Jump to content

Seviteronel

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by HickoryOughtShirt?4 (talk | contribs) at 23:56, 19 December 2020 (WL Amina Zoubeidi). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Seviteronel
Clinical data
Other namesVT-464; INO-464
Routes of
administration
By mouth
Drug classAndrogen biosynthesis inhibitor; Nonsteroidal antiandrogen
ATC code
  • None
Identifiers
  • (1S)-1-[6,7-Bis(difluoromethoxy)naphthalen-2-yl]-2-methyl-1-(2H-triazol-4-yl)propan-1-ol
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
FormulaC18H17F4N3O3
Molar mass399.346 g·mol−1
3D model (JSmol)
  • CC(C)C(C1=CC2=CC(=C(C=C2C=C1)OC(F)F)OC(F)F)(C3=NNN=C3)O
  • InChI=1S/C18H17F4N3O3/c1-9(2)18(26,15-8-23-25-24-15)12-4-3-10-6-13(27-16(19)20)14(28-17(21)22)7-11(10)5-12/h3-9,16-17,26H,1-2H3,(H,23,24,25)/t18-/m0/s1
  • Key:ZBRAJOQFSNYJMF-SFHVURJKSA-N

Seviteronel (developmental codes VT-464 and, formerly, INO-464) is an experimental cancer medication which is under development by Viamet Pharmaceuticals and Innocrin Pharmaceuticals for the treatment of prostate cancer and breast cancer.[1] It is a nonsteroidal CYP17A1 inhibitor and works by inhibiting the production of androgens and estrogens in the body.[1] As of July 2017, seviteronel is in phase II clinical trials for both prostate cancer and breast cancer.[1] In January 2016, it was designated fast-track status by the United States Food and Drug Administration for prostate cancer.[1][2] In April 2017, seviteronel received fast-track designation for breast cancer as well.[1]

Pharmacology

Pharmacodynamics

Seviteronel is a nonsteroidal antiandrogen, acting specifically as an androgen synthesis inhibitor via inhibition of the enzyme CYP17A1, for the treatment of castration-resistant prostate cancer.[3][4][5][6][7][8] It has approximately 10-fold selectivity for the inhibition of 17,20-lyase (IC50Tooltip half-maximal inhibitory concentration = 69 nM) over 17α-hydroxylase (IC50 = 670 nM), which results in less interference with corticosteroid production relative to the approved CYP17A1 inhibitor abiraterone acetate (which must be administered in combination with prednisone to avoid glucocorticoid deficiency and mineralocorticoid excess due to 17α-hydroxylase inhibition) and hence may be administerable without a concomitant exogenous glucocorticoid.[9] Seviteronel is 58-fold more selective for inhibition of 17,20-lyase than abiraterone (the active metabolite of abiraterone acetate), which has IC50 values for inhibition of 17,20-lyase and 17α-hydroxylase of 15 nM and 2.5 nM, respectively.[7] In addition, in in vitro models, seviteronel appears to possess greater efficacy as an antiandrogen relative to abiraterone.[6] Similarly to abiraterone acetate, seviteronel has also been found to act to some extent as an antagonist of the androgen receptor.[6]

Society and culture

Generic names

Seviteronel is the generic name of the drug and its INNTooltip International Nonproprietary Name.[10]

See also

References

  1. ^ a b c d e http://adisinsight.springer.com/drugs/800035241
  2. ^ http://www.pharmaceutical-technology.com/news/newsfda-grants-fast-track-status-innocrins-seviteronel-treat-metastatic-crpc-4770025
  3. ^ Yin L, Hu Q, Hartmann RW (2013). "Recent progress in pharmaceutical therapies for castration-resistant prostate cancer". Int J Mol Sci. 14 (7): 13958–78. doi:10.3390/ijms140713958. PMC 3742227. PMID 23880851.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  4. ^ Stein MN, Patel N, Bershadskiy A, Sokoloff A, Singer EA (2014). "Androgen synthesis inhibitors in the treatment of castration-resistant prostate cancer". Asian J. Androl. 16 (3): 387–400. doi:10.4103/1008-682X.129133. PMC 4023364. PMID 24759590.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  5. ^ Rafferty SW, Eisner JR, Moore WR, Schotzinger RJ, Hoekstra WJ (2014). "Highly-selective 4-(1,2,3-triazole)-based P450c17a 17,20-lyase inhibitors". Bioorg. Med. Chem. Lett. 24 (11): 2444–7. doi:10.1016/j.bmcl.2014.04.024. PMID 24775307.
  6. ^ a b c Toren PJ, Kim S, Pham S, Mangalji A, Adomat H, Guns ES, Zoubeidi A, Moore W, Gleave ME (2015). "Anticancer activity of a novel selective CYP17A1 inhibitor in preclinical models of castrate-resistant prostate cancer". Mol. Cancer Ther. 14 (1): 59–69. doi:10.1158/1535-7163.MCT-14-0521. PMID 25351916.
  7. ^ a b Stephen Neidle (30 September 2013). Cancer Drug Design and Discovery. Academic Press. pp. 341–342. ISBN 978-0-12-397228-6.
  8. ^ Wm Kevin Kelly; Edouard J. Trabulsi, MD; Nicholas G. Zaorsky, MD (17 December 2014). Prostate Cancer: A Multidisciplinary Approach to Diagnosis and Management. Demos Medical Publishing. pp. 342–. ISBN 978-1-936287-59-8.
  9. ^ Bird IM, Abbott DH (October 2016). "The hunt for a selective 17,20 lyase inhibitor; learning lessons from nature". The Journal of Steroid Biochemistry and Molecular Biology. 163: 136–46. doi:10.1016/j.jsbmb.2016.04.021. PMC 5046225. PMID 27154414. VT464 is another recently developed compound proposed to act as a selective lyase inhibitor, and more complete data is available in the public domain to support this claim. A review of preliminary data released suggest the IC50 for Human CYP17 lyase activity is ten times lower than for hydroxylase 15 and in nonhuman primates VT464 was able to suppress circulating testosterone as effectively as abiraterone, but with minimally depressed cortisol (remaining at 82% control compared to only 9% with aberaterone), and without associated increases in pregnenolone, progesterone and mineralocorticoids otherwise observed with abiraterone. Like Galaterone, VT464 is also in use in clinical trials without co-administration of prednisone. Together with the clear lack of suppression of circulating cortisol in nonhuman primates, these data argue that VT464 may indeed be a selective 17,20 lyase inhibitor.
  10. ^ https://www.who.int/medicines/publications/druginformation/innlists/RL76.pdf

Further reading