UK Triassic–Jurassic boundary: A second specimen of the leptonectid ichthyosaur Wahlisaurus massarae Lomax 2016". Geological Journal. in press. doi:10.1002/gj.3155.
  154. ^ Dean R. Lomax; Judy A. Massare (2018). "A second specimen of Protoichthyosaurus applebyi (Reptilia: Ichthyosauria) and additional information on the genus and species". Paludicola. 11 (4): 164–178.
  155. ^ Judy A. Massare; Dean R. Lomax (2018). "A taxonomic reassessment of Ichthyosaurus communis and I. intermedius and a revised diagnosis for the genus". Journal of Systematic Palaeontology. 16 (3): 263–277. doi:10.1080/14772019.2017.1291116.
  156. ^ Dean R. Lomax; Nigel R. Larkin; Ian Boomer; Steven Dey; Philip Copestake (2018). "The first known neonate Ichthyosaurus communis skeleton: a rediscovered specimen from the Lower Jurassic, UK". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1382488.
  157. ^ Judy A. Massare; Dean R. Lomax (2018). "Hindfins of Ichthyosaurus: effects of large sample size on 'distinct' morphological characters". Geological Magazine. in press. doi:10.1017/S0016756818000146.
  158. ^ Corinna V. Fleischle; Tanja Wintrich; P. Martin Sander (2018). "Quantitative histological models suggest endothermy in plesiosaurs". PeerJ. 6: e4955. doi:10.7717/peerj.4955. PMC 5994164. PMID 29892509.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  159. ^ Nicole Klein; Eva Maria Griebeler (2018). "Growth patterns, sexual dimorphism, and maturation modeled in Pachypleurosauria from Middle Triassic of central Europe (Diapsida: Sauropterygia)". Fossil Record. 21 (1): 137–157. doi:10.5194/fr-21-137-2018.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  160. ^ Dawid Surmik; Tomasz Szczygielski; Katarzyna Janiszewska; Bruce M. Rothschild (2018). "Tuberculosis-like respiratory infection in 245-million-year-old marine reptile suggested by bone pathologies". Royal Society Open Science. 5 (6): 180225. doi:10.1098/rsos.180225. PMC 6030318.
  161. ^ Carlos De Miguel Chaves; Francisco Ortega; Adán Pérez-García (2018). "Cranial variability of the European Middle Triassic sauropterygian Simosaurus gaillardoti". Acta Palaeontologica Polonica. 63 (2): 315–326. doi:10.4202/app.00471.2018.
  162. ^ Dennis F. A. E. Voeten; Tobias Reich; Ricardo Araújo; Torsten M. Scheyer (2018). "Synchrotron microtomography of a Nothosaurus marchicus skull informs on nothosaurian physiology and neurosensory adaptations in early Sauropterygia". PLoS ONE. 13 (1): e0188509. doi:10.1371/journal.pone.0188509. PMC 5751976. PMID 29298295.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  163. ^ Sven Sachs; Jahn J. Hornung; Jens N. Lallensack; Benjamin P. Kear (2018). "First evidence of a large predatory plesiosaurian from the Lower Cretaceous non-marine 'Wealden facies' deposits of northwestern Germany". Alcheringa: an Australasian Journal of Palaeontology. in press. doi:10.1080/03115518.2017.1373150.
  164. ^ Jose P. O’Gorman; Soledad Gouiric-Cavalli; Roberto A. Scasso; Marcelo Reguero; Juan J. Moly; Leonel Acosta-Burlaille (2018). "A Late Jurassic plesiosaur in Antarctica: Evidence of the dispersion of marine fauna through the Trans-Erythraean Seaway?". Comptes Rendus Palevol. 17 (3): 158–165. doi:10.1016/j.crpv.2017.10.005.
  165. ^ Nikolay G. Zverkov; Valentin Fischer; Daniel Madzia; Roger B.J. Benson (2018). "Increased pliosaurid dental disparity across the Jurassic–Cretaceous transition". Palaeontology. in press. doi:10.1111/pala.12367.
  166. ^ A. Yu. Berezin (2018). "Craniology of the plesiosaur Abyssosaurus nataliae Berezin (Sauropterygia, Plesiosauria) from the Lower Cretaceous of the Central Russian Platform". Paleontological Journal. 52 (3): 328–341. doi:10.1134/S0031030118030036.
  167. ^ Bruce M. Rothschild; Neil D.L. Clark; Clare M. Clark (2018). "Evidence for survival in a Middle Jurassic plesiosaur with a humeral pathology: What can we infer of plesiosaur behaviour?". Palaeontologia Electronica. 21 (1): Article number 21.1.13A. doi:10.26879/719.
  168. ^ V. Fischer; R. B. J. Benson; P. S. Druckenmiller; H. F. Ketchum; N. Bardet (2018). "The evolutionary history of polycotylid plesiosaurians". Royal Society Open Science. 5 (3): 172177. doi:10.1098/rsos.172177. PMC 5882735. PMID 29657811.
  169. ^ Rémi Allemand; Nathalie Bardet; Alexandra Houssaye; Peggy Vincent (2018). "New plesiosaurian specimens (Reptilia, Plesiosauria) from the Upper Cretaceous (Turonian) of Goulmima (Southern Morocco)". Cretaceous Research. 82: 83–98. doi:10.1016/j.cretres.2017.09.017.
  170. ^ Rodrigo A. Otero; José P. O'Gorman; William L. Moisley; Marianna Terezow; Joseph McKee (2018). "A juvenile Tuarangisaurus keyesi Wiffen and Moisley 1986 (Plesiosauria, Elasmosauridae) from the Upper Cretaceous of New Zealand, with remarks on its skull ontogeny". Cretaceous Research. 85: 214–231. doi:10.1016/j.cretres.2017.09.007.
  171. ^ Rodrigo A. Otero; Sergio Soto-Acuña; Frank R. O'keefe (2018). "Osteology of Aristonectes quiriquinensis (Elasmosauridae, Aristonectinae) from the upper Maastrichtian of central Chile". Journal of Vertebrate Paleontology. 38 (1): e1408638. doi:10.1080/02724634.2017.1408638.
  172. ^ José P. O'Gorman; Rodolfo A. Coria; Marcelo Reguero; Sergio Santillana; Thomas Mörs; Magalí Cárdenas (2018). "The first non-aristonectine elasmosaurid (Sauropterygia; Plesiosauria) cranial material from Antarctica: New data on the evolution of the elasmosaurid basicranium and palate". Cretaceous Research. 89: 248–263. doi:10.1016/j.cretres.2018.03.013.
  173. ^ Sven Sachs; Benjamin P. Kear (2018). "A rare new Pliensbachian plesiosaurian from the Amaltheenton Formation of Bielefeld in northwestern Germany". Alcheringa: an Australasian Journal of Palaeontology. in press: 1. doi:10.1080/03115518.2017.1367419.
  174. ^ Peggy Vincent; Robert Weis; Guy Kronz; Dominique Delsate (2018). "Microcleidus melusinae, a new plesiosaurian (Reptilia, Plesiosauria) from the Toarcian of Luxembourg". Geological Magazine. in press. doi:10.1017/S0016756817000814.
  175. ^ Carlos de Miguel Chaves; Francisco Ortega; Adán Pérez‐García (2018). "A new placodont from the Upper Triassic of Spain provides new insights on the acquisition of the specialized skull of Henodontidae". Papers in Palaeontology. Online edition. doi:10.1002/spp2.1218.
  176. ^ José P. O’Gorman; Zulma Gasparini; Luis A. Spalletti (2018). "A new Pliosaurus species (Sauropterygia, Plesiosauria) from the Upper Jurassic of Patagonia: new insights on the Tithonian morphological disparity of mandibular symphyseal morphology". Journal of Paleontology. 92 (2): 240–253. doi:10.1017/jpa.2017.82.
  177. ^ Serjoscha W. Evers; Roger B. J. Benson (2018). "A new phylogenetic hypothesis of turtles with implications for the timing and number of evolutionary transitions to marine lifestyles in the group". Palaeontology. in press. doi:10.1111/pala.12384.
  178. ^ Asher J. Lichtig; Spencer G. Lucas; Hendrik Klein; David M. Lovelace (2018). "Triassic turtle tracks and the origin of turtles". Historical Biology: An International Journal of Paleobiology. in press: 1. doi:10.1080/08912963.2017.1339037.
  179. ^ Matías Reolid; Ana Márquez-Aliaga; Margarita Belinchón; Anna García-Forner; José Villena; Carlos Martínez-Pérez (2018). "Ichnological evidence of semi-aquatic locomotion in early turtles from eastern Iberia during the Carnian Humid Episode (Late Triassic)". Palaeogeography, Palaeoclimatology, Palaeoecology. 490: 450–461. doi:10.1016/j.palaeo.2017.11.025.
  180. ^ Frankie D. Jackson; Wenjie Zheng; Takuya Imai; Robert A. Jackson; Xingsheng Jin (2018). "Fossil eggs associated with a neoceratopsian (Mosaiceratops azumai) from the Upper Cretaceous Xiaguan Formation, Henan Province, China". Cretaceous Research. in press. doi:10.1016/j.cretres.2018.06.020.
  181. ^ Stephan Lautenschlager; Gabriel S. Ferreira; Ingmar Werneburg (2018). "Sensory evolution and ecology of early turtles revealed by digital endocranial reconstructions". Frontiers in Ecology and Evolution. 6: Article 7. doi:10.3389/fevo.2018.00007.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  182. ^ Adán Pérez-García; Vlad Codrea (2018). "New insights on the anatomy and systematics of Kallokibotion Nopcsa, 1923, the enigmatic uppermost Cretaceous basal turtle (stem Testudines) from Transylvania". Zoological Journal of the Linnean Society. 182 (2): 419–443. doi:10.1093/zoolinnean/zlx037.
  183. ^ Gabriel S. Ferreira; Mario Bronzati; Max C. Langer; Juliana Sterli (2018). "Phylogeny, biogeography and diversification patterns of side-necked turtles (Testudines: Pleurodira)". Royal Society Open Science. 5 (3): 171773. doi:10.1098/rsos.171773. PMC 5882704. PMID 29657780.
  184. ^ Adán Pérez-García (2018). "Identification of the Lower Cretaceous pleurodiran turtle Taquetochelys decorata as the only African araripemydid species". Comptes Rendus Palevol. in press. doi:10.1016/j.crpv.2018.04.004.
  185. ^ Adán Pérez-García (2018). "New information on the Cenomanian bothremydid turtle Algorachelus based on new, well-preserved material from Spain". Fossil Record. 21 (1): 119–135. doi:10.5194/fr-21-119-2018.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  186. ^ Adán Pérez García; Florias Mees; Thierry Smith (2018). "Shell anatomy of the African Paleocene bothremydid turtle Taphrosphys congolensis and systematic implications within Taphrosphyini". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1497023.
  187. ^ J.M. Jannello; I.J. Maniel; E. Previtera; M.S. de la Fuente (2018). "Linderochelys rinconensis (Testudines: Pan-Chelidae) from the Upper Cretaceous of northern Patagonia: New insights from shell bone histology, morphology and diagenetic implications". Cretaceous Research. 83: 47–61. doi:10.1016/j.cretres.2017.05.011.
  188. ^ Ignacio J. Maniel; Marcelo S. de la Fuente; Juliana Sterli; Juan M. Jannello; J. Marcelo Krause (2018). "New remains of the aquatic turtle Hydromedusa casamayorensis (Pleurodira, Chelidae) from the middle Eocene of Patagonia: taxonomic validation and phylogenetic relationships". Papers in Palaeontology. in press. doi:10.1002/spp2.1117.
  189. ^ Yann Rollot; Tyler R. Lyson; Walter G. Joyce (2018). "A description of the skull of Eubaena cephalica (Hay, 1904) and new insights into the cranial circulation and innervation of baenid turtles". Journal of Vertebrate Paleontology. 38 (3): e1474886. doi:10.1080/02724634.2018.1474886.
  190. ^ Matthew J. Vavrek; Donald B. Brinkman (2018). "The first record of a trionychid turtle (Testudines: Trionychidae) from the Cretaceous of the Pacific Coast of North America". Vertebrate Anatomy Morphology Palaeontology. 5: 34–37. doi:10.18435/vamp29336.
  191. ^ Evangelos Vlachos; Márton Rabi (2018). "Total evidence analysis and body size evolution of extant and extinct tortoises (Testudines: Cryptodira: Pan-Testudinidae)". Cladistics. in press. doi:10.1111/cla.12227.
  192. ^ Akio Takahashi; Ren Hirayama; Hiroyuki Otsuka (2018). "Systematic revision of Manouria oyamai (Testudines, Testudinidae), based on new material from the Upper Pleistocene of Okinawajima Island, the Ryukyu Archipelago, Japan, and its paleogeographic implications". Journal of Vertebrate Paleontology. 38 (2): e1427594. doi:10.1080/02724634.2017.1427594.
  193. ^ Natasha S. Vitek (2018). "Delineating modern variation from extinct morphology in the fossil record using shells of the Eastern Box Turtle (Terrapene carolina)". PLoS ONE. 13 (3): e0193437. doi:10.1371/journal.pone.0193437. PMC 5841793. PMID 29513709.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  194. ^ Isaure Scavezzoni; Valentin Fischer (2018). "Rhinochelys amaberti Moret (1935), a protostegid turtle from the Early Cretaceous of France". PeerJ. 6: e4594. doi:10.7717/peerj.4594. PMC 5898427. PMID 29666758.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  195. ^ Edwin Cadena; Juan Abella; Maria Gregori (2018). "The first Oligocene sea turtle (Pan-Cheloniidae) record of South America". PeerJ. 6: e4554. doi:10.7717/peerj.4554. PMC 5868478. PMID 29593944.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  196. ^ Jordan C. Mallon; Donald B. Brinkman (2018). "Basilemys morrinensis, a new species of nanhsiungchelyid turtle from the Horseshoe Canyon Formation (Upper Cretaceous) of Alberta, Canada". Journal of Vertebrate Paleontology. 38 (2): e1431922. doi:10.1080/02724634.2018.1431922.
  197. ^ Tomasz Szczygielski; Daniel Tyborowski; Błażej Błażejowski (2018). "A new pancryptodiran turtle from the Late Jurassic of Poland and palaeobiology of early marine turtles". Geological Journal. 53 (3): 1215–1226. doi:10.1002/gj.2952.
  198. ^ Andrew D. Gentry; James F. Parham; Dana J. Ehret; Jun A. Ebersole (2018). "A new species of Peritresius Leidy, 1856 (Testudines: Pan-Cheloniidae) from the Late Cretaceous (Campanian) of Alabama, USA, and the occurrence of the genus within the Mississippi Embayment of North America". PLoS ONE. 13 (4): e0195651. doi:10.1371/journal.pone.0195651. PMC 5906092. PMID 29668704.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  199. ^ Shu’an Ji; Xiaoyun Chen (2018). "A new Early Cretaceous turtle from Otog Qi, Inner Mongolia, China". Acta Geologica Sinica. 92 (4): 629–637.
  200. ^ Steven E. Jasinski (2018). "A new slider turtle (Testudines: Emydidae: Deirochelyinae: Trachemys) from the late Hemphillian (late Miocene/early Pliocene) of eastern Tennessee and the evolution of the deirochelyines". PeerJ. 6: e4338. doi:10.7717/peerj.4338. PMC 5815335. PMID 29456887.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  201. ^ Haiyan Tong; Julien Claude; Cheng-Sen Li; Jian Yang; Thierry Smith (2018). "Wutuchelys eocenica n. gen. n. sp., an Eocene stem testudinoid turtle from Wutu, Shandong Province, China". Geological Magazine. in press. doi:10.1017/S0016756817000905.
  202. ^ Gabriel S. Ferreira; Fabiano V. Iori; Guilherme Hermanson; Max C. Langer (2018). "New turtle remains from the Late Cretaceous of Monte Alto-SP, Brazil, including cranial osteology, neuroanatomy and phylogenetic position of a new taxon". PalZ. in press. doi:10.1007/s12542-017-0397-x.
  203. ^ Martín D. Ezcurra; Richard J. Butler (2018). "The rise of the ruling reptiles and ecosystem recovery from the Permo-Triassic mass extinction". Proceedings of the Royal Society B: Biological Sciences. 285 (1880): 20180361. doi:10.1098/rspb.2018.0361. PMC 6015845. PMID 29899066.
  204. ^ Armita R. Manafzadeh; Kevin Padian (2018). "ROM mapping of ligamentous constraints on avian hip mobility: implications for extinct ornithodirans". Proceedings of the Royal Society B: Biological Sciences. 285 (1879): 20180727. doi:10.1098/rspb.2018.0727. PMC 5998106. PMID 29794053.
  205. ^ Henry P. Tsai; Kevin M. Middleton; John R. Hutchinson; Casey M. Holliday (2018). "Hip joint articular soft tissues of non-dinosaurian Dinosauromorpha and early Dinosauria: evolutionary and biomechanical implications for Saurischia". Journal of Vertebrate Paleontology. 38 (1): e1427593. doi:10.1080/02724634.2017.1427593.
  206. ^ Andrea Cau (2018). "The assembly of the avian body plan: a 160-million-year long process" (PDF). Bollettino della Società Paleontologica Italiana. 57 (1): 1–25. doi:10.4435/BSPI.2018.01.
  207. ^ Edina Prondvai; Pascal Godefroit; Dominique Adriaens; Dong-Yu Hu (2018). "Intraskeletal histovariability, allometric growth patterns, and their functional implications in bird-like dinosaurs". Scientific Reports. 8: Article number 258. doi:10.1038/s41598-017-18218-9. PMC 5762864. PMID 29321475.
  208. ^ Maria E. McNamara; Fucheng Zhang; Stuart L. Kearns; Patrick J. Orr; André Toulouse; Tara Foley; David W. E. Hone; Chris S. Rogers; Michael J. Benton; Diane Johnson; Xing Xu; Zhonghe Zhou (2018). "Fossilized skin reveals coevolution with feathers and metabolism in feathered dinosaurs and early birds". Nature Communications. 9: Article number 2072. doi:10.1038/s41467-018-04443-x. PMC 5970262. PMID 29802246.
  209. ^ Chase D. Brownstein (2018). "Trace fossils on dinosaur bones reveal ecosystem dynamics along the coast of eastern North America during the latest Cretaceous". PeerJ. 6: e4973. doi:10.7717/peerj.4973. PMC 6001717. PMID 29910985.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  210. ^ Zhiheng Li; Zhonghe Zhou; Julia A. Clarke (2018). "Convergent evolution of a mobile bony tongue in flighted dinosaurs and pterosaurs". PLoS ONE. 13 (6): e0198078. doi:10.1371/journal.pone.0198078. PMC 6010247. PMID 29924798.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  211. ^ María B. Von Baczko (2018). "Rediscovered cranial material of Venaticosuchus rusconii allows the first jaw biomechanics in Ornithosuchidae (Archosauria: Pseudosuchia)". Ameghiniana. in press. doi:10.5710/AMGH.19.03.2018.3170.
  212. ^ Sterling J. Nesbitt; Michelle R. Stocker; William G. Parker; Thomas A. Wood; Christian A. Sidor; Kenneth D. Angielczyk (2018). "The braincase and endocast of Parringtonia gracilis, a Middle Triassic suchian (Archosaur: Pseudosuchia)". Journal of Vertebrate Paleontology. 37 (Supplement to No. 6): 122–141. doi:10.1080/02724634.2017.1393431.
  213. ^ Ignacio A. Cerda; Julia B. Desojo; Torsten M. Scheyer (2018). "Novel data on aetosaur (Archosauria, Pseudosuchia) osteoderm microanatomy and histology: palaeobiological implications". Palaeontology. in press. doi:10.1111/pala.12363.
  214. ^ William G. Parker (2018). "Redescription of Calyptosuchus (Stagonolepis) wellesi (Archosauria: Pseudosuchia: Aetosauria) from the Late Triassic of the Southwestern United States with a discussion of genera in vertebrate paleontology". PeerJ. 6: e4291. doi:10.7717/peerj.4291. PMC 5798403. PMID 29416953.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  215. ^ Devin K. Hoffman; Andrew B. Heckert; Lindsay E. Zanno (2018). "Under the armor: X-ray computed tomographic reconstruction of the internal skeleton of Coahomasuchus chathamensis (Archosauria: Aetosauria) from the Upper Triassic of North Carolina, USA, and a phylogenetic analysis of Aetosauria". PeerJ. 6: e4368. doi:10.7717/peerj.4368. PMC 5815331. PMID 29456892.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  216. ^ Cedric J. Hagen; Eric M. Roberts; Corwin Sullivan; Jun Liu; Yanyin Wang; Prince C. Owusu Agyemang; Xing Xu (2018). "Taphonomy, geological age, and paleobiogeography of Lotosaurus adentus (Archosauria: Poposauroidea) from the Middle-Upper Triassic Badong Formation, Hunan, China". Palaios. 33 (3): 106–124. doi:10.2110/palo.2017.084.
  217. ^ Candice M. Stefanic; Sterling J. Nesbitt (2018). "The axial skeleton of Poposaurus langstoni (Pseudosuchia: Poposauroidea) and its implications for accessory intervertebral articulation evolution in pseudosuchian archosaurs". PeerJ. 6: e4235. doi:10.7717/peerj.4235. PMC 5816584. PMID 29472991.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  218. ^ K. N. Dollman; P. A. Viglietti; J. N. Choiniere (2018). "A new specimen of Orthosuchus stormbergi (Nash 1968) and a review of the distribution of Southern African Lower Jurassic crocodylomorphs". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1387110.
  219. ^ Kathleen N. Dollman; James M. Clark; Mark A. Norell; Xu Xing; Jonah N. Choiniere (2018). "Convergent evolution of a eusuchian-type secondary palate within Shartegosuchidae". American Museum Novitates. 3901: 1–23. doi:10.1206/3901.1.
  220. ^ Andrej Čerňanský; Ján Schlögl; Tomáš Mlynský; Štefan Józsa (2018). "First evidence of the Jurassic thalattosuchian (both teleosaurid and metriorhynchid) crocodylomorphs from Slovakia (Western Carpathians)". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1414212.
  221. ^ Katja Waskow; Detlef Grzegorczyk; P. Martin Sander (2018). "The first record of Tyrannoneustes (Thalattosuchia: Metriorhynchidae): a complete skull from the Callovian (late Middle Jurassic) of Germany". PalZ. in press. doi:10.1007/s12542-017-0395-z.
  222. ^ Gabriel Lio; Federico L. Agnolin; Agustín G. Martinelli; Martín D. Ezcurra; Fernando E. Novas (2018). "New specimen of the enigmatic, Late Cretaceous crocodyliform Neuquensuchus universitas sheds light on the anatomy of the species". Cretaceous Research. 83: 62–74. doi:10.1016/j.cretres.2017.09.014.
  223. ^ Francisco Barrios; Paula Bona; Ariana Paulina Carabajal; Zulma Gasparini (2018). "Re-description of the cranio-mandibular anatomy of Notosuchus terrestris (Crocodyliformes, Mesoeucrocodylia) from the Upper Cretaceous of Patagonia". Cretaceous Research. 83: 3–39. doi:10.1016/j.cretres.2017.08.016.
  224. ^ Fabiano Vidoi Iori; Thiago da Silva Marinho; Ismar de Souza Carvalho; Luiz Augusto dos Santos Frare (2018). "Cranial morphology of Morrinhosuchus luziae (Crocodyliformes, Notosuchia) from the Upper Cretaceous of the Bauru Basin, Brazil". Cretaceous Research. 86: 41–52. doi:10.1016/j.cretres.2018.02.010.
  225. ^ Fabiano Vidoi Iori; Ismar de Souza Carvalho (2018). "The Cretaceous crocodyliform Caipirasuchus: Behavioral feeding mechanisms". Cretaceous Research. 84: 181–187. doi:10.1016/j.cretres.2017.11.023.
  226. ^ Kamila L. N. Bandeira; Arthur S. Brum; Rodrigo V. Pêgas; Giovanne M. Cidade; Borja Holgado; André Cidade; Rafael Gomes de Souza (2018). "The Baurusuchidae vs Theropoda record in the Bauru Group (Upper Cretaceous, Brazil): a taphonomic perspective". Journal of Iberian Geology. 44 (1): 25–54. doi:10.1007/s41513-018-0048-4.
  227. ^ Pedro L. Godoy; Gabriel S. Ferreira; Felipe C. Montefeltro; Bruno C. Vila Nova; Richard J. Butler; Max C. Langer (2018). "Evidence for heterochrony in the cranial evolution of fossil crocodyliforms". Palaeontology. 61 (4): 543–558. doi:10.1111/pala.12354.
  228. ^ Juan Martín Leardi; Diego Pol; Zulma Gasparini (2018). "New Patagonian baurusuchids (Crocodylomorpha; Notosuchia) from the Bajo de la Carpa Formation (Upper Cretaceous; Neuquén, Argentina): New evidences of the early sebecosuchian diversification in Gondwana". Comptes Rendus Palevol. in press. doi:10.1016/j.crpv.2018.02.002.
  229. ^ Caio Fabricio Cezar Geroto; Reinaldo J. Bertini (2018). "New material of Pepesuchus (Crocodyliformes; Mesoeucrocodylia) from the Bauru Group: implications about its phylogeny and the age of the Adamantina Formation". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zly037.
  230. ^ Mariana V.A.Sena; Rafael C.L.P. Andrade; Juliana M. Sayão; Gustavo R. Oliveira (2018). "Bone microanatomy of Pepesuchus deiseae (Mesoeucrocodylia, Peirosauridae) reveals a mature individual from the Upper Cretaceous of Brazil". Cretaceous Research. 90: 335–348. doi:10.1016/j.cretres.2018.06.008.
  231. ^ Jihed Dridi (2018). "New fossils of the giant pholidosaurid genus Sarcosuchus from the Early Cretaceous of Tunisia". Journal of African Earth Sciences. in press. doi:10.1016/j.jafrearsci.2018.06.023.
  232. ^ Louise M. V. Meunier; Hans C. E. Larsson (2018). "Trematochampsa taqueti as a nomen dubium and the crocodyliform diversity of the Upper Cretaceous In Beceten Formation of Niger". Zoological Journal of the Linnean Society. 182 (3): 659–680. doi:10.1093/zoolinnean/zlx061.
  233. ^ Ivan T. Kuzmin; Pavel P. Skutschas; Elizaveta A. Boitsova; Hans-Dieter Sues (2018). "Revision of the large crocodyliform Kansajsuchus (Neosuchia) from the Late Cretaceous of Central Asia". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zly027.
  234. ^ A. de Celis; I. Narváez; F. Ortega (2018). "Pelvic and femoral anatomy of the Allodaposuchidae (Crocodyliformes, Eusuchia) from the Late Cretaceous of Lo Hueco (Cuenca, Spain)". Journal of Iberian Geology. 44 (1): 85–98. doi:10.1007/s41513-017-0044-0.
  235. ^ Tai Kubo; Masateru Shibata; Wilailuck Naksri; Pratueng Jintasakul; Yoichi Azuma (2018). "The earliest record of Asian Eusuchia from the Lower Cretaceous Khok Kruat Formation of northeastern Thailand". Cretaceous Research. 82: 21–28. doi:10.1016/j.cretres.2017.05.021.
  236. ^ Caitlin E. Syme; Steven W. Salisbury (2018). "Taphonomy of Isisfordia duncani specimens from the Lower Cretaceous (upper Albian) portion of the Winton Formation, Isisford, central-west Queensland". Royal Society Open Science. 5 (3): 171651. doi:10.1098/rsos.171651. PMC 5882695. PMID 29657771.
  237. ^ Michael S. Y. Lee; Adam M. Yates (2018). "Tip-dating and homoplasy: reconciling the shallow molecular divergences of modern gharials with their long fossil record". Proceedings of the Royal Society B: Biological Sciences. 285 (1881): 20181071. doi:10.1098/rspb.2018.1071.
  238. ^ Masaya Iijima; Tai Kubo; Yoshitsugu Kobayashi (2018). "Comparative limb proportions reveal differential locomotor morphofunctions of alligatoroids and crocodyloids". Royal Society Open Science. 5 (3): 171774. doi:10.1098/rsos.171774. PMC 5882705. PMID 29657781.
  239. ^ Xiao-Chun Wu; Chun Li; Yan-Yin Wang (2018). "Taxonomic reassessment and phylogenetic test of Asiatosuchus nanlingensis Young, 1964 and Eoalligator chunyii Young, 1964". Vertebrata PalAsiatica. 56 (2): 137–146. doi:10.19615/j.cnki.1000-3118.170803.
  240. ^ Andrés Solórzano; Ascanio D. Rincón; Giovanne M. Cidade; Mónica Núñez-Flores; Leonardo Sánchez (2018). "Lower Miocene alligatoroids (Crocodylia) from the Castillo Formation, northwest of Venezuela". Palaeobiodiversity and Palaeoenvironments. in press. doi:10.1007/s12549-018-0332-5.
  241. ^ Christian Foth; María Victoria Fernandez Blanco; Paula Bona; Torsten M. Scheyer (2018). "Cranial shape variation in jacarean caimanines (Crocodylia, Alligatoroidea) and its implications in the taxonomic status of extinct species: The case of Melanosuchus fisheri". Journal of Morphology. 279 (2): 259–273. doi:10.1002/jmor.20769. PMID 29139133.
  242. ^ Anderson Aires Eduardo; Pablo Ariel Martinez; Sidney Feitosa Gouveia; Franciely da Silva Santos; Wilcilene Santos de Aragão; Jennifer Morales-Barbero; Leonardo Kerber; Alexandre Liparini (2018). "Extending the paleontology–biogeography reciprocity with SDMs: Exploring models and data in reducing fossil taxonomic uncertainty". PLoS ONE. 13 (3): e0194725. doi:10.1371/journal.pone.0194725. PMC 5874039. PMID 29590174.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  243. ^ Andrés Solórzano; Mónica Núñez-Flores; Ascanio D. Rincón (2018). "Gryposuchus (Crocodylia, Gavialoidea) from the early Miocene of Venezuela". PalZ. 92 (1): 121–129. doi:10.1007/s12542-017-0383-3.
  244. ^ Ai Ito; Riosuke Aoki; Ren Hirayama; Masataka Yoshida; Hiroo Kon; Hideki Endo (2018). "The rediscovery and taxonomical reexamination of the longirostrine crocodylian from the Pleistocene of Taiwan". Paleontological Research. 22 (2): 150–155. doi:10.2517/2017PR016.
  245. ^ Massimo Delfino; Jeremy E. Martin; France de Lapparent de Broin; Thierry Smith (2018). "Evidence for a pre-PETM dispersal of the earliest European crocodyloids". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1396323.
  246. ^ Christopher A. Brochu (2018). "Pliocene crocodiles from Kanapoi, Turkana Basin, Kenya". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2017.10.003. PMID 29132687.
  247. ^ Torsten M. Scheyer; Massimo Delfino; Nicole Klein; Nancy Bunbury; Frauke Fleischer-Dogley; Dennis M. Hansen (2018). "Trophic interactions between larger crocodylians and giant tortoises on Aldabra Atoll, Western Indian Ocean, during the Late Pleistocene". Royal Society Open Science. 5 (1): 171800. doi:10.1098/rsos.171800. PMC 5792950. PMID 29410873.
  248. ^ Jorgo Ristevski; Mark T. Young; Marco Brandalise de Andrade; Alexander K. Hastings (2018). "A new species of Anteophthalmosuchus (Crocodylomorpha, Goniopholididae) from the Lower Cretaceous of the Isle of Wight, United Kingdom, and a review of the genus". Cretaceous Research. 84: 340–383. doi:10.1016/j.cretres.2017.11.008.
  249. ^ L.S. Filippi; F. Barrios; A.C. Garrido (2018). "A new peirosaurid from the Bajo de la Carpa Formation (Upper Cretaceous, Santonian) of Cerro Overo, Neuquén, Argentina". Cretaceous Research. 83: 75–83. doi:10.1016/j.cretres.2017.10.021.
  250. ^ Attila Ősi; Mark T. Young; András Galácz; Márton Rabi (2018). "A new large-bodied thalattosuchian crocodyliform from the Lower Jurassic (Toarcian) of Hungary, with further evidence of the mosaic acquisition of marine adaptations in Metriorhynchoidea". PeerJ. 6: e4668. doi:10.7717/peerj.4668. PMC 5949208. PMID 29761038.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  251. ^ Richard J. Butler; Sterling J. Nesbitt; Alan J. Charig; David J. Gower; Paul M. Barrett (2018). "Mandasuchus tanyauchen, gen. et sp. nov., a pseudosuchian archosaur from the Manda Beds (?Middle Triassic) of Tanzania". Journal of Vertebrate Paleontology. 37 (Supplement to No. 6): 96–121. doi:10.1080/02724634.2017.1343728.
  252. ^ Marcel B. Lacerda; Marco A. G. de França; Cesar L. Schultz (2018). "A new erpetosuchid (Pseudosuchia, Archosauria) from the Middle–Late Triassic of Southern Brazil". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zly008.
  253. ^ Sara Saber; Joseph J.W. Sertich; Hesham M. Sallam; Khaled A. Ouda; Patrick M. O'Connor; Erik R. Seiffert (2018). "An enigmatic crocodyliform from the Upper Cretaceous Quseir Formation, central Egypt". Cretaceous Research. 90: 174–184. doi:10.1016/j.cretres.2018.04.004.
  254. ^ Roger B. J. Benson; Gene Hunt; Matthew T. Carrano; Nicolás Campione (2018). "Cope's rule and the adaptive landscape of dinosaur body size evolution". Palaeontology. 61 (1): 13–48. doi:10.1111/pala.12329.
  255. ^ Ciara O’Donovan; Andrew Meade; Chris Venditti (2018). "Dinosaurs reveal the geographical signature of an evolutionary radiation". Nature Ecology & Evolution. 2 (3): 452–458. doi:10.1038/s41559-017-0454-6. PMID 29403079.
  256. ^ Jonathan P. Tennant; Alfio Alessandro Chiarenza; Matthew Baron (2018). "How has our knowledge of dinosaur diversity through geologic time changed through research history?". PeerJ. 6: e4417. doi:10.7717/peerj.4417. PMC 5822849. PMID 29479504.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  257. ^ Loredana Macaluso; Emanuel Tschopp (2018). "Evolutionary changes in pubic orientation in dinosaurs are more strongly correlated with the ventilation system than with herbivory". Palaeontology. in press. doi:10.1111/pala.12362.
  258. ^ Kohei Tanaka; Darla K. Zelenitsky; François Therrien; Yoshitsugu Kobayashi (2018). "Nest substrate reflects incubation style in extant archosaurs with implications for dinosaur nesting habits". Scientific Reports. 8: Article number 3170. doi:10.1038/s41598-018-21386-x. PMC 5854591. PMID 29545620.
  259. ^ Fiona L. Gill; Jürgen Hummel; A. Reza Sharifi; Alexandra P. Lee; Barry H. Lomax (2018). "Diets of giants: the nutritional value of sauropod diet during the Mesozoic". Palaeontology. in press. doi:10.1111/pala.12385.
  260. ^ Massimo Bernardi; Piero Gianolla; Fabio Massimo Petti; Paolo Mietto; Michael J. Benton (2018). "Dinosaur diversification linked with the Carnian Pluvial Episode". Nature Communications. 9: Article number 1499. doi:10.1038/s41467-018-03996-1. PMC 5902586. PMID 29662063.
  261. ^ Michael J. Benton; Massimo Bernardi; Cormac Kinsella (2018). "The Carnian Pluvial Episode and the origin of dinosaurs". Journal of the Geological Society. in press. doi:10.1144/jgs2018-049.
  262. ^ Chase D. Brownstein (2018). "The biogeography and ecology of the Cretaceous non-avian dinosaurs of Appalachia". Palaeontologia Electronica. 21 (1): Article number 21.1.5A. doi:10.26879/801.
  263. ^ Markus Lambertz; Filippo Bertozzo; P. Martin Sander (2018). "Bone histological correlates for air sacs and their implications for understanding the origin of the dinosaurian respiratory system". Biology Letters. 14 (1): 20170514. doi:10.1098/rsbl.2017.0514. PMC 5803587. PMID 29298825.
  264. ^ Sam M. Slater; Charles H. Wellman; Michael Romano; Vivi Vajda (2018). "Dinosaur-plant interactions within a Middle Jurassic ecosystem—palynology of the Burniston Bay dinosaur footprint locality, Yorkshire, UK". Palaeobiodiversity and Palaeoenvironments. 98 (1): 139–151. doi:10.1007/s12549-017-0309-9.
  265. ^ Rodrigo Temp Müller; Sérgio Dias-da-Silva (2018). "Taxon sample and character coding deeply impact unstable branches in phylogenetic trees of dinosaurs". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1418341.
  266. ^ Claudia Inés Serrano-Brañas; Belinda Espinosa-Chávez; Augusta Maccracken (2018). "Insect damage in dinosaur bones from the Cerro del Pueblo Formation (Late Cretaceous, Campanian) Coahuila, Mexico". Journal of South American Earth Sciences. 86: 353–365. doi:10.1016/j.jsames.2018.07.002.
  267. ^ Paige E. dePolo; Stephen L. Brusatte; Thomas J. Challands; Davide Foffa; Dugald A. Ross; Mark Wilkinson; Hong-yu Yi (2018). "A sauropod-dominated tracksite from Rubha nam Brathairean (Brothers' Point), Isle of Skye, Scotland". Scottish Journal of Geology. 54 (1): 1–12. doi:10.1144/sjg2017-016.
  268. ^ Yuong-Nam Lee; Hang-Jae Lee; Sang-Young Han; Euijun Park; Chan Hee Lee (2018). "A new dinosaur tracksite from the Lower Cretaceous Sanbukdong Formation of Gunsan City, South Korea". Cretaceous Research. 91: 208–216. doi:10.1016/j.cretres.2018.06.003.
  269. ^ Diego Castanera; Matteo Belvedere; Daniel Marty; Géraldine Paratte; Marielle Lapaire-Cattin; Christel Lovis; Christian A. Meyer (2018). "A walk in the maze: variation in Late Jurassic tridactyl dinosaur tracks from the Swiss Jura Mountains (NW Switzerland)". PeerJ. 6: e4579. doi:10.7717/peerj.4579. PMC 5885975. PMID 29629243.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  270. ^ Brian F. Platt; Celina A. Suarez; Stephen K. Boss; Malcolm Williamson; Jackson Cothren; Jo Ann C. Kvamme (2018). "LIDAR-based characterization and conservation of the first theropod dinosaur trackways from Arkansas, USA". PLoS ONE. 13 (1): e0190527. doi:10.1371/journal.pone.0190527. PMC 5749850. PMID 29293618.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  271. ^ Tingting Zheng; Yi Bai; Qiang Wang; Xufeng Zhu; Kaiyong Fang; Yuan Yao; Yongqiang Zhao; Xiaolin Wang (2018). "A new ootype of dinosaur egg (Faveoloolithidae: Duovallumoolithus shangdanensis oogen. et oosp. nov.) from the Late Cretaceous in the Shangdan Basin, Shaanxi Province, China". Acta Geologica Sinica (English Edition). 92 (3): 897–903. doi:10.1111/1755-6724.13581.
  272. ^ Tzu-Ruei Yang; Ying-Hsuan Chen; Jasmina Wiemann; Beate Spiering; P. Martin Sander (2018). "Fossil eggshell cuticle elucidates dinosaur nesting ecology". PeerJ. 6: e5144. doi:10.7717/peerj.5144. PMC 6037156. PMID 30002976.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  273. ^ David W.E. Hone; Daniel J. Chure (2018). "Difficulties in assigning trace makers from theropodan bite marks: an example from a young diplodocoid sauropod". Lethaia. 51 (3): 456–466. doi:10.1111/let.12267.
  274. ^ Angelica Torices; Ryan Wilkinson; Victoria M. Arbour; Jose Ignacio Ruiz-Omeñaca; Philip J. Currie (2018). "Puncture-and-pull biomechanics in the teeth of predatory coelurosaurian dinosaurs". Current Biology. 28 (9): 1467–1474.e2. doi:10.1016/j.cub.2018.03.042. PMID 29706515.
  275. ^ Evan T. Saitta; Rebecca Gelernte; Jakob Vinther (2018). "Additional information on the primitive contour and wing feathering of paravian dinosaurs". Palaeontology. 61 (2): 273–288. doi:10.1111/pala.12342.
  276. ^ Hang-Jae Lee; Yuong-Nam Lee; Thomas L. Adams; Philip J. Currie; Yoshitsugu Kobayashi; Louis L. Jacobs; Eva B. Koppelhus (2018). "Theropod trackways associated with a Gallimimus foot skeleton from the Nemegt Formation, Mongolia". Palaeogeography, Palaeoclimatology, Palaeoecology. 494: 160–167. doi:10.1016/j.palaeo.2017.10.020.
  277. ^ Lida Xing; Nasrollah Abbassi; Martin G. Lockley (2018). "Enigmatic didactyl tracks from the Jurassic of Iran". Historical Biology: An International Journal of Paleobiology. in press: 1. doi:10.1080/08912963.2017.1339700.
  278. ^ Lida Xing; Martin G. Lockley; Ying Guo; Hendrik Klein; Junqiang Zhang; Li Zhang; W. Scott Persons IV; Anthony Romilio; Yonggang Tang; Xiaoli Wang (2018). "Multiple parallel deinonychosaurian trackways from a diverse dinosaur track assemblage of the Lower Cretaceous Dasheng Group of Shandong Province, China". Cretaceous Research. 90: 40–55. doi:10.1016/j.cretres.2018.04.005.
  279. ^ P. J. Bishop; D. F. Graham; L. P. Lamas; J. R. Hutchinson; J. Rubenson; J. A. Hancock; R. S. Wilson; S. A. Hocknull; R. S. Barrett; D. G. Lloyd; C. J. Clemente (2018). "The influence of speed and size on avian terrestrial locomotor biomechanics: Predicting locomotion in extinct theropod dinosaurs". PLoS ONE. 13 (2): e0192172. doi:10.1371/journal.pone.0192172. PMC 5821450. PMID 29466362.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  280. ^ A. Hassler; J. E. Martin; R. Amiot; T. Tacail; F. Arnaud Godet; R. Allain; V. Balter (2018). "Calcium isotopes offer clues on resource partitioning among Cretaceous predatory dinosaurs". Proceedings of the Royal Society B: Biological Sciences. 285 (1876): 20180197. doi:10.1098/rspb.2018.0197. PMC 5904318. PMID 29643213.
  281. ^ Daniel E. Barta; Sterling J. Nesbitt; Mark A. Norell (2018). "The evolution of the manus of early theropod dinosaurs is characterized by high inter- and intraspecific variation". Journal of Anatomy. 232 (1): 80–104. doi:10.1111/joa.12719. PMC 5735062. PMID 29114853.
  282. ^ C. T. Griffin (2018). "Developmental patterns and variation among early theropods". Journal of Anatomy. 232 (4): 604–640. doi:10.1111/joa.12775. PMID 29363129.
  283. ^ Rafael Delcourt (2018). "Ceratosaur palaeobiology: new insights on evolution and ecology of the southern rulers". Scientific Reports. 8: Article number 9730. doi:10.1038/s41598-018-28154-x. PMC 6021374. PMID 29950661.
  284. ^ Arthur Souza Brum; Elaine Batista Machado; Diogenes de Almeida Campos; Alexander Wilhelm Armin Kellner (2018). "Description of uncommon pneumatic structures of a noasaurid (Theropoda, Dinosauria) cervical vertebra to the Bauru Group (Upper Cretaceous), Brazil". Cretaceous Research. 85: 193–206. doi:10.1016/j.cretres.2017.10.012.
  285. ^ Ariana Paulina-Carabajal; Leonardo Filippi (2018). "Neuroanatomy of the abelisaurid theropod Viavenator: The most complete reconstruction of a cranial endocast and inner ear for a South American representative of the clade". Cretaceous Research. 83: 84–94. doi:10.1016/j.cretres.2017.06.013.
  286. ^ Leonardo S. Filippi; Ariel H. Méndez; Federico A. Gianechini; Rubén D. Juárez Valieri; Alberto C. Garrido (2018). "Osteology of Viavenator exxoni (Abelisauridae; Furileusauria) from the Bajo de la Carpa Formation, NW Patagonia, Argentina". Cretaceous Research. 83: 95–119. doi:10.1016/j.cretres.2017.07.019.
  287. ^ Rafael Delcourt; Orlando Nelson Grillo (2018). "Reassessment of a fragmentary maxilla attributed to Carcharodontosauridae from Presidente Prudente Formation, Brazil". Cretaceous Research. 84: 515–524. doi:10.1016/j.cretres.2017.09.008.
  288. ^ Oliver W.M. Rauhut; Laura Piñuela; Diego Castanera; José-Carlos García-Ramos; Irene Sánchez Cela (2018). "The largest European theropod dinosaurs: remains of a gigantic megalosaurid and giant theropod tracks from the Kimmeridgian of Asturias, Spain". PeerJ. 6: e4963. doi:10.7717/peerj.4963. PMC 6035862. PMID 30002951.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  289. ^ Tito Aureliano; Aline M. Ghilardi; Pedro V. Buck; Matteo Fabbri; Adun Samathi; Rafael Delcourt; Marcelo A. Fernandes; Martin Sander (2018). "Semi-aquatic adaptations in a spinosaur from the Lower Cretaceous of Brazil". Cretaceous Research. 90: 283–295. doi:10.1016/j.cretres.2018.04.024.
  290. ^ Thomas M.S. Arden; Catherine G. Klein; Samir Zouhri; Nicholas R. Longrich (2018). "Aquatic adaptation in the skull of carnivorous dinosaurs (Theropoda: Spinosauridae) and the evolution of aquatic habits in Spinosaurus". Cretaceous Research. in press. doi:10.1016/j.cretres.2018.06.013.
  291. ^ Simone Maganuco; Cristiano Dal Sasso (2018). "The smallest biggest theropod dinosaur: a tiny pedal ungual of a juvenile Spinosaurus from the Cretaceous of Morocco". PeerJ. 6: e4785. doi:10.7717/peerj.4785. PMC 5984586.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  292. ^ Elena Cuesta; Daniel Vidal; Francisco Ortega; José L. Sanz (2018). "The cranial osteology of Concavenator corcovatus (Theropoda; Carcharodontosauria) from the Lower Cretaceous of Spain". Cretaceous Research. 91: 176–194. doi:10.1016/j.cretres.2018.06.007.
  293. ^ Carlos Roberto dos Anjos Candeiro; Stephen Louis Brusatte; Luciano Vidal; Paulo Victor Luiz Gomes da Costa Pereira (2018). "Paleobiogeographic evolution and distribution of Carcharodontosauridae (Dinosauria, Theropoda) during the middle Cretaceous of North Africa". Papéis Avulsos de Zoologia. 58: e20185829. doi:10.11606/1807-0205/2018.58.29.
  294. ^ Chase Doran Brownstein (2018). "A tyrannosauroid from the lower Cenomanian of New Jersey and its evolutionary and biogeographic implications". Bulletin of the Peabody Museum of Natural History. 59 (1): 95–105. doi:10.3374/014.058.0210.
  295. ^ Chase D. Brownstein (2018). "A tyrannosauroid tibia from the Navesink Formation of New Jersey and its biogeographic and evolutionary implications for North American tyrannosauroids". Cretaceous Research. 85: 309–318. doi:10.1016/j.cretres.2018.01.005.
  296. ^ Matthew A. McLain; David Nelsen; Keith Snyder; Christopher T. Griffin; Bethania Siviero; Leonard R. Brand; Arthur V. Chadwick (2018). "Tyrannosaur cannibalism: a case of a tooth-traced tyrannosaurid bone in the Lance Formation (Maastrichtian), Wyoming". Palaios. 33 (4): 164–173. doi:10.2110/palo.2017.076.
  297. ^ Chase Doran Brownstein (2017). "Description of Arundel Clay ornithomimosaur material and a reinterpretation of Nedcolbertia justinhofmanni as an "Ostrich Dinosaur": biogeographic implications". PeerJ. 5: e3110. doi:10.7717/peerj.3110. PMC 5345386. PMID 28286718.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  298. ^ Bradley McFeeters; Michael J. Ryan; Thomas M. Cullen (2018). "Positional variation in pedal unguals of North American ornithomimids (Dinosauria, Theropoda): a response to Brownstein (2017)". Vertebrate Anatomy Morphology Palaeontology. 6: 60–67. doi:10.18435/vamp29283.
  299. ^ Chase Doran Brownstein (2018). "Rebuttal of McFeeters, Ryan and Cullen, 2018, 'Positional variation in pedal unguals of North American ornithomimids (Dinosauria, Theropoda): A Response to Brownstein (2017)'". Vertebrate Anatomy Morphology Palaeontology. 6: 68–72. doi:10.18435/vamp29340.
  300. ^ Bradley McFeeters; Michael J. Ryan; Thomas M. Cullen (2018). "Response to Brownstein (2018) 'Rebuttal of McFeeters, Ryan and Cullen, 2018'". Vertebrate Anatomy Morphology Palaeontology. 6: 73–74. doi:10.18435/vamp29343.
  301. ^ Alexis M. Aranciaga Rolando; Federico Brissón Egli; Marcos A.F. Sales; Agustín G. Martinelli; Juan I. Canale; Martín D. Ezcurra (2018). "A supposed Gondwanan oviraptorosaur from the Albian of Brazil represents the oldest South American megaraptoran". Cretaceous Research. 84: 107–119. doi:10.1016/j.cretres.2017.10.019.
  302. ^ Tsogtbaatar Chinzorig; Yoshitsugu Kobayashi; Khishigjav Tsogtbaatar; Philip J. Currie; Ryuji Takasaki; Tomonori Tanaka; Masaya Iijima; Rinchen Barsbold (2018). "Ornithomimosaurs from the Nemegt Formation of Mongolia: manus morphological variation and diversity". Palaeogeography, Palaeoclimatology, Palaeoecology. 494: 91–100. doi:10.1016/j.palaeo.2017.10.031.
  303. ^ Kohei Tanaka; Darla K. Zelenitsky; Junchang Lü; Christopher L. DeBuhr; Laiping Yi; Songhai Jia; Fang Ding; Mengli Xia; Di Liu; Caizhi Shen; Rongjun Chen (2018). "Incubation behaviours of oviraptorosaur dinosaurs in relation to body size". Biology Letters. 14 (5): 20180135. doi:10.1098/rsbl.2018.0135. PMC 6012691. PMID 29769301.
  304. ^ Shuo Wang; Qiyue Zhang; Rui Yang (2018). "Reevaluation of the dentary structures of caenagnathid oviraptorosaurs (Dinosauria, Theropoda)". Scientific Reports. 8: Article number 391. doi:10.1038/s41598-017-18703-1. PMC 5762635. PMID 29321606.
  305. ^ Mark A. Norell; Amy M. Balanoff; Daniel E. Barta; Gregory M. Erickson (2018). "A second specimen of Citipati osmolskae associated with a nest of eggs from Ukhaa Tolgod, Omnogov Aimag, Mongolia". American Museum Novitates. 3899: 1–44. doi:10.1206/3899.1.
  306. ^ Andrea Cau; Daniel Madzia (2018). "Redescription and affinities of Hulsanpes perlei (Dinosauria, Theropoda) from the Upper Cretaceous of Mongolia". PeerJ. 6: e4868. doi:10.7717/peerj.4868. PMC 5978397. PMID 29868277.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  307. ^ Fernando E. Novas; Federico Brissón Egli; Federico L. Agnolin; Federico A. Gianechini; Ignacio Cerda (2018). "Postcranial osteology of a new specimen of Buitreraptor gonzalezorum (Theropoda, Coelurosauria)". Cretaceous Research. 83: 127–167. doi:10.1016/j.cretres.2017.06.003.
  308. ^ Matías J. Motta; Federico Brissón Egli; Fernando E. Novas (2018). "Tail anatomy of Buitreraptor gonzalezorum (Theropoda, Unenlagiidae) and comparisons with other basal paravians". Cretaceous Research. 83: 168–181. doi:10.1016/j.cretres.2017.09.004.
  309. ^ Federico A. Gianechini; Peter J. Makovicky; Sebastián Apesteguía; Ignacio Cerda (2018). "Postcranial skeletal anatomy of the holotype and referred specimens of Buitreraptor gonzalezorum Makovicky, Apesteguía and Agnolín 2005 (Theropoda, Dromaeosauridae), from the Late Cretaceous of Patagonia". PeerJ. 6: e4558. doi:10.7717/peerj.4558. PMC 5875404. PMID 29607264.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  310. ^ Chase Brownstein (2018). "A giant dromaeosaurid from North Carolina". Cretaceous Research. in press. doi:10.1016/j.cretres.2018.07.006.
  311. ^ Caizhi Shen; Junchang Lü; Chunling Gao; Masato Hoshino; Kentaro Uesugi; Martin Kundrát (2018). "Forearm bone histology of the small theropod Daliansaurus liaoningensis (Paraves: Troodontidae) from the Yixian Formation, Liaoning, China". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1360296.
  312. ^ Ya-Lei Yin; Rui Pei; Chang-Fu Zhou (2018). "Cranial morphology of Sinovenator changii (Theropoda: Troodontidae) on the new material from the Yixian Formation of western Liaoning, China". PeerJ. 6: e4977. doi:10.7717/peerj.4977. PMC 6015489. PMID 29942679.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  313. ^ Xiangqi Guo; Li Xu; Songhai Jia (2018). "Morphological and phylogenetic study based on new materials of Anchiornis huxleyi (Dinosauria, Theropoda) from Jianchang, western Liaoning, China". Acta Geologica Sinica (English Edition). 92 (1): 1–15. doi:10.1111/1755-6724.13491.
  314. ^ Mario Bronzati; Roger B. J. Benson; Oliver W. M. Rauhut (2018). "Rapid transformation in the braincase of sauropod dinosaurs: integrated evolution of the braincase and neck in early sauropods?". Palaeontology. 61 (2): 289–302. doi:10.1111/pala.12344.
  315. ^ Alejandro Otero (2018). "Forelimb musculature and osteological correlates in Sauropodomorpha (Dinosauria, Saurischia)". PLoS ONE. 13 (7): e0198988. doi:10.1371/journal.pone.0198988. PMID 29975691.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  316. ^ Rodrigo T. Müller; Max C. Langer; Mario Bronzati; Cristian P. Pacheco; Sérgio F. Cabreira; Sérgio Dias-Da-Silva (2018). "Early evolution of sauropodomorphs: anatomy and phylogenetic relationships of a remarkably well-preserved dinosaur from the Upper Triassic of southern Brazil". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zly009.
  317. ^ Rodrigo Temp Müller; Max Cardoso Langer; Cristian Pereira Pacheco; Sérgio Dias-da-Silva (2018). "The role of ontogeny on character polarization in early dinosaurs: a new specimen from the Late Triassic of southern Brazil and its implications". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1395421.
  318. ^ Mario Bronzati; Oliver W. M. Rauhut (2018). "Braincase redescription of Efraasia minor Huene, 1908 (Dinosauria: Sauropodomorpha) from the Late Triassic of Germany, with comments on the evolution of the sauropodomorph braincase". Zoological Journal of the Linnean Society. 182 (1): 173–224. doi:10.1093/zoolinnean/zlx029.
  319. ^ Kimberley E.J. Chapelle; Jonah N. Choiniere (2018). "A revised cranial description of Massospondylus carinatus Owen (Dinosauria: Sauropodomorpha) based on computed tomographic scans and a review of cranial characters for basal Sauropodomorpha". PeerJ. 6: e4224. doi:10.7717/peerj.4224. PMC 5768178. PMID 29340238.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  320. ^ Lida Xing; Bruce M. Rothschild; Patrick S. Randolph-Quinney; Yi Wang; Alexander H. Parkinson; Hao Ran (2018). "Possible bite-induced abscess and osteomyelitis in Lufengosaurus (Dinosauria: sauropodomorph) from the Lower Jurassic of the Yimen Basin, China". Scientific Reports. 8: Article number 5045. doi:10.1038/s41598-018-23451-x. PMC 5864883. PMID 29568005.
  321. ^ Blair W. Mcphee; Jonah N. Choiniere (2018). "The osteology of Pulanesaura eocollum: implications for the inclusivity of Sauropoda (Dinosauria)". Zoological Journal of the Linnean Society. 182 (4): 830–861. doi:10.1093/zoolinnean/zlx074.
  322. ^ Pia A. Viglietti; Paul M. Barrett; Tim J. Broderick; Darlington Munyikwa; Rowan MacNiven; Lucy Broderick; Kimberley Chapelle; Dave Glynn; Steve Edwards; Michel Zondo; Patricia Broderick; Jonah N. Choiniere (2018). "Stratigraphy of the Vulcanodon type locality and its implications for regional correlations within the Karoo Supergroup". Journal of African Earth Sciences. 137: 149–156. doi:10.1016/j.jafrearsci.2017.10.015.
  323. ^ Cecily S.C. Nicholl; Philip D. Mannion; Paul M. Barrett (2018). "Sauropod dinosaur remains from a new Early Jurassic locality in the Central High Atlas of Morocco". Acta Palaeontologica Polonica. 63 (1): 147–157. doi:10.4202/app.00425.2017.
  324. ^ Jun Wang; Yong Ye; Rui Pei; Yamin Tian; Chongqin Feng; Daran Zheng; Su-Chin Chang (2018). "Age of Jurassic basal sauropods in Sichuan, China: A reappraisal of basal sauropod evolution". GSA Bulletin. in press. doi:10.1130/B31910.1.
  325. ^ Andrew J. Moore; Jinyou Mo; James M. Clark; Xing Xu (2018). "Cranial anatomy of Bellusaurus sui (Dinosauria: Eusauropoda) from the Middle-Late Jurassic Shishugou Formation of northwest China and a review of sauropod cranial ontogeny". PeerJ. 6: e4881. doi:10.7717/peerj.4881. PMC 5985764. PMID 29868283.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  326. ^ A. Paulina Carabajal; R.A. Coria; P.J. Currie; E.B. Koppelhus (2018). "A natural cranial endocast with possible dicraeosaurid (Sauropoda, Diplodocoidea) affinities from the Lower Cretaceous of Patagonia". Cretaceous Research. 84: 437–441. doi:10.1016/j.cretres.2017.12.001.
  327. ^ Michael P. Taylor (2018). "Xenoposeidon is the earliest known rebbachisaurid sauropod dinosaur". PeerJ. 6: e5212. doi:10.7717/peerj.5212. PMC 6037143. PMID 30002991.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  328. ^ Brennan Stettner; W. Scott Persons IV; Philip J. Currie (2018). "A giant sauropod footprint from the Nemegt Formation (Upper Cretaceous) of Mongolia". Palaeogeography, Palaeoclimatology, Palaeoecology. 494: 168–172. doi:10.1016/j.palaeo.2017.10.027.
  329. ^ E. Martín Hechenleitner; Lucas E. Fiorelli; Agustín G. Martinelli; Gerald Grellet-Tinner (2018). "Titanosaur dinosaurs from the Upper Cretaceous of La Rioja province, NW Argentina". Cretaceous Research. 85: 42–59. doi:10.1016/j.cretres.2018.01.006.
  330. ^ E. Martín Hechenleitner; Jeremías R. A. Taborda; Lucas E. Fiorelli; Gerald Grellet-Tinner; Segundo R. Nuñez-Campero (2018). "Biomechanical evidence suggests extensive eggshell thinning during incubation in the Sanagasta titanosaur dinosaurs". PeerJ. 6: e4971. doi:10.7717/peerj.4971. PMC 6003389. PMID 29910984.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  331. ^ Verónica Díez Díaz; Géraldine Garcia; Xabier Pereda Suberbiola; Benjamin Jentgen-Ceschino; Koen Stein; Pascal Godefroit; Xavier Valentin (2018). "The titanosaurian dinosaur Atsinganosaurus velauciensis (Sauropoda) from the Upper Cretaceous of southern France: New material, phylogenetic affinities, and palaeobiogeographical implications". Cretaceous Research. in press. doi:10.1016/j.cretres.2018.06.015.
  332. ^ Bernardo J. Gonzàlez Riga; Philip D. Mannion; Stephen F. Poropat; Leonardo D. Ortiz David; Juan Pedro Coria (2018). "Osteology of the Late Cretaceous Argentinean sauropod dinosaur Mendozasaurus neguyelap: implications for basal titanosaur relationships". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlx103.
  333. ^ Philip J. Currie; Jeffrey A. Wilson; Federico Fanti; Buuvei Mainbayar; Khishigjav Tsogtbaatar (2018). "Rediscovery of the type localities of the Late Cretaceous Mongolian sauropods Nemegtosaurus mongoliensis and Opisthocoelicaudia skarzynskii: Stratigraphic and taxonomic implications". Palaeogeography, Palaeoclimatology, Palaeoecology. 494: 5–13. doi:10.1016/j.palaeo.2017.10.035.
  334. ^ Marcos G. Becerra; Diego Pol; Oliver W.M. Rauhut; Ignacio A. Cerda (2016). "New heterodontosaurid remains from the Cañadón Asfalto Formation: cursoriality and the functional importance of the pes in small heterodontosaurids". Journal of Paleontology. 90 (3): 555–577. doi:10.1017/jpa.2016.24.
  335. ^ Marcos G. Becerra; Mariano A. Ramírez (2018). "Locomotor morphotypes, allometry, linear regressions and the smallest sizes in Ornithischia: estimating body length using hind limb variables". Ameghiniana. in press. doi:10.5710/AMGH.27.06.2018.3189.
  336. ^ Marcos G. Becerra; Diego Pol; Gertrud E. Rössner; Oliver W. M. Rauhut (2018). "Heterodonty and double occlusion in Manidens condorensis: a unique adaptation in an Early Jurassic ornithischian improving masticatory efficiency". The Science of Nature. 105 (7–8): Article 41. doi:10.1007/s00114-018-1569-6. PMID 29904792.
  337. ^ Marco Romano (2018). "Disparity vs. diversity in Stegosauria (Dinosauria, Ornithischia): cranial and post-cranial sub-dataset provide different signals". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1397655.
  338. ^ Baoqiao Hao; Qiannan Zhang; Guangzhao Peng; Yong Ye; Hailu You (2018). "Redescription of Gigantspinosaurus sichuanensis (Dinosauria, Stegosauria) from the Late Jurassic of Sichuan, Southwestern China". Acta Geologica Sinica (English Edition). 92 (2): 431–441. doi:10.1111/1755-6724.13535.
  339. ^ Susannah C. R. Maidment; D. Cary Woodruff; John R. Horner (2018). "A new specimen of the ornithischian dinosaur Hesperosaurus mjosi from the Upper Jurassic Morrison Formation of Montana, U.S.A., and implications for growth and size in Morrison stegosaurs". Journal of Vertebrate Paleontology. 38 (1): e1406366. doi:10.1080/02724634.2017.1406366.
  340. ^ Thomas J. Raven; Susannah C.R. Maidment (2018). "The systematic position of the enigmatic thyreophoran dinosaur Paranthodon africanus, and the use of basal exemplifiers in phylogenetic analysis". PeerJ. 6: e4529. doi:10.7717/peerj.4529. PMC 5865477. PMID 29576986.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  341. ^ Heitor Francischini; Marcos A. F. Sales; Paula Dentzien–Dias; Cesar L. Schultz (2018). "The presence of ankylosaur tracks in the Guará Formation (Brazil) and remarks on the spatial and temporal distribution of Late Jurassic dinosaurs". Ichnos: an International Journal for Plant and Animal Traces. 25 (2–3): 177–191. doi:10.1080/10420940.2017.1337573.
  342. ^ Rubén A. Rodríguez-de la Rosa; María Patricia Velasco-de León; Javier Arellano-Gil; Diego Enrique Lozano-Carmona (2018). "Middle Jurassic ankylosaur tracks from Mexico". Boletín de la Sociedad Geológica Mexicana. 70 (2): 379–395. doi:10.18268/BSGM2018v70n2a8.
  343. ^ Ariana Paulina-Carabajal; Yuong-Nam Lee; Yoshitsugu Kobayashi; Hang-Jae Lee; Philip J. Currie (2018). "Neuroanatomy of the ankylosaurid dinosaurs Tarchia teresae and Talarurus plicatospineus from the Upper Cretaceous of Mongolia, with comments on endocranial variability among ankylosaurs". Palaeogeography, Palaeoclimatology, Palaeoecology. 494: 135–146. doi:10.1016/j.palaeo.2017.11.030.
  344. ^ Jordan C. Mallon; Donald M. Henderson; Colleen M. McDonough; W.J. Loughry (2018). "A 'bloat-and-float' taphonomic model best explains the upside-down preservation of ankylosaurs". Palaeogeography, Palaeoclimatology, Palaeoecology. 497: 117–127. doi:10.1016/j.palaeo.2018.02.010.
  345. ^ Holly N. Woodward; Thomas H. Rich; Patricia Vickers-Rich (2018). "The bone microstructure of polar "hypsilophodontid" dinosaurs from Victoria, Australia". Scientific Reports. 8: Article number 1162. doi:10.1038/s41598-018-19362-6. PMC 5773672. PMID 29348463.
  346. ^ Tom Hübner (2018). "The postcranial ontogeny of Dysalotosaurus lettowvorbecki (Ornithischia: Iguanodontia) and implications for the evolution of ornithopod dinosaurs". Palaeontographica Abteilung A. 310 (3–6): 43–120. doi:10.1127/pala/2018/0072.
  347. ^ Francisco Javier Verdú; Rafael Royo-Torres; Alberto Cobos; Luis Alcalá (2018). "New systematic and phylogenetic data about the early Barremian Iguanodon galvensis (Ornithopoda: Iguanodontoidea) from Spain". Historical Biology: An International Journal of Paleobiology. 30 (4): 437–474. doi:10.1080/08912963.2017.1287179.
  348. ^ Yan Wu; Hai-Lu You; Xiao-Qiang Li (2018). "Dinosaur-associated Poaceae epidermis and phytoliths from the Early Cretaceous of China". National Science Review. in press. doi:10.1093/nsr/nwx145.
  349. ^ Ryuji Takasaki; Kentaro Chiba; Yoshitsugu Kobayashi; Philip J. Currie; Anthony R. Fiorillo (2018). "Reanalysis of the phylogenetic status of Nipponosaurus sachalinensis (Ornithopoda: Dinosauria) from the Late Cretaceous of Southern Sakhalin". Historical Biology: An International Journal of Paleobiology. 30 (5): 694–711. doi:10.1080/08912963.2017.1317766.
  350. ^ Albert Prieto-Marquez; Merrilee F. Guenther (2018). "Perinatal specimens of Maiasaura from the Upper Cretaceous of Montana (USA): insights into the early ontogeny of saurolophine hadrosaurid dinosaurs". PeerJ. 6: e4734. doi:10.7717/peerj.4734. PMC 5960587. PMID 29785343.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  351. ^ Mateusz Wosik; Mark B. Goodwin; David C. Evans (2018). "A nestling-sized skeleton of Edmontosaurus (Ornithischia, Hadrosauridae) from the Hell Creek Formation of northeastern Montana, U.S.A., with an analysis of ontogenetic limb allometry". Journal of Vertebrate Paleontology. 37 (6): e1398168. doi:10.1080/02724634.2017.1398168.
  352. ^ Leonardo Maiorino; Andrew A. Farke; Tassos Kotsakis; Pasquale Raia; Paolo Piras (2018). "Who is the most stressed? Morphological disparity and mechanical behavior of the feeding apparatus of ceratopsian dinosaurs (Ornithischia, Marginocephalia)". Cretaceous Research. 84: 483–500. doi:10.1016/j.cretres.2017.11.012.
  353. ^ Andrew Knapp; Robert J. Knell; Andrew A. Farke; Mark A. Loewen; David W. E. Hone (2018). "Patterns of divergence in the morphology of ceratopsian dinosaurs: sympatry is not a driver of ornament evolution". Proceedings of the Royal Society B: Biological Sciences. 285 (1875): 20180312. doi:10.1098/rspb.2018.0312. PMC 5897650. PMID 29563271.
  354. ^ Fenglu Han; Catherine A. Forster; Xing Xu; James M. Clark (2018). "Postcranial anatomy of Yinlong downsi (Dinosauria: Ceratopsia) from the Upper Jurassic Shishugou Formation of China and the phylogeny of basal ornithischians". Journal of Systematic Palaeontology. in press. doi:10.1080/14772019.2017.1369185.
  355. ^ Yiming He; Peter J. Makovicky; Xing Xu; Hailu You (2018). "High-resolution computed tomographic analysis of tooth replacement pattern of the basal neoceratopsian Liaoceratops yanzigouensis informs ceratopsian dental evolution". Scientific Reports. 8: Article number 5870. doi:10.1038/s41598-018-24283-5. PMC 5897341. PMID 29651146.
  356. ^ Łucja Fostowicz-Frelik; Justyna Słowiak (2018). "Bone histology of Protoceratops andrewsi from the Late Cretaceous of Mongolia and its biological implications". Acta Palaeontologica Polonica. in press. doi:10.4202/app.00463.2018.
  357. ^ Caleb M. Brown (2018). "Long-horned Ceratopsidae from the Foremost Formation (Campanian) of southern Alberta". PeerJ. 6: e4265. doi:10.7717/peerj.4265. PMC 5774296. PMID 29362697.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  358. ^ Kentaro Chiba; Michael J. Ryan; Federico Fanti; Mark A. Loewen; David C. Evans (2018). "New material and systematic re-evaluation of Medusaceratops lokii (Dinosauria, Ceratopsidae) from the Judith River Formation (Campanian, Montana)". Journal of Paleontology. 92 (2): 272–288. doi:10.1017/jpa.2017.62.
  359. ^ James A. Campbell; Michael J. Ryan; Claudia J. Schröder-Adams; David C. Evans; Robert B. Holmes (2018). "New insights into chasmosaurine (Dinosauria: Ceratopsidae) skulls from the Upper Cretaceous (Campanian) of Alberta, and an update on the distribution of accessory frill fenestrae in Chasmosaurinae". PeerJ. 6: e5194. doi:10.7717/peerj.5194. PMC 6034596.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  360. ^ Héctor E. Rivera-Sylva; Eberhard Frey; Wolfgang Stinnesbeck; Gerardo Carbot-Chanona; Iván E. Sanchez-Uribe; José Rubén Guzmán-Gutiérrez (2018). "Paleodiversity of Late Cretaceous Ankylosauria from Mexico and their phylogenetic significance". Swiss Journal of Palaeontology. 137 (1): 83–93. doi:10.1007/s13358-018-0153-1.
  361. ^ Jelle P. Wiersma; Randall B. Irmis (2018). "A new southern Laramidian ankylosaurid, Akainacephalus johnsoni gen. et sp. nov., from the upper Campanian Kaiparowits Formation of southern Utah, USA". PeerJ. 6: e5016. doi:10.7717/peerj.5016.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  362. ^ a b c d e f Paul Penkalski (2018). "Revised systematics of the armoured dinosaur Euoplocephalus and its allies". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 287 (3): 261–306. doi:10.1127/njgpa/2018/0717.
  363. ^ Yilun Yu; Kebai Wang; Shuqing Chen; Corwin Sullivan; Shuo Wang; Peiye Wang; Xing Xu (2018). "A new caenagnathid dinosaur from the Upper Cretaceous Wangshi Group of Shandong, China, with comments on size variation among oviraptorosaurs". Scientific Reports. 8: Article number 5030. doi:10.1038/s41598-018-23252-2. PMC 5864915. PMID 29567954.
  364. ^ ReBecca K. Hunt; James H. Quinn (2018). "A new ornithomimosaur from the Lower Cretaceous Trinity Group of Arkansas". Journal of Vertebrate Paleontology. 38 (1): e1421209. doi:10.1080/02724634.2017.1421209.
  365. ^ G.F. Funston; S.E. Mendonca; P.J. Currie; R. Barsbold (2018). "Oviraptorosaur anatomy, diversity and ecology in the Nemegt Basin". Palaeogeography, Palaeoclimatology, Palaeoecology. 494: 101–120. doi:10.1016/j.palaeo.2017.10.023.
  366. ^ Flávio A. Pretto; Max C. Langer; Cesar L. Schultz (2018). "A new dinosaur (Saurischia: Sauropodomorpha) from the Late Triassic of Brazil provides insights on the evolution of sauropodomorph body plan". Zoological Journal of the Linnean Society. Online edition. doi:10.1093/zoolinnean/zly028.
  367. ^ Xing Xu; Qingwei Tan; Yilong Gao; Zhiqiang Bao; Zhigang Yin; Bin Guo; Junyou Wang; Lin Tan; Yuguang Zhang; Hai Xing (2018). "A large-sized basal ankylopollexian from East Asia, shedding light on early biogeographic history of Iguanodontia". Science Bulletin. 63 (9): 556–563. doi:10.1016/j.scib.2018.03.016.
  368. ^ Dongyu Hu; Julia A. Clarke; Chad M. Eliason; Rui Qiu; Quanguo Li; Matthew D. Shawkey; Cuilin Zhao; Liliana D’Alba; Jinkai Jiang; Xing Xu (2018). "A bony-crested Jurassic dinosaur with evidence of iridescent plumage highlights complexity in early paravian evolution". Nature Communications. 9: Article number 217. doi:10.1038/s41467-017-02515-y. PMC 5768872. PMID 29335537.
  369. ^ Edith Simón; Leonardo Salgado; Jorge O. Calvo (2018). "A new titanosaur sauropod from the Upper Cretaceous of Patagonia, Neuquén Province, Argentina". Ameghiniana. 55 (1): 1–29. doi:10.5710/AMGH.01.08.2017.3051.
  370. ^ Matthew C. Herne; Alan M. Tait; Vera Weisbecker; Michael Hall; Jay P. Nair; Michael Cleeland; Steven W. Salisbury (2018). "A new small-bodied ornithopod (Dinosauria, Ornithischia) from a deep, high-energy Early Cretaceous river of the Australian–Antarctic rift system". PeerJ. 6: e4113. doi:10.7717/peerj.4113. PMC 5767335. PMID 29340228.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  371. ^ Cecilia Apaldetti; Ricardo N. Martínez; Ignacio A. Cerda; Diego Pol; Oscar Alcober (2018). "An early trend towards gigantism in Triassic sauropodomorph dinosaurs". Nature Ecology & Evolution. in press. doi:10.1038/s41559-018-0599-y. PMID 29988169.
  372. ^ Wenjie Zheng; Xingsheng Jin; Yoichi Azuma; Qiongying Wang; Kazunori Miyata; Xing Xu (2018). "The most basal ankylosaurine dinosaur from the Albian–Cenomanian of China, with implications for the evolution of the tail club". Scientific Reports. 8: Article number 3711. doi:10.1038/s41598-018-21924-7. PMC 5829254. PMID 29487376.
  373. ^ Jialiang Zhang; Xiaolin Wang; Qiang Wang; Shunxing Jiang; Xin Cheng; Ning Li; Rui Qiu (2018). "A new saurolophine hadrosaurid (Dinosauria: Ornithopoda) from the Upper Cretaceous of Shandong, China". Anais da Academia Brasileira de Ciências. in press. doi:10.1590/0001-3765201720160920. PMID 28876393.
  374. ^ Hesham M. Sallam; Eric Gorscak; Patrick M. O’Connor; Iman A. El-Dawoudi; Sanaa El-Sayed; Sara Saber; Mahmoud A. Kora; Joseph J. W. Sertich; Erik R. Seiffert; Matthew C. Lamanna (2018). "New Egyptian sauropod reveals Late Cretaceous dinosaur dispersal between Europe and Africa". Nature Ecology & Evolution. 2 (3): 445–451. doi:10.1038/s41559-017-0455-5. PMID 29379183.
  375. ^ Alexander Averianov; Stepan Ivantsov; Pavel Skutschas; Alexey Faingertz; Sergey Leshchinskiy (2018). "A new sauropod dinosaur from the Lower Cretaceous Ilek Formation, Western Siberia, Russia". Geobios. 51 (1): 1–14. doi:10.1016/j.geobios.2017.12.004.
  376. ^ Juan D. Porfiri; Rubén D. Juárez Valieri; Domenica D.D. Santos; Matthew C. Lamanna (2018). "A new megaraptoran theropod dinosaur from the Upper Cretaceous Bajo de la Carpa Formation of northwestern Patagonia". Cretaceous Research. 89: 302–319. doi:10.1016/j.cretres.2018.03.014.
  377. ^ D. C. Deeming; G. Mayr (2018). "Pelvis morphology suggests that early Mesozoic birds were too heavy to contact incubate their eggs". Journal of Evolutionary Biology. 31 (5): 701–709. doi:10.1111/jeb.13256. PMID 29485191.
  378. ^ Ya-Chun Zhou; Corwin Sullivan; Fu-Cheng Zhang (2018). "Tooth reduction in Mesozoic birds had a negligible effect on body mass". Vertebrata PalAsiatica. in press. doi:10.19615/j.cnki.1000-3118.180307.
  379. ^ Lida Xing; Ryan C. McKellar; Xing Xu; Gang Li; Ming Bai; W. Scott Persons IV; Tetsuto Miyashita; Michael J. Benton; Jianping Zhang; Alexander P. Wolfe; Qiru Yi; Kuowei Tseng; Hao Ran; Philip J. Currie (2016). "A feathered dinosaur tail with primitive plumage trapped in mid-Cretaceous amber". Current Biology. 26 (24): 3352–3360. doi:10.1016/j.cub.2016.10.008. PMID 27939315.
  380. ^ Dana J. Rashid; Kevin Surya; Luis M. Chiappe; Nathan Carroll; Kimball L. Garrett; Bino Varghese; Alida Bailleul; Jingmai K. O’Connor; Susan C. Chapman; John R. Horner (2018). "Avian tail ontogeny, pygostyle formation, and interpretation of juvenile Mesozoic specimens". Scientific Reports. 8: Article number 9014. doi:10.1038/s41598-018-27336-x. PMC 5997987. PMID 29899503.
  381. ^ Federico L. Agnolin; Sebastián Rozadilla; Ismar de Souza Carvalho (2018). "Praeornis sharovi Rautian, 1978 a fossil feather from the early Late Jurassic of Kazakhstan". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1413102.
  382. ^ Li-Da Xing; Yuan-Chao Hu; Jian-Dong Huang; Qing He; Martin G. Lockley; Michael E. Burns; Jun Fang (2018). "A redescription of the ichnospecies Koreanaornis anhuiensis (Aves) from the Lower Cretaceous Qiuzhuang Formation at Mingguang city, Anhui Province, China". Journal of Palaeogeography. 7 (1): 58–65. doi:10.1016/j.jop.2017.10.003.
  383. ^ Lisa G. Buckley; Richard T. McCrea; Lida Xing (2018). "First report of Ignotornidae (Aves) from the Lower Cretaceous Gates Formation (Albian) of western Canada, with description of a new ichnospecies of Ignotornis, Ignotornis canadensis ichnosp. nov". Cretaceous Research. 84: 209–222. doi:10.1016/j.cretres.2017.11.021.
  384. ^ Lida Xing; Lisa G. Buckley; Martin G. Lockley; Richard T. McCrea; Yonggang Tang (2018). "Lower Cretaceous avian tracks from Jiangsu Province, China: A first Chinese report for ichnogenus Goseongornipes (Ignotornidae)". Cretaceous Research. 84: 571–577. doi:10.1016/j.cretres.2017.12.016.
  385. ^ Oliver W.M. Rauhut; Christian Foth; Helmut Tischlinger (2018). "The oldest Archaeopteryx (Theropoda: Avialiae): a new specimen from the Kimmeridgian/Tithonian boundary of Schamhaupten, Bavaria". PeerJ. 6: e4191. doi:10.7717/peerj.4191. PMC 5788062. PMID 29383285.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  386. ^ Dennis F. A. E. Voeten; Jorge Cubo; Emmanuel de Margerie; Martin Röper; Vincent Beyrand; Stanislav Bureš; Paul Tafforeau; Sophie Sanchez (2018). "Wing bone geometry reveals active flight in Archaeopteryx". Nature Communications. 9: Article number 923. doi:10.1038/s41467-018-03296-8. PMC 5849612. PMID 29535376.
  387. ^ Jingmai O'Connor (2018). "The trophic habits of early birds". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2018.03.006.
  388. ^ Jingmai O'Connor; Xiaoli Wang; Corwin Sullivan; Yan Wang; Xiaoting Zheng; Han Hu; Xiaomei Zhang; Zhonghe Zhou (2018). "First report of gastroliths in the Early Cretaceous basal bird Jeholornis". Cretaceous Research. 84: 200–208. doi:10.1016/j.cretres.2017.10.031.
  389. ^ Guillermo Navalón; Qingjin Meng; Jesús Marugán-Lobón; Yuguang Zhang; Baopeng Wang; Hai Xing; Di Liu; Luis M. Chiappe (2018). "Diversity and evolution of the Confuciusornithidae: Evidence from a new 131-million-year-old specimen from the Huajiying Formation in NE China". Journal of Asian Earth Sciences. 152: 12–22. doi:10.1016/j.jseaes.2017.11.005.
  390. ^ Andrzej Elżanowski; D. Stefan Peters; Gerald Mayr (2018). "Cranial morphology of the Early Cretaceous bird Confuciusornis". Journal of Vertebrate Paleontology. 38 (2): e1439832. doi:10.1080/02724634.2018.1439832.
  391. ^ Min Wang; Jingmai O'Connor; Zhong-He Zhou (2018). "A taxonomical revision of the Confuciusornithiformes (Aves: Pygostylia)". Vertebrata PalAsiatica. in press. doi:10.19615/j.cnki.1000-3118.180530. {{cite journal}}: no-break space character in |title= at position 2 (help)
  392. ^ Lida Xing; Jingmai K. O'Connor; Ryan C. McKellar; Luis M. Chiappe; Ming Bai; Kuowei Tseng; Jie Zhang; Haidong Yang; Jun Fang; Gang Li (2018). "A flattened enantiornithine in mid-Cretaceous Burmese amber: morphology and preservation". Science Bulletin. 63 (4): 235–243. doi:10.1016/j.scib.2018.01.019.
  393. ^ Fabien Knoll; Luis M. Chiappe; Sophie Sanchez; Russell J. Garwood; Nicholas P. Edwards; Roy A. Wogelius; William I. Sellers; Phillip L. Manning; Francisco Ortega; Francisco J. Serrano; Jesús Marugán-Lobón; Elena Cuesta; Fernando Escaso; Jose Luis Sanz (2018). "A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds". Nature Communications. 9: Article number 937. doi:10.1038/s41467-018-03295-9. PMC 5838198. PMID 29507288.
  394. ^ Francisco J. Serrano; Luis M. Chiappe; Paul Palmqvist; Borja Figueirido; Jesús Marugán-Lobón; José L. Sanz (2018). "Flight reconstruction of two European enantiornithines (Aves, Pygostylia) and the achievement of bounding flight in Early Cretaceous birds". Palaeontology. 61 (3): 359–368. doi:10.1111/pala.12351.
  395. ^ A. V. Panteleev (2018). "Morphology of the coracoid of Late Cretaceous enantiornithines (Aves: Enantiornithes) from Dzharakuduk (Uzbekistan)". Paleontological Journal. 52 (2): 201–207. doi:10.1134/S0031030118020089.
  396. ^ Xia Wang; Jiandong Huang; Yuanchao Hu; Xiaoyu Liu; Jennifer Peteya; Julia A. Clarke (2018). "The earliest evidence for a supraorbital salt gland in dinosaurs in new Early Cretaceous ornithurines". Scientific Reports. 8: Article number 3969. doi:10.1038/s41598-018-22412-8. PMC 5838252. PMID 29507398.
  397. ^ Evgeny E. Perkovsky; Ekaterina B. Sukhomlin; Nikita V. Zelenkov (2018). "An unexpectedly abundant new genus of black flies (Diptera, Simuliidae) from Upper Cretaceous Taimyr amber of Ugolyak, with discussion of the early evolution of birds at high latitudes". Cretaceous Research. 90: 80–89. doi:10.1016/j.cretres.2018.04.002.
  398. ^ Daniel J. Field; Michael Hanson; David Burnham; Laura E. Wilson; Kristopher Super; Dana Ehret; Jun A. Ebersole; Bhart-Anjan S. Bhullar (2018). "Complete Ichthyornis skull illuminates mosaic assembly of the avian head". Nature. 557 (7703): 96–100. doi:10.1038/s41586-018-0053-y. PMID 29720636. {{cite journal}}: no-break space character in |title= at position 9 (help)
  399. ^ Alyssa Bell; Yun-Hsin Wu; Luis M. Chiappe (2018). "Morphometric comparison of the Hesperornithiformes and modern diving birds". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2017.12.010.
  400. ^ Daniel J. Field; Antoine Bercovici; Jacob S. Berv; Regan Dunn; David E. Fastovsky; Tyler R. Lyson; Vivi Vajda; Jacques A. Gauthier (2018). "Early evolution of modern birds structured by global forest collapse at the end-Cretaceous mass extinction". Current Biology. 28 (11): 1825–1831.e2. doi:10.1016/j.cub.2018.04.062. PMID 29804807.
  401. ^ Ryan N. Felice; Anjali Goswami (2018). "Developmental origins of mosaic evolution in the avian cranium". Proceedings of the National Academy of Sciences of the United States of America. 115 (3): 555–560. doi:10.1073/pnas.1716437115. PMC 5776993. PMID 29279399.
  402. ^ Marcos Cenizo; Jorge Noriega; Juan Diederle; Esteban Soibelzon; Leopoldo Soibelzon; Sergio Rodriguez; Elisa Beilinson (2018). "An unexpected large Crested Tinamou (Eudromia, Tinamidae, Aves) near to Last Glacial Maximum (MIS 2, late Pleistocene) of the Argentine Pampas". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1491568.
  403. ^ Alexander P. Boast; Laura S. Weyrich; Jamie R. Wood; Jessica L. Metcalf; Rob Knight; Alan Cooper (2018). "Coprolites reveal ecological interactions lost with the extinction of New Zealand birds". Proceedings of the National Academy of Sciences of the United States of America. 115 (7): 1546–1551. doi:10.1073/pnas.1712337115. PMC 5816151. PMID 29440415.
  404. ^ Joanna K. Carpenter; Jamie R. Wood; Janet M. Wilmshurst; Dave Kelly (2018). "An avian seed dispersal paradox: New Zealand's extinct megafaunal birds did not disperse large seeds". Proceedings of the Royal Society B: Biological Sciences. 285 (1877): 20180352. doi:10.1098/rspb.2018.0352. PMC 5936733. PMID 29669903.
  405. ^ Vicki A. Thomson; Kieren J. Mitchell; Rolan Eberhard; Joe Dortch; Jeremy J. Austin; Alan Cooper (2018). "Genetic diversity and drivers of dwarfism in extinct island emu populations". Biology Letters. 14 (4): 20170617. doi:10.1098/rsbl.2017.0617. PMC 5938559. PMID 29618519.
  406. ^ Federico L. Agnolín; Federico Brissón Egli; Sankar Chatterjee; Jordi Alexis Garcia Marsà; Fernando E. Novas (2017). "Vegaviidae, a new clade of southern diving birds that survived the K/T boundary". The Science of Nature. 104 (11–12): Article 87. doi:10.1007/s00114-017-1508-y. PMID 28988276.
  407. ^ Gerald Mayr; Vanesa L. De Pietri; R. Paul Scofield; Trevor H. Worthy (2018). "On the taxonomic composition and phylogenetic affinities of the recently proposed clade Vegaviidae Agnolín et al., 2017 ‒ neornithine birds from the Upper Cretaceous of the Southern Hemisphere". Cretaceous Research. 86: 178–185. doi:10.1016/j.cretres.2018.02.013.
  408. ^ Jordi Alexis Garcia Marsà; Federico L. Agnolín; Fernando Novas (2018). "Bone microstructure of Vegavis iaai (Aves, Anseriformes) from the Upper Cretaceous of Vega Island, Antarctic Peninsula". Historical Biology: An International Journal of Paleobiology. in press: 1. doi:10.1080/08912963.2017.1348503.
  409. ^ Janet C. Buckner; Ryan Ellingson; David A. Gold; Terry L. Jones; David K. Jacobs (2018). "Mitogenomics supports an unexpected taxonomic relationship for the extinct diving duck Chendytes lawi and definitively places the extinct Labrador Duck". Molecular Phylogenetics and Evolution. 122: 102–109. doi:10.1016/j.ympev.2017.12.008. PMID 29247849.
  410. ^ L. Schmidt (2018). "A biological origin for gravel mounds in inland Australia". Australian Journal of Earth Sciences. 65 (5): 607–617. doi:10.1080/08120099.2018.1460865.
  411. ^ Daniel J. Field; Allison Y. Hsiang (2018). "A North American stem turaco, and the complex biogeographic history of modern birds". BMC Evolutionary Biology. 18: 102. doi:10.1186/s12862-018-1212-3. PMC 6016133. PMID 29936914. {{cite journal}}: no-break space character in |author1= at position 7 (help); no-break space character in |author2= at position 8 (help)CS1 maint: unflagged free DOI (link)
  412. ^ Mariana B. J. Picasso; Ricardo S. De Mendoza; Javier N. Gelfo (2018). "A seedsnipe (Aves, Charadriiformes, Thinocoridae) from the Ensenadan Age/Stage (early-middle Pleistocene) of Buenos Aires, Argentina". Historical Biology: An International Journal of Paleobiology. in press: 1. doi:10.1080/08912963.2017.1370647.
  413. ^ Ursula B. Göhlich; Gerald Mayr (2018). "The alleged early Miocene Auk Petralca austriaca is a Loon (Aves, Gaviiformes): restudy of a controversial fossil bird". Historical Biology: An International Journal of Paleobiology. in press: 1. doi:10.1080/08912963.2017.1333610.
  414. ^ Piotr Jadwiszczak; Bruce M. Rothschild (2018). "The first evidence of an infectious disease in early penguins". Historical Biology: An International Journal of Paleobiology. in press: 1. doi:10.1080/08912963.2017.1353606.
  415. ^ Federico J. Degrange; Daniel T. Ksepka; Claudia P. Tambussi (2018). "Redescription of the oldest crown clade penguin: cranial osteology, jaw myology, neuroanatomy, and phylogenetic affinities of Madrynornis mirandus". Journal of Vertebrate Paleontology. 38 (2): e1445636. doi:10.1080/02724634.2018.1445636.
  416. ^ Theresa L. Cole; Jonathan M. Waters; Lara D. Shepherd; Nicolas J. Rawlence; Leo Joseph; Jamie R. Wood (2018). "Ancient DNA reveals that the 'extinct' Hunter Island penguin (Tasidyptes hunteri) is not a distinct taxon". Zoological Journal of the Linnean Society. 182 (2): 459–464. doi:10.1093/zoolinnean/zlx043.
  417. ^ Yuesong Gao; Lianjiao Yang; Jianjun Wang; Zhouqing Xie; Yuhong Wang; Liguang Sun (2018). "Penguin colonization following the last glacial-interglacial transition in the Vestfold Hills, East Antarctica". Palaeogeography, Palaeoclimatology, Palaeoecology. 490: 629–639. doi:10.1016/j.palaeo.2017.11.053.
  418. ^ Steven D. Emslie; Ashley McKenzie; William P. Patterson (2018). "The rise and fall of an ancient Adélie penguin 'supercolony' at Cape Adare, Antarctica". Royal Society Open Science. 5 (4): 172032. doi:10.1098/rsos.172032. PMC 5936921. PMID 29765656.
  419. ^ Gerald Mayr; James L. Goedert (2018). "First record of a tarsometatarsus of Tonsala hildegardae (Plotopteridae) and other avian remains from the late Eocene/early Oligocene of Washington State (USA)". Geobios. 51 (1): 51–59. doi:10.1016/j.geobios.2017.12.006.
  420. ^ Junya Watanabe; Hiroshige Matsuoka; Yoshikazu Hasegawa (2018). "Pleistocene fossils from Japan show that the recently extinct Spectacled Cormorant (Phalacrocorax perspicillatus) was a relict". The Auk. 135 (4): 895–907. doi:10.1642/AUK-18-54.1.
  421. ^ Jörn Theuerkauf; Roman Gula (2018). "Indirect evidence for body size reduction in a flightless island bird after human colonisation". Journal of Ornithology. in press. doi:10.1007/s10336-018-1545-0.
  422. ^ Gerald Mayr (2018). "New data on the anatomy and palaeobiology of sandcoleid mousebirds (Aves, Coliiformes) from the early Eocene of Messel". Palaeobiodiversity and Palaeoenvironments. in press. doi:10.1007/s12549-018-0328-1.
  423. ^ Washington Jones; Andrés Rinderknecht; Herculano Alvarenga; Felipe Montenegro; Martín Ubilla (2018). "The last terror birds (Aves, Phorusrhacidae): new evidence from the late Pleistocene of Uruguay". PalZ. 92 (2): 365–372. doi:10.1007/s12542-017-0388-y.
  424. ^ Ulf S. Johansson; Per G. P. Ericson; Mozes P. K. Blom; Martin Irestedt (2018). "The phylogenetic position of the extinct Cuban Macaw Ara tricolor based on complete mitochondrial genome sequences". Ibis. 160 (3): 666–672. doi:10.1111/ibi.12591.
  425. ^ Gerald Mayr; Sophie Hervet; Eric Buffetaut (2018). "On the diverse and widely ignored Paleocene avifauna of Menat (Puy-de-Dôme, France): new taxonomic records and unusual soft tissue preservation". Geological Magazine. in press. doi:10.1017/S0016756818000080.
  426. ^ Daniel J. Field (2018). "Preliminary paleoecological insights from the Pliocene avifauna of Kanapoi, Kenya: Implications for the ecology of Australopithecus anamensis". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2017.08.007. PMID 28966047.
  427. ^ Kari A. Prassack; Michael C. Pante; Jackson K. Njau; Ignacio de la Torre (2018). "The paleoecology of Pleistocene birds from Middle Bed II, at Olduvai Gorge, Tanzania, and the environmental context of the Oldowan-Acheulean transition". Journal of Human Evolution. 120: 32–47. doi:10.1016/j.jhevol.2017.11.003. PMID 29458978.
  428. ^ Lisa Carrera; Marco Pavia; Matteo Romandini; Marco Peresani (2018). "Avian fossil assemblages at the onset of the LGM in the eastern Alps: A palaecological contribution from the Rio Secco Cave (Italy)". Comptes Rendus Palevol. 17 (3): 166–177. doi:10.1016/j.crpv.2017.10.006.
  429. ^ Jessica A. Oswald; David W. Steadman (2018). "The late Quaternary bird community of New Providence, Bahamas". The Auk. 135 (2): 359–377. doi:10.1642/AUK-17-185.1.
  430. ^ Julian P. Hume; David Martill; Richard Hing (2018). "A terrestrial vertebrate palaeontological review of Aldabra Atoll, Aldabra Group, Seychelles". PLoS ONE. 13 (3): e0192675. doi:10.1371/journal.pone.0192675. PMC 5873930. PMID 29590117.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  431. ^ Nikita V. Zelenkov; Thomas A. Stidham; Nicolay V. Martynovich; Natalia V. Volkova; Qiang Li; Zhuding Qiu (2018). "The middle Miocene duck Chenoanas (Aves, Anatidae): new species, phylogeny and geographical range". Papers in Palaeontology. Online edition. doi:10.1002/spp2.1107.
  432. ^ Jacqueline M.T. Nguyen; Michael Archer; Suzanne J. Hand (2018). "Quail-thrush birds from the Miocene of northern Australia". Acta Palaeontologica Polonica. in press. doi:10.4202/app.00485.2018.
  433. ^ Xiaoting Zheng; Jingmai K. O'Connor; Xiaoli Wang; Yan Wang; Zhonghe Zhou (2018). "Reinterpretation of a previously described Jehol bird clarifies early trophic evolution in the Ornithuromorpha". Proceedings of the Royal Society B: Biological Sciences. 285 (1871): 20172494. doi:10.1098/rspb.2017.2494. PMC 5805944. PMID 29386367.
  434. ^ Natalia V. Volkova; Nikita V. Zelenkov (2018). "A scansorial passerine bird (Passeriformes, Certhioidea) from the uppermost Lower Miocene of Eastern Siberia". Paleontological Journal. 52 (1): 58–65. doi:10.1134/S0031030118010148.
  435. ^ a b Ellen K. Mather; Alan J. D. Tennyson; R. Paul Scofield; Vanesa L. De Pietri; Suzanne J. Hand; Michael Archer; Warren D. Handley; Trevor H. Worthy (2018). "Flightless rails (Aves: Rallidae) from the early Miocene St Bathans Fauna, Otago, New Zealand". Journal of Systematic Palaeontology. Online edition. doi:10.1080/14772019.2018.1432710.
  436. ^ a b Gerald Mayr; Vanesa L. De Pietri; Leigh Love; Al A. Mannering; R. Paul Scofield (2018). "A well-preserved new mid-Paleocene penguin (Aves, Sphenisciformes) from the Waipara Greensand in New Zealand". Journal of Vertebrate Paleontology. 37 (6): e1398169. doi:10.1080/02724634.2017.1398169.
  437. ^ Zhiheng Li; Julia A. Clarke; Chad M. Eliason; Thomas A. Stidham; Tao Deng; Zhonghe Zhou (2018). "Vocal specialization through tracheal elongation in an extinct Miocene pheasant from China". Scientific Reports. 8: Article number 8099. doi:10.1038/s41598-018-26178-x. PMC 5970207. PMID 29802379.
  438. ^ Gerald Mayr; Vanesa L. De Pietri; R. Paul Scofield; Thierry Smith (2018). "A fossil heron from the early Oligocene of Belgium – the earliest temporally well‐constrained record of the Ardeidae". Ibis. in press. doi:10.1111/ibi.12600.
  439. ^ Oona M. Takano; David W. Steadman (2018). "Another new species of flightless Rail (Aves: Rallidae: Rallus) from Abaco, The Bahamas". Zootaxa. 4407 (3): 376–382. doi:10.11646/zootaxa.4407.3.5. PMID 29690183.
  440. ^ Hiroshige Matsuoka; Yoshikazu Hasegawa (2018). "Birds around the Minatogawa Man: the Late Pleistocene avian fossil assemblage of the Minatogawa Fissure, southern part of Okinawa Island, Central Ryukyu Islands, Japan" (PDF). Bulletin of Gunma Museum of Natural History. 22: 1–21.
  441. ^ Vanesa L. De Pietri; R. Paul Scofield; Gavin J. Prideaux; Trevor H. Worthy (2018). "A new species of lapwing (Charadriidae: Vanellus) from the late Pliocene of central Australia". Emu - Austral Ornithology. Online edition. doi:10.1080/01584197.2018.1464373.
  442. ^ N. Adam Smith; Aj M. DeBee; Julia A. Clarke (2018). "Systematics and phylogeny of the Zygodactylidae (Aves, Neognathae) with description of a new species from the early Eocene of Wyoming, USA". PeerJ. 6: e4950. doi:10.7717/peerj.4950. PMC 6022727. PMID 29967716. {{cite journal}}: no-break space character in |author2= at position 6 (help); no-break space character in |author3= at position 9 (help)CS1 maint: unflagged free DOI (link)
  443. ^ Charlie A. Navarro; Elizabeth Martin-Silverstone; Thomas L. Stubbs (2018). "Morphometric assessment of pterosaur jaw disparity". Royal Society Open Science. 5 (4): 172130. doi:10.1098/rsos.172130. PMC 5936930. PMID 29765665.
  444. ^ Jordan Bestwick; David M. Unwin; Richard J. Butler; Donald M. Henderson; Mark A. Purnell (2018). "Pterosaur dietary hypotheses: a review of ideas and approaches". Biological Reviews. in press. doi:10.1111/brv.12431. PMID 29877021.
  445. ^ Alexander W.A. Kellner (2015). "Comments on Triassic pterosaurs with discussion about ontogeny and description of new taxa". Anais da Academia Brasileira de Ciências. 87 (2): 669–689. doi:10.1590/0001-3765201520150307. PMID 26131631.
  446. ^ Fabio M. Dalla Vecchia (2018). "Comments on Triassic pterosaurs with a commentary on the "ontogenetic stages" of Kellner (2015) and the validity of Bergamodactylus wildi". Rivista Italiana di Paleontologia e Stratigrafia. 124 (2): 317–341. doi:10.13130/2039-4942/10099.
  447. ^ David M. Unwin; David M. Martill (2018). "Systematic reassessment of the first Jurassic pterosaur from Thailand". In D. W. E. Hone; M. P. Witton; D. M. Martill (eds.). New Perspectives on Pterosaur Palaeobiology. The Geological Society of London. pp. 181–186. doi:10.1144/SP455.13. ISBN 978-1-78620-317-5.
  448. ^ David M. Martill; Nizar Ibrahim; Samir Bouaziz (2018). "A giant pterosaur in the Early Cretaceous (Albian) of Tunisia". Journal of African Earth Sciences. 147: 331–337. doi:10.1016/j.jafrearsci.2018.05.008.
  449. ^ S. Christopher Bennett (2018). "New smallest specimen of the pterosaur Pteranodon and ontogenetic niches in pterosaurs". Journal of Paleontology. 92 (2): 254–271. doi:10.1017/jpa.2017.84.
  450. ^ Leonardo D. Ortiz David; Bernardo J. González Riga; Alexander W.A. Kellner (2018). "Discovery of the largest pterosaur from South America". Cretaceous Research. 83: 40–46. doi:10.1016/j.cretres.2017.10.004.
  451. ^ D. W. E. Hone; S. Jiang; X. Xu (2018). "A taxonomic revision of Noripterus complicidens and Asian members of the Dsungaripteridae". In D. W. E. Hone; M. P. Witton; D. M. Martill (eds.). New Perspectives on Pterosaur Palaeobiology. The Geological Society of London. pp. 149–157. doi:10.1144/SP455.8. ISBN 978-1-78620-317-5.
  452. ^ Richard Buchmann; Taissa Rodrigues; Sabrina Polegario; Alexander W.A. Kellner (2018). "New information on the postcranial skeleton of the Thalassodrominae (Pterosauria, Pterodactyloidea, Tapejaridae)". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1343314.
  453. ^ Rodrigo V. Pêgas; Fabiana R. Costa; Alexander W.A. Kellner (2018). "New information on the osteology and a taxonomic revision of the genus Thalassodromeus (Pterodactyloidea, Tapejaridae, Thalassodrominae)". Journal of Vertebrate Paleontology. 38 (2): e1443273. doi:10.1080/02724634.2018.1443273.
  454. ^ Gregory F. Funston; Elizabeth Martin-Silverstone; Philip J. Currie (2017). "The first pterosaur pelvic material from the Dinosaur Park Formation (Campanian) and implications for azhdarchid locomotion". FACETS. 2: 559–574. doi:10.1139/facets-2016-0067.
  455. ^ Gregory F. Funston; Elizabeth Martin-Silverstone; Philip J. Currie (2018). "Correction: The first pterosaur pelvic material from the Dinosaur Park Formation (Campanian) and implications for azhdarchid locomotion". FACETS. 3: 192–194. doi:10.1139/facets-2018-0006.
  456. ^ Mátyás Vremir; Gareth Dyke; Zoltán Csiki‐Sava; Dan Grigorescu; Eric Buffetaut (2018). "Partial mandible of a giant pterosaur from the uppermost Cretaceous (Maastrichtian) of the Hațeg Basin, Romania". Lethaia. in press. doi:10.1111/let.12268.
  457. ^ a b c d Nicholas R. Longrich; David M. Martill; Brian Andres (2018). "Late Maastrichtian pterosaurs from North Africa and mass extinction of Pterosauria at the Cretaceous-Paleogene boundary". PLOS Biology. 16 (3): e2001663. doi:10.1371/journal.pbio.2001663. PMC 5849296. PMID 29534059.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  458. ^ Stanislas Rigal; David M. Martill; Steven C. Sweetman (2018). "A new pterosaur specimen from the Upper Tunbridge Wells Sand Formation (Cretaceous, Valanginian) of southern England and a review of Lonchodectes sagittirostris (Owen 1874)". In D. W. E. Hone; M. P. Witton; D. M. Martill (eds.). New Perspectives on Pterosaur Palaeobiology. The Geological Society of London. pp. 221–232. doi:10.1144/SP455.5. ISBN 978-1-78620-317-5.
  459. ^ Junchang Lü; Qingjin Meng; Baopeng Wang; Di Liu; Caizhi Shen; Yuguang Zhang (2018). "Short note on a new anurognathid pterosaur with evidence of perching behaviour from Jianchang of Liaoning Province, China". In D. W. E. Hone; M. P. Witton; D. M. Martill (eds.). New Perspectives on Pterosaur Palaeobiology. The Geological Society of London. pp. 95–104. doi:10.1144/SP455.16. ISBN 978-1-78620-317-5.
  460. ^ David M. Martill; David M. Unwin; Nizar Ibrahim; Nick Longrich (2018). "A new edentulous pterosaur from the Cretaceous Kem Kem beds of south eastern Morocco". Cretaceous Research. 84: 1–12. doi:10.1016/j.cretres.2017.09.006.
  461. ^ Sterling J. Nesbitt; Richard J. Butler; Martín D. Ezcurra; Alan J. Charig; Paul M. Barrett (2018). "The anatomy of Teleocrater rhadinus, an early avemetatarsalian from the lower portion of the Lifua Member of the Manda Beds (Middle Triassic)". Journal of Vertebrate Paleontology. 37 (Supplement to No. 6): 142–177. doi:10.1080/02724634.2017.1396539.
  462. ^ Rodrigo Temp Müller; Max Cardoso Langer; Sérgio Dias-da-Silva (2018). "Ingroup relationships of Lagerpetidae (Avemetatarsalia: Dinosauromorpha): a further phylogenetic investigation on the understanding of dinosaur relatives". Zootaxa. 4392 (1): 149–158. doi:10.11646/zootaxa.4392.1.7. PMID 29690420.
  463. ^ Jordi Alexis Garcia Marsà; Federico L. Agnolín; Fernando Novas (2018). "Bone microstructure of Lewisuchus admixtus Romer, 1972 (Archosauria, Dinosauriformes)". Historical Biology: An International Journal of Paleobiology. in press: 1. doi:10.1080/08912963.2017.1347646.
  464. ^ Rafał Piechowski; Grzegorz Niedźwiedzki; Mateusz Tałanda (2018). "Unexpected bird-like features and high intraspecific variation in the braincase of the Triassic relative of dinosaurs". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1418339.
  465. ^ Federico L. Agnolín; Sebastián Rozadilla (2018). "Phylogenetic reassessment of Pisanosaurus mertii Casamiquela, 1967, a basal dinosauriform from the Late Triassic of Argentina". Journal of Systematic Palaeontology. 16 (10): 853–879. doi:10.1080/14772019.2017.1352623.
  466. ^ Matthew G. Baron (2018). "Pisanosaurus mertii and the Triassic ornithischian crisis: could phylogeny offer a solution?". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1410705.
  467. ^ Matthew G. Baron; Megan E. Williams (2018). "A re-evaluation of the enigmatic dinosauriform Caseosaurus crosbyensis from the Late Triassic of Texas, USA and its implications for early dinosaur evolution". Acta Palaeontologica Polonica. 63 (1): 129–145. doi:10.4202/app.00372.2017.
  468. ^ Constanze Bickelmann; Linda A. Tsuji (2018). "A case study of developmental palaeontology in Stereosternum tumidum (Mesosauridae, Parareptilia)". Fossil Record. 21 (1): 109–118. doi:10.5194/fr-21-109-2018.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  469. ^ Yara Haridy; Mark J. Macdougall; Robert R. Reisz (2018). "The lower jaw of the Early Permian parareptile Delorhynchus, first evidence of multiple denticulate coronoids in a reptile". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlx085.
  470. ^ M. L. Turner; C. A. Sidor (2018). "Pathology in a Permian parareptile: congenital malformation of sacral vertebrae". Journal of Zoology. 304 (1): 13–20. doi:10.1111/jzo.12519.
  471. ^ Alexander B. Bradley; Sterling J. Nesbitt (2018). "A possible new specimen of Ruhuhuaria reiszi from the Manda Beds (?Middle Triassic) of southern Tanzania and its implications for small sauropsids in the Triassic". Journal of Vertebrate Paleontology. 37 (Supplement to No. 6): 88–95. doi:10.1080/02724634.2017.1393823.
  472. ^ Nicholas J. Matzke; Randall B. Irmis (2018). "Including autapomorphies is important for paleontological tip-dating with clocklike data, but not with non-clock data". PeerJ. 6: e4553. doi:10.7717/peerj.4553. PMC 5890724. PMID 29637019.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  473. ^ A. R. H. LeBlanc; M. J. MacDougall; Y. Haridy; D. Scott; R. R. Reisz (2018). "Caudal autotomy as anti-predatory behaviour in Palaeozoic reptiles". Scientific Reports. 8: Article number 3328. doi:10.1038/s41598-018-21526-3. PMC 5838224. PMID 29507301.
  474. ^ Yara Haridy; Aaron R. H. LeBlanc; Robert R. Reisz (2018). "The Permian reptile Opisthodontosaurus carrolli: a model for acrodont tooth replacement and dental ontogeny". Journal of Anatomy. 232 (3): 371–382. doi:10.1111/joa.12754. PMID 29210080.
  475. ^ Ben T. Kligman; Adam D. Marsh; William G. Parker (2018). "First records of diapsid Palacrodon from the Norian, Late Triassic Chinle Formation of Arizona, and their biogeographic implications". Acta Palaeontologica Polonica. 63 (1): 117–127. doi:10.4202/app.00426.2017.
  476. ^ Terri J. Cleary; Roger B. J. Benson; Susan E. Evans; Paul M. Barrett (2018). "Lepidosaurian diversity in the Mesozoic–Palaeogene: the potential roles of sampling biases and environmental drivers". Royal Society Open Science. 5 (3): 171830. doi:10.1098/rsos.171830. PMC 5882712. PMID 29657788.
  477. ^ Aileen O’Brien; David I. Whiteside; John E. A. Marshall (2018). "Anatomical study of two previously undescribed specimens of Clevosaurus hudsoni (Lepidosauria: Rhynchocephalia) from Cromhall Quarry, UK, aided by computed tomography, yields additional information on the skeleton and hitherto undescribed bones". Zoological Journal of the Linnean Society. 183 (1): 163–195. doi:10.1093/zoolinnean/zlx087.
  478. ^ Marc E. H. Jones; Peter W. Lucas; Abigail S. Tucker; Amy P. Watson; Joseph J. W. Sertich; John R. Foster; Ruth Williams; Ulf Garbe; Joseph J. Bevitt; Floriana Salvemini (2018). "Neutron scanning reveals unexpected complexity in the enamel thickness of an herbivorous Jurassic reptile". Journal of the Royal Society Interface. 15 (143): 20180039. doi:10.1098/rsif.2018.0039. PMID 29899156.
  479. ^ Rainer R. Schoch; Hans-Dieter Sues (2018). "Osteology of the Middle Triassic stem-turtle Pappochelys rosinae and the early evolution of the turtle skeleton". Journal of Systematic Palaeontology. 16 (11): 927–965. doi:10.1080/14772019.2017.1354936.
  480. ^ Susan R. Beardmore; Heinz Furrer (2018). "Land or water: using taphonomic models to determine the lifestyle of the Triassic protorosaur Tanystropheus (Diapsida, Archosauromorpha)". Palaeobiodiversity and Palaeoenvironments. 98 (2): 243–258. doi:10.1007/s12549-017-0299-7.
  481. ^ Silvio Renesto; Franco Saller (2018). "Evidences for a semi aquatic life style in the Triassic diapsid reptile Tanystropheus". Rivista Italiana di Paleontologia e Stratigrafia. 124 (1): 23–34. doi:10.13130/2039-4942/9541.
  482. ^ Adriel R. Gentil; Martín D. Ezcurra (2018). "Reconstruction of the masticatory apparatus of the holotype of the rhynchosaur Hyperodapedon sanjuanensis (Sill, 1970) from the Late Triassic of Argentina: implications for the diagnosis of the species". Ameghiniana. 55 (2): 137–149. doi:10.5710/AMGH.17.10.2017.3132.
  483. ^ Adriel R. Gentil; Martín D. Ezcurra (2018). "A new rhynchosaur maxillary tooth plate morphotype expands the disparity of the group in the Ischigualasto Formation (Late Triassic) of Northwestern Argentina". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1438425.
  484. ^ Magdalena Borsuk-Białynicka (2018). "Diversity of diapsid fifth metatarsals from the Lower Triassic karst deposits of Czatkowice, southern Poland—functional and phylogenetic implications". Acta Palaeontologica Polonica. in press. doi:10.4202/app.00444.2017.
  485. ^ Emily Keeble; David I. Whiteside; Michael J. Benton (2018). "The terrestrial fauna of the Late Triassic Pant-y-ffynnon Quarry fissures, South Wales, UK and a new species of Clevosaurus (Lepidosauria: Rhynchocephalia)". Proceedings of the Geologists' Association. 129 (2): 99–119. doi:10.1016/j.pgeola.2017.11.001.
  486. ^ Adam C. Pritchard; Jacques A. Gauthier; Michael Hanson; Gabriel S. Bever; Bhart-Anjan S. Bhullar (2018). "A tiny Triassic saurian from Connecticut and the early evolution of the diapsid feeding apparatus". Nature Communications. 9: Article number 1213. doi:10.1038/s41467-018-03508-1. PMC 5865133. PMID 29572441.
  487. ^ Jun Liu; Gabriel S. Bever (2018). "The tetrapod fauna of the upper Permian Naobaogou Formation of China: a new species of Elginia (Parareptilia, Pareiasauria)". Papers in Palaeontology. 4 (2): 197–209. doi:10.1002/spp2.1105.
  488. ^ Jorge A. Herrera-Flores; Thomas L. Stubbs; Armin Elsler; Michael J. Benton (2018). "Taxonomic reassessment of Clevosaurus latidens Fraser, 1993 (Lepidosauria, Rhynchocephalia) and rhynchocephalian phylogeny based on parsimony and Bayesian inference". Journal of Paleontology. 92 (4): 734–742. doi:10.1017/jpa.2017.136.
  489. ^ Rainer R. Schoch; Hans-Dieter Sues (2018). "A new lepidosauromorph reptile from the Middle Triassic (Ladinian) of Germany and its phylogenetic relationships". Journal of Vertebrate Paleontology. 38 (2): e1444619. doi:10.1080/02724634.2018.1444619.
  490. ^ Sean P. Modesto; Diane Scott; Robert R. Reisz (2018). "A new small captorhinid reptile from the lower Permian of Oklahoma and resource partitioning among small captorhinids in the Richards Spur fauna". Papers in Palaeontology. 4 (2): 293–307. doi:10.1002/spp2.1109.
  491. ^ Linda A. Tsuji (2018). "Mandaphon nadra, gen. et sp. nov., a new procolophonid from the Manda Beds of Tanzania". Journal of Vertebrate Paleontology. 37 (Supplement to No. 6): 80–87. doi:10.1080/02724634.2017.1413383.
  492. ^ Marco Romano; Neil Brocklehurst; Jörg Fröbisch (2018). "The postcranial skeleton of Ennatosaurus tecton (Synapsida, Caseidae)". Journal of Systematic Palaeontology. in press. doi:10.1080/14772019.2017.1367729.
  493. ^ Marco Romano; Paolo Citton; Simone Maganuco; Eva Sacchi; Martina Caratelli; Ausonio Ronchi; Umberto Nicosia (2018). "New basal synapsid discovery at the Permian outcrop of Torre del Porticciolo (Alghero, Italy)". Geological Journal. in press. doi:10.1002/gj.3250.
  494. ^ Ashley Kruger; Bruce S. Rubidge; Fernando Abdala (2018). "A juvenile specimen of Anteosaurus magnificus Watson, 1921 (Therapsida: Dinocephalia) from the South African Karoo, and its implications for understanding dinocephalian ontogeny". Journal of Systematic Palaeontology. 16 (2): 139–158. doi:10.1080/14772019.2016.1276106.
  495. ^ Christen D. Shelton; Anusuya Chinsamy; Bruce M. Rothschild (2018). "Osteomyelitis in a 265-million-year-old titanosuchid (Dinocephalia, Therapsida)". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1419348.
  496. ^ Julien Benoit; Kenneth D. Angielczyk; Juri A. Miyamae; Paul Manger; Vincent Fernandez; Bruce Rubidge (2018). "Evolution of facial innervation in anomodont therapsids (Synapsida): Insights from X-ray computerized microtomography". Journal of Morphology. 279 (5): 673–701. doi:10.1002/jmor.20804. PMID 29464761.
  497. ^ Kévin Rey; Michael O. Day; Romain Amiot; Jean Goedert; Christophe Lécuyer; Judith Sealy; Bruce S. Rubidge (2018). "Stable isotope record implicates aridification without warming during the late Capitanian mass extinction". Gondwana Research. 59: 1–8. doi:10.1016/j.gr.2018.02.017.
  498. ^ Savannah L. Olroyd; Christian A. Sidor; Kenneth D. Angielczyk (2018). "New materials of the enigmatic dicynodont Abajudon kaayai (Therapsida, Anomodontia) from the lower Madumabisa Mudstone Formation, middle Permian of Zambia". Journal of Vertebrate Paleontology. 37 (6): e1403442. doi:10.1080/02724634.2017.1403442.
  499. ^ Ricardo Araújo; Vincent Fernandez; Richard D. Rabbitt; Eric G. Ekdale; Miguel T. Antunes; Rui Castanhinha; Jörg Fröbisch; Rui M. S. Martins (2018). "Endothiodon cf. bathystoma (Synapsida: Dicynodontia) bony labyrinth anatomy, variation and body mass estimates". PLoS ONE. 13 (3): e0189883. doi:10.1371/journal.pone.0189883. PMC 5851538. PMID 29538421.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  500. ^ Kenneth D. Angielczyk; P. John Hancox; Ali Nabavizadeh (2018). "A redescription of the Triassic kannemeyeriiform dicynodont Sangusaurus (Therapsida, Anomodontia), with an analysis of its feeding system". Journal of Vertebrate Paleontology. 37 (Supplement to No. 6): 189–227. doi:10.1080/02724634.2017.1395885.
  501. ^ Christian F. Kammerer; Kenneth D. Angielczyk; Sterling J. Nesbitt (2018). "Novel hind limb morphology in a kannemeyeriiform dicynodont from the Manda Beds (Songea Group, Ruhuhu Basin) of Tanzania". Journal of Vertebrate Paleontology. 37 (Supplement to No. 6): 178–188. doi:10.1080/02724634.2017.1309422.
  502. ^ Valeria Susana Perez Loinaze; Ezequiel Ignacio Vera; Lucas Ernesto Fiorelli; Julia Brenda Desojo (2018). "Palaeobotany and palynology of coprolites from the Late Triassic Chañares Formation of Argentina: implications for vegetation provinces and the diet of dicynodonts". Palaeogeography, Palaeoclimatology, Palaeoecology. 502: 31–51. doi:10.1016/j.palaeo.2018.04.003.
  503. ^ Rachel N. O'Meara; Wendy Dirks; Agustín G. Martinelli (2018). "Enamel formation and growth in non-mammalian cynodonts". Royal Society Open Science. 5 (5): 172293. doi:10.1098/rsos.172293. PMC 5990740. PMID 29892415.
  504. ^ Elize Butler; Fernando Abdala; Jennifer Botha‐Brink (2018). "Postcranial morphology of the Early Triassic epicynodont Galesaurus planiceps (Owen) from the Karoo Basin, South Africa". Papers in Palaeontology. in press. doi:10.1002/spp2.1220.
  505. ^ Marc van den Brandt; Fernando Abdala (2018). "Cranial morphology and phylogenetic analysis of Cynosaurus suppostus (Therapsida, Cynodontia) from the upper Permian of the Karoo Basin, South Africa". Palaeontologia africana. 52: 201–221.
  506. ^ Brenen M. Wynd; Brandon R. Peecook; Megan R. Whitney; Christian A. Sidor (2018). "The first occurrence of Cynognathus crateronotus (Cynodontia: Cynognathia) in Tanzania and Zambia, with implications for the age and biostratigraphic correlation of Triassic strata in southern Pangea". Journal of Vertebrate Paleontology. 37 (Supplement to No. 6): 228–239. doi:10.1080/02724634.2017.1421548.
  507. ^ Leandro C. Gaetano; Helke Mocke; Fernando Abdala (2018). "The postcranial anatomy of Diademodon tetragonus (Cynodontia, Cynognathia)". Journal of Vertebrate Paleontology. 38 (3): e1451872. doi:10.1080/02724634.2018.1451872.
  508. ^ Christian A. Sidor; James A. Hopson (2018). "Cricodon metabolus (Cynodontia: Gomphodontia) from the Triassic Ntawere Formation of northeastern Zambia: patterns of tooth replacement and a systematic review of the Trirachodontidae". Journal of Vertebrate Paleontology. 37 (Supplement to No. 6): 39–64. doi:10.1080/02724634.2017.1410485.
  509. ^ Phil H. Lai; Andrew A. Biewener; Stephanie E. Pierce (2018). "Three-dimensional mobility and muscle attachments in the pectoral limb of the Triassic cynodont Massetognathus pascuali (Romer, 1967)". Journal of Anatomy. 232 (3): 383–406. doi:10.1111/joa.12766. PMID 29392730.
  510. ^ Fábio Hiratsuka Veiga; Jennifer Botha-Brink; Marina Bento Soares (2018). "Osteohistology of the non-mammaliaform traversodontids Protuberum cabralense and Exaeretodon riograndensis from southern Brazil". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1441292.
  511. ^ Cristian P. Pacheco; Agustín G. Martinelli; Ane E. B. Pavanatto; Marina B. Soares; Sérgio Dias-da-Silva (2018). "Prozostrodon brasiliensis, a probainognathian cynodont from the Late Triassic of Brazil: second record and improvements on its dental anatomy". Historical Biology: An International Journal of Paleobiology. 30 (4): 475–485. doi:10.1080/08912963.2017.1292423.
  512. ^ Jennifer Botha-Brink; Marina Bento Soares; Agustín G. Martinelli (2018). "Osteohistology of Late Triassic prozostrodontian cynodonts from Brazil". PeerJ. 6: e5029. doi:10.7717/peerj.5029. PMC 6026457. PMID 29967724.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  513. ^ José F. Bonaparte; A. W. Crompton (2018). "Origin and relationships of the Ictidosauria to non-mammalian cynodonts and mammals". Historical Biology: An International Journal of Paleobiology. 30 (1–2): 174–182. doi:10.1080/08912963.2017.1329911.
  514. ^ Pablo Gusmão Rodrigues; Agustín G. Martinelli; Cesar Leandro Schultz; Ian J. Corfe; Pamela G. Gill; Marina B. Soares; Emily J. Rayfield (2018). "Digital cranial endocast of Riograndia guaibensis (Late Triassic, Brazil) sheds light on the evolution of the brain in non-mammalian cynodonts". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1427742.
  515. ^ Lucas E. Fiorelli; Sebastián Rocher; Agustín G. Martinelli; Martín D. Ezcurra; E. Martín Hechenleitner; Miguel Ezpeleta (2018). "Tetrapod burrows from the Middle–Upper Triassic Chañares Formation (La Rioja, Argentina) and its palaeoecological implications". Palaeogeography, Palaeoclimatology, Palaeoecology. 496: 85–102. doi:10.1016/j.palaeo.2018.01.026.
  516. ^ a b Frederik Spindler; Ralf Werneburg; Joerg W. Schneider; Ludwig Luthardt; Volker Annacker; Ronny Rößler (2018). "First arboreal 'pelycosaurs' (Synapsida: Varanopidae) from the early Permian Chemnitz Fossil Lagerstätte, SE Germany, with a review of varanopid phylogeny". PalZ. 92 (2): 315–364. doi:10.1007/s12542-018-0405-9.
  517. ^ Christian F. Kammerer; Vladimir Masyutin (2018). "A new therocephalian (Gorynychus masyutinae gen. et sp. nov.) from the Permian Kotelnich locality, Kirov Region, Russia". PeerJ. 6: e4933. doi:10.7717/peerj.4933. PMC 5995100. PMID 29900076. {{cite journal}}: no-break space character in |author1= at position 13 (help); no-break space character in |author2= at position 9 (help); no-break space character in |title= at position 48 (help)CS1 maint: unflagged free DOI (link)
  518. ^ Michael O. Day; Roger M. H. Smith; Julien Benoit; Vincent Fernandez; Bruce S. Rubidge (2018). "A new species of burnetiid (Therapsida, Burnetiamorpha) from the early Wuchiapingian of South Africa and implications for the evolutionary ecology of the family Burnetiidae". Papers in Palaeontology. Online edition. doi:10.1002/spp2.1114.
  519. ^ Christian F. Kammerer; Vladimir Masyutin (2018). "Gorgonopsian therapsids (Nochnitsa gen. nov. and Viatkogorgon) from the Permian Kotelnich locality of Russia". PeerJ. 6: e4954. doi:10.7717/peerj.4954. PMC 5995105. PMID 29900078. {{cite journal}}: no-break space character in |author1= at position 13 (help); no-break space character in |author2= at position 9 (help); no-break space character in |title= at position 53 (help)CS1 maint: unflagged free DOI (link)
  520. ^ Christian F. Kammerer (2018). "The first skeletal evidence of a dicynodont from the lower Elliot Formation of South Africa". Palaeontologia africana. 52: 102–128.
  521. ^ Tomasz Sulej; Grzegorz Niedźwiedzki; Mateusz Tałanda; Dawid Dróżdż; Ewa Hara (2018). "A new early Late Triassic non-mammaliaform eucynodont from Poland". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1471477.
  522. ^ Frances S. Dunn; Alexander G. Liu; Philip C. J. Donoghue (2018). "Ediacaran developmental biology". Biological Reviews. 93 (2): 914–932. doi:10.1111/brv.12379. PMID 29105292.
  523. ^ Lily M. Reid; Diego C. García-Bellido; James G. Gehling (2018). "An Ediacaran opportunist? Characteristics of a juvenile Dickinsonia costata population from Crisp Gorge, South Australia". Journal of Paleontology. 92 (3): 313–322. doi:10.1017/jpa.2017.142.
  524. ^ Tatsuo Oji; Stephen Q. Dornbos; Keigo Yada; Hitoshi Hasegawa; Sersmaa Gonchigdorj; Takafumi Mochizuki; Hideko Takayanagi; Yasufumi Iryu (2018). "Penetrative trace fossils from the late Ediacaran of Mongolia: early onset of the agronomic revolution". Royal Society Open Science. 5 (2): 172250. doi:10.1098/rsos.172250. PMC 5830798. PMID 29515908.
  525. ^ Luis A. Buatois; John Almond; M. Gabriela Mángano; Sören Jensen; Gerard J. B. Germs (2018). "Sediment disturbance by Ediacaran bulldozers and the roots of the Cambrian explosion". Scientific Reports. 8: Article number 4514. doi:10.1038/s41598-018-22859-9. PMC 5852133. PMID 29540817.
  526. ^ Zhe Chen; Xiang Chen; Chuanming Zhou; Xunlai Yuan; Shuhai Xiao (2018). "Late Ediacaran trackways produced by bilaterian animals with paired appendages". Science Advances. 4 (6): eaao6691. doi:10.1126/sciadv.aao6691. PMC 5990303. PMID 29881773.
  527. ^ Felicity J. Coutts; Corey J.A. Bradshaw; Diego C. García-Bellido; James G. Gehling (2018). "Evidence of sensory-driven behavior in the Ediacaran organism Parvancorina: Implications and autecological interpretations". Gondwana Research. 55: 21–29. doi:10.1016/j.gr.2017.10.009.
  528. ^ Marc Laflamme; James G. Gehling; Mary L. Droser (2018). "Deconstructing an Ediacaran frond: three-dimensional preservation of Arborea from Ediacara, South Australia". Journal of Paleontology. 92 (3): 323–335. doi:10.1017/jpa.2017.128.
  529. ^ Akshay Mehra; Adam Maloof (2018). "Multiscale approach reveals that Cloudina aggregates are detritus and not in situ reef constructions". Proceedings of the National Academy of Sciences of the United States of America. 115 (11): E2519–E2527. doi:10.1073/pnas.1719911115. PMC 5856547. PMID 29483244.
  530. ^ Rachel Wood; Amelia Penny (2018). "Substrate growth dynamics and biomineralization of an Ediacaran encrusting poriferan". Proceedings of the Royal Society B: Biological Sciences. 285 (1870): 20171938. doi:10.1098/rspb.2017.1938. PMC 5784191. PMID 29321296.
  531. ^ David Gold (2018). "Life in changing fluids: A critical appraisal of swimming animals before the Cambrian". Integrative and Comparative Biology. in press. doi:10.1093/icb/icy015. PMID 29726896.
  532. ^ Chuan Yang; Xian-Hua Li; Maoyan Zhu; Daniel J. Condon; Junyuan Chen (2018). "Geochronological constraint on the Cambrian Chengjiang biota, South China". Journal of the Geological Society. in press. doi:10.1144/jgs2017-103.
  533. ^ Julien Kimmig; Brian R. Pratt (2018). "Coprolites in the Ravens Throat River Lagerstätte of northwestern Canada: implications for the middle Cambrian food web". Palaios. 33 (4): 125–140. doi:10.2110/palo.2017.038.
  534. ^ Zongjun Yin; Duoduo Zhao; Bing Pan; Fangchen Zhao; Han Zeng; Guoxiang Li; David J. Bottjer; Maoyan Zhu (2018). "Early Cambrian animal diapause embryos revealed by X-ray tomography". Geology. 46 (5): 387–390. doi:10.1130/G40081.1.
  535. ^ Joseph P. Botting; Lucy A. Muir (2018). "Dispersal and endemic diversification: Differences in non-lithistid spiculate sponge faunas between the Cambrian Explosion and the GOBE". Palaeoworld. in press. doi:10.1016/j.palwor.2018.03.002.
  536. ^ Joseph P. Botting; Lucy A. Muir; Wenhui Wang; Wenkun Qie; Jingqiang Tan; Linna Zhang; Yuandong Zhang (2018). "Sponge-dominated offshore benthic ecosystems across South China in the aftermath of the end-Ordovician mass extinction". Gondwana Research. in press. doi:10.1016/j.gr.2018.04.014.
  537. ^ Astrid Schuster; Sergio Vargas; Ingrid S. Knapp; Shirley A. Pomponi; Robert J. Toonen; Dirk Erpenbeck; Gert Wörheide (2018). "Divergence times in demosponges (Porifera): first insights from new mitogenomes and the inclusion of fossils in a birth-death clock model". BMC Evolutionary Biology. 18: 114. doi:10.1186/s12862-018-1230-1.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  538. ^ Ben J. Slater; Sebastian Willman; Graham E. Budd; John S. Peel (2018). "Widespread preservation of small carbonaceous fossils (SCFs) in the early Cambrian of North Greenland". Geology. 46 (2): 107–110. doi:10.1130/G39788.1.
  539. ^ Christian B. Skovsted; Timothy P. Topper (2018). "Mobergellans from the early Cambrian of Greenland and Labrador: new morphological details and implications for the functional morphology of mobergellans". Journal of Paleontology. 92 (1): 71–79. doi:10.1017/jpa.2017.41.
  540. ^ Leanne Chambers; Danita Brandt (2018). "Explaining gregarious behaviour in Banffia constricta from the Middle Cambrian Burgess Shale, British Columbia". Lethaia. 51 (1): 120–125. doi:10.1111/let.12231.
  541. ^ Yujing Li; Mark Williams; Sarah E. Gabbott; Ailin Chen; Peiyun Cong; Xianguang Hou (2018). "The enigmatic metazoan Yuyuanozoon magnificissimi from the early Cambrian Chengjiang Biota, Yunnan Province, South China". Journal of Paleontology. in press. doi:10.1017/jpa.2018.18.
  542. ^ Michael Foote; Roger A. Cooper; James S. Crampton; Peter M. Sadler (2018). "Diversity-dependent evolutionary rates in early Palaeozoic zooplankton". Proceedings of the Royal Society B: Biological Sciences. 285 (1873): 20180122. doi:10.1098/rspb.2018.0122. PMC 5832717. PMID 29491177.
  543. ^ James S. Crampton; Stephen R. Meyers; Roger A. Cooper; Peter M. Sadler; Michael Foote; David Harte (2018). "Pacing of Paleozoic macroevolutionary rates by Milankovitch grand cycles". Proceedings of the National Academy of Sciences of the United States of America. 115 (22): 5686–5691. doi:10.1073/pnas.1714342115. PMC 5984487. PMID 29760070.
  544. ^ Shixue Hu; Bernd-D. Erdtmann; Michael Steiner; Yuandong Zhang; Fangchen Zhao; Zhiliang Zhang; Jian Han (2018). "Malongitubus: a possible pterobranch hemichordate from the early Cambrian of South China". Journal of Paleontology. 92 (1): 26–32. doi:10.1017/jpa.2017.134.
  545. ^ Khaoula Kouraiss; Khadija El Hariri; Abderrazak El Albani; Abdelfattah Azizi; Arnaud Mazurier; Jean Vannier (2018). "X-ray microtomography applied to fossils preserved in compression: Palaeoscolescid worms from the Lower Ordovician Fezouata Shale". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2018.07.012.
  546. ^ Stephen Pates; Allison C. Daley (2017). "Caryosyntrips: a radiodontan from the Cambrian of Spain, USA and Canada". Papers in Palaeontology. 3 (3): 461–470. doi:10.1002/spp2.1084.
  547. ^ a b José A. Gámez Vintaned; Andrey Y. Zhuravlev (2018). "Comment on "Aysheaia prolata from the Utah Wheeler Formation (Drumian, Cambrian) is a frontal appendage of the radiodontan Stanleycaris" by Stephen Pates, Allison C. Daley, and Javier Ortega-Hernández". Acta Palaeontologica Polonica. 63 (1): 103–104. doi:10.4202/app.00335.2017.
  548. ^ a b c Stephen Pates; Allison C. Daley; Javier Ortega-Hernández (2018). "Reply to Comment on "Aysheaia prolata from the Utah Wheeler Formation (Drumian, Cambrian) is a frontal appendage of the radiodontan Stanleycaris" with the formal description of Stanleycaris". Acta Palaeontologica Polonica. 63 (1): 105–110. doi:10.4202/app.00443.2017.
  549. ^ Allison C. Daley; Jonathan B. Antcliffe; Harriet B. Drage; Stephen Pates (2018). "Early fossil record of Euarthropoda and the Cambrian Explosion". Proceedings of the National Academy of Sciences of the United States of America. 115 (21): 5323–5331. doi:10.1073/pnas.1719962115. PMC 6003487. PMID 29784780.
  550. ^ Jianni Liu; Rudy Lerosey-Aubril; Michael Steiner; Jason A. Dunlop; Degan Shu; John R. Paterson (2018). "Origin of raptorial feeding in juvenile euarthropods revealed by a Cambrian radiodontan". National Science Review. in press. doi:10.1093/nsr/nwy057.
  551. ^ K. A. Sheppard; D. E. Rival; J.-B. Caron (2018). "On the hydrodynamics of Anomalocaris tail fins". Integrative and Comparative Biology. in press. doi:10.1093/icb/icy014. PMID 29697774.
  552. ^ Javier Ortega-Hernández; Dongjing Fu; Xingliang Zhang; Degan Shu (2018). "Gut glands illuminate trunk segmentation in Cambrian fuxianhuiids". Current Biology. 28 (4): R146–R147. doi:10.1016/j.cub.2018.01.040. PMID 29462577.
  553. ^ Jianni Liu; Michael Steiner; Jason A. Dunlop; Degan Shu (2018). "Microbial decay analysis challenges interpretation of putative organ systems in Cambrian fuxianhuiids". Proceedings of the Royal Society B: Biological Sciences. 285 (1876): 20180051. doi:10.1098/rspb.2018.0051. PMC 5904315. PMID 29643211.
  554. ^ Tae-Yoon S. Park; Ji-Hoon Kihm; Jusun Woo; Changkun Park; Won Young Lee; M. Paul Smith; David A. T. Harper; Fletcher Young; Arne T. Nielsen; Jakob Vinther (2018). "Brain and eyes of Kerygmachela reveal protocerebral ancestry of the panarthropod head". Nature Communications. 9: Article number 1019. doi:10.1038/s41467-018-03464-w. PMC 5844904. PMID 29523785.
  555. ^ Mike B. Meyer; G. Robert Ganis; Jacalyn M. Wittmer; Jan A. Zalasiewicz; Kenneth De Baets (2018). "A Late Ordovician planktic assemblage with exceptionally preserved soft-bodied problematica from the Martinsburg Formation, Pennsylvania". Palaios. 33 (1): 36–46. doi:10.2110/palo.2017.036.
  556. ^ S. L. Cobain; D. M. Hodgson; J. Peakall; P. B. Wignall; M. R. D. Cobain (2018). "A new macrofaunal limit in the deep biosphere revealed by extreme burrow depths in ancient sediments". Scientific Reports. 8: Article number 261. doi:10.1038/s41598-017-18481-w. PMC 5762628. PMID 29321598.
  557. ^ Magdalena N. Georgieva; Crispin T. S. Little; Jonathan S. Watson; Mark A. Sephton; Alexander D. Ball; Adrian G. Glover (2018). "Identification of fossil worm tubes from Phanerozoic hydrothermal vents and cold seeps". Journal of Systematic Palaeontology. in press. doi:10.1080/14772019.2017.1412362.
  558. ^ Zhi-liang Zhang; Christian B. Skovsted; Zhi-fei Zhang (2018). "A hyolithid without helens preserving the oldest hyolith muscle scars; palaeobiology of Paramicrocornus from the Shujingtuo Formation (Cambrian Series 2) of South China". Palaeogeography, Palaeoclimatology, Palaeoecology. 489: 1–14. doi:10.1016/j.palaeo.2017.07.021.
  559. ^ Hai-Jing Sun; Fang-Chen Zhao; Rong-Qin Wen; Han Zeng; Jin Peng (2018). "Feeding strategy and locomotion of Cambrian hyolithides". Palaeoworld. in press. doi:10.1016/j.palwor.2018.03.003.
  560. ^ Vivianne Berg-Madsen; Martin Valent; Jan Ove R. Ebbestad (2018). "An orthothecid hyolith with a digestive tract from the early Cambrian of Bornholm, Denmark". GFF. 140 (1): 25–37. doi:10.1080/11035897.2018.1432680.
  561. ^ Jongsun Hong; Jae-Ryong Oh; Jeong-Hyun Lee; Suk-Joo Choh; Dong-Jin Lee (2018). "The earliest evolutionary link of metazoan bioconstruction: Laminar stromatoporoid–bryozoan reefs from the Middle Ordovician of Korea". Palaeogeography, Palaeoclimatology, Palaeoecology. 492: 126–133. doi:10.1016/j.palaeo.2017.12.018.
  562. ^ Michał Zatoń; Grzegorz Niedźwiedzki; Michał Rakociński; Henning Blom; Benjamin P. Kear (2018). "Earliest Triassic metazoan bioconstructions in East Greenland reveal a pioneering benthic community from immediately after the end-Permian mass extinction". Global and Planetary Change. 167: 87–98. doi:10.1016/j.gloplacha.2018.05.009.
  563. ^ Raymond R. Rogers; Kristina A. Curry Rogers; Brian C. Bagley; James J. Goodin; Joseph H. Hartman; Jeffrey T. Thole; Michał Zatoń (2018). "Pushing the record of trematode parasitism of bivalves upstream and back to the Cretaceous". Geology. 46 (5): 431–434. doi:10.1130/G40035.1.
  564. ^ Elizabeth M. Harper; J. Alistair Crame; Caroline E. Sogot (2018). ""Business as usual": Drilling predation across the K-Pg mass extinction event in Antarctica". Palaeogeography, Palaeoclimatology, Palaeoecology. 498: 115–126. doi:10.1016/j.palaeo.2018.03.009.
  565. ^ a b c d Emanuela Di Martino; Paul D. Taylor (2018). "Early Pleistocene and Holocene bryozoans from Indonesia". Zootaxa. 4419 (1): 1–70. doi:10.11646/zootaxa.4419.1.1.
  566. ^ a b c d Anna V. Koromyslova; Silviu O. Martha; Alexey V. Pakhnevich (2018). "The internal morphology of Acoscinopleura Voigt, 1956 (Cheilostomata, Bryozoa) from the Campanian–Maastrichtian of Central and Eastern Europe". PalZ. 92 (2): 241–266. doi:10.1007/s12542-017-0385-1.
  567. ^ a b Anna V. Koromyslova; Evgeny Yu. Baraboshkin; Silviu O. Martha (2018). "Late Campanian to late Maastrichtian bryozoans encrusting on belemnite rostra from the Aktolagay Plateau in western Kazakhstan". Geobios. in press. doi:10.1016/j.geobios.2018.06.001.
  568. ^ a b Paul D. Taylor; Silviu O. Martha; Dennis P. Gordon (2018). "Synopsis of 'onychocellid' cheilostome bryozoan genera". Journal of Natural History. 52 (25–26): 1657–1721. doi:10.1080/00222933.2018.1481235.
  569. ^ Jie Yang; Javier Ortega-Hernández; David A. Legg; Tian Lan; Jin-bo Hou; Xi-guang Zhang (2018). "Early Cambrian fuxianhuiids from China reveal origin of the gnathobasic protopodite in euarthropods". Nature Communications. 9: Article number 470. doi:10.1038/s41467-017-02754-z. PMC 5794847. PMID 29391458.
  570. ^ Pei-Yun Cong; Thomas H. P. Harvey; Mark Williams; David J. Siveter; Derek J. Siveter; Sarah E. Gabbott; Yu-Jing Li; Fan Wei; Xian-Guang Hou (2018). "Naked chancelloriids from the lower Cambrian of China show evidence for sponge-type growth". Proceedings of the Royal Society B: Biological Sciences. 285 (1881): 20180296. doi:10.1098/rspb.2018.0296. PMID 29925613.
  571. ^ Juan Luis Suárez Andrés; Patrick N. Wyse Jackson (2018). "First report of a Palaeozoic fenestrate bryozoan with an articulated growth habit". Journal of Iberian Geology. 44 (2): 273–283. doi:10.1007/s41513-018-0054-6.
  572. ^ a b c d Leandro M. Pérez; Juan López-Gappa; Miguel Griffin (2018). "Taxonomic status of some species of Aspidostomatidae (Bryozoa, Cheilostomata) from the Oligocene and Miocene of Patagonia (Argentina)". Journal of Paleontology. 92 (3): 432–441. doi:10.1017/jpa.2017.143.
  573. ^ Yunhuan Liu; Qi Wang; Tiequan Shao; Huaqiao Zhang; Jiachen Qin; Li Chen; Yongchun Liang; Cheng Chen; Jiaqi Xue; Xiaowen Liu (2018). "New material of three-dimensionally phosphatized and microscopic cycloneuralians from the Cambrian Paibian Stage of South China". Journal of Paleontology. 92 (1): 87–98. doi:10.1017/jpa.2017.40.
  574. ^ Paul D. Taylor; Soledad Brezina (2018). "A new Cenozoic cyclostome bryozoan genus from Argentina and New Zealand: strengthening the biogeographical links between South America and Australasia". Alcheringa: an Australasian Journal of Palaeontology. in press. doi:10.1080/03115518.2018.1432073.
  575. ^ Alfons H.M. VandenBerg (2018). "Fragmentation as a novel propagation strategy in an Early Ordovician graptolite". Alcheringa: an Australasian Journal of Palaeontology. 42 (1): 1–9. doi:10.1080/03115518.2017.1395074.
  576. ^ José Antonio Gámez Vintaned; Eladio Liñán; David Navarro; Andrey Yu. Zhuravlev (2018). "The oldest Cambrian skeletal fossils of Spain (Cadenas Ibéricas, Aragón)". Geological Magazine. in press: 1. doi:10.1017/S0016756817000358.
  577. ^ E.N. Malysheva (2018). "A new sphinctozoan species (Porifera), Colospongia lenis sp. nov., from the Upper Permian reefs of southern Primorye". Paleontological Journal. 52 (3): 231–233. doi:10.1134/S0031030118030085.
  578. ^ Juan Carlos Gutiérrez-Marco; Olev Vinn (2018). "Cornulitids (tubeworms) from the Late Ordovician Hirnantia fauna of Morocco". Journal of African Earth Sciences. 137: 61–68. doi:10.1016/j.jafrearsci.2017.10.005.
  579. ^ Haijing Sun; John M. Malinky; Maoyan Zhu; Diying Huang (2018). "Palaeobiology of orthothecide hyoliths from the Cambrian Manto Formation of Hebei Province, North China". Acta Palaeontologica Polonica. 63 (1): 87–101. doi:10.4202/app.00413.2017.
  580. ^ Andrej Ernst; Karl Krainer; Spencer G. Lucas (2018). "Bryozoan fauna of the Lake Valley Formation (Mississippian), New Mexico". Journal of Paleontology. 92 (4): 577–595. doi:10.1017/jpa.2017.146.
  581. ^ a b c d e John S. Peel; Sebastian Willman (2018). "The Buen Formation (Cambrian Series 2) biota of North Greenland". Papers in Palaeontology. Online edition. doi:10.1002/spp2.1112.
  582. ^ Alfons H.M. Vandenberg (2018). "Didymograptellus kremastus n. sp., a new name for the Chewtonian (mid-Floian, Lower Ordovician) graptolite D. protobifidus sensu Benson & Keble, 1935, non Elles, 1933". Alcheringa: an Australasian Journal of Palaeontology. 42 (2): 258–267. doi:10.1080/03115518.2017.1398347.
  583. ^ a b c Emanuela Di Martino; Silviu O. Martha; Paul D. Taylor (2018). "The Madagascan Maastrichtian bryozoans of Ferdinand Canu – Systematic revision and scanning electron microscopic study". Annales de Paléontologie. 104 (2): 101–128. doi:10.1016/j.annpal.2018.04.001.
  584. ^ a b Seyed Hamid Vaziri; Mahmoud Reza Majidifard; Marc Laflamme (2018). "Diverse assemblage of Ediacaran fossils from central Iran". Scientific Reports. 8: Article number 5060. doi:10.1038/s41598-018-23442-y. PMC 5864923. PMID 29567986.
  585. ^ a b c d e Jeanninny Carla Comniskey; Renato Pirani Ghilardi (2018). "Devonian Tentaculitoidea of the Malvinokaffric Realm of Brazil, Paraná Basin". Palaeontologia Electronica. 21 (2): Article number 21.2.21A. doi:10.26879/712.
  586. ^ a b Matthew H. Dick; Chika Sakamoto; Toshifumi Komatsu (2018). "Cheilostome Bryozoa from the Upper Cretaceous Himenoura Group, Kyushu, Japan". Paleontological Research. 22 (3): 239–264. doi:10.2517/2017PR022.
  587. ^ a b c Jobst Wendt (2018). "The first tunicate with a calcareous exoskeleton (Upper Triassic, northern Italy)". Palaeontology. 61 (4): 575–595. doi:10.1111/pala.12356.
  588. ^ Karma Nanglu; Jean-Bernard Caron (2018). "A new Burgess Shale polychaete and the origin of the annelid head revisited". Current Biology. 28 (2): 319–326.e1. doi:10.1016/j.cub.2017.12.019. PMID 29374441.
  589. ^ Joseph P. Botting; Yuandong Zhang; Lucy A. Muir (2018). "A candidate stem-group rossellid (Porifera, Hexactinellida) from the latest Ordovician Anji Biota, China". Bulletin of Geosciences. in press. doi:10.3140/bull.geosci.1706.
  590. ^ a b Enis Kemal Sagular; Zeki Ünal Yümün; Engin Meriç (2018). "New didemnid ascidian spicule records calibrated to the nannofossil data chronostratigraphically in the Quaternary marine deposits of Lake İznik (NW Turkey) and their paleoenvironmental interpretations". Quaternary International. 486: 143–155. doi:10.1016/j.quaint.2017.08.060.
  591. ^ Marcelo G. Carrera; Juan Jose Rustán; N. Emilio Vaccari; Miguel Ezpeleta (2018). "A new Mississippian hexactinellid sponge from the western Gondwana: Taxonomic and paleobiogeographic implications". Acta Palaeontologica Polonica. 63 (1): 63–70. doi:10.4202/app.00403.2017.
  592. ^ Ján Schlögl; Tomáš Kočí; Manfred Jäger; Tomasz Segit; Jan Sklenář; Driss Sadki; Mounsif Ibnoussina; Adam Tomašových (2018). "Tempestitic shell beds formed by a new serpulid polychaete from the Bajocian (Middle Jurassic) of the Central High Atlas (Morocco)". PalZ. 92 (2): 219–240. doi:10.1007/s12542-017-0381-5.
  593. ^ a b Petr Štorch; Josep Roqué Bernal; Juan Carlos Gutiérrez-Marco (2018). "A graptolite-rich Ordovician–Silurian boundary section in the south-central Pyrenees, Spain: stratigraphical and palaeobiogeographical significance". Geological Magazine. in press. doi:10.1017/S001675681800047X.
  594. ^ a b c Ben J. Slater; Thomas H. P. Harvey; Nicholas J. Butterfield (2018). "Small carbonaceous fossils (SCFs) from the Terreneuvian (lower Cambrian) of Baltica". Palaeontology. 61 (3): 417–439. doi:10.1111/pala.12350.
  595. ^ Pei‐Yun Cong; Gregory D. Edgecombe; Allison C. Daley; Jin Guo; Stephen Pates; Xian‐Guang Hou (2018). "New radiodonts with gnathobase‐like structures from the Cambrian Chengjiang biota and implications for the systematics of Radiodonta". Papers in Palaeontology. Online edition. doi:10.1002/spp2.1219.
  596. ^ a b c John S. Peel (2018). "Sponge spicules from the Holm Dal Formation (Cambrian Series 3, Guzhangian) of North Greenland (Laurentia)". GFF. Online edition. doi:10.1080/11035897.2018.1479444.
  597. ^ Yuning Yang; Xingliang Zhang; Yuanlong Zhao; Yiru Qi; Linhao Cui (2018). "New paleoscolecid worms from the early Cambrian north margin of the Yangtze Platform, South China". Journal of Paleontology. 92 (1): 49–58. doi:10.1017/jpa.2017.50.
  598. ^ Paul D. Taylor; Emanuela Di Martino (2018). "Sonarina tamilensis n. gen., n. sp., an unusual cheilostome bryozoan from the Late Cretaceous of southern India". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 288 (1): 79–85. doi:10.1127/njgpa/2018/0724.
  599. ^ Jean-Bernard Caron; Robert R. Gaines; M. Gabriela Mángano; Michael Streng; Allison C. Daley (2010). "A new Burgess Shale–type assemblage from the "thin" Stephen Formation of the southern Canadian Rockies". Geology. 38 (9): 811–814. doi:10.1130/G31080.1.
  600. ^ Shimei Pan; Qinglai Feng; Shan Chang (2018). "Small shelly fossils from the Cambrian Terreneuvian Yanjiahe Formation, Yichang, Hubei Province, China". Acta Micropalaeontologica Sinica. 35 (1): 30–40.
  601. ^ J. William Schopf; Kouki Kitajima; Michael J. Spicuzza; Anatoliy B. Kudryavtsev; John W. Valley (2018). "SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions". Proceedings of the National Academy of Sciences of the United States of America. 115 (1): 53–58. doi:10.1073/pnas.1718063115. PMC 5776830. PMID 29255053.
  602. ^ Keyron Hickman-Lewis; Barbara Cavalazzi; Frédéric Foucher; Frances Westall (2018). "Most ancient evidence for life in the Barberton Greenstone Belt: microbial mats and biofabrics of the ∼3.47 Ga Middle Marker horizon". Precambrian Research. 312: 45–67. doi:10.1016/j.precamres.2018.04.007.
  603. ^ Yuangao Qu; Shixing Zhu; Martin Whitehouse; Anders Engdahl; Nicola McLoughlin (2018). "Carbonaceous biosignatures of the earliest putative macroscopic multicellular eukaryotes from 1630 Ma Tuanshanzi Formation, north China". Precambrian Research. 304: 99–109. doi:10.1016/j.precamres.2017.11.004.
  604. ^ N. Gueneli; A. M. McKenna; N. Ohkouchi; C. J. Boreham; J. Beghin; E. J. Javaux; J. J. Brocks (2018). "1.1-billion-year-old porphyrins establish a marine ecosystem dominated by bacterial primary producers". Proceedings of the National Academy of Sciences of the United States of America. in press. doi:10.1073/pnas.1803866115. PMID 29987033.
  605. ^ Ilya Bobrovskiy; Janet M. Hope; Anna Krasnova; Andrey Ivantsov; Jochen J. Brocks (2018). "Molecular fossils from organically preserved Ediacara biota reveal cyanobacterial origin for Beltanelliformis". Nature Ecology & Evolution. 2 (3): 437–440. doi:10.1038/s41559-017-0438-6. PMID 29358605.
  606. ^ Timothy M. Gibson; Patrick M. Shih; Vivien M. Cumming; Woodward W. Fischer; Peter W. Crockford; Malcolm S.W. Hodgskiss; Sarah Wörndle; Robert A. Creaser; Robert H. Rainbird; Thomas M. Skulski; Galen P. Halverson (2018). "Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis". Geology. 46 (2): 135–138. doi:10.1130/G39829.1.
  607. ^ Emily G. Mitchell; Nicholas J. Butterfield (2018). "Spatial analyses of Ediacaran communities at Mistaken Point". Paleobiology. 44 (1): 40–57. doi:10.1017/pab.2017.35.
  608. ^ Emily G. Mitchell; Charlotte G. Kenchington (2018). "The utility of height for the Ediacaran organisms of Mistaken Point". Nature Ecology & Evolution. in press. doi:10.1038/s41559-018-0591-6. PMID 29942022.
  609. ^ Lidya G. Tarhan; Mary L. Droser; Devon B. Cole; James G. Gehling (2018). "Ecological expansion and extinction in the late Ediacaran: weighing the evidence for environmental and biotic drivers". Integrative and Comparative Biology. in press. doi:10.1093/icb/icy020. PMID 29718307.
  610. ^ Didier Néraudeau; Marie‐Pierre Dabard; Abderrazak El Albani; Romain Gougeon; Arnaud Mazurier; Anne‐Catherine Pierson‐Wickmann; Marc Poujol; Jean‐Paul Saint Martin; Simona Saint Martin (2018). "First evidence of Ediacaran–Fortunian elliptical body fossils in the Brioverian series of Brittany, NW France". Lethaia. in press. doi:10.1111/let.12270.
  611. ^ Christopher Castellani; Andreas Maas; Mats E. Eriksson; Joachim T. Haug; Carolin Haug; Dieter Waloszek (2018). "First record of Cyanobacteria in Cambrian Orsten deposits of Sweden". Palaeontology. in press. doi:10.1111/pala.12374.
  612. ^ Thomas Alexander Dececchi; Carolyn Greentree; Marc Laflamme; Guy M. Narbonne (2018). "Phylogenetic relationships among the Rangeomorpha: The Importance of outgroup selection and implications for their diversification". Canadian Journal of Earth Sciences. in press. doi:10.1139/cjes-2018-0022.
  613. ^ Gregory J. Retallack (2018). "Reassessment of the Devonian problematicum Protonympha as another post-Ediacaran vendobiont". Lethaia. 51 (3): 406–423. doi:10.1111/let.12253.
  614. ^ Gabriela J. Arreguín-Rodríguez; Ellen Thomas; Simon D’haenens; Robert P. Speijer; Laia Alegret (2018). "Early Eocene deep-sea benthic foraminiferal faunas: Recovery from the Paleocene Eocene Thermal Maximum extinction in a greenhouse world". PLoS ONE. 13 (2): e0193167. doi:10.1371/journal.pone.0193167. PMC 5825042. PMID 29474429.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  615. ^ Anieke Brombacher; Paul A. Wilson; Ian Bailey; Thomas H. G. Ezard (2018). "Temperature is a poor proxy for synergistic climate forcing of plankton evolution". Proceedings of the Royal Society B: Biological Sciences. 285 (1883): 20180665. doi:10.1098/rspb.2018.0665.
  616. ^ Tatsuya Hayashi; William N. Krebs; Megumi Saito-Kato; Yoshihiro Tanimura (2018). "The turnover of continental planktonic diatoms near the middle/late Miocene boundary and their Cenozoic evolution". PLoS ONE. 13 (6): e0198003. doi:10.1371/journal.pone.0198003. PMC 5988279. PMID 29870528.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  617. ^ a b c d Lyndsey R. Fox; Stephen Stukins; Tom Hill; Haydon Bailey (2018). "New species of Cenozoic benthic foraminifera from the former British Petroleum micropalaeontology collection". Journal of Micropalaeontology. 37 (1): 11–16. doi:10.5194/jm-37-11-2018.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  618. ^ a b c Liubov Bragina; Nikita Bragin (2018). "Family Pseudoaulophacidae (Radiolaria) from the Upper Cretaceous (Coniacian-Maastrichtian) of Cyprus". Revue de Micropaléontologie. 61 (2): 55–79. doi:10.1016/j.revmic.2018.03.002.
  619. ^ Michael A. Kaminski; Muhammad Hammad Malik; Eiichi Setoyama (2018). "The occurrence of a shallow-water Ammobaculoides assemblage in the Middle Jurassic (Bajocian) Dhruma Formation of Central Saudi Arabia". Journal of Micropalaeontology. 37 (1): 149–152. doi:10.5194/jm-37-149-2018.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  620. ^ Mirinae Lee; Robert J. Elias; Suk-Joo Choh; Dong-Jin Lee (2018). "Palaeobiological features of the coralomorph Amsassia from the Late Ordovician of South China". Alcheringa: an Australasian Journal of Palaeontology. in press. doi:10.1080/03115518.2018.1471737.
  621. ^ Ke Pang; Qing Tang; Lei Chen; Bin Wan; Changtai Niu; Xunlai Yuan; Shuhai Xiao (2018). "Nitrogen-fixing heterocystous Cyanobacteria in the Tonian period". Current Biology. 28 (4): 616–622.e1. doi:10.1016/j.cub.2018.01.008. PMID 29398221.
  622. ^ a b c d e f Qin Ye; Jinnan Tong; Zhihui An; Jun Hu; Li Tian; Kaiping Guan; Shuhai Xiao (2018). "A systematic description of new macrofossil material from the upper Ediacaran Miaohe Member in South China". Journal of Systematic Palaeontology. in press. doi:10.1080/14772019.2017.1404499.
  623. ^ a b c d Tian Lan; Jie Yang; Xi-guang Zhang; Jin-bo Hou (2018). "A new macroalgal assemblage from the Xiaoshiba Biota (Cambrian Series 2, Stage 3) of southern China". Palaeogeography, Palaeoclimatology, Palaeoecology. 499: 35–44. doi:10.1016/j.palaeo.2018.02.029.
  624. ^ Mostafa Falahatgar; Daniel Vachard; Mehdi Sarfi (2018). "Revision of the Lower Viséan (MFZ11) calcareous algae and archaediscoid foraminifers of the Sari area (central Alborz, Iran)". Geobios. 51 (2): 107–121. doi:10.1016/j.geobios.2018.02.005.
  625. ^ a b c John S. Peel (2018). "An epiphytacean-Girvanella (Cyanobacteria) symbiosis from the Cambrian (Series 3, Drumian) of North Greenland (Laurentia)". Bulletin of Geosciences. in press. doi:10.3140/bull.geosci.1705.
  626. ^ David H. McNeil; Lisa A. Neville (2018). "On a grain of sand – a microhabitat for the opportunistic agglutinated foraminifera Hemisphaerammina apta n. sp., from the early Eocene Arctic Ocean". Journal of Micropalaeontology. 37 (1): 295–303. doi:10.5194/jm-37-295-2018.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  627. ^ a b Sylvain Rigaud; Felix Schlagintweit; Ioan I. Bucur (2018). "The foraminiferal genus Neotrocholina Reichel, 1955 and its less known relatives: A reappraisal". Cretaceous Research. 91: 41–65. doi:10.1016/j.cretres.2018.04.014.
  628. ^ Corentin Loron; Małgorzata Moczydłowska (2018). "Tonian (Neoproterozoic) eukaryotic and prokaryotic organic-walled microfossils from the upper Visingsö Group, Sweden". Palynology. 42 (2): 220–254. doi:10.1080/01916122.2017.1335656.
  629. ^ Peter A. Siver (2018). "Mallomonas aperturae sp. nov. (Synurophyceae) reveals that the complex cell architecture observed on modern synurophytes was well established by the middle Eocene". Phycologia. 57 (3): 273–279. doi:10.2216/17-112.1.
  630. ^ Duncan McLean; David J. Bodman; Peter Lucas; Janine L. Pendleton (2018). "An incertae sedis organic-walled microfossil from the Mississippian (Early Carboniferous): Kirby Misperton-1 borehole, North Yorkshire, UK". Proceedings of the Yorkshire Geological Society. 62 (1): 51–57. doi:10.1144/pygs2017-398.
  631. ^ a b Carmine C. Wainman; Daniel J. Mantle; Carey Hannaford; Peter J. McCabe (2018). "Possible freshwater dinoflagellate cysts and colonial algae from the Upper Jurassic strata of the Surat Basin, Australia". Palynology. in press. doi:10.1080/01916122.2018.1451785.
  632. ^ P. W. Dzaugis; S. D. Evans; M. L. Droser; J. G. Gehling; I. V. Hughes (2018). "Stuck in the mat: Obamus coronatus, a new benthic organism from the Ediacara Member, Rawnsley Quartzite, South Australia". Australian Journal of Earth Sciences. in press. doi:10.1080/08120099.2018.1479306.
  633. ^ a b Qahtan A.M. Al Nuaimy (2018). "New quantitative data on Omphalocyclus from the Maastrichtian in Northern Iraq". Journal of African Earth Sciences. 138: 319–335. doi:10.1016/j.jafrearsci.2017.11.016.
  634. ^ Leigh Anne Riedman; Susannah M. Porter; Clive R. Calver (2018). "Vase-shaped microfossil biostratigraphy with new data from Tasmania, Svalbard, Greenland, Sweden and the Yukon". Precambrian Research. in press. doi:10.1016/j.precamres.2017.09.019.
  635. ^ Lorenzo Consorti; Felix Schlagintweit; Koorosh Rashidi (2018). "Palaeoelphidium gen. nov. (type species: Elphidiella multiscissurata Smout 1955): The oldest Elphidiellidae (benthic foraminifera) from Maastrichtian shallow-water carbonates of the Middle East". Cretaceous Research. 86: 163–169. doi:10.1016/j.cretres.2018.02.011.
  636. ^ George Poinar (2018). "A mid-Cretaceous pycnidia, Palaeomycus epallelus gen. et sp. nov., in Myanmar amber". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1481836.
  637. ^ Michael Krings; Carla J. Harper; Edith L. Taylor (2018). "Fungi and fungal interactions in the Rhynie chert: a review of the evidence, with the description of Perexiflasca tayloriana gen. et sp. nov.†". Philosophical Transactions of the Royal Society B: Biological Sciences. 373 (1739): 20160500. doi:10.1098/rstb.2016.0500. PMC 5745336. PMID 29254965.
  638. ^ Ulla Kaasalainen; Jochen Heinrichs; Matthew A. M. Renner; Lars Hedenäs; Alfons Schäfer-Verwimp; Gaik Ee Lee; Michael S. Ignatov; Jouko Rikkinen; Alexander R. Schmidt (2018). "A Caribbean epiphyte community preserved in Miocene Dominican amber". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 107 (2–3): 321–331. doi:10.1017/S175569101700010X.
  639. ^ Christine Strullu-Derrien; Alan R. T. Spencer; Tomasz Goral; Jaclyn Dee; Rosmarie Honegger; Paul Kenrick; Joyce E. Longcore; Mary L. Berbee (2018). "New insights into the evolutionary history of Fungi from a 407 Ma Blastocladiomycota fossil showing a complex hyphal thallus". Philosophical Transactions of the Royal Society B: Biological Sciences. 373 (1739): 20160502. doi:10.1098/rstb.2016.0502. PMC 5745337. PMID 29254966.
  640. ^ Lei-Ming Yin; B.P. Singh; O.N. Bhargava; Yuan-Long Zhao; R.S. Negi; Fan-Wei Meng; C.A. Sharma (2018). "Palynomorphs from the Cambrian Series 3, Parahio valley (Spiti), Northwest Himalaya". Palaeoworld. 27 (1): 30–41. doi:10.1016/j.palwor.2017.05.004.
  641. ^ Dianne Edwards; Rosmarie Honegger; Lindsey Axe; Jennifer L. Morris (2018). "Anatomically preserved Silurian 'nematophytes' from the Welsh Borderland (UK)". Botanical Journal of the Linnean Society. 187 (2): 272–291. doi:10.1093/botlinnean/boy022.
  642. ^ a b Fan Yang; Shujian Qin; Weiming Ding; Yihe Xu; Bing Shen (2018). "New discovery of macroscopic algae fossils from Shibantan bituminous limestone of Dengying Formation in the Yangtze Gorges area, South China". Acta Scientiarum Naturalium Universitatis Pekinensis. 54 (3): 563–572. doi:10.13209/j.0479-8023.2017.093.
  643. ^ Mahasin Ali Khan; Meghma Bera; Subir Bera (2018). "Vizellopsidites siwalika, a new fossil epiphyllous fungus from the Plio-Pleistocene of Arunachal Pradesh, eastern Himalaya". Nova Hedwigia. in press. doi:10.1127/nova_hedwigia/2018/0491.
  644. ^ Michael Krings; Carla J. Harper (2018). "Additional observations on the fungal reproductive unit Windipila spinifera from the Windyfield chert, and description of a similar form, Windipila pumila nov. sp., from the nearby Rhynie chert (Lower Devonian, Scotland)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 288 (3): 235–242. doi:10.1127/njgpa/2018/0736.
  645. ^ Stephen R. Meyers; Alberto Malinverno (2018). "Proterozoic Milankovitch cycles and the history of the solar system". Proceedings of the National Academy of Sciences of the United States of America. 115 (25): 6363–6368. doi:10.1073/pnas.1717689115. PMC 6016783. PMID 29866837.
  646. ^ Kazumi Ozaki; Eiichi Tajika; Peng K. Hong; Yusuke Nakagawa; Christopher T. Reinhard (2018). "Effects of primitive photosynthesis on Earth's early climate system". Nature Geoscience. 11 (1): 55–59. doi:10.1038/s41561-017-0031-2.
  647. ^ Sean McMahon; John Parnell (2018). "The deep history of Earth's biomass". Journal of the Geological Society. in press. doi:10.1144/jgs2018-061.
  648. ^ Matthew C. Koehler; Roger Buick; Michael A. Kipp; Eva E. Stüeken; Jonathan Zaloumis (2018). "Transient surface ocean oxygenation recorded in the ∼2.66-Ga Jeerinah Formation, Australia". Proceedings of the National Academy of Sciences of the United States of America. in press. doi:10.1073/pnas.1720820115. PMID 29987010.
  649. ^ Nina A. Kamennaya; Marcin Zemla; Laura Mahoney; Liang Chen; Elizabeth Holman; Hoi-Ying Holman; Manfred Auer; Caroline M. Ajo-Franklin; Christer Jansson (2018). "High pCO2-induced exopolysaccharide-rich ballasted aggregates of planktonic cyanobacteria could explain Paleoproterozoic carbon burial". Nature Communications. 9: Article number 2116. doi:10.1038/s41467-018-04588-9. PMC 5974010. PMID 29844378.
  650. ^ Indrani Mukherjee; Ross R. Large; Ross Corkrey; Leonid V. Danyushevsky (2018). "The Boring Billion, a slingshot for Complex Life on Earth". Scientific Reports. 8: Article number 4432. doi:10.1038/s41598-018-22695-x. PMC 5849639. PMID 29535324.
  651. ^ Kan Zhang; Xiangkun Zhu; Rachel A. Wood; Yao Shi; Zhaofu Gao; Simon W. Poulton (2018). "Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes". Nature Geoscience. 11 (5): 345–350. doi:10.1038/s41561-018-0111-y.
  652. ^ Peter W. Crockford; Justin A. Hayles; Huiming Bao; Noah J. Planavsky; Andrey Bekker; Philip W. Fralick; Galen P. Halverson; Thi Hao Bui; Yongbo Peng; Boswell A. Wing (2018). "Triple oxygen isotope evidence for limited mid-Proterozoic primary productivity". Nature. in press. doi:10.1038/s41586-018-0349-y.
  653. ^ Scott MacLennan; Yuem Park; Nicholas Swanson-Hysell; Adam Maloof; Blair Schoene; Mulubrhan Gebreslassie; Eliel Antilla; Tadele Tesema; Mulugeta Alene; Bereket Haileab (2018). "The arc of the Snowball: U-Pb dates constrain the Islay anomaly and the initiation of the Sturtian glaciation". Geology. 46 (6): 539–542. doi:10.1130/G40171.1.
  654. ^ P. M. Myrow; M. P. Lamb; R. C. Ewing (2018). "Rapid sea level rise in the aftermath of a Neoproterozoic snowball Earth". Science. 360 (6389): 649–651. doi:10.1126/science.aap8612. PMID 29674430.
  655. ^ Kelden Pehr; Gordon D. Love; Anton Kuznetsov; Victor Podkovyrov; Christopher K. Junium; Leonid Shumlyanskyy; Tetyana Sokur; Andrey Bekker (2018). "Ediacara biota flourished in oligotrophic and bacterially dominated marine environments across Baltica". Nature Communications. 9: Article number 1807. doi:10.1038/s41467-018-04195-8. PMC 5935690. PMID 29728614.
  656. ^ Feifei Zhang; Shuhai Xiao; Brian Kendall; Stephen J. Romaniello; Huan Cui; Mike Meyer; Geoffrey J. Gilleaudeau; Alan J. Kaufman; Ariel D. Anbar (2018). "Extensive marine anoxia during the terminal Ediacaran Period". Science Advances. 4 (6): eaan8983. doi:10.1126/sciadv.aan8983. PMC 6010336. PMID 29938217.
  657. ^ Guang-Yi Wei; Noah J. Planavsky; Lidya G. Tarhan; Xi Chen; Wei Wei; Da Li; Hong-Fei Ling (2018). "Marine redox fluctuation as a potential trigger for the Cambrian explosion". Geology. 46 (7): 587–590. doi:10.1130/G40150.1.
  658. ^ Russell D. C. Bicknell; John R. Paterson (2018). "Reappraising the early evidence of durophagy and drilling predation in the fossil record: implications for escalation and the Cambrian Explosion". Biological Reviews. 93 (2): 754–784. doi:10.1111/brv.12365. PMID 28967704.
  659. ^ Xiangkuan Zhao; Xinqiang Wang; Xiaoying Shi; Dongjie Tang; Qing Shi (2018). "Stepwise oxygenation of early Cambrian ocean controls early metazoan diversification". Palaeogeography, Palaeoclimatology, Palaeoecology. 504: 86–103. doi:10.1016/j.palaeo.2018.05.009.
  660. ^ Thomas W. Hearing; Thomas H. P. Harvey; Mark Williams; Melanie J. Leng; Angela L. Lamb; Philip R. Wilby; Sarah E. Gabbott; Alexandre Pohl; Yannick Donnadieu (2018). "An early Cambrian greenhouse climate". Science Advances. 4 (5): eaar5690. doi:10.1126/sciadv.aar5690. PMC 5942912. PMID 29750198.
  661. ^ Romain C. Gougeon; M. Gabriela Mángano; Luis A. Buatois; Guy M. Narbonne; Brittany A. Laing (2018). "Early Cambrian origin of the shelf sediment mixed layer". Nature Communications. 9: Article number 1909. doi:10.1038/s41467-018-04311-8. PMC 5953921. PMID 29765030.
  662. ^ Sebastiaan van de Velde; Benjamin J. W. Mills; Filip J. R. Meysman; Timothy M. Lenton; Simon W. Poulton (2018). "Early Palaeozoic ocean anoxia and global warming driven by the evolution of shallow burrowing". Nature Communications. 9: Article number 2554. doi:10.1038/s41467-018-04973-4. PMC 6028391. PMID 29967319.
  663. ^ Karl Karlstrom; James Hagadorn; George Gehrels; William Matthews; Mark Schmitz; Lauren Madronich; Jacob Mulder; Mark Pecha; Dominique Giesler; Laura Crossey (2018). "Cambrian Sauk transgression in the Grand Canyon region redefined by detrital zircons". Nature Geoscience. 11 (6): 438–443. doi:10.1038/s41561-018-0131-7.
  664. ^ Uri Ryb; John M. Eiler (2018). "Oxygen isotope composition of the Phanerozoic ocean and a possible solution to the dolomite problem". Proceedings of the National Academy of Sciences of the United States of America. 115 (26): 6602–6607. doi:10.1073/pnas.1719681115. PMC 6042145. PMID 29891710.
  665. ^ A. D. Muscente; Anirudh Prabhu; Hao Zhong; Ahmed Eleish; Michael B. Meyer; Peter Fox; Robert M. Hazen; Andrew H. Knoll (2018). "Quantifying ecological impacts of mass extinctions with network analysis of fossil communities". Proceedings of the National Academy of Sciences of the United States of America. 115 (20): 5217–5222. doi:10.1073/pnas.1719976115. PMC 5960297. PMID 29686079.
  666. ^ Ádám T. Kocsis; Carl J. Reddin; Wolfgang Kiessling (2018). "The biogeographical imprint of mass extinctions". Proceedings of the Royal Society B: Biological Sciences. 285 (1878): 20180232. doi:10.1098/rspb.2018.0232. PMC 5966600. PMID 29720415.
  667. ^ Christopher D. Whalen; Derek E. G. Briggs (2018). "The Palaeozoic colonization of the water column and the rise of global nekton". Proceedings of the Royal Society B: Biological Sciences. 285 (1883): 20180883. doi:10.1098/rspb.2018.0883.
  668. ^ Carl J. Reddin; Ádám T. Kocsis; Wolfgang Kiessling (2018). "Marine invertebrate migrations trace climate change over 450 million years". Global Ecology and Biogeography. 27 (6): 704–713. doi:10.1111/geb.12732.
  669. ^ Peter Wagner; Roy E. Plotnick; S. Kathleen Lyons (2018). "Evidence for trait-based dominance in occupancy among fossil taxa and the decoupling of macroecological and macroevolutionary success". The American Naturalist. in press. doi:10.1086/697642.
  670. ^ Thomas Servais; David A.T. Harper (2018). "The Great Ordovician Biodiversification Event (GOBE): definition, concept and duration". Lethaia. 51 (2): 151–164. doi:10.1111/let.12259.
  671. ^ Yukio Isozaki; Thomas Servais (2018). "The Hirnantian (Late Ordovician) and end-Guadalupian (Middle Permian) mass-extinction events compared". Lethaia. 51 (2): 173–186. doi:10.1111/let.12252.
  672. ^ Rick Bartlett; Maya Elrick; James R. Wheeley; Victor Polyak; André Desrochers; Yemane Asmerom (2018). "Abrupt global-ocean anoxia during the Late Ordovician–early Silurian detected using uranium isotopes of marine carbonates". Proceedings of the National Academy of Sciences of the United States of America. 115 (23): 5896–5901. doi:10.1073/pnas.1802438115. PMC 6003337. PMID 29784792.
  673. ^ Caineng Zou; Zhen Qiu; Simon W. Poulton; Dazhong Dong; Hongyan Wang; Daizhao Chen; Bin Lu; Zhensheng Shi; Huifei Tao (2018). "Ocean euxinia and climate change "double whammy" drove the Late Ordovician mass extinction". Geology. 46 (6): 535–538. doi:10.1130/G40121.1.
  674. ^ Martin Qvarnström; Piotr Szrek; Per E. Ahlberg; Grzegorz Niedźwiedzki (2018). "Non-marine palaeoenvironment associated to the earliest tetrapod tracks". Scientific Reports. 8: Article number 1074. doi:10.1038/s41598-018-19220-5. PMC 5773519. PMID 29348562.
  675. ^ Grzegorz Racki; Michał Rakociński; Leszek Marynowski; Paul B. Wignall (2018). "Mercury enrichments and the Frasnian-Famennian biotic crisis: A volcanic trigger proved?". Geology. 46 (6): 543–546. doi:10.1130/G40233.1.
  676. ^ Catherine Girard; Jean-Jacques Cornée; Michael M. Joachimski; Anne-Lise Charruault; Anne-Béatrice Dufour; Sabrina Renaud (2018). "Paleogeographic differences in temperature, water depth and conodont biofacies during the Late Devonian". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2018.06.046.
  677. ^ Cheng Huang; Michael M. Joachimski; Yiming Gong (2018). "Did climate changes trigger the Late Devonian Kellwasser Crisis? Evidence from a high-resolution conodont δ18OPO4 record from South China". Earth and Planetary Science Letters. 495: 174–184. doi:10.1016/j.epsl.2018.05.016.
  678. ^ L. M. E. Percival; J. H. F. L. Davies; U. Schaltegger; D. De Vleeschouwer; A.-C. Da Silva; K. B. Föllmi (2018). "Precisely dating the Frasnian–Famennian boundary: implications for the cause of the Late Devonian mass extinction". Scientific Reports. 8: Article number 9578. doi:10.1038/s41598-018-27847-7. PMC 6014997. PMID 29934550.
  679. ^ Sandra R. Schachat; Conrad C. Labandeira; Matthew R. Saltzman; Bradley D. Cramer; Jonathan L. Payne; C. Kevin Boyce (2018). "Phanerozoic pO2 and the early evolution of terrestrial animals". Proceedings of the Royal Society B: Biological Sciences. 285 (1871): 20172631. doi:10.1098/rspb.2017.2631. PMC 5805952. PMID 29367401.
  680. ^ Emma M. Dunne; Roger A. Close; David J. Button; Neil Brocklehurst; Daniel D. Cashmore; Graeme T. Lloyd; Richard J. Butler (2018). "Diversity change during the rise of tetrapods and the impact of the 'Carboniferous rainforest collapse'". Proceedings of the Royal Society B: Biological Sciences. 285 (1872): 20172730. doi:10.1098/rspb.2017.2730. PMC 5829207. PMID 29436503.
  681. ^ Rebecca E. O’Connor; Michael N. Romanov; Lucas G. Kiazim; Paul M. Barrett; Marta Farré; Joana Damas; Malcolm Ferguson-Smith; Nicole Valenzuela; Denis M. Larkin; Darren K. Griffin (2018). "Reconstruction of the diapsid ancestral genome permits chromosome evolution tracing in avian and non-avian dinosaurs". Nature Communications. 9: Article number 1883. doi:10.1038/s41467-018-04267-9. PMC 5962605. PMID 29784931.
  682. ^ Neil Brocklehurst (2018). "An examination of the impact of Olson's extinction on tetrapods from Texas". PeerJ. 6: e4767. doi:10.7717/peerj.4767. PMC 5958880. PMID 29780669.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  683. ^ Pia A. Viglietti; Roger M.H. Smith; Bruce S. Rubidge (2018). "Changing palaeoenvironments and tetrapod populations in the Daptocephalus Assemblage Zone (Karoo Basin, South Africa) indicate early onset of the Permo-Triassic mass extinction". Journal of African Earth Sciences. 138: 102–111. doi:10.1016/j.jafrearsci.2017.11.010.
  684. ^ Li Tian; Jinnan Tong; Yifan Xiao; Michael J. Benton; Huyue Song; Haijun Song; Lei Liang; Kui Wu; Daoliang Chu; Thomas J. Algeo (2018). "Environmental instability prior to end-Permian mass extinction reflected in biotic and facies changes on shallow carbonate platforms of the Nanpanjiang Basin (South China)". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2018.05.011.
  685. ^ Massimo Bernardi; Fabio Massimo Petti; Michael J. Benton (2018). "Tetrapod distribution and temperature rise during the Permian–Triassic mass extinction". Proceedings of the Royal Society B: Biological Sciences. 285 (1870): 20172331. doi:10.1098/rspb.2017.2331. PMC 5784198. PMID 29321300.
  686. ^ Heitor Francischini; Paula Dentzien-Dias; Spencer G. Lucas; Cesar L. Schultz (2018). "Tetrapod tracks in Permo–Triassic eolian beds of southern Brazil (Paraná Basin)". PeerJ. 6: e4764. doi:10.7717/peerj.4764. PMC 5961629. PMID 29796341.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  687. ^ William J. Foster; Silvia Danise; Gregory D. Price; Richard J. Twitchett (2018). "Paleoecological analysis of benthic recovery after the Late Permian mass extinction event in eastern Lombardy, Italy". Palaios. 33 (6): 266–281. doi:10.2110/palo.2017.079.
  688. ^ Feifei Zhang; Stephen J. Romaniello; Thomas J. Algeo; Kimberly V. Lau; Matthew E. Clapham; Sylvain Richoz; Achim D. Herrmann; Harrison Smith; Micha Horacek; Ariel D. Anbar (2018). "Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction". Science Advances. 4 (4): e1602921. doi:10.1126/sciadv.1602921. PMC 5895439. PMID 29651454.
  689. ^ Xu Dai; Haijun Song; Paul B. Wignall; Enhao Jia; Ruoyu Bai; Fengyu Wang; Jing Chen; Li Tian (2018). "Rapid biotic rebound during the late Griesbachian indicates heterogeneous recovery patterns after the Permian-Triassic mass extinction". GSA Bulletin. in press. doi:10.1130/B31969.1.
  690. ^ Jonathan Rolland; Daniele Silvestro; Dolph Schluter; Antoine Guisan; Olivier Broennimann; Nicolas Salamin (2018). "The impact of endothermy on the climatic niche evolution and the distribution of vertebrate diversity". Nature Ecology & Evolution. 2 (3): 459–464. doi:10.1038/s41559-017-0451-9. PMID 29379185.
  691. ^ Max C. Langer; Jahandar Ramezani; Átila A.S. Da Rosa (2018). "U-Pb age constraints on dinosaur rise from south Brazil". Gondwana Research. 57: 133–140. doi:10.1016/j.gr.2018.01.005.
  692. ^ Dennis V. Kent; Paul E. Olsen; Cornelia Rasmussen; Christopher Lepre; Roland Mundil; Randall B. Irmis; George E. Gehrels; Dominique Giesler; John W. Geissman; William G. Parker (2018). "Empirical evidence for stability of the 405-kiloyear Jupiter–Venus eccentricity cycle over hundreds of millions of years". Proceedings of the National Academy of Sciences of the United States of America. 115 (24): 6153–6158. doi:10.1073/pnas.1800891115. PMID 29735684.
  693. ^ Alexander M. Dunhill; William J. Foster; James Sciberras; Richard J. Twitchett (2018). "Impact of the Late Triassic mass extinction on functional diversity and composition of marine ecosystems". Palaeontology. 61 (1): 133–148. doi:10.1111/pala.12332.
  694. ^ Thea H. Heimdal; Henrik. H. Svensen; Jahandar Ramezani; Karthik Iyer; Egberto Pereira; René Rodrigues; Morgan T. Jones; Sara Callegaro (2018). "Large-scale sill emplacement in Brazil as a trigger for the end-Triassic crisis". Scientific Reports. 8: Article number 141. doi:10.1038/s41598-017-18629-8. PMC 5760721. PMID 29317730.
  695. ^ Theodore R. Them II; Benjamin C. Gill; Andrew H. Caruthers; Angela M. Gerhardt; Darren R. Gröcke; Timothy W. Lyons; Selva M. Marroquín; Sune G. Nielsen; João P. Trabucho Alexandre; Jeremy D. Owens (2018). "Thallium isotopes reveal protracted anoxia during the Toarcian (Early Jurassic) associated with volcanism, carbon burial, and mass extinction". Proceedings of the National Academy of Sciences of the United States of America. 115 (26): 6596–6601. doi:10.1073/pnas.1803478115. PMC 6042096. PMID 29891692.
  696. ^ Mario Giordano; Camilla Olivieri; Simona Ratti; Alessandra Norici; John A. Raven; Andrew H. Knoll (2018). "A tale of two eras: Phytoplankton composition influenced by oceanic paleochemistry". Geobiology. in press. doi:10.1111/gbi.12290.
  697. ^ Victoria M. Arbour; Lindsay E. Zanno (2018). "The evolution of tail weaponization in amniotes". Proceedings of the Royal Society B: Biological Sciences. 285 (1871): 20172299. doi:10.1098/rspb.2017.2299. PMC 5805935. PMID 29343599.
  698. ^ Geerat J. Vermeij; Ryosuke Motani (2018). "Land to sea transitions in vertebrates: the dynamics of colonization". Paleobiology. 44 (2): 237–250. doi:10.1017/pab.2017.37.
  699. ^ Davide Foffa; Mark T. Young; Stephen L. Brusatte (2018). "Filling the Corallian gap: New information on Late Jurassic marine reptile faunas from England". Acta Palaeontologica Polonica. 63 (2): 287–313. doi:10.4202/app.00455.2018.
  700. ^ Ray Stanford; Martin G. Lockley; Compton Tucker; Stephen Godfrey; Sheila M. Stanford (2018). "A diverse mammal-dominated, footprint assemblage from wetland deposits in the Lower Cretaceous of Maryland". Scientific Reports. 8: Article number 741. doi:10.1038/s41598-017-18619-w. PMC 5792599. PMID 29386519.
  701. ^ Sandra Barrios-de Pedro; Francisco José Poyato-Ariza; José Joaquín Moratalla; Ángela D. Buscalioni (2018). "Exceptional coprolite association from the Early Cretaceous continental Lagerstätte of Las Hoyas, Cuenca, Spain". PLoS ONE. 13 (5): e0196982. doi:10.1371/journal.pone.0196982. PMC 5965836. PMID 29791478.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  702. ^ Dai Jing; Sun Bainian (2018). "Early Cretaceous atmospheric CO2 estimates based on stomatal index of Pseudofrenelopsis papillosa (Cheirolepidiaceae) from southeast China". Cretaceous Research. 85: 232–242. doi:10.1016/j.cretres.2017.08.011.
  703. ^ Prosenjit Ghosh; K. Prasanna; Yogaraj Banerjee; Ian S. Williams; Michael K. Gagan; Atanu Chaudhuri; Satyam Suwas (2018). "Rainfall seasonality on the Indian subcontinent during the Cretaceous greenhouse". Scientific Reports. 8: Article number 8482. doi:10.1038/s41598-018-26272-0. PMC 5981374. PMID 29855487.
  704. ^ Joseph S. Byrnes; Leif Karlstrom (2018). "Anomalous K-Pg–aged seafloor attributed to impact-induced mid-ocean ridge magmatism". Science Advances. 4 (2): eaao2994. doi:10.1126/sciadv.aao2994. PMC 5810608. PMID 29441360.
  705. ^ Laiming Zhang; Chengshan Wang; Paul B. Wignall; Tobias Kluge; Xiaoqiao Wan; Qian Wang; Yuan Gao (2018). "Deccan volcanism caused coupled pCO2 and terrestrial temperature rises, and pre-impact extinctions in northern China". Geology. 46 (3): 271–274. doi:10.1130/G39992.1.
  706. ^ K. G. MacLeod; P. C. Quinton; J. Sepúlveda; M. H. Negra (2018). "Postimpact earliest Paleogene warming shown by fish debris oxygen isotopes (El Kef, Tunisia)". Science. 360 (6396): 1467–1469. doi:10.1126/science.aap8525. PMID 29794216.
  707. ^ Johan Vellekoop; Lineke Woelders; Niels A.G.M. van Helmond; Simone Galeotti; Jan Smit; Caroline P. Slomp; Henk Brinkhuis; Philippe Claeys; Robert P. Speijer (2018). "Shelf hypoxia in response to global warming after the Cretaceous-Paleogene boundary impact". Geology. in press. doi:10.1130/G45000.1.
  708. ^ Christopher M. Lowery; Timothy J. Bralower; Jeremy D. Owens; Francisco J. Rodríguez-Tovar; Heather Jones; Jan Smit; Michael T. Whalen; Phillipe Claeys; Kenneth Farley; Sean P. S. Gulick; Joanna V. Morgan; Sophie Green; Elise Chenot; Gail L. Christeson; Charles S. Cockell; Marco J. L. Coolen; Ludovic Ferrière; Catalina Gebhardt; Kazuhisa Goto; David A. Kring; Johanna Lofi; Rubén Ocampo-Torres; Ligia Perez-Cruz; Annemarie E. Pickersgill; Michael H. Poelchau; Auriol S. P. Rae; Cornelia Rasmussen; Mario Rebolledo-Vieyra; Ulrich Riller; Honami Sato; Sonia M. Tikoo; Naotaka Tomioka; Jaime Urrutia-Fucugauchi; Johan Vellekoop; Axel Wittmann; Long Xiao; Kosei E. Yamaguchi; William Zylberman (2018). "Rapid recovery of life at ground zero of the end-Cretaceous mass extinction". Nature. 558 (7709): 288–291. doi:10.1038/s41586-018-0163-6. PMID 29849143.
  709. ^ Weiqi Yao; Adina Paytan; Ulrich G. Wortmann (2018). "Large-scale ocean deoxygenation during the Paleocene-Eocene Thermal Maximum". Science. in press. doi:10.1126/science.aar8658.
  710. ^ David Evans; Navjit Sagoo; Willem Renema; Laura J. Cotton; Wolfgang Müller; Jonathan A. Todd; Pratul Kumar Saraswati; Peter Stassen; Martin Ziegler; Paul N. Pearson; Paul J. Valdes; Hagit P. Affek (2018). "Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry". Proceedings of the National Academy of Sciences of the United States of America. 115 (6): 1174–1179. doi:10.1073/pnas.1714744115. PMC 5819407. PMID 29358374.
  711. ^ Margot J. Cramwinckel; Matthew Huber; Ilja J. Kocken; Claudia Agnini; Peter K. Bijl; Steven M. Bohaty; Joost Frieling; Aaron Goldner; Frederik J. Hilgen; Elizabeth L. Kip; Francien Peterse; Robin van der Ploeg; Ursula Röhl; Stefan Schouten; Appy Sluijs (2018). "Synchronous tropical and polar temperature evolution in the Eocene". Nature. 559 (7714): 382–386. doi:10.1038/s41586-018-0272-2. PMID 29967546.
  712. ^ Zhonghui Liu; Yuxin He; Yiqing Jiang; Huanye Wang; Weiguo Liu; Steven M. Bohaty; Paul A. Wilson (2018). "Transient temperature asymmetry between hemispheres in the Palaeogene Atlantic Ocean". Nature Geoscience. in press. doi:10.1038/s41561-018-0182-9.
  713. ^ Daniel De Miguel; Beatriz Azanza; Jorge Morales (2018). "Regional impacts of global climate change: a local humid phase in central Iberia in a late Miocene drying world". Palaeontology. in press. doi:10.1111/pala.12382.
  714. ^ J. Tyler Faith (2018). "Paleodietary change and its implications for aridity indices derived from δ18O of herbivore tooth enamel". Palaeogeography, Palaeoclimatology, Palaeoecology. 490: 571–578. doi:10.1016/j.palaeo.2017.11.045.
  715. ^ Scott A. Blumenthal; Naomi E. Levin; Francis H. Brown; Jean-Philip Brugal; Kendra L. Chritz; Thure E. Cerling (2018). "Diet and evaporation sensitivity in African ungulates: A comment on Faith (2018)". Palaeogeography, Palaeoclimatology, Palaeoecology. 506: 250–251. doi:10.1016/j.palaeo.2018.02.022.
  716. ^ J. Tyler Faith (2018). "We need to critically evaluate our assumptions: Reply to Blumenthal et al. (2018)". Palaeogeography, Palaeoclimatology, Palaeoecology. 506: 252–253. doi:10.1016/j.palaeo.2018.02.023.
  717. ^ Guillem Mas; Agnès Maillard; Josep A. Alcover; Joan J. Fornós; Pere Bover; Enric Torres-Roig (2018). "Terrestrial colonization of the Balearic Islands: New evidence for the Mediterranean sea-level drawdown during the Messinian Salinity Crisis". Geology. 46 (6): 527–530. doi:10.1130/G40260.1.
  718. ^ Aaron Micallef; Angelo Camerlenghi; Daniel Garcia-Castellanos; Daniel Cunarro Otero; Marc-André Gutscher; Giovanni Barreca; Daniele Spatola; Lorenzo Facchin; Riccardo Geletti; Sebastian Krastel; Felix Gross; Morelia Urlaub (2018). "Evidence of the Zanclean megaflood in the eastern Mediterranean Basin". Scientific Reports. 8: Article number 1078. doi:10.1038/s41598-018-19446-3. PMC 5773550. PMID 29348516.
  719. ^ Laurent A. F. Frantz; Anna Rudzinski; Abang Mansyursyah Surya Nugraha; Allowen Evin; James Burton; Ardern Hulme-Beaman; Anna Linderholm; Ross Barnett; Rodrigo Vega; Evan K. Irving-Pease; James Haile; Richard Allen; Kristin Leus; Jill Shephard; Mia Hillyer; Sarah Gillemot; Jeroen van den Hurk; Sharron Ogle; Cristina Atofanei; Mark G. Thomas; Friederike Johansson; Abdul Haris Mustari; John Williams; Kusdiantoro Mohamad; Chandramaya Siska Damayanti; Ita Djuwita Wiryadi; Dagmar Obbles; Stephano Mona; Hally Day; Muhammad Yasin; Stefan Meker; Jimmy A. McGuire; Ben J. Evans; Thomas von Rintelen; Simon Y. W. Ho; Jeremy B. Searle; Andrew C. Kitchener; Alastair A. Macdonald; Darren J. Shaw; Robert Hall; Peter Galbusera; Greger Larson (2018). "Synchronous diversification of Sulawesi's iconic artiodactyls driven by recent geological events". Proceedings of the Royal Society B: Biological Sciences. 285 (1876): 20172566. doi:10.1098/rspb.2017.2566. PMC 5904307. PMID 29643207.
  720. ^ Kathlyn M. Stewart; Scott J. Rufolo (2018). "Kanapoi revisited: Paleoecological and biogeographical inferences from the fossil fish". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2018.01.008. PMID 29602541.
  721. ^ Thibaut Caley; Thomas Extier; James A. Collins; Enno Schefuß; Lydie Dupont; Bruno Malaizé; Linda Rossignol; Antoine Souron; Erin L. McClymont; Francisco J. Jimenez-Espejo; Carmen García-Comas; Frédérique Eynaud; Philippe Martinez; Didier M. Roche; Stephan J. Jorry; Karine Charlier; Mélanie Wary; Pierre-Yves Gourves; Isabelle Billy; Jacques Giraudeau (2018). "A two-million-year-long hydroclimatic context for hominin evolution in southeastern Africa". Nature. in press. doi:10.1038/s41586-018-0309-6. PMID 29988081.
  722. ^ Andrea Villa; Hugues-Alexandre Blain; Lars W. van den Hoek Ostende; Massimo Delfino (2018). "Fossil amphibians and reptiles from Tegelen (Province of Limburg) and the early Pleistocene palaeoclimate of The Netherlands". Quaternary Science Reviews. 187: 203–219. doi:10.1016/j.quascirev.2018.03.020.
  723. ^ Manuel Domínguez-Rodrigo; Enrique Baquedano (2018). "Distinguishing butchery cut marks from crocodile bite marks through machine learning methods". Scientific Reports. 8: Article number 5786. doi:10.1038/s41598-018-24071-1. PMC 5893542. PMID 29636550.
  724. ^ Faysal Bibi; Michael Pante; Antoine Souron; Kathlyn Stewart; Sara Varela; Lars Werdelin; Jean-Renaud Boisserie; Mikael Fortelius; Leslea Hlusko; Jackson Njau; Ignacio de la Torre (2018). "Paleoecology of the Serengeti during the Oldowan-Acheulean transition at Olduvai Gorge, Tanzania: The mammal and fish evidence". Journal of Human Evolution. 120: 48–75. doi:10.1016/j.jhevol.2017.10.009. PMID 29191415.
  725. ^ Neil T. Roach; Andrew Du; Kevin G. Hatala; Kelly R. Ostrofsky; Jonathan S. Reeves; David R. Braun; John W.K. Harris; Anna K. Behrensmeyer; Brian G. Richmond (2018). "Pleistocene animal communities of a 1.5 million-year-old lake margin grassland and their relationship to Homo erectus paleoecology". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2018.04.014. PMID 29970233.
  726. ^ Richard Potts; Anna K. Behrensmeyer; J. Tyler Faith; Christian A. Tryon; Alison S. Brooks; John E. Yellen; Alan L. Deino; Rahab Kinyanjui; Jennifer B. Clark; Catherine Haradon; Naomi E. Levin; Hanneke J. M. Meijer; Elizabeth G. Veatch; R. Bernhart Owen; Robin W. Renaut (2018). "Environmental dynamics during the onset of the Middle Stone Age in eastern Africa". Science. 360 (6384): 86–90. doi:10.1126/science.aao2200. PMID 29545506.
  727. ^ Alan L. Deino; Anna K. Behrensmeyer; Alison S. Brooks; John E. Yellen; Warren D. Sharp; Richard Potts (2018). "Chronology of the Acheulean to Middle Stone Age transition in eastern Africa". Science. 360 (6384): 95–98. doi:10.1126/science.aao2216. PMID 29545510.
  728. ^ Henry F. Lamb; C. Richard Bates; Charlotte L. Bryant; Sarah J. Davies; Dei G. Huws; Michael H. Marshall; Helen M. Roberts (2018). "150,000-year palaeoclimate record from northern Ethiopia supports early, multiple dispersals of modern humans from Africa". Scientific Reports. 8: Article number 1077. doi:10.1038/s41598-018-19601-w. PMC 5773494. PMID 29348464.
  729. ^ Chad L. Yost; Lily J. Jackson; Jeffery R. Stone; Andrew S. Cohen (2018). "Subdecadal phytolith and charcoal records from Lake Malawi, East Africa imply minimal effects on human evolution from the ∼74 ka Toba supereruption". Journal of Human Evolution. 116: 75–94. doi:10.1016/j.jhevol.2017.11.005. PMID 29477183.
  730. ^ D. Wolf; T. Kolb; M. Alcaraz-Castaño; S. Heinrich; P. Baumgart; R. Calvo; J. Sánchez; K. Ryborz; I. Schäfer; M. Bliedtner; R. Zech; L. Zöller; D. Faust (2018). "Climate deteriorations and Neanderthal demise in interior Iberia". Scientific Reports. 8: Article number 7048. doi:10.1038/s41598-018-25343-6. PMC 5935692. PMID 29728579.
  731. ^ Asier Gómez-Olivencia; Nohemi Sala; Carmen Núñez-Lahuerta; Alfred Sanchis; Mikel Arlegi; Joseba Rios-Garaizar (2018). "First data of Neandertal bird and carnivore exploitation in the Cantabrian Region (Axlor; Barandiaran excavations; Dima, Biscay, Northern Iberian Peninsula)". Scientific Reports. 8: Article number 10551. doi:10.1038/s41598-018-28377-y. PMC 6043621. PMID 30002396.
  732. ^ Matthew J. Wooller; Émilie Saulnier-Talbot; Ben A. Potter; Soumaya Belmecheri; Nancy Bigelow; Kyungcheol Choy; Les C. Cwynar; Kimberley Davies; Russell W. Graham; Joshua Kurek; Peter Langdon; Andrew Medeiros; Ruth Rawcliffe; Yue Wang; John W. Williams (2018). "A new terrestrial palaeoenvironmental record from the Bering Land Bridge and context for human dispersal". Royal Society Open Science. 5 (6): 180145. doi:10.1098/rsos.180145.
  733. ^ Alia J. Lesnek; Jason P. Briner; Charlotte Lindqvist; James F. Baichtal; Timothy H. Heaton (2018). "Deglaciation of the Pacific coastal corridor directly preceded the human colonization of the Americas". Science Advances. 4 (5): eaar5040. doi:10.1126/sciadv.aar5040. PMC 5976267. PMID 29854947.
  734. ^ Marco F. Raczka; Mark B. Bush; Paulo Eduardo De Oliveira (2018). "The collapse of megafaunal populations in southeastern Brazil". Quaternary Research. 89 (1): 103–118. doi:10.1017/qua.2017.60.
  735. ^ Elizabeth S. Jeffers; Nicki J. Whitehouse; Adrian Lister; Gill Plunkett; Phil Barratt; Emma Smyth; Philip Lamb; Michael W. Dee; Stephen J. Brooks; Katherine J. Willis; Cynthia A. Froyd; Jenny E. Watson; Michael B. Bonsall (2018). "Plant controls on Late Quaternary whole ecosystem structure and function". Ecology Letters. 21 (6): 814–825. doi:10.1111/ele.12944. PMID 29601664.
  736. ^ Mauro Galetti; Marcos Moleón; Pedro Jordano; Mathias M. Pires; Paulo R. Guimarães Jr.; Thomas Pape; Elizabeth Nichols; Dennis Hansen; Jens M. Olesen; Michael Munk; Jacqueline S. de Mattos; Andreas H. Schweiger; Norman Owen‐Smith; Christopher N. Johnson; Robert J. Marquis; Jens‐Christian Svenning (2018). "Ecological and evolutionary legacy of megafauna extinctions". Biological Reviews. 93 (2): 845–862. doi:10.1111/brv.12374. PMID 28990321.
  737. ^ Jody M. Webster; Juan Carlos Braga; Marc Humblet; Donald C. Potts; Yasufumi Iryu; Yusuke Yokoyama; Kazuhiko Fujita; Raphael Bourillot; Tezer M. Esat; Stewart Fallon; William G. Thompson; Alexander L. Thomas; Hironobu Kan; Helen V. McGregor; Gustavo Hinestrosa; Stephen P. Obrochta; Bryan C. Lougheed (2018). "Response of the Great Barrier Reef to sea-level and environmental changes over the past 30,000 years". Nature Geoscience. 11 (6): 426–432. doi:10.1038/s41561-018-0127-3.
  738. ^ Frederik V. Seersholm; Theresa L. Cole; Alicia Grealy; Nicolas J. Rawlence; Karen Greig; Michael Knapp; Michael Stat; Anders J. Hansen; Luke J. Easton; Lara Shepherd; Alan J. D. Tennyson; R. Paul Scofield; Richard Walter; Michael Bunce (2018). "Subsistence practices, past biodiversity, and anthropogenic impacts revealed by New Zealand-wide ancient DNA survey". Proceedings of the National Academy of Sciences of the United States of America. in press. doi:10.1073/pnas.1803573115. PMID 29987016.
  739. ^ Robert S. Sansom; Peter G. Choate; Joseph N. Keating; Emma Randle (2018). "Parsimony, not Bayesian analysis, recovers more stratigraphically congruent phylogenetic trees". Biology Letters. 14 (6): 20180263. doi:10.1098/rsbl.2018.0263. PMC 6030593. PMID 29925561.
  740. ^ Kevin Padian (2018). "Measuring and comparing extinction events: Reconsidering diversity crises and concepts". Integrative and Comparative Biology. in press. doi:10.1093/icb/icy084. PMID 29945185.
  741. ^ Dominic J. Bennett; Mark D. Sutton; Samuel T. Turvey (2018). "Quantifying the living fossil concept". Palaeontologia Electronica. 21 (1): Article number: 21.1.14A. doi:10.26879/750.
  742. ^ Asefeh Golreihan; Christian Steuwe; Lineke Woelders; Arne Deprez; Yasuhiko Fujita; Johan Vellekoop; Rudy Swennen; Maarten B. J. Roeffaers (2018). "Improving preservation state assessment of carbonate microfossils in paleontological research using label-free stimulated Raman imaging". PLoS ONE. 13 (7): e0199695. doi:10.1371/journal.pone.0199695. PMID 29995961.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  743. ^ Fredrik K. Mürer; Sophie Sanchez; Michelle Álvarez-Murga; Marco Di Michiel; Franz Pfeiffer; Martin Bech; Dag W. Breiby (2018). "3D maps of mineral composition and hydroxyapatite orientation in fossil bone samples obtained by X-ray diffraction computed tomography". Scientific Reports. 8: Article number 10052. doi:10.1038/s41598-018-28269-1. PMC 6030225. PMID 29968761.
  744. ^ Thiago F. Rangel; Neil R. Edwards; Philip B. Holden; José Alexandre F. Diniz-Filho; William D. Gosling; Marco Túlio P. Coelho; Fernanda A. S. Cassemiro; Carsten Rahbek; Robert K. Colwell (2018). "Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves". Science. 361 (6399): eaar5452. doi:10.1126/science.aar5452.