Jump to content

Proliferating cell nuclear antigen: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Uses: added note regarding use to distinguish between sub-parts of S-Phase
Yobot (talk | contribs)
m WP:CHECKWIKI error fixes using AWB (11349)
Line 1: Line 1:
{{PBB|geneid=5111}}
{{PBB|geneid=5111}}
'''Proliferating cell nuclear antigen (PCNA)''' is a [[DNA clamp]] that acts as a [[processivity]] factor for [[DNA polymerase delta|DNA polymerase δ]] in [[eukaryotic]] [[cell (biology)|cells]] and is essential for replication. PCNA is a homotrimer and achieves its processivity by encircling the DNA, where it acts as a scaffold to recruit proteins involved in DNA replication, DNA repair, chromatin remodeling and epigenetics.<ref>{{vcite2 journal | vauthors = Moldovan GL, Pfander B, Jentsch S | title = PCNA, the maestro of the replication fork. | journal = Cell | volume = 129 | issue = 4 | pages = 665–79 | date = May 18, 2007 | pmid = 17512402 | doi = 10.1016/j.cell.2007.05.003 }}</ref>
'''Proliferating cell nuclear antigen (PCNA)''' is a [[DNA clamp]] that acts as a [[processivity]] factor for [[DNA polymerase delta|DNA polymerase δ]] in [[eukaryotic]] [[cell (biology)|cells]] and is essential for replication. PCNA is a homotrimer and achieves its processivity by encircling the DNA, where it acts as a scaffold to recruit proteins involved in DNA replication, DNA repair, chromatin remodeling and epigenetics.<ref>{{cite journal | vauthors = Moldovan GL, Pfander B, Jentsch S | title = PCNA, the maestro of the replication fork. | journal = Cell | volume = 129 | issue = 4 | pages = 665–79 | date = May 18, 2007 | pmid = 17512402 | doi = 10.1016/j.cell.2007.05.003 }}</ref>


Many proteins interact with PCNA via the two known PCNA-interacting motifs PCNA-interacting peptide (PIP) box <ref>{{vcite2 journal | vauthors = Warbrick E | title = PCNA binding through a conserved motif. | journal = BioEssays : news and reviews in molecular, cellular and developmental biology | volume = 20 | issue = 3 | pages = 195–9 | date = Mar 1998 | pmid = 9631646 | doi = 10.1002/(sici)1521-1878(199803)20:3<195::aid-bies2>3.0.co;2-r }}</ref> and AlkB homologue 2 PCNA interacting motif (APIM).<ref name="Gilljam 645–54">{{vcite2 journal | vauthors = Gilljam KM, Feyzi E, Aas PA, Sousa MM, Müller R, Vågbø CB, Catterall TC, Liabakk NB, Slupphaug G, Drabløs F, Krokan HE, Otterlei M | title = Identification of a novel, widespread, and functionally important PCNA-binding motif. | journal = The Journal of Cell Biology | volume = 186 | issue = 5 | pages = 645–54 | date = Sep 7, 2009 | pmid = 19736315 | pmc = 2742182 | doi = 10.1083/jcb.200903138 }}</ref> Proteins binding to PCNA via the PIP-box are mainly involved in DNA replication whereas proteins binding to PCNA via APIM are mainly important in the context of genotoxic stress.<ref>{{vcite2 journal | vauthors = Mailand N, Gibbs-Seymour I, Bekker-Jensen S | title = Regulation of PCNA-protein interactions for genome stability. | journal = Nature reviews. Molecular cell biology | volume = 14 | issue = 5 | pages = 269–82 | date = May 2013 | pmid = 23594953 | doi = 10.1038/nrm3562 }}</ref>
Many proteins interact with PCNA via the two known PCNA-interacting motifs PCNA-interacting peptide (PIP) box <ref>{{cite journal | vauthors = Warbrick E | title = PCNA binding through a conserved motif. | journal = BioEssays : news and reviews in molecular, cellular and developmental biology | volume = 20 | issue = 3 | pages = 195–9 | date = Mar 1998 | pmid = 9631646 | doi = 10.1002/(sici)1521-1878(199803)20:3<195::aid-bies2>3.0.co;2-r }}</ref> and AlkB homologue 2 PCNA interacting motif (APIM).<ref name="Gilljam 645–54">{{cite journal | vauthors = Gilljam KM, Feyzi E, Aas PA, Sousa MM, Müller R, Vågbø CB, Catterall TC, Liabakk NB, Slupphaug G, Drabløs F, Krokan HE, Otterlei M | title = Identification of a novel, widespread, and functionally important PCNA-binding motif. | journal = The Journal of Cell Biology | volume = 186 | issue = 5 | pages = 645–54 | date = Sep 7, 2009 | pmid = 19736315 | pmc = 2742182 | doi = 10.1083/jcb.200903138 }}</ref> Proteins binding to PCNA via the PIP-box are mainly involved in DNA replication whereas proteins binding to PCNA via APIM are mainly important in the context of genotoxic stress.<ref>{{cite journal | vauthors = Mailand N, Gibbs-Seymour I, Bekker-Jensen S | title = Regulation of PCNA-protein interactions for genome stability. | journal = Nature reviews. Molecular cell biology | volume = 14 | issue = 5 | pages = 269–82 | date = May 2013 | pmid = 23594953 | doi = 10.1038/nrm3562 }}</ref>


== Function ==
== Function ==
Line 9: Line 9:


==Expression in the nucleus during DNA synthesis==
==Expression in the nucleus during DNA synthesis==
PCNA was originally identified as an [[antigen]] that is expressed in the [[cell nucleus|nuclei]] of cells during the [[S phase|DNA synthesis phase]] of the [[cell cycle]].<ref name="pmid1350788">{{vcite2 journal | vauthors = Leonardi E, Girlando S, Serio G, Mauri FA, Perrone G, Scampini S, Dalla Palma P, Barbareschi M | title = PCNA and Ki67 expression in breast carcinoma: correlations with clinical and biological variables | journal = J. Clin. Pathol. | volume = 45 | issue = 5 | pages = 416–419 | year = 1992 | pmid = 1350788 | pmc = 495304 | doi = 10.1136/jcp.45.5.416 }}</ref> Part of the protein was sequenced and that sequence was used to allow isolation of a [[cDNA]] clone.<ref name="pmid2884104">{{vcite2 journal | vauthors = Matsumoto K, Moriuchi T, Koji T, Nakane PK | title = Molecular cloning of cDNA coding for rat proliferating cell nuclear antigen (PCNA)/cyclin | journal = EMBO J. | volume = 6 | issue = 3 | pages = 637–42 | year = 1987 | pmid = 2884104 | pmc = 553445 | doi = | url = http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=2884104 | issn = }}</ref> PCNA helps hold [[DNA polymerase]] epsilon ('''Pol ε''') to DNA. PCNA is clamped<ref name="Bowman_2004">{{vcite2 journal | vauthors = Bowman GD, O'Donnell M, Kuriyan J | title = Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex | journal = Nature | volume = 429 | issue = 6993 | pages = 724–730 | year = 2004 | pmid = 15201901 | doi = 10.1038/nature02585 }}</ref> to [[DNA]] through the action of [[replication factor C]] (RFC),<ref name="pmid10051561">{{vcite2 journal | vauthors = Zhang G, Gibbs E, Kelman Z, O'Donnell M, Hurwitz J | title = Studies on the interactions between human replication factor C and human proliferating cell nuclear antigen | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 96 | issue = 5 | pages = 1869–1874 | year = 1999 | pmid = 10051561 | pmc = 26703 | doi = 10.1073/pnas.96.5.1869 }}</ref> which is a heteropentameric member of the [[AAA+]] class of ATPases. Expression of PCNA is under the control of [[E2F]] [[transcription factor]]-containing complexes.<ref name="pmid12468739">{{vcite2 journal | vauthors = Egelkrout EM, Mariconti L, Settlage SB, Cella R, Robertson D, Hanley-Bowdoin L | title = Two E2F elements regulate the proliferating cell nuclear antigen promoter differently during leaf development | journal = Plant Cell | volume = 14 | issue = 12 | pages = 3225–3236 | year = 2002 | pmid = 12468739 | pmc = 151214 | doi = 10.1105/tpc.006403 }}</ref>
PCNA was originally identified as an [[antigen]] that is expressed in the [[cell nucleus|nuclei]] of cells during the [[S phase|DNA synthesis phase]] of the [[cell cycle]].<ref name="pmid1350788">{{cite journal | vauthors = Leonardi E, Girlando S, Serio G, Mauri FA, Perrone G, Scampini S, Dalla Palma P, Barbareschi M | title = PCNA and Ki67 expression in breast carcinoma: correlations with clinical and biological variables | journal = J. Clin. Pathol. | volume = 45 | issue = 5 | pages = 416–419 | year = 1992 | pmid = 1350788 | pmc = 495304 | doi = 10.1136/jcp.45.5.416 }}</ref> Part of the protein was sequenced and that sequence was used to allow isolation of a [[cDNA]] clone.<ref name="pmid2884104">{{cite journal | vauthors = Matsumoto K, Moriuchi T, Koji T, Nakane PK | title = Molecular cloning of cDNA coding for rat proliferating cell nuclear antigen (PCNA)/cyclin | journal = EMBO J. | volume = 6 | issue = 3 | pages = 637–42 | year = 1987 | pmid = 2884104 | pmc = 553445 | doi = | url = http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=2884104 | issn = }}</ref> PCNA helps hold [[DNA polymerase]] epsilon ('''Pol ε''') to DNA. PCNA is clamped<ref name="Bowman_2004">{{cite journal | vauthors = Bowman GD, O'Donnell M, Kuriyan J | title = Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex | journal = Nature | volume = 429 | issue = 6993 | pages = 724–730 | year = 2004 | pmid = 15201901 | doi = 10.1038/nature02585 }}</ref> to [[DNA]] through the action of [[replication factor C]] (RFC),<ref name="pmid10051561">{{cite journal | vauthors = Zhang G, Gibbs E, Kelman Z, O'Donnell M, Hurwitz J | title = Studies on the interactions between human replication factor C and human proliferating cell nuclear antigen | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 96 | issue = 5 | pages = 1869–1874 | year = 1999 | pmid = 10051561 | pmc = 26703 | doi = 10.1073/pnas.96.5.1869 }}</ref> which is a heteropentameric member of the [[AAA+]] class of ATPases. Expression of PCNA is under the control of [[E2F]] [[transcription factor]]-containing complexes.<ref name="pmid12468739">{{cite journal | vauthors = Egelkrout EM, Mariconti L, Settlage SB, Cella R, Robertson D, Hanley-Bowdoin L | title = Two E2F elements regulate the proliferating cell nuclear antigen promoter differently during leaf development | journal = Plant Cell | volume = 14 | issue = 12 | pages = 3225–3236 | year = 2002 | pmid = 12468739 | pmc = 151214 | doi = 10.1105/tpc.006403 }}</ref>


==Role in DNA repair==
==Role in DNA repair==
Since [[DNA polymerase#Eukaryotic DNA polymerase|DNA polymerase]]<nowiki/> epsilon is involved in resynthesis of excised damaged DNA strands during [[DNA repair]], PCNA is important for both DNA synthesis and DNA repair.<ref name="pmid1348971">{{vcite2 journal | vauthors = Shivji KK, Kenny MK, Wood RD | title = Proliferating cell nuclear antigen is required for DNA excision repair | journal = Cell | volume = 69 | issue = 2 | pages = 367–74 | date = April 1992 | pmid = 1348971 | doi = 10.1016/0092-8674(92)90416-A | url = }}</ref><ref name="pmid16227586">{{vcite2 journal | vauthors = Essers J, Theil AF, Baldeyron C, van Cappellen WA, Houtsmuller AB, Kanaar R, Vermeulen W | title = Nuclear dynamics of PCNA in DNA replication and repair | journal = Mol. Cell. Biol. | volume = 25 | issue = 21 | pages = 9350–9359 | year = 2005 | pmid = 16227586 | pmc = 1265825 | doi = 10.1128/MCB.25.21.9350-9359.2005 }}</ref>
Since [[DNA polymerase#Eukaryotic DNA polymerase|DNA polymerase]]<nowiki/> epsilon is involved in resynthesis of excised damaged DNA strands during [[DNA repair]], PCNA is important for both DNA synthesis and DNA repair.<ref name="pmid1348971">{{cite journal | vauthors = Shivji KK, Kenny MK, Wood RD | title = Proliferating cell nuclear antigen is required for DNA excision repair | journal = Cell | volume = 69 | issue = 2 | pages = 367–74 | date = April 1992 | pmid = 1348971 | doi = 10.1016/0092-8674(92)90416-A | url = }}</ref><ref name="pmid16227586">{{cite journal | vauthors = Essers J, Theil AF, Baldeyron C, van Cappellen WA, Houtsmuller AB, Kanaar R, Vermeulen W | title = Nuclear dynamics of PCNA in DNA replication and repair | journal = Mol. Cell. Biol. | volume = 25 | issue = 21 | pages = 9350–9359 | year = 2005 | pmid = 16227586 | pmc = 1265825 | doi = 10.1128/MCB.25.21.9350-9359.2005 }}</ref>


PCNA is also involved in the DNA damage tolerance pathway known as post-replication repair (PRR).<ref name="pmid16956796">{{vcite2 journal | vauthors = Lehmann AR, Fuchs RP | title = Gaps and forks in DNA replication: Rediscovering old models | journal = DNA Repair (Amst.) | volume = 5 | issue = 12 | pages = 1495–1498 | date = December 2006 | pmid = 16956796 | doi = 10.1016/j.dnarep.2006.07.002 | url = }}</ref> In PRR, there are two sub-pathways:
PCNA is also involved in the DNA damage tolerance pathway known as post-replication repair (PRR).<ref name="pmid16956796">{{cite journal | vauthors = Lehmann AR, Fuchs RP | title = Gaps and forks in DNA replication: Rediscovering old models | journal = DNA Repair (Amst.) | volume = 5 | issue = 12 | pages = 1495–1498 | date = December 2006 | pmid = 16956796 | doi = 10.1016/j.dnarep.2006.07.002 | url = }}</ref> In PRR, there are two sub-pathways:
(1) a translesion pathway, which is carried out by specialised DNA polymerases that are able to incorporate damaged DNA bases into their active sites (unlike the normal replicative polymerase, which stall), and hence bypass the damage, and
(1) a translesion pathway, which is carried out by specialised DNA polymerases that are able to incorporate damaged DNA bases into their active sites (unlike the normal replicative polymerase, which stall), and hence bypass the damage, and
(2) a proposed "template switch" pathway that is thought to involve damage bypass by recruitment of the homologous recombination machinery.
(2) a proposed "template switch" pathway that is thought to involve damage bypass by recruitment of the homologous recombination machinery.
PCNA is pivotal to the activation of these pathways and the choice as to which pathway is utilised by the cell. PCNA becomes post-translationally modified by [[ubiquitin]].<ref name="Hoege_2002">{{vcite2 journal | vauthors = Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S | title = RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO | journal = Nature | volume = 419 | issue = 6903 | pages = 135–141 | date = September 2002 | pmid = 12226657 | doi = 10.1038/nature00991 | url = }}</ref> Mono-ubiquitin of lysine number 164 on PCNA activates the translesion synthesis pathway. Extension of this mono-ubiquitin by a non-canonical lysine-63-linked poly-ubiquitin chain on PCNA<ref name="Hoege_2002"/> is thought to activate the template switch pathway. Furthermore, sumoylation (by small ubiquitin-like modifier, SUMO) of PCNA lysine-164 (and to a lesser extent, lysine-127) '''inhibits''' the template switch pathway.<ref name="Hoege_2002"/> This antagonistic effect occurs because sumoylated PCNA recruits a DNA helicase called Srs2,<ref name="pmid15931174">{{vcite2 journal | vauthors = Pfander B, Moldovan GL, Sacher M, Hoege C, Jentsch S | title = SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase | journal = Nature | volume = 436 | issue = 7049 | pages = 428–33 | date = July 2005 | pmid = 15931174 | doi = 10.1038/nature03665 | url = }}</ref> which has a role in disrupting Rad51 nucleoprotein filaments fundamental for initiation of homologous recombination.
PCNA is pivotal to the activation of these pathways and the choice as to which pathway is utilised by the cell. PCNA becomes post-translationally modified by [[ubiquitin]].<ref name="Hoege_2002">{{cite journal | vauthors = Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S | title = RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO | journal = Nature | volume = 419 | issue = 6903 | pages = 135–141 | date = September 2002 | pmid = 12226657 | doi = 10.1038/nature00991 | url = }}</ref> Mono-ubiquitin of lysine number 164 on PCNA activates the translesion synthesis pathway. Extension of this mono-ubiquitin by a non-canonical lysine-63-linked poly-ubiquitin chain on PCNA<ref name="Hoege_2002"/> is thought to activate the template switch pathway. Furthermore, sumoylation (by small ubiquitin-like modifier, SUMO) of PCNA lysine-164 (and to a lesser extent, lysine-127) '''inhibits''' the template switch pathway.<ref name="Hoege_2002"/> This antagonistic effect occurs because sumoylated PCNA recruits a DNA helicase called Srs2,<ref name="pmid15931174">{{cite journal | vauthors = Pfander B, Moldovan GL, Sacher M, Hoege C, Jentsch S | title = SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase | journal = Nature | volume = 436 | issue = 7049 | pages = 428–33 | date = July 2005 | pmid = 15931174 | doi = 10.1038/nature03665 | url = }}</ref> which has a role in disrupting Rad51 nucleoprotein filaments fundamental for initiation of homologous recombination.


==PCNA-binding proteins==
==PCNA-binding proteins==
{{•}} TCP protein domain {{•}} NKp44 Receptor {{•}} procaspases <ref>{{vcite2 journal | vauthors = Witko-Sarsat V, Mocek J, Bouayad D, Tamassia N, Ribeil JA, Candalh C, Davezac N, Reuter N, Mouthon L, Hermine O, Pederzoli-Ribeil M, Cassatella MA | title = Proliferating cell nuclear antigen acts as a cytoplasmic platform controlling human neutrophil survival. | journal = The Journal of experimental medicine | volume = 207 | issue = 12 | pages = 2631–45 | date = Nov 22, 2010 | pmid = 20975039 | pmc = 2989777 | doi = 10.1084/jem.20092241 }}</ref> {{•}} [[DNA polymerases]] {{•}} [[Replication factor C|Clamp loader]] {{•}} [[Flap endonuclease]] {{•}} [[DNA ligase]] {{•}} [[Topoisomerase]] {{•}} [[Replication licensing factor]] {{•}} E3 [[ubiquitin ligases]] {{•}} E2 [[SUMO protein|SUMO]]-conjugating enzyme {{•}} [[Helicase]]s, [[ATPases]] {{•}} [[Mismatch repair]] enzymes {{•}} [[Base excision repair]] enzymes {{•}} [[Nucleotide excision repair]] enzyme {{•}} [[Poly ADP ribose polymerase]] {{•}} [[Histone]] [[Chaperone (protein)|chaperone]] {{•}} [[Chromatin remodeling|Chromatin remodeling factor]] {{•}} [[Histone acetyltransferase]] {{•}} [[Histone deacetyltransferase]] {{•}} [[DNA methyltransferase]] {{•}} [[Cohesin|Sister-chromatid cohesion factors]] {{•}} [[Protein kinases]] {{•}} [[Cell-cycle#Regulation of cell cycle|Cell-cycle regulators]] {{•}} [[Apoptotic#Mitochondrial regulation|Apoptotic factors]]
{{•}} TCP protein domain {{•}} NKp44 Receptor {{•}} procaspases <ref>{{cite journal | vauthors = Witko-Sarsat V, Mocek J, Bouayad D, Tamassia N, Ribeil JA, Candalh C, Davezac N, Reuter N, Mouthon L, Hermine O, Pederzoli-Ribeil M, Cassatella MA | title = Proliferating cell nuclear antigen acts as a cytoplasmic platform controlling human neutrophil survival. | journal = The Journal of experimental medicine | volume = 207 | issue = 12 | pages = 2631–45 | date = Nov 22, 2010 | pmid = 20975039 | pmc = 2989777 | doi = 10.1084/jem.20092241 }}</ref> {{•}} [[DNA polymerases]] {{•}} [[Replication factor C|Clamp loader]] {{•}} [[Flap endonuclease]] {{•}} [[DNA ligase]] {{•}} [[Topoisomerase]] {{•}} [[Replication licensing factor]] {{•}} E3 [[ubiquitin ligases]] {{•}} E2 [[SUMO protein|SUMO]]-conjugating enzyme {{•}} [[Helicase]]s, [[ATPases]] {{•}} [[Mismatch repair]] enzymes {{•}} [[Base excision repair]] enzymes {{•}} [[Nucleotide excision repair]] enzyme {{•}} [[Poly ADP ribose polymerase]] {{•}} [[Histone]] [[Chaperone (protein)|chaperone]] {{•}} [[Chromatin remodeling|Chromatin remodeling factor]] {{•}} [[Histone acetyltransferase]] {{•}} [[Histone deacetyltransferase]] {{•}} [[DNA methyltransferase]] {{•}} [[Cohesin|Sister-chromatid cohesion factors]] {{•}} [[Protein kinases]] {{•}} [[Cell-cycle#Regulation of cell cycle|Cell-cycle regulators]] {{•}} [[Apoptotic#Mitochondrial regulation|Apoptotic factors]]


for details see<ref name="pmid17512402">{{vcite2 journal | vauthors = Moldovan GL, Pfander B, Jentsch S | title = PCNA, the maestro of the replication fork | journal = Cell | volume = 129 | issue = 4 | pages = 665–679 | year = 2007 | pmid = 17512402 | doi = 10.1016/j.cell.2007.05.003 }}</ref>
for details see<ref name="pmid17512402">{{cite journal | vauthors = Moldovan GL, Pfander B, Jentsch S | title = PCNA, the maestro of the replication fork | journal = Cell | volume = 129 | issue = 4 | pages = 665–679 | year = 2007 | pmid = 17512402 | doi = 10.1016/j.cell.2007.05.003 }}</ref>


== Interactions ==
== Interactions ==
Line 29: Line 29:
{{div col|colwidth=20em}}
{{div col|colwidth=20em}}
* [[Annexin A2]],<ref name = pmid12171929/>
* [[Annexin A2]],<ref name = pmid12171929/>
* [[CDC25C]],<ref name = pmid11896603>{{vcite2 journal | vauthors = Kawabe T, Suganuma M, Ando T, Kimura M, Hori H, Okamoto T | title = Cdc25C interacts with PCNA at G2/M transition | journal = Oncogene | volume = 21 | issue = 11 | pages = 1717-26 | date = March 2002 | pmid = 11896603 | doi = 10.1038/sj.onc.1205229 }}</ref>
* [[CDC25C]],<ref name = pmid11896603>{{cite journal | vauthors = Kawabe T, Suganuma M, Ando T, Kimura M, Hori H, Okamoto T | title = Cdc25C interacts with PCNA at G2/M transition | journal = Oncogene | volume = 21 | issue = 11 | pages = 1717–26 | date = March 2002 | pmid = 11896603 | doi = 10.1038/sj.onc.1205229 }}</ref>
* [[CHTF18]],<ref name = pmid12171929/>
* [[CHTF18]],<ref name = pmid12171929/>
* [[Cyclin D1]],<ref name = pmid7908906>{{vcite2 journal | vauthors = Matsuoka S, Yamaguchi M, Matsukage A | title = D-type cyclin-binding regions of proliferating cell nuclear antigen | journal = J. Biol. Chem. | volume = 269 | issue = 15 | pages = 11030-6 | date = April 1994 | pmid = 7908906 | doi = }}</ref><ref name = pmid8101826>{{vcite2 journal | vauthors = Xiong Y, Zhang H, Beach D | title = Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation | journal = Genes Dev. | volume = 7 | issue = 8 | pages = 1572-83 | date = August 1993 | pmid = 8101826 | doi = 10.1101/gad.7.8.1572}}</ref>
* [[Cyclin D1]],<ref name = pmid7908906>{{cite journal | vauthors = Matsuoka S, Yamaguchi M, Matsukage A | title = D-type cyclin-binding regions of proliferating cell nuclear antigen | journal = J. Biol. Chem. | volume = 269 | issue = 15 | pages = 11030–6 | date = April 1994 | pmid = 7908906 | doi = }}</ref><ref name = pmid8101826>{{cite journal | vauthors = Xiong Y, Zhang H, Beach D | title = Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation | journal = Genes Dev. | volume = 7 | issue = 8 | pages = 1572–83 | date = August 1993 | pmid = 8101826 | doi = 10.1101/gad.7.8.1572}}</ref>
* [[Cyclin O]],<ref name = pmid12171929/><ref name = pmid10393198>{{vcite2 journal | vauthors = Otterlei M, Warbrick E, Nagelhus TA, Haug T, Slupphaug G, Akbari M, Aas PA, Steinsbekk K, Bakke O, Krokan HE | title = Post-replicative base excision repair in replication foci | journal = EMBO J. | volume = 18 | issue = 13 | pages = 3834-44 | date = July 1999 | pmid = 10393198 | pmc = 1171460 | doi = 10.1093/emboj/18.13.3834 }}</ref>
* [[Cyclin O]],<ref name = pmid12171929/><ref name = pmid10393198>{{cite journal | vauthors = Otterlei M, Warbrick E, Nagelhus TA, Haug T, Slupphaug G, Akbari M, Aas PA, Steinsbekk K, Bakke O, Krokan HE | title = Post-replicative base excision repair in replication foci | journal = EMBO J. | volume = 18 | issue = 13 | pages = 3834–44 | date = July 1999 | pmid = 10393198 | pmc = 1171460 | doi = 10.1093/emboj/18.13.3834 }}</ref>
* [[Cyclin-dependent kinase 4]],<ref name = pmid8101826/><ref name = pmid8259215>{{vcite2 journal | vauthors = Serrano M, Hannon GJ, Beach D | title = A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4 | journal = Nature | volume = 366 | issue = 6456 | pages = 704-7 | date = December 1993 | pmid = 8259215 | doi = 10.1038/366704a0 }}</ref>
* [[Cyclin-dependent kinase 4]],<ref name = pmid8101826/><ref name = pmid8259215>{{cite journal | vauthors = Serrano M, Hannon GJ, Beach D | title = A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4 | journal = Nature | volume = 366 | issue = 6456 | pages = 704–7 | date = December 1993 | pmid = 8259215 | doi = 10.1038/366704a0 }}</ref>
* [[Cyclin-dependent kinase inhibitor 1C]],<ref name = pmid9465025>{{vcite2 journal | vauthors = Watanabe H, Pan ZQ, Schreiber-Agus N, DePinho RA, Hurwitz J, Xiong Y | title = Suppression of cell transformation by the cyclin-dependent kinase inhibitor p57KIP2 requires binding to proliferating cell nuclear antigen | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 95 | issue = 4 | pages = 1392-7 | date = February 1998 | pmid = 9465025 | pmc = 19016 | doi = 10.1073/pnas.95.4.1392}}</ref>
* [[Cyclin-dependent kinase inhibitor 1C]],<ref name = pmid9465025>{{cite journal | vauthors = Watanabe H, Pan ZQ, Schreiber-Agus N, DePinho RA, Hurwitz J, Xiong Y | title = Suppression of cell transformation by the cyclin-dependent kinase inhibitor p57KIP2 requires binding to proliferating cell nuclear antigen | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 95 | issue = 4 | pages = 1392–7 | date = February 1998 | pmid = 9465025 | pmc = 19016 | doi = 10.1073/pnas.95.4.1392}}</ref>
* [[DNMT1]],<ref name = pmid10888872>{{vcite2 journal | vauthors = Rountree MR, Bachman KE, Baylin SB | title = DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci | journal = Nat. Genet. | volume = 25 | issue = 3 | pages = 269-77 | date = July 2000 | pmid = 10888872 | doi = 10.1038/77023 }}</ref><ref name = pmid12354094>{{vcite2 journal | vauthors = Iida T, Suetake I, Tajima S, Morioka H, Ohta S, Obuse C, Tsurimoto T | title = PCNA clamp facilitates action of DNA cytosine methyltransferase 1 on hemimethylated DNA | journal = Genes Cells | volume = 7 | issue = 10 | pages = 997-1007 | date = October 2002 | pmid = 12354094 | doi = 10.1046/j.1365-2443.2002.00584.x}}</ref><ref name = pmid9302295>{{vcite2 journal | vauthors = Chuang LS, Ian HI, Koh TW, Ng HH, Xu G, Li BF | title = Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1 | journal = Science | volume = 277 | issue = 5334 | pages = 1996-2000 | date = September 1997 | pmid = 9302295 | doi = 10.1126/science.277.5334.1996}}</ref>
* [[DNMT1]],<ref name = pmid10888872>{{cite journal | vauthors = Rountree MR, Bachman KE, Baylin SB | title = DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci | journal = Nat. Genet. | volume = 25 | issue = 3 | pages = 269–77 | date = July 2000 | pmid = 10888872 | doi = 10.1038/77023 }}</ref><ref name = pmid12354094>{{cite journal | vauthors = Iida T, Suetake I, Tajima S, Morioka H, Ohta S, Obuse C, Tsurimoto T | title = PCNA clamp facilitates action of DNA cytosine methyltransferase 1 on hemimethylated DNA | journal = Genes Cells | volume = 7 | issue = 10 | pages = 997–1007 | date = October 2002 | pmid = 12354094 | doi = 10.1046/j.1365-2443.2002.00584.x}}</ref><ref name = pmid9302295>{{cite journal | vauthors = Chuang LS, Ian HI, Koh TW, Ng HH, Xu G, Li BF | title = Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1 | journal = Science | volume = 277 | issue = 5334 | pages = 1996–2000 | date = September 1997 | pmid = 9302295 | doi = 10.1126/science.277.5334.1996}}</ref>
* [[EP300]],<ref name = pmid11268218>{{vcite2 journal | vauthors = Hasan S, Hassa PO, Imhof R, Hottiger MO | title = Transcription coactivator p300 binds PCNA and may have a role in DNA repair synthesis | journal = Nature | volume = 410 | issue = 6826 | pages = 387-91 | date = March 2001 | pmid = 11268218 | doi = 10.1038/35066610 }}</ref>
* [[EP300]],<ref name = pmid11268218>{{cite journal | vauthors = Hasan S, Hassa PO, Imhof R, Hottiger MO | title = Transcription coactivator p300 binds PCNA and may have a role in DNA repair synthesis | journal = Nature | volume = 410 | issue = 6826 | pages = 387–91 | date = March 2001 | pmid = 11268218 | doi = 10.1038/35066610 }}</ref>
* [[Flap structure-specific endonuclease 1]],<ref name = pmid12853968>{{vcite2 journal | vauthors = Henneke G, Koundrioukoff S, Hübscher U | title = Phosphorylation of human Fen1 by cyclin-dependent kinase modulates its role in replication fork regulation | journal = Oncogene | volume = 22 | issue = 28 | pages = 4301-13 | date = July 2003 | pmid = 12853968 | doi = 10.1038/sj.onc.1206606 }}</ref><ref name = pmid11430825>{{vcite2 journal | vauthors = Hasan S, Stucki M, Hassa PO, Imhof R, Gehrig P, Hunziker P, Hübscher U, Hottiger MO | title = Regulation of human flap endonuclease-1 activity by acetylation through the transcriptional coactivator p300 | journal = Mol. Cell | volume = 7 | issue = 6 | pages = 1221-31 | date = June 2001 | pmid = 11430825 | doi = 10.1016/s1097-2765(01)00272-6}}</ref><ref name = pmid9545252>{{vcite2 journal | vauthors = Jónsson ZO, Hindges R, Hübscher U | title = Regulation of DNA replication and repair proteins through interaction with the front side of proliferating cell nuclear antigen | journal = EMBO J. | volume = 17 | issue = 8 | pages = 2412-25 | date = April 1998 | pmid = 9545252 | pmc = 1170584 | doi = 10.1093/emboj/17.8.2412 }}</ref><ref name = pmid9305916>{{vcite2 journal | vauthors = Gary R, Ludwig DL, Cornelius HL, MacInnes MA, Park MS | title = The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor p21 | journal = J. Biol. Chem. | volume = 272 | issue = 39 | pages = 24522-9 | date = September 1997 | pmid = 9305916 | doi = 10.1074/jbc.272.39.24522}}</ref><ref name = pmid8876181>{{vcite2 journal | vauthors = Chen U, Chen S, Saha P, Dutta A | title = p21Cip1/Waf1 disrupts the recruitment of human Fen1 by proliferating-cell nuclear antigen into the DNA replication complex | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 93 | issue = 21 | pages = 11597-602 | date = October 1996 | pmid = 8876181 | pmc = 38103 | doi = 10.1073/pnas.93.21.11597}}</ref><ref name = pmid11601988>{{vcite2 journal | vauthors = Dianova II, Bohr VA, Dianov GL | title = Interaction of human AP endonuclease 1 with flap endonuclease 1 and proliferating cell nuclear antigen involved in long-patch base excision repair | journal = Biochemistry | volume = 40 | issue = 42 | pages = 12639-44 | date = October 2001 | pmid = 11601988 | doi = 10.1021/bi011117i}}</ref><ref name = pmid11313979>{{vcite2 journal | vauthors = Yu P, Huang B, Shen M, Lau C, Chan E, Michel J, Xiong Y, Payan DG, Luo Y | title = p15(PAF), a novel PCNA associated factor with increased expression in tumor tissues | journal = Oncogene | volume = 20 | issue = 4 | pages = 484-9 | date = January 2001 | pmid = 11313979 | doi = 10.1038/sj.onc.1204113 }}</ref>
* [[Flap structure-specific endonuclease 1]],<ref name = pmid12853968>{{cite journal | vauthors = Henneke G, Koundrioukoff S, Hübscher U | title = Phosphorylation of human Fen1 by cyclin-dependent kinase modulates its role in replication fork regulation | journal = Oncogene | volume = 22 | issue = 28 | pages = 4301–13 | date = July 2003 | pmid = 12853968 | doi = 10.1038/sj.onc.1206606 }}</ref><ref name = pmid11430825>{{cite journal | vauthors = Hasan S, Stucki M, Hassa PO, Imhof R, Gehrig P, Hunziker P, Hübscher U, Hottiger MO | title = Regulation of human flap endonuclease-1 activity by acetylation through the transcriptional coactivator p300 | journal = Mol. Cell | volume = 7 | issue = 6 | pages = 1221–31 | date = June 2001 | pmid = 11430825 | doi = 10.1016/s1097-2765(01)00272-6}}</ref><ref name = pmid9545252>{{cite journal | vauthors = Jónsson ZO, Hindges R, Hübscher U | title = Regulation of DNA replication and repair proteins through interaction with the front side of proliferating cell nuclear antigen | journal = EMBO J. | volume = 17 | issue = 8 | pages = 2412–25 | date = April 1998 | pmid = 9545252 | pmc = 1170584 | doi = 10.1093/emboj/17.8.2412 }}</ref><ref name = pmid9305916>{{cite journal | vauthors = Gary R, Ludwig DL, Cornelius HL, MacInnes MA, Park MS | title = The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor p21 | journal = J. Biol. Chem. | volume = 272 | issue = 39 | pages = 24522–9 | date = September 1997 | pmid = 9305916 | doi = 10.1074/jbc.272.39.24522}}</ref><ref name = pmid8876181>{{cite journal | vauthors = Chen U, Chen S, Saha P, Dutta A | title = p21Cip1/Waf1 disrupts the recruitment of human Fen1 by proliferating-cell nuclear antigen into the DNA replication complex | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 93 | issue = 21 | pages = 11597–602 | date = October 1996 | pmid = 8876181 | pmc = 38103 | doi = 10.1073/pnas.93.21.11597}}</ref><ref name = pmid11601988>{{cite journal | vauthors = Dianova II, Bohr VA, Dianov GL | title = Interaction of human AP endonuclease 1 with flap endonuclease 1 and proliferating cell nuclear antigen involved in long-patch base excision repair | journal = Biochemistry | volume = 40 | issue = 42 | pages = 12639–44 | date = October 2001 | pmid = 11601988 | doi = 10.1021/bi011117i}}</ref><ref name = pmid11313979>{{cite journal | vauthors = Yu P, Huang B, Shen M, Lau C, Chan E, Michel J, Xiong Y, Payan DG, Luo Y | title = p15(PAF), a novel PCNA associated factor with increased expression in tumor tissues | journal = Oncogene | volume = 20 | issue = 4 | pages = 484–9 | date = January 2001 | pmid = 11313979 | doi = 10.1038/sj.onc.1204113 }}</ref>
* [[GADD45A]],<ref name = pmid7973727>{{vcite2 journal | vauthors = Smith ML, Chen IT, Zhan Q, Bae I, Chen CY, Gilmer TM, Kastan MB, O'Connor PM, Fornace AJ | title = Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen | journal = Science | volume = 266 | issue = 5189 | pages = 1376-80 | date = November 1994 | pmid = 7973727 | doi = 10.1126/science.7973727}}</ref><ref name = pmid7478510>{{vcite2 journal | vauthors = Chen IT, Smith ML, O'Connor PM, Fornace AJ | title = Direct interaction of Gadd45 with PCNA and evidence for competitive interaction of Gadd45 and p21Waf1/Cip1 with PCNA | journal = Oncogene | volume = 11 | issue = 10 | pages = 1931-7 | date = November 1995 | pmid = 7478510 | doi = }}</ref><ref name = pmid10828065>{{vcite2 journal | vauthors = Vairapandi M, Azam N, Balliet AG, Hoffman B, Liebermann DA | title = Characterization of MyD118, Gadd45, and proliferating cell nuclear antigen (PCNA) interacting domains. PCNA impedes MyD118 AND Gadd45-mediated negative growth control | journal = J. Biol. Chem. | volume = 275 | issue = 22 | pages = 16810-9 | date = June 2000 | pmid = 10828065 | doi = 10.1074/jbc.275.22.16810}}</ref><ref name = pmid7784094>{{vcite2 journal | vauthors = Hall PA, Kearsey JM, Coates PJ, Norman DG, Warbrick E, Cox LS | title = Characterisation of the interaction between PCNA and Gadd45 | journal = Oncogene | volume = 10 | issue = 12 | pages = 2427-33 | date = June 1995 | pmid = 7784094 | doi = }}</ref><ref name = pmid10973963>{{vcite2 journal | vauthors = Yang Q, Manicone A, Coursen JD, Linke SP, Nagashima M, Forgues M, Wang XW | title = Identification of a functional domain in a GADD45-mediated G2/M checkpoint | journal = J. Biol. Chem. | volume = 275 | issue = 47 | pages = 36892-8 | date = November 2000 | pmid = 10973963 | doi = 10.1074/jbc.M005319200 }}</ref>
* [[GADD45A]],<ref name = pmid7973727>{{cite journal | vauthors = Smith ML, Chen IT, Zhan Q, Bae I, Chen CY, Gilmer TM, Kastan MB, O'Connor PM, Fornace AJ | title = Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen | journal = Science | volume = 266 | issue = 5189 | pages = 1376–80 | date = November 1994 | pmid = 7973727 | doi = 10.1126/science.7973727}}</ref><ref name = pmid7478510>{{cite journal | vauthors = Chen IT, Smith ML, O'Connor PM, Fornace AJ | title = Direct interaction of Gadd45 with PCNA and evidence for competitive interaction of Gadd45 and p21Waf1/Cip1 with PCNA | journal = Oncogene | volume = 11 | issue = 10 | pages = 1931–7 | date = November 1995 | pmid = 7478510 | doi = }}</ref><ref name = pmid10828065>{{cite journal | vauthors = Vairapandi M, Azam N, Balliet AG, Hoffman B, Liebermann DA | title = Characterization of MyD118, Gadd45, and proliferating cell nuclear antigen (PCNA) interacting domains. PCNA impedes MyD118 AND Gadd45-mediated negative growth control | journal = J. Biol. Chem. | volume = 275 | issue = 22 | pages = 16810–9 | date = June 2000 | pmid = 10828065 | doi = 10.1074/jbc.275.22.16810}}</ref><ref name = pmid7784094>{{cite journal | vauthors = Hall PA, Kearsey JM, Coates PJ, Norman DG, Warbrick E, Cox LS | title = Characterisation of the interaction between PCNA and Gadd45 | journal = Oncogene | volume = 10 | issue = 12 | pages = 2427–33 | date = June 1995 | pmid = 7784094 | doi = }}</ref><ref name = pmid10973963>{{cite journal | vauthors = Yang Q, Manicone A, Coursen JD, Linke SP, Nagashima M, Forgues M, Wang XW | title = Identification of a functional domain in a GADD45-mediated G2/M checkpoint | journal = J. Biol. Chem. | volume = 275 | issue = 47 | pages = 36892–8 | date = November 2000 | pmid = 10973963 | doi = 10.1074/jbc.M005319200 }}</ref>
* [[GADD45G]],<ref name = pmid11022036>{{vcite2 journal | vauthors = Azam N, Vairapandi M, Zhang W, Hoffman B, Liebermann DA | title = Interaction of CR6 (GADD45gamma ) with proliferating cell nuclear antigen impedes negative growth control | journal = J. Biol. Chem. | volume = 276 | issue = 4 | pages = 2766-74 | date = January 2001 | pmid = 11022036 | doi = 10.1074/jbc.M005626200 }}</ref><ref name = pmid10455148>{{vcite2 journal | vauthors = Nakayama K, Hara T, Hibi M, Hirano T, Miyajima A | title = A novel oncostatin M-inducible gene OIG37 forms a gene family with MyD118 and GADD45 and negatively regulates cell growth | journal = J. Biol. Chem. | volume = 274 | issue = 35 | pages = 24766-72 | date = August 1999 | pmid = 10455148 | doi = 10.1074/jbc.274.35.24766}}</ref>
* [[GADD45G]],<ref name = pmid11022036>{{cite journal | vauthors = Azam N, Vairapandi M, Zhang W, Hoffman B, Liebermann DA | title = Interaction of CR6 (GADD45gamma ) with proliferating cell nuclear antigen impedes negative growth control | journal = J. Biol. Chem. | volume = 276 | issue = 4 | pages = 2766–74 | date = January 2001 | pmid = 11022036 | doi = 10.1074/jbc.M005626200 }}</ref><ref name = pmid10455148>{{cite journal | vauthors = Nakayama K, Hara T, Hibi M, Hirano T, Miyajima A | title = A novel oncostatin M-inducible gene OIG37 forms a gene family with MyD118 and GADD45 and negatively regulates cell growth | journal = J. Biol. Chem. | volume = 274 | issue = 35 | pages = 24766–72 | date = August 1999 | pmid = 10455148 | doi = 10.1074/jbc.274.35.24766}}</ref>
* [[HDAC1]],<ref name = pmid11929879>{{vcite2 journal | vauthors = Milutinovic S, Zhuang Q, Szyf M | title = Proliferating cell nuclear antigen associates with histone deacetylase activity, integrating DNA replication and chromatin modification | journal = J. Biol. Chem. | volume = 277 | issue = 23 | pages = 20974-8 | date = June 2002 | pmid = 11929879 | doi = 10.1074/jbc.M202504200 }}</ref>
* [[HDAC1]],<ref name = pmid11929879>{{cite journal | vauthors = Milutinovic S, Zhuang Q, Szyf M | title = Proliferating cell nuclear antigen associates with histone deacetylase activity, integrating DNA replication and chromatin modification | journal = J. Biol. Chem. | volume = 277 | issue = 23 | pages = 20974–8 | date = June 2002 | pmid = 11929879 | doi = 10.1074/jbc.M202504200 }}</ref>
* [[HUS1]],<ref name = pmid11077446>{{vcite2 journal | vauthors = Komatsu K, Wharton W, Hang H, Wu C, Singh S, Lieberman HB, Pledger WJ, Wang HG | title = PCNA interacts with hHus1/hRad9 in response to DNA damage and replication inhibition | journal = Oncogene | volume = 19 | issue = 46 | pages = 5291-7 | date = November 2000 | pmid = 11077446 | doi = 10.1038/sj.onc.1203901 }}</ref>
* [[HUS1]],<ref name = pmid11077446>{{cite journal | vauthors = Komatsu K, Wharton W, Hang H, Wu C, Singh S, Lieberman HB, Pledger WJ, Wang HG | title = PCNA interacts with hHus1/hRad9 in response to DNA damage and replication inhibition | journal = Oncogene | volume = 19 | issue = 46 | pages = 5291–7 | date = November 2000 | pmid = 11077446 | doi = 10.1038/sj.onc.1203901 }}</ref>
* [[ING1]],<ref name = pmid11682605>{{vcite2 journal | vauthors = Scott M, Bonnefin P, Vieyra D, Boisvert FM, Young D, Bazett-Jones DP, Riabowol K | title = UV-induced binding of ING1 to PCNA regulates the induction of apoptosis | journal = J. Cell. Sci. | volume = 114 | issue = Pt 19 | pages = 3455-62 | date = October 2001 | pmid = 11682605 | doi = }}</ref>
* [[ING1]],<ref name = pmid11682605>{{cite journal | vauthors = Scott M, Bonnefin P, Vieyra D, Boisvert FM, Young D, Bazett-Jones DP, Riabowol K | title = UV-induced binding of ING1 to PCNA regulates the induction of apoptosis | journal = J. Cell. Sci. | volume = 114 | issue = Pt 19 | pages = 3455–62 | date = October 2001 | pmid = 11682605 | doi = }}</ref>
* [[KCTD13]],<ref name = pmid11593007>{{vcite2 journal | vauthors = He H, Tan CK, Downey KM, So AG | title = A tumor necrosis factor alpha- and interleukin 6-inducible protein that interacts with the small subunit of DNA polymerase delta and proliferating cell nuclear antigen | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 98 | issue = 21 | pages = 11979-84 | date = October 2001 | pmid = 11593007 | pmc = 59753 | doi = 10.1073/pnas.221452098 }}</ref>
* [[KCTD13]],<ref name = pmid11593007>{{cite journal | vauthors = He H, Tan CK, Downey KM, So AG | title = A tumor necrosis factor alpha- and interleukin 6-inducible protein that interacts with the small subunit of DNA polymerase delta and proliferating cell nuclear antigen | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 98 | issue = 21 | pages = 11979–84 | date = October 2001 | pmid = 11593007 | pmc = 59753 | doi = 10.1073/pnas.221452098 }}</ref>
* [[KIAA0101]],<ref name = pmid11313979/>
* [[KIAA0101]],<ref name = pmid11313979/>
* [[Ku70]],<ref name = pmid12171929>{{vcite2 journal | vauthors = Ohta S, Shiomi Y, Sugimoto K, Obuse C, Tsurimoto T | title = A proteomics approach to identify proliferating cell nuclear antigen (PCNA)-binding proteins in human cell lysates. Identification of the human CHL12/RFCs2-5 complex as a novel PCNA-binding protein | journal = J. Biol. Chem. | volume = 277 | issue = 43 | pages = 40362-7 | date = October 2002 | pmid = 12171929 | doi = 10.1074/jbc.M206194200 }}</ref><ref name = pmid11239001>{{vcite2 journal | vauthors = Balajee AS, Geard CR | title = Chromatin-bound PCNA complex formation triggered by DNA damage occurs independent of the ATM gene product in human cells | journal = Nucleic Acids Res. | volume = 29 | issue = 6 | pages = 1341-51 | date = March 2001 | pmid = 11239001 | pmc = 29758 | doi = 10.1093/nar/29.6.1341}}</ref>
* [[Ku70]],<ref name = pmid12171929>{{cite journal | vauthors = Ohta S, Shiomi Y, Sugimoto K, Obuse C, Tsurimoto T | title = A proteomics approach to identify proliferating cell nuclear antigen (PCNA)-binding proteins in human cell lysates. Identification of the human CHL12/RFCs2-5 complex as a novel PCNA-binding protein | journal = J. Biol. Chem. | volume = 277 | issue = 43 | pages = 40362–7 | date = October 2002 | pmid = 12171929 | doi = 10.1074/jbc.M206194200 }}</ref><ref name = pmid11239001>{{cite journal | vauthors = Balajee AS, Geard CR | title = Chromatin-bound PCNA complex formation triggered by DNA damage occurs independent of the ATM gene product in human cells | journal = Nucleic Acids Res. | volume = 29 | issue = 6 | pages = 1341–51 | date = March 2001 | pmid = 11239001 | pmc = 29758 | doi = 10.1093/nar/29.6.1341}}</ref>
* [[Ku80]],<ref name = pmid12171929/><ref name = pmid11239001/><ref name = pmid12393188>{{vcite2 journal | vauthors = Matheos D, Ruiz MT, Price GB, Zannis-Hadjopoulos M | title = Ku antigen, an origin-specific binding protein that associates with replication proteins, is required for mammalian DNA replication | journal = Biochim. Biophys. Acta | volume = 1578 | issue = 1-3 | pages = 59-72 | date = October 2002 | pmid = 12393188 | doi = 10.1016/s0167-4781(02)00497-9}}</ref>
* [[Ku80]],<ref name = pmid12171929/><ref name = pmid11239001/><ref name = pmid12393188>{{cite journal | vauthors = Matheos D, Ruiz MT, Price GB, Zannis-Hadjopoulos M | title = Ku antigen, an origin-specific binding protein that associates with replication proteins, is required for mammalian DNA replication | journal = Biochim. Biophys. Acta | volume = 1578 | issue = 1-3 | pages = 59–72 | date = October 2002 | pmid = 12393188 | doi = 10.1016/s0167-4781(02)00497-9}}</ref>
* [[MCL1]],<ref name = pmid10978339>{{vcite2 journal | vauthors = Fujise K, Zhang D, Liu J, Yeh ET | title = Regulation of apoptosis and cell cycle progression by MCL1. Differential role of proliferating cell nuclear antigen | journal = J. Biol. Chem. | volume = 275 | issue = 50 | pages = 39458-65 | date = December 2000 | pmid = 10978339 | doi = 10.1074/jbc.M006626200 }}</ref>
* [[MCL1]],<ref name = pmid10978339>{{cite journal | vauthors = Fujise K, Zhang D, Liu J, Yeh ET | title = Regulation of apoptosis and cell cycle progression by MCL1. Differential role of proliferating cell nuclear antigen | journal = J. Biol. Chem. | volume = 275 | issue = 50 | pages = 39458–65 | date = December 2000 | pmid = 10978339 | doi = 10.1074/jbc.M006626200 }}</ref>
* [[MSH3]],<ref name = pmid12171929/><ref name = pmid11274057>{{vcite2 journal | vauthors = Kleczkowska HE, Marra G, Lettieri T, Jiricny J | title = hMSH3 and hMSH6 interact with PCNA and colocalize with it to replication foci | journal = Genes Dev. | volume = 15 | issue = 6 | pages = 724-36 | date = March 2001 | pmid = 11274057 | pmc = 312660 | doi = 10.1101/gad.191201 }}</ref><ref name = pmid11005803>{{vcite2 journal | vauthors = Clark AB, Valle F, Drotschmann K, Gary RK, Kunkel TA | title = Functional interaction of proliferating cell nuclear antigen with MSH2-MSH6 and MSH2-MSH3 complexes | journal = J. Biol. Chem. | volume = 275 | issue = 47 | pages = 36498-501 | date = November 2000 | pmid = 11005803 | doi = 10.1074/jbc.C000513200 }}</ref>
* [[MSH3]],<ref name = pmid12171929/><ref name = pmid11274057>{{cite journal | vauthors = Kleczkowska HE, Marra G, Lettieri T, Jiricny J | title = hMSH3 and hMSH6 interact with PCNA and colocalize with it to replication foci | journal = Genes Dev. | volume = 15 | issue = 6 | pages = 724–36 | date = March 2001 | pmid = 11274057 | pmc = 312660 | doi = 10.1101/gad.191201 }}</ref><ref name = pmid11005803>{{cite journal | vauthors = Clark AB, Valle F, Drotschmann K, Gary RK, Kunkel TA | title = Functional interaction of proliferating cell nuclear antigen with MSH2-MSH6 and MSH2-MSH3 complexes | journal = J. Biol. Chem. | volume = 275 | issue = 47 | pages = 36498–501 | date = November 2000 | pmid = 11005803 | doi = 10.1074/jbc.C000513200 }}</ref>
* [[MSH6]],<ref name = pmid12171929/><ref name = pmid11274057/><ref name = pmid11005803/>
* [[MSH6]],<ref name = pmid12171929/><ref name = pmid11274057/><ref name = pmid11005803/>
* [[MUTYH]],<ref name = pmid11092888>{{vcite2 journal | vauthors = Parker A, Gu Y, Mahoney W, Lee SH, Singh KK, Lu AL | title = Human homolog of the MutY repair protein (hMYH) physically interacts with proteins involved in long patch DNA base excision repair | journal = J. Biol. Chem. | volume = 276 | issue = 8 | pages = 5547-55 | date = February 2001 | pmid = 11092888 | doi = 10.1074/jbc.M008463200 }}</ref>
* [[MUTYH]],<ref name = pmid11092888>{{cite journal | vauthors = Parker A, Gu Y, Mahoney W, Lee SH, Singh KK, Lu AL | title = Human homolog of the MutY repair protein (hMYH) physically interacts with proteins involved in long patch DNA base excision repair | journal = J. Biol. Chem. | volume = 276 | issue = 8 | pages = 5547–55 | date = February 2001 | pmid = 11092888 | doi = 10.1074/jbc.M008463200 }}</ref>
* [[P21]],<ref name = pmid8861969/><ref name = pmid9545252/><ref name = pmid11313979/><ref name = pmid9465025/><ref name = pmid16189514>{{vcite2 journal | vauthors = Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M | title = Towards a proteome-scale map of the human protein-protein interaction network | journal = Nature | volume = 437 | issue = 7062 | pages = 1173-8 | date = October 2005 | pmid = 16189514 | doi = 10.1038/nature04209 }}</ref><ref name = pmid12930846>{{vcite2 journal | vauthors = Frouin I, Maga G, Denegri M, Riva F, Savio M, Spadari S, Prosperi E, Scovassi AI | title = Human proliferating cell nuclear antigen, poly(ADP-ribose) polymerase-1, and p21waf1/cip1. A dynamic exchange of partners | journal = J. Biol. Chem. | volume = 278 | issue = 41 | pages = 39265-8 | date = October 2003 | pmid = 12930846 | doi = 10.1074/jbc.C300098200 }}</ref><ref name = pmid8861913>{{vcite2 journal | vauthors = Gulbis JM, Kelman Z, Hurwitz J, O'Donnell M, Kuriyan J | title = Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA | journal = Cell | volume = 87 | issue = 2 | pages = 297-306 | date = October 1996 | pmid = 8861913 | doi = 10.1016/s0092-8674(00)81347-1}}</ref><ref name = pmid11350925>{{vcite2 journal | vauthors = Touitou R, Richardson J, Bose S, Nakanishi M, Rivett J, Allday MJ | title = A degradation signal located in the C-terminus of p21WAF1/CIP1 is a binding site for the C8 alpha-subunit of the 20S proteasome | journal = EMBO J. | volume = 20 | issue = 10 | pages = 2367-75 | date = May 2001 | pmid = 11350925 | pmc = 125454 | doi = 10.1093/emboj/20.10.2367 }}</ref>
* [[P21]],<ref name = pmid9465025/><ref name = pmid9545252/><ref name = pmid11313979/><ref name = pmid8861969/><ref name = pmid16189514>{{cite journal | vauthors = Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M | title = Towards a proteome-scale map of the human protein-protein interaction network | journal = Nature | volume = 437 | issue = 7062 | pages = 1173–8 | date = October 2005 | pmid = 16189514 | doi = 10.1038/nature04209 }}</ref><ref name = pmid12930846>{{cite journal | vauthors = Frouin I, Maga G, Denegri M, Riva F, Savio M, Spadari S, Prosperi E, Scovassi AI | title = Human proliferating cell nuclear antigen, poly(ADP-ribose) polymerase-1, and p21waf1/cip1. A dynamic exchange of partners | journal = J. Biol. Chem. | volume = 278 | issue = 41 | pages = 39265–8 | date = October 2003 | pmid = 12930846 | doi = 10.1074/jbc.C300098200 }}</ref><ref name = pmid8861913>{{cite journal | vauthors = Gulbis JM, Kelman Z, Hurwitz J, O'Donnell M, Kuriyan J | title = Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA | journal = Cell | volume = 87 | issue = 2 | pages = 297–306 | date = October 1996 | pmid = 8861913 | doi = 10.1016/s0092-8674(00)81347-1}}</ref><ref name = pmid11350925>{{cite journal | vauthors = Touitou R, Richardson J, Bose S, Nakanishi M, Rivett J, Allday MJ | title = A degradation signal located in the C-terminus of p21WAF1/CIP1 is a binding site for the C8 alpha-subunit of the 20S proteasome | journal = EMBO J. | volume = 20 | issue = 10 | pages = 2367–75 | date = May 2001 | pmid = 11350925 | pmc = 125454 | doi = 10.1093/emboj/20.10.2367 }}</ref>
* [[POLD2]],<ref name = pmid11986310>{{vcite2 journal | vauthors = Lu X, Tan CK, Zhou JQ, You M, Carastro LM, Downey KM, So AG | title = Direct interaction of proliferating cell nuclear antigen with the small subunit of DNA polymerase delta | journal = J. Biol. Chem. | volume = 277 | issue = 27 | pages = 24340-5 | date = July 2002 | pmid = 11986310 | doi = 10.1074/jbc.M200065200 }}</ref>
* [[POLD2]],<ref name = pmid11986310>{{cite journal | vauthors = Lu X, Tan CK, Zhou JQ, You M, Carastro LM, Downey KM, So AG | title = Direct interaction of proliferating cell nuclear antigen with the small subunit of DNA polymerase delta | journal = J. Biol. Chem. | volume = 277 | issue = 27 | pages = 24340–5 | date = July 2002 | pmid = 11986310 | doi = 10.1074/jbc.M200065200 }}</ref>
* [[POLD3]],<ref name = pmid12171929/><ref name = pmid11595739>{{vcite2 journal | vauthors = Ducoux M, Urbach S, Baldacci G, Hübscher U, Koundrioukoff S, Christensen J, Hughes P | title = Mediation of proliferating cell nuclear antigen (PCNA)-dependent DNA replication through a conserved p21(Cip1)-like PCNA-binding motif present in the third subunit of human DNA polymerase delta | journal = J. Biol. Chem. | volume = 276 | issue = 52 | pages = 49258-66 | date = December 2001 | pmid = 11595739 | doi = 10.1074/jbc.M106990200 }}</ref>
* [[POLD3]],<ref name = pmid12171929/><ref name = pmid11595739>{{cite journal | vauthors = Ducoux M, Urbach S, Baldacci G, Hübscher U, Koundrioukoff S, Christensen J, Hughes P | title = Mediation of proliferating cell nuclear antigen (PCNA)-dependent DNA replication through a conserved p21(Cip1)-like PCNA-binding motif present in the third subunit of human DNA polymerase delta | journal = J. Biol. Chem. | volume = 276 | issue = 52 | pages = 49258–66 | date = December 2001 | pmid = 11595739 | doi = 10.1074/jbc.M106990200 }}</ref>
* [[POLDIP2]],<ref name = pmid12522211>{{vcite2 journal | vauthors = Liu L, Rodriguez-Belmonte EM, Mazloum N, Xie B, Lee MY | title = Identification of a novel protein, PDIP38, that interacts with the p50 subunit of DNA polymerase delta and proliferating cell nuclear antigen | journal = J. Biol. Chem. | volume = 278 | issue = 12 | pages = 10041-7 | date = March 2003 | pmid = 12522211 | doi = 10.1074/jbc.M208694200 }}</ref>
* [[POLDIP2]],<ref name = pmid12522211>{{cite journal | vauthors = Liu L, Rodriguez-Belmonte EM, Mazloum N, Xie B, Lee MY | title = Identification of a novel protein, PDIP38, that interacts with the p50 subunit of DNA polymerase delta and proliferating cell nuclear antigen | journal = J. Biol. Chem. | volume = 278 | issue = 12 | pages = 10041–7 | date = March 2003 | pmid = 12522211 | doi = 10.1074/jbc.M208694200 }}</ref>
* [[POLH]],<ref name = pmid11585903>{{vcite2 journal | vauthors = Haracska L, Johnson RE, Unk I, Phillips B, Hurwitz J, Prakash L, Prakash S | title = Physical and functional interactions of human DNA polymerase eta with PCNA | journal = Mol. Cell. Biol. | volume = 21 | issue = 21 | pages = 7199-206 | date = November 2001 | pmid = 11585903 | pmc = 99895 | doi = 10.1128/MCB.21.21.7199-7206.2001 }}</ref>
* [[POLH]],<ref name = pmid11585903>{{cite journal | vauthors = Haracska L, Johnson RE, Unk I, Phillips B, Hurwitz J, Prakash L, Prakash S | title = Physical and functional interactions of human DNA polymerase eta with PCNA | journal = Mol. Cell. Biol. | volume = 21 | issue = 21 | pages = 7199–206 | date = November 2001 | pmid = 11585903 | pmc = 99895 | doi = 10.1128/MCB.21.21.7199-7206.2001 }}</ref>
* [[POLL]],<ref name = pmid11784855>{{vcite2 journal | vauthors = Haracska L, Unk I, Johnson RE, Phillips BB, Hurwitz J, Prakash L, Prakash S | title = Stimulation of DNA synthesis activity of human DNA polymerase kappa by PCNA | journal = Mol. Cell. Biol. | volume = 22 | issue = 3 | pages = 784-91 | date = February 2002 | pmid = 11784855 | pmc = 133560 | doi = 10.1128/mcb.22.3.784-791.2002}}</ref><ref name = pmid12368291>{{vcite2 journal | vauthors = Maga G, Villani G, Ramadan K, Shevelev I, Tanguy Le Gac N, Blanco L, Blanca G, Spadari S, Hübscher U | title = Human DNA polymerase lambda functionally and physically interacts with proliferating cell nuclear antigen in normal and translesion DNA synthesis | journal = J. Biol. Chem. | volume = 277 | issue = 50 | pages = 48434-40 | date = December 2002 | pmid = 12368291 | doi = 10.1074/jbc.M206889200 }}</ref><ref name = pmid12081642>{{vcite2 journal | vauthors = Shimazaki N, Yoshida K, Kobayashi T, Toji S, Tamai K, Koiwai O | title = Over-expression of human DNA polymerase lambda in E. coli and characterization of the recombinant enzyme | journal = Genes Cells | volume = 7 | issue = 7 | pages = 639-51 | date = July 2002 | pmid = 12081642 | doi = 10.1046/j.1365-2443.2002.00547.x}}</ref>
* [[POLL]],<ref name = pmid11784855>{{cite journal | vauthors = Haracska L, Unk I, Johnson RE, Phillips BB, Hurwitz J, Prakash L, Prakash S | title = Stimulation of DNA synthesis activity of human DNA polymerase kappa by PCNA | journal = Mol. Cell. Biol. | volume = 22 | issue = 3 | pages = 784–91 | date = February 2002 | pmid = 11784855 | pmc = 133560 | doi = 10.1128/mcb.22.3.784-791.2002}}</ref><ref name = pmid12368291>{{cite journal | vauthors = Maga G, Villani G, Ramadan K, Shevelev I, Tanguy Le Gac N, Blanco L, Blanca G, Spadari S, Hübscher U | title = Human DNA polymerase lambda functionally and physically interacts with proliferating cell nuclear antigen in normal and translesion DNA synthesis | journal = J. Biol. Chem. | volume = 277 | issue = 50 | pages = 48434–40 | date = December 2002 | pmid = 12368291 | doi = 10.1074/jbc.M206889200 }}</ref><ref name = pmid12081642>{{cite journal | vauthors = Shimazaki N, Yoshida K, Kobayashi T, Toji S, Tamai K, Koiwai O | title = Over-expression of human DNA polymerase lambda in E. coli and characterization of the recombinant enzyme | journal = Genes Cells | volume = 7 | issue = 7 | pages = 639–51 | date = July 2002 | pmid = 12081642 | doi = 10.1046/j.1365-2443.2002.00547.x}}</ref>
* [[RFC1]],<ref name = pmid12171929/><ref name = pmid12192049>{{vcite2 journal | vauthors = Maruyama T, Farina A, Dey A, Cheong J, Bermudez VP, Tamura T, Sciortino S, Shuman J, Hurwitz J, Ozato K | title = A Mammalian bromodomain protein, brd4, interacts with replication factor C and inhibits progression to S phase | journal = Mol. Cell. Biol. | volume = 22 | issue = 18 | pages = 6509-20 | date = September 2002 | pmid = 12192049 | pmc = 135621 | doi = 10.1128/mcb.22.18.6509-6520.2002}}</ref><ref name = pmid8861969>{{vcite2 journal | vauthors = Fotedar R, Mossi R, Fitzgerald P, Rousselle T, Maga G, Brickner H, Messier H, Kasibhatla S, Hübscher U, Fotedar A | title = A conserved domain of the large subunit of replication factor C binds PCNA and acts like a dominant negative inhibitor of DNA replication in mammalian cells | journal = EMBO J. | volume = 15 | issue = 16 | pages = 4423-33 | date = August 1996 | pmid = 8861969 | pmc = 452166 | doi = }}</ref><ref name = pmid8999859>{{vcite2 journal | vauthors = Mossi R, Jónsson ZO, Allen BL, Hardin SH, Hübscher U | title = Replication factor C interacts with the C-terminal side of proliferating cell nuclear antigen | journal = J. Biol. Chem. | volume = 272 | issue = 3 | pages = 1769-76 | date = January 1997 | pmid = 8999859 | doi = 10.1074/jbc.272.3.1769}}</ref><ref name = pmid10353443>{{vcite2 journal | vauthors = van der Kuip H, Carius B, Haque SJ, Williams BR, Huber C, Fischer T | title = The DNA-binding subunit p140 of replication factor C is upregulated in cycling cells and associates with G1 phase cell cycle regulatory proteins | journal = J. Mol. Med. | volume = 77 | issue = 4 | pages = 386-92 | date = April 1999 | pmid = 10353443 | doi = 10.1007/s001090050365}}</ref>
* [[RFC1]],<ref name = pmid12171929/><ref name = pmid8861969>{{cite journal | vauthors = Fotedar R, Mossi R, Fitzgerald P, Rousselle T, Maga G, Brickner H, Messier H, Kasibhatla S, Hübscher U, Fotedar A | title = A conserved domain of the large subunit of replication factor C binds PCNA and acts like a dominant negative inhibitor of DNA replication in mammalian cells | journal = EMBO J. | volume = 15 | issue = 16 | pages = 4423–33 | date = August 1996 | pmid = 8861969 | pmc = 452166 | doi = }}</ref><ref name = pmid12192049>{{cite journal | vauthors = Maruyama T, Farina A, Dey A, Cheong J, Bermudez VP, Tamura T, Sciortino S, Shuman J, Hurwitz J, Ozato K | title = A Mammalian bromodomain protein, brd4, interacts with replication factor C and inhibits progression to S phase | journal = Mol. Cell. Biol. | volume = 22 | issue = 18 | pages = 6509–20 | date = September 2002 | pmid = 12192049 | pmc = 135621 | doi = 10.1128/mcb.22.18.6509-6520.2002}}</ref><ref name = pmid8999859>{{cite journal | vauthors = Mossi R, Jónsson ZO, Allen BL, Hardin SH, Hübscher U | title = Replication factor C interacts with the C-terminal side of proliferating cell nuclear antigen | journal = J. Biol. Chem. | volume = 272 | issue = 3 | pages = 1769–76 | date = January 1997 | pmid = 8999859 | doi = 10.1074/jbc.272.3.1769}}</ref><ref name = pmid10353443>{{cite journal | vauthors = van der Kuip H, Carius B, Haque SJ, Williams BR, Huber C, Fischer T | title = The DNA-binding subunit p140 of replication factor C is upregulated in cycling cells and associates with G1 phase cell cycle regulatory proteins | journal = J. Mol. Med. | volume = 77 | issue = 4 | pages = 386–92 | date = April 1999 | pmid = 10353443 | doi = 10.1007/s001090050365}}</ref>
* [[RFC2]],<ref name = pmid12171929/><ref name = pmid9228079>{{vcite2 journal | vauthors = Cai J, Gibbs E, Uhlmann F, Phillips B, Yao N, O'Donnell M, Hurwitz J | title = A complex consisting of human replication factor C p40, p37, and p36 subunits is a DNA-dependent ATPase and an intermediate in the assembly of the holoenzyme | journal = J. Biol. Chem. | volume = 272 | issue = 30 | pages = 18974-81 | date = July 1997 | pmid = 9228079 | doi = 10.1074/jbc.272.30.18974}}</ref><ref name = pmid8093561>{{vcite2 journal | vauthors = Pan ZQ, Chen M, Hurwitz J | title = The subunits of activator 1 (replication factor C) carry out multiple functions essential for proliferating-cell nuclear antigen-dependent DNA synthesis | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 90 | issue = 1 | pages = 6-10 | date = January 1993 | pmid = 8093561 | pmc = 45588 | doi = 10.1073/pnas.90.1.6}}</ref>
* [[RFC2]],<ref name = pmid12171929/><ref name = pmid9228079>{{cite journal | vauthors = Cai J, Gibbs E, Uhlmann F, Phillips B, Yao N, O'Donnell M, Hurwitz J | title = A complex consisting of human replication factor C p40, p37, and p36 subunits is a DNA-dependent ATPase and an intermediate in the assembly of the holoenzyme | journal = J. Biol. Chem. | volume = 272 | issue = 30 | pages = 18974–81 | date = July 1997 | pmid = 9228079 | doi = 10.1074/jbc.272.30.18974}}</ref><ref name = pmid8093561>{{cite journal | vauthors = Pan ZQ, Chen M, Hurwitz J | title = The subunits of activator 1 (replication factor C) carry out multiple functions essential for proliferating-cell nuclear antigen-dependent DNA synthesis | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 90 | issue = 1 | pages = 6–10 | date = January 1993 | pmid = 8093561 | pmc = 45588 | doi = 10.1073/pnas.90.1.6}}</ref>
* [[RFC3]],<ref name = pmid12171929/><ref name = pmid12766176>{{vcite2 journal | vauthors = Merkle CJ, Karnitz LM, Henry-Sánchez JT, Chen J | title = Cloning and characterization of hCTF18, hCTF8, and hDCC1. Human homologs of a Saccharomyces cerevisiae complex involved in sister chromatid cohesion establishment | journal = J. Biol. Chem. | volume = 278 | issue = 32 | pages = 30051-6 | date = August 2003 | pmid = 12766176 | doi = 10.1074/jbc.M211591200 }}</ref>
* [[RFC3]],<ref name = pmid12171929/><ref name = pmid12766176>{{cite journal | vauthors = Merkle CJ, Karnitz LM, Henry-Sánchez JT, Chen J | title = Cloning and characterization of hCTF18, hCTF8, and hDCC1. Human homologs of a Saccharomyces cerevisiae complex involved in sister chromatid cohesion establishment | journal = J. Biol. Chem. | volume = 278 | issue = 32 | pages = 30051–6 | date = August 2003 | pmid = 12766176 | doi = 10.1074/jbc.M211591200 }}</ref>
* [[RFC4]],<ref name = pmid12171929/><ref name = pmid9228079/>
* [[RFC4]],<ref name = pmid12171929/><ref name = pmid9228079/>
* [[RFC5]],<ref name = pmid12171929/><ref name = pmid9228079/><ref name = pmid8999859/>
* [[RFC5]],<ref name = pmid12171929/><ref name = pmid8999859/><ref name = pmid9228079/>
* [[Ubiquitin C]]<ref name = pmid18719106>{{vcite2 journal | vauthors = Motegi A, Liaw HJ, Lee KY, Roest HP, Maas A, Wu X, Moinova H, Markowitz SD, Ding H, Hoeijmakers JH, Myung K | title = Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 105 | issue = 34 | pages = 12411-6 | date = August 2008 | pmid = 18719106 | pmc = 2518831 | doi = 10.1073/pnas.0805685105 }}</ref><ref name = pmid18316726>{{vcite2 journal | vauthors = Unk I, Hajdú I, Fátyol K, Hurwitz J, Yoon JH, Prakash L, Prakash S, Haracska L | title = Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 105 | issue = 10 | pages = 3768-73 | date = March 2008 | pmid = 18316726 | pmc = 2268824 | doi = 10.1073/pnas.0800563105 }}</ref><ref name = pmid18284681>{{vcite2 journal | vauthors = Brun J, Chiu R, Lockhart K, Xiao W, Wouters BG, Gray DA | title = hMMS2 serves a redundant role in human PCNA polyubiquitination | journal = BMC Mol. Biol. | volume = 9 | issue = | pages = 24 | pmid = 18284681 | pmc = 2263069 | doi = 10.1186/1471-2199-9-24 }}</ref>
* [[Ubiquitin C]]<ref name = pmid18719106>{{cite journal | vauthors = Motegi A, Liaw HJ, Lee KY, Roest HP, Maas A, Wu X, Moinova H, Markowitz SD, Ding H, Hoeijmakers JH, Myung K | title = Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 105 | issue = 34 | pages = 12411–6 | date = August 2008 | pmid = 18719106 | pmc = 2518831 | doi = 10.1073/pnas.0805685105 }}</ref><ref name = pmid18316726>{{cite journal | vauthors = Unk I, Hajdú I, Fátyol K, Hurwitz J, Yoon JH, Prakash L, Prakash S, Haracska L | title = Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 105 | issue = 10 | pages = 3768–73 | date = March 2008 | pmid = 18316726 | pmc = 2268824 | doi = 10.1073/pnas.0800563105 }}</ref><ref name = pmid18284681>{{cite journal | vauthors = Brun J, Chiu R, Lockhart K, Xiao W, Wouters BG, Gray DA | title = hMMS2 serves a redundant role in human PCNA polyubiquitination | journal = BMC Mol. Biol. | volume = 9 | issue = | pages = 24 | pmid = 18284681 | pmc = 2263069 | doi = 10.1186/1471-2199-9-24 }}</ref>
* [[Werner syndrome ATP-dependent helicase]],<ref name = pmid12633936>{{vcite2 journal | vauthors = Rodríguez-López AM, Jackson DA, Nehlin JO, Iborra F, Warren AV, Cox LS | title = Characterisation of the interaction between WRN, the helicase/exonuclease defective in progeroid Werner's syndrome, and an essential replication factor, PCNA | journal = Mech. Ageing Dev. | volume = 124 | issue = 2 | pages = 167-74 | date = February 2003 | pmid = 12633936 | doi = 10.1016/s0047-6374(02)00131-8}}</ref><ref name = pmid10871373>{{vcite2 journal | vauthors = Huang S, Beresten S, Li B, Oshima J, Ellis NA, Campisi J | title = Characterization of the human and mouse WRN 3'-->5' exonuclease | journal = Nucleic Acids Res. | volume = 28 | issue = 12 | pages = 2396-405 | date = June 2000 | pmid = 10871373 | pmc = 102739 | doi = 10.1093/nar/28.12.2396}}</ref>
* [[Werner syndrome ATP-dependent helicase]],<ref name = pmid12633936>{{cite journal | vauthors = Rodríguez-López AM, Jackson DA, Nehlin JO, Iborra F, Warren AV, Cox LS | title = Characterisation of the interaction between WRN, the helicase/exonuclease defective in progeroid Werner's syndrome, and an essential replication factor, PCNA | journal = Mech. Ageing Dev. | volume = 124 | issue = 2 | pages = 167–74 | date = February 2003 | pmid = 12633936 | doi = 10.1016/s0047-6374(02)00131-8}}</ref><ref name = pmid10871373>{{cite journal | vauthors = Huang S, Beresten S, Li B, Oshima J, Ellis NA, Campisi J | title = Characterization of the human and mouse WRN 3'-->5' exonuclease | journal = Nucleic Acids Res. | volume = 28 | issue = 12 | pages = 2396–405 | date = June 2000 | pmid = 10871373 | pmc = 102739 | doi = 10.1093/nar/28.12.2396}}</ref>
* [[XRCC1]],<ref name = pmid15107487>{{vcite2 journal | vauthors = Fan J, Otterlei M, Wong HK, Tomkinson AE, Wilson DM | title = XRCC1 co-localizes and physically interacts with PCNA | journal = Nucleic Acids Res. | volume = 32 | issue = 7 | pages = 2193-201 | pmid = 15107487 | pmc = 407833 | doi = 10.1093/nar/gkh556 }}</ref> and
* [[XRCC1]],<ref name = pmid15107487>{{cite journal | vauthors = Fan J, Otterlei M, Wong HK, Tomkinson AE, Wilson DM | title = XRCC1 co-localizes and physically interacts with PCNA | journal = Nucleic Acids Res. | volume = 32 | issue = 7 | pages = 2193–201 | pmid = 15107487 | pmc = 407833 | doi = 10.1093/nar/gkh556 }}</ref> and
* [[Y box binding protein 1]].<ref name = pmid9927044>{{vcite2 journal | vauthors = Ise T, Nagatani G, Imamura T, Kato K, Takano H, Nomoto M, Izumi H, Ohmori H, Okamoto T, Ohga T, Uchiumi T, Kuwano M, Kohno K | title = Transcription factor Y-box binding protein 1 binds preferentially to cisplatin-modified DNA and interacts with proliferating cell nuclear antigen | journal = Cancer Res. | volume = 59 | issue = 2 | pages = 342-6 | date = January 1999 | pmid = 9927044 | doi = }}</ref>
* [[Y box binding protein 1]].<ref name = pmid9927044>{{cite journal | vauthors = Ise T, Nagatani G, Imamura T, Kato K, Takano H, Nomoto M, Izumi H, Ohmori H, Okamoto T, Ohga T, Uchiumi T, Kuwano M, Kohno K | title = Transcription factor Y-box binding protein 1 binds preferentially to cisplatin-modified DNA and interacts with proliferating cell nuclear antigen | journal = Cancer Res. | volume = 59 | issue = 2 | pages = 342–6 | date = January 1999 | pmid = 9927044 | doi = }}</ref>
{{Div col end}}
{{Div col end}}


Proteins interacting with PCNA via APIM include human AlkB homologue 2, TFIIS-L, TFII-I, Rad51B,<ref name="Gilljam 645–54"/> XPA,<ref>{{vcite2 journal | vauthors = Gilljam KM, Müller R, Liabakk NB, Otterlei M | title = Nucleotide excision repair is associated with the replisome and its efficiency depends on a direct interaction between XPA and PCNA. | journal = PLoS ONE | volume = 7 | issue = 11 | pages = e49199 | date = 2012 | pmid = 23152873 | pmc = 3496702 | doi = 10.1371/journal.pone.0049199 }}</ref> ZRANB3,<ref>{{vcite2 journal | vauthors = Ciccia A, Nimonkar AV, Hu Y, Hajdu I, Achar YJ, Izhar L, Petit SA, Adamson B, Yoon JC, Kowalczykowski SC, Livingston DM, Haracska L, Elledge SJ | title = Polyubiquitinated PCNA recruits the ZRANB3 translocase to maintain genomic integrity after replication stress. | journal = Molecular Cell | volume = 47 | issue = 3 | pages = 396–409 | date = Aug 10, 2012 | pmid = 22704558 | pmc = 3613862 | doi = 10.1016/j.molcel.2012.05.024 }}</ref> and FBH1.<ref>{{vcite2 journal | vauthors = Bacquin A, Pouvelle C, Siaud N, Perderiset M, Salomé-Desnoulez S, Tellier-Lebegue C, Lopez B, Charbonnier JB, Kannouche PL | title = The helicase FBH1 is tightly regulated by PCNA via CRL4(Cdt2)-mediated proteolysis in human cells. | journal = Nucleic Acids Research | volume = 41 | issue = 13 | pages = 6501–13 | date = Jul 2013 | pmid = 23677613 | pmc = 3711418 | doi = 10.1093/nar/gkt397 }}</ref>
Proteins interacting with PCNA via APIM include human AlkB homologue 2, TFIIS-L, TFII-I, Rad51B,<ref name="Gilljam 645–54"/> XPA,<ref>{{cite journal | vauthors = Gilljam KM, Müller R, Liabakk NB, Otterlei M | title = Nucleotide excision repair is associated with the replisome and its efficiency depends on a direct interaction between XPA and PCNA. | journal = PLoS ONE | volume = 7 | issue = 11 | pages = e49199 | date = 2012 | pmid = 23152873 | pmc = 3496702 | doi = 10.1371/journal.pone.0049199 }}</ref> ZRANB3,<ref>{{cite journal | vauthors = Ciccia A, Nimonkar AV, Hu Y, Hajdu I, Achar YJ, Izhar L, Petit SA, Adamson B, Yoon JC, Kowalczykowski SC, Livingston DM, Haracska L, Elledge SJ | title = Polyubiquitinated PCNA recruits the ZRANB3 translocase to maintain genomic integrity after replication stress. | journal = Molecular Cell | volume = 47 | issue = 3 | pages = 396–409 | date = Aug 10, 2012 | pmid = 22704558 | pmc = 3613862 | doi = 10.1016/j.molcel.2012.05.024 }}</ref> and FBH1.<ref>{{cite journal | vauthors = Bacquin A, Pouvelle C, Siaud N, Perderiset M, Salomé-Desnoulez S, Tellier-Lebegue C, Lopez B, Charbonnier JB, Kannouche PL | title = The helicase FBH1 is tightly regulated by PCNA via CRL4(Cdt2)-mediated proteolysis in human cells. | journal = Nucleic Acids Research | volume = 41 | issue = 13 | pages = 6501–13 | date = Jul 2013 | pmid = 23677613 | pmc = 3711418 | doi = 10.1093/nar/gkt397 }}</ref>


==Uses==
==Uses==
[[Antibody|Antibodies]] against proliferating cell nuclear antigen (PCNA) or [[monoclonal antibody]] termed [[Ki-67 (Biology)|Ki-67]] can be used for [[neoplasm#grading|grading]] of different [[neoplasms]], ''e.g.'' [[astrocytoma]]. They can be of [[diagnosis|diagnostic]] and [[prognosis|prognostic]] value. Imaging of the nuclear distribution of PCNA (via antibody labeling) can be used to distinguish between early, mid and late [[S phase]] of the cell cycle.<ref>{{vcite2 journal
[[Antibody|Antibodies]] against proliferating cell nuclear antigen (PCNA) or [[monoclonal antibody]] termed [[Ki-67 (Biology)|Ki-67]] can be used for [[neoplasm#grading|grading]] of different [[neoplasms]], ''e.g.'' [[astrocytoma]]. They can be of [[diagnosis|diagnostic]] and [[prognosis|prognostic]] value. Imaging of the nuclear distribution of PCNA (via antibody labeling) can be used to distinguish between early, mid and late [[S phase]] of the cell cycle.<ref>{{cite journal
|vauthors=Schönenberger F, Deutzmann A, Ferrando-May E, Merhof D |title=Discrimination of cell cycle phases in PCNA-immunolabeled cells |journal=[[BMC Bioinform.]] |volume=16 |issue=180 |date=29 May 2015 |pmid=26022740 |doi=10.1186/s12859-015-0618-9 }}</ref> However, an important limitation of [[antibody|antibodies]] is that cells need to be fixed leading to potential artifacts.
|vauthors=Schönenberger F, Deutzmann A, Ferrando-May E, Merhof D |title=Discrimination of cell cycle phases in PCNA-immunolabeled cells |journal=[[BMC Bioinform.]] |volume=16 |issue=180 |date=29 May 2015 |pmid=26022740 |doi=10.1186/s12859-015-0618-9 }}</ref> However, an important limitation of [[antibody|antibodies]] is that cells need to be fixed leading to potential artifacts.


On the other hand, the study of the dynamics of replication and repair in living cells can be done introducing translational fusions of PCNA. To obviate the need for transfection and bypass the problem of difficult to transfect and/or short lived cells, cell permeable replication and/or repair markers can be used. These peptides offer the distinct advantage that can be used ''in situ'' in living tissue and even distinguish cells undergoing replication from cells undergoing repair. <ref>{{vcite2 journal
On the other hand, the study of the dynamics of replication and repair in living cells can be done introducing translational fusions of PCNA. To obviate the need for transfection and bypass the problem of difficult to transfect and/or short lived cells, cell permeable replication and/or repair markers can be used. These peptides offer the distinct advantage that can be used ''in situ'' in living tissue and even distinguish cells undergoing replication from cells undergoing repair.<ref>{{cite journal
|vauthors = Herce HD, Rajan M, Lättig-Tünnemann G, Fillies M, Cardoso MC | title = A novel cell permeable DNA replication and repair marker. | journal = Nucleus (Austin, Tex.) | volume = 5 | issue = 6 | date = 3 September 2014 | pmid = 25184478 | doi = 10.4161/nucl.36290}}</ref>
|vauthors = Herce HD, Rajan M, Lättig-Tünnemann G, Fillies M, Cardoso MC | title = A novel cell permeable DNA replication and repair marker. | journal = Nucleus (Austin, Tex.) | volume = 5 | issue = 6 | date = 3 September 2014 | pmid = 25184478 | doi = 10.4161/nucl.36290}}</ref>


PCNA is a potential therapeutic target in cancer therapy.<ref>{{vcite2 journal
PCNA is a potential therapeutic target in cancer therapy.<ref>{{cite journal
| vauthors = Wang SC | title = PCNA: a silent housekeeper or a potential therapeutic target? | journal = Trends in pharmacological sciences | volume = 35 | issue = 4 | pages = 178–186 | date = Apr 2014 | pmid = 24655521 | doi = 10.1016/j.tips.2014.02.004 }}</ref>
| vauthors = Wang SC | title = PCNA: a silent housekeeper or a potential therapeutic target? | journal = Trends in pharmacological sciences | volume = 35 | issue = 4 | pages = 178–186 | date = Apr 2014 | pmid = 24655521 | doi = 10.1016/j.tips.2014.02.004 }}</ref>


Line 88: Line 88:
* {{Cite web| url = http://www.antibodypatterns.com/mitotic.php | title = ANA: Cell cycle related (Mitotic): PCNA type 1 and type 2 Antibody Patterns | accessdate = 2008-04-15 | authorlink = | work = | publisher = Antibody Patterns.com | pages = | archiveurl = | archivedate = | quote = }}
* {{Cite web| url = http://www.antibodypatterns.com/mitotic.php | title = ANA: Cell cycle related (Mitotic): PCNA type 1 and type 2 Antibody Patterns | accessdate = 2008-04-15 | authorlink = | work = | publisher = Antibody Patterns.com | pages = | archiveurl = | archivedate = | quote = }}
* {{Cite web| url = http://www-als.lbl.gov/als/science/sci_archive/80slidingclamp.html | title = Structure of a clamp–loader complex | accessdate = 2008-04-15 | author = Dan Krotz | publisher = [[Lawrence Berkeley National Laboratory]] | work = [[Advanced Light Source]] News | pages = | archiveurl = | archivedate = | quote = }}<ref name="Bowman_2004" />
* {{Cite web| url = http://www-als.lbl.gov/als/science/sci_archive/80slidingclamp.html | title = Structure of a clamp–loader complex | accessdate = 2008-04-15 | author = Dan Krotz | publisher = [[Lawrence Berkeley National Laboratory]] | work = [[Advanced Light Source]] News | pages = | archiveurl = | archivedate = | quote = }}<ref name="Bowman_2004" />
* {{Cite web| url = http://www.pubmedcentral.gov/picrender.fcgi?artid=1236569&blobname=pnas_0506447102_06447Movie2.mov | title = Movie showing a model of clamp loading of PCNA onto DNA | authorlink = | format = | work = | publisher = Pubmed Central | language = }}<ref name="pmid16169902">{{vcite2 journal | vauthors = Miyata T, Suzuki H, Oyama T, Mayanagi K, Ishino Y, Morikawa K | title = Open clamp structure in the clamp-loading complex visualized by electron microscopic image analysis | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 102 | issue = 39 | pages = 13795–13800 | year = 2005 | pmid = 16169902 | pmc = 1236569 | doi = 10.1073/pnas.0506447102 }}</ref>
* {{Cite web| url = http://www.pubmedcentral.gov/picrender.fcgi?artid=1236569&blobname=pnas_0506447102_06447Movie2.mov | title = Movie showing a model of clamp loading of PCNA onto DNA | authorlink = | format = | work = | publisher = Pubmed Central | language = }}<ref name="pmid16169902">{{cite journal | vauthors = Miyata T, Suzuki H, Oyama T, Mayanagi K, Ishino Y, Morikawa K | title = Open clamp structure in the clamp-loading complex visualized by electron microscopic image analysis | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 102 | issue = 39 | pages = 13795–13800 | year = 2005 | pmid = 16169902 | pmc = 1236569 | doi = 10.1073/pnas.0506447102 }}</ref>


== References ==
== References ==
Line 95: Line 95:
== Further reading ==
== Further reading ==
{{Refbegin|2}}
{{Refbegin|2}}
* {{vcite2 journal | vauthors = Prosperi E | title = Multiple roles of the proliferating cell nuclear antigen: DNA replication, repair and cell cycle control | journal = Progress in cell cycle research | volume = 3 | issue = | pages = 193–210 | year = 1998 | pmid = 9552415 | doi = 10.1007/978-1-4615-5371-7_15 }}
* {{cite journal | vauthors = Prosperi E | title = Multiple roles of the proliferating cell nuclear antigen: DNA replication, repair and cell cycle control | journal = Progress in cell cycle research | volume = 3 | issue = | pages = 193–210 | year = 1998 | pmid = 9552415 | doi = 10.1007/978-1-4615-5371-7_15 }}
* {{vcite2 journal | vauthors = Miura M | title = Detection of chromatin-bound PCNA in mammalian cells and its use to study DNA excision repair | journal = J. Radiat. Res. | volume = 40 | issue = 1 | pages = 1–12 | year = 1999 | pmid = 10408173 | doi = 10.1269/jrr.40.1 }}
* {{cite journal | vauthors = Miura M | title = Detection of chromatin-bound PCNA in mammalian cells and its use to study DNA excision repair | journal = J. Radiat. Res. | volume = 40 | issue = 1 | pages = 1–12 | year = 1999 | pmid = 10408173 | doi = 10.1269/jrr.40.1 }}
* {{vcite2 journal | vauthors = Chen M, Pan ZQ, Hurwitz J | title = Sequence and expression in Escherichia coli of the 40-kDa subunit of activator 1 (replication factor C) of HeLa cells | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 89 | issue = 7 | pages = 2516–2520 | year = 1992 | pmid = 1313560 | pmc = 48692 | doi = 10.1073/pnas.89.7.2516 }}
* {{cite journal | vauthors = Chen M, Pan ZQ, Hurwitz J | title = Sequence and expression in Escherichia coli of the 40-kDa subunit of activator 1 (replication factor C) of HeLa cells | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 89 | issue = 7 | pages = 2516–2520 | year = 1992 | pmid = 1313560 | pmc = 48692 | doi = 10.1073/pnas.89.7.2516 }}
* {{vcite2 journal | vauthors = Kemeny MM, Alava G, Oliver JM | title = Improving responses in hepatomas with circadian-patterned hepatic artery infusions of recombinant interleukin-2 | journal = J. Immunother. | volume = 12 | issue = 4 | pages = 219–223 | year = 1993 | pmid = 1477073 | doi = 10.1097/00002371-199211000-00001 }}
* {{cite journal | vauthors = Kemeny MM, Alava G, Oliver JM | title = Improving responses in hepatomas with circadian-patterned hepatic artery infusions of recombinant interleukin-2 | journal = J. Immunother. | volume = 12 | issue = 4 | pages = 219–223 | year = 1993 | pmid = 1477073 | doi = 10.1097/00002371-199211000-00001 }}
* {{vcite2 journal | vauthors = Morris GF, Mathews MB | title = Analysis of the proliferating cell nuclear antigen promoter and its response to adenovirus early region 1 | journal = J. Biol. Chem. | volume = 265 | issue = 27 | pages = 16116–25 | year = 1990 | pmid = 1975809 | doi = }}
* {{cite journal | vauthors = Morris GF, Mathews MB | title = Analysis of the proliferating cell nuclear antigen promoter and its response to adenovirus early region 1 | journal = J. Biol. Chem. | volume = 265 | issue = 27 | pages = 16116–25 | year = 1990 | pmid = 1975809 | doi = }}
* {{vcite2 journal | vauthors = Webb G, Parsons P, Chenevix-Trench G | title = Localization of the gene for human proliferating nuclear antigen/cyclin by in situ hybridization | journal = Hum. Genet. | volume = 86 | issue = 1 | pages = 84–6 | year = 1991 | pmid = 1979311 | doi = 10.1007/bf00205180 }}
* {{cite journal | vauthors = Webb G, Parsons P, Chenevix-Trench G | title = Localization of the gene for human proliferating nuclear antigen/cyclin by in situ hybridization | journal = Hum. Genet. | volume = 86 | issue = 1 | pages = 84–6 | year = 1991 | pmid = 1979311 | doi = 10.1007/bf00205180 }}
* {{vcite2 journal | vauthors = Travali S, Ku DH, Rizzo MG, Ottavio L, Baserga R, Calabretta B | title = Structure of the human gene for the proliferating cell nuclear antigen | journal = J. Biol. Chem. | volume = 264 | issue = 13 | pages = 7466–72 | year = 1989 | pmid = 2565339 | doi = }}
* {{cite journal | vauthors = Travali S, Ku DH, Rizzo MG, Ottavio L, Baserga R, Calabretta B | title = Structure of the human gene for the proliferating cell nuclear antigen | journal = J. Biol. Chem. | volume = 264 | issue = 13 | pages = 7466–72 | year = 1989 | pmid = 2565339 | doi = }}
* {{vcite2 journal | vauthors = Ku DH, Travali S, Calabretta B, Huebner K, Baserga R | title = Human gene for proliferating cell nuclear antigen has pseudogenes and localizes to chromosome 20 | journal = Somat. Cell Mol. Genet. | volume = 15 | issue = 4 | pages = 297–307 | year = 1989 | pmid = 2569765 | doi = 10.1007/BF01534969 }}
* {{cite journal | vauthors = Ku DH, Travali S, Calabretta B, Huebner K, Baserga R | title = Human gene for proliferating cell nuclear antigen has pseudogenes and localizes to chromosome 20 | journal = Somat. Cell Mol. Genet. | volume = 15 | issue = 4 | pages = 297–307 | year = 1989 | pmid = 2569765 | doi = 10.1007/BF01534969 }}
* {{vcite2 journal | vauthors = Prelich G, Kostura M, Marshak DR, Mathews MB, Stillman B | title = The cell-cycle regulated proliferating cell nuclear antigen is required for SV40 DNA replication in vitro | journal = Nature | volume = 326 | issue = 6112 | pages = 471–5 | year = 1987 | pmid = 2882422 | doi = 10.1038/326471a0 }}
* {{cite journal | vauthors = Prelich G, Kostura M, Marshak DR, Mathews MB, Stillman B | title = The cell-cycle regulated proliferating cell nuclear antigen is required for SV40 DNA replication in vitro | journal = Nature | volume = 326 | issue = 6112 | pages = 471–5 | year = 1987 | pmid = 2882422 | doi = 10.1038/326471a0 }}
* {{vcite2 journal | vauthors = Almendral JM, Huebsch D, Blundell PA, Macdonald-Bravo H, Bravo R | title = Cloning and sequence of the human nuclear protein cyclin: homology with DNA-binding proteins | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 84 | issue = 6 | pages = 1575–9 | year = 1987 | pmid = 2882507 | pmc = 304478 | doi = 10.1073/pnas.84.6.1575 }}
* {{cite journal | vauthors = Almendral JM, Huebsch D, Blundell PA, Macdonald-Bravo H, Bravo R | title = Cloning and sequence of the human nuclear protein cyclin: homology with DNA-binding proteins | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 84 | issue = 6 | pages = 1575–9 | year = 1987 | pmid = 2882507 | pmc = 304478 | doi = 10.1073/pnas.84.6.1575 }}
* {{vcite2 journal | vauthors = Chen IT, Smith ML, O'Connor PM, Fornace AJ | title = Direct interaction of Gadd45 with PCNA and evidence for competitive interaction of Gadd45 and p21Waf1/Cip1 with PCNA | journal = Oncogene | volume = 11 | issue = 10 | pages = 1931–7 | year = 1995 | pmid = 7478510 | doi = }}
* {{cite journal | vauthors = Chen IT, Smith ML, O'Connor PM, Fornace AJ | title = Direct interaction of Gadd45 with PCNA and evidence for competitive interaction of Gadd45 and p21Waf1/Cip1 with PCNA | journal = Oncogene | volume = 11 | issue = 10 | pages = 1931–7 | year = 1995 | pmid = 7478510 | doi = }}
* {{vcite2 journal | vauthors = Li X, Li J, Harrington J, Lieber MR, Burgers PM | title = Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen | journal = J. Biol. Chem. | volume = 270 | issue = 38 | pages = 22109–12 | year = 1995 | pmid = 7673186 | doi = 10.1074/jbc.270.38.22109 }}
* {{cite journal | vauthors = Li X, Li J, Harrington J, Lieber MR, Burgers PM | title = Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen | journal = J. Biol. Chem. | volume = 270 | issue = 38 | pages = 22109–12 | year = 1995 | pmid = 7673186 | doi = 10.1074/jbc.270.38.22109 }}
* {{vcite2 journal | vauthors = Fukuda K, Morioka H, Imajou S, Ikeda S, Ohtsuka E, Tsurimoto T | title = Structure-function relationship of the eukaryotic DNA replication factor, proliferating cell nuclear antigen | journal = J. Biol. Chem. | volume = 270 | issue = 38 | pages = 22527–34 | year = 1995 | pmid = 7673244 | doi = 10.1074/jbc.270.38.22527 }}
* {{cite journal | vauthors = Fukuda K, Morioka H, Imajou S, Ikeda S, Ohtsuka E, Tsurimoto T | title = Structure-function relationship of the eukaryotic DNA replication factor, proliferating cell nuclear antigen | journal = J. Biol. Chem. | volume = 270 | issue = 38 | pages = 22527–34 | year = 1995 | pmid = 7673244 | doi = 10.1074/jbc.270.38.22527 }}
* {{vcite2 journal | vauthors = Warbrick E, Lane DP, Glover DM, Cox LS | title = A small peptide inhibitor of DNA replication defines the site of interaction between the cyclin-dependent kinase inhibitor p21WAF1 and proliferating cell nuclear antigen | journal = Curr. Biol. | volume = 5 | issue = 3 | pages = 275–282 | year = 1995 | pmid = 7780738 | doi = 10.1016/S0960-9822(95)00058-3 }}
* {{cite journal | vauthors = Warbrick E, Lane DP, Glover DM, Cox LS | title = A small peptide inhibitor of DNA replication defines the site of interaction between the cyclin-dependent kinase inhibitor p21WAF1 and proliferating cell nuclear antigen | journal = Curr. Biol. | volume = 5 | issue = 3 | pages = 275–282 | year = 1995 | pmid = 7780738 | doi = 10.1016/S0960-9822(95)00058-3 }}
* {{vcite2 journal | vauthors = Hall PA, Kearsey JM, Coates PJ, Norman DG, Warbrick E, Cox LS | title = Characterisation of the interaction between PCNA and Gadd45 | journal = Oncogene | volume = 10 | issue = 12 | pages = 2427–33 | year = 1995 | pmid = 7784094 | doi = }}
* {{cite journal | vauthors = Hall PA, Kearsey JM, Coates PJ, Norman DG, Warbrick E, Cox LS | title = Characterisation of the interaction between PCNA and Gadd45 | journal = Oncogene | volume = 10 | issue = 12 | pages = 2427–33 | year = 1995 | pmid = 7784094 | doi = }}
* {{vcite2 journal | vauthors = Kato S, Sekine S, Oh SW, Kim NS, Umezawa Y, Abe N, Yokoyama-Kobayashi M, Aoki T | title = Construction of a human full-length cDNA bank | journal = Gene | volume = 150 | issue = 2 | pages = 243–50 | year = 1995 | pmid = 7821789 | doi = 10.1016/0378-1119(94)90433-2 }}
* {{cite journal | vauthors = Kato S, Sekine S, Oh SW, Kim NS, Umezawa Y, Abe N, Yokoyama-Kobayashi M, Aoki T | title = Construction of a human full-length cDNA bank | journal = Gene | volume = 150 | issue = 2 | pages = 243–50 | year = 1995 | pmid = 7821789 | doi = 10.1016/0378-1119(94)90433-2 }}
* {{vcite2 journal | vauthors = Matsuoka S, Yamaguchi M, Matsukage A | title = D-type cyclin-binding regions of proliferating cell nuclear antigen | journal = J. Biol. Chem. | volume = 269 | issue = 15 | pages = 11030–6 | year = 1994 | pmid = 7908906 | doi = }}
* {{cite journal | vauthors = Matsuoka S, Yamaguchi M, Matsukage A | title = D-type cyclin-binding regions of proliferating cell nuclear antigen | journal = J. Biol. Chem. | volume = 269 | issue = 15 | pages = 11030–6 | year = 1994 | pmid = 7908906 | doi = }}
* {{vcite2 journal | vauthors = Szepesi A, Gelfand EW, Lucas JJ | title = Association of proliferating cell nuclear antigen with cyclin-dependent kinases and cyclins in normal and transformed human T lymphocytes | journal = Blood | volume = 84 | issue = 10 | pages = 3413–21 | year = 1994 | pmid = 7949095 | doi = }}
* {{cite journal | vauthors = Szepesi A, Gelfand EW, Lucas JJ | title = Association of proliferating cell nuclear antigen with cyclin-dependent kinases and cyclins in normal and transformed human T lymphocytes | journal = Blood | volume = 84 | issue = 10 | pages = 3413–21 | year = 1994 | pmid = 7949095 | doi = }}
* {{vcite2 journal | vauthors = Smith ML, Chen IT, Zhan Q, Bae I, Chen CY, Gilmer TM, Kastan MB, O'Connor PM, Fornace AJ | title = Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen | journal = Science | volume = 266 | issue = 5189 | pages = 1376–80 | year = 1994 | pmid = 7973727 | doi = 10.1126/science.7973727 }}
* {{cite journal | vauthors = Smith ML, Chen IT, Zhan Q, Bae I, Chen CY, Gilmer TM, Kastan MB, O'Connor PM, Fornace AJ | title = Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen | journal = Science | volume = 266 | issue = 5189 | pages = 1376–80 | year = 1994 | pmid = 7973727 | doi = 10.1126/science.7973727 }}
* {{vcite2 journal | vauthors = Pan ZQ, Chen M, Hurwitz J | title = The subunits of activator 1 (replication factor C) carry out multiple functions essential for proliferating-cell nuclear antigen-dependent DNA synthesis | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 90 | issue = 1 | pages = 6–10 | year = 1993 | pmid = 8093561 | pmc = 45588 | doi = 10.1073/pnas.90.1.6 }}
* {{cite journal | vauthors = Pan ZQ, Chen M, Hurwitz J | title = The subunits of activator 1 (replication factor C) carry out multiple functions essential for proliferating-cell nuclear antigen-dependent DNA synthesis | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 90 | issue = 1 | pages = 6–10 | year = 1993 | pmid = 8093561 | pmc = 45588 | doi = 10.1073/pnas.90.1.6 }}
{{Refend}}
{{Refend}}



Revision as of 08:47, 2 August 2015

Template:PBB Proliferating cell nuclear antigen (PCNA) is a DNA clamp that acts as a processivity factor for DNA polymerase δ in eukaryotic cells and is essential for replication. PCNA is a homotrimer and achieves its processivity by encircling the DNA, where it acts as a scaffold to recruit proteins involved in DNA replication, DNA repair, chromatin remodeling and epigenetics.[1]

Many proteins interact with PCNA via the two known PCNA-interacting motifs PCNA-interacting peptide (PIP) box [2] and AlkB homologue 2 PCNA interacting motif (APIM).[3] Proteins binding to PCNA via the PIP-box are mainly involved in DNA replication whereas proteins binding to PCNA via APIM are mainly important in the context of genotoxic stress.[4]

Function

The protein encoded by this gene is found in the nucleus and is a cofactor of DNA polymerase delta. The encoded protein acts as a homotrimer and helps increase the processivity of leading strand synthesis during DNA replication. In response to DNA damage, this protein is ubiquitinated and is involved in the RAD6-dependent DNA repair pathway. Two transcript variants encoding the same protein have been found for this gene. Pseudogenes of this gene have been described on chromosome 4 and on the X chromosome.[5]

Expression in the nucleus during DNA synthesis

PCNA was originally identified as an antigen that is expressed in the nuclei of cells during the DNA synthesis phase of the cell cycle.[6] Part of the protein was sequenced and that sequence was used to allow isolation of a cDNA clone.[7] PCNA helps hold DNA polymerase epsilon (Pol ε) to DNA. PCNA is clamped[8] to DNA through the action of replication factor C (RFC),[9] which is a heteropentameric member of the AAA+ class of ATPases. Expression of PCNA is under the control of E2F transcription factor-containing complexes.[10]

Role in DNA repair

Since DNA polymerase epsilon is involved in resynthesis of excised damaged DNA strands during DNA repair, PCNA is important for both DNA synthesis and DNA repair.[11][12]

PCNA is also involved in the DNA damage tolerance pathway known as post-replication repair (PRR).[13] In PRR, there are two sub-pathways: (1) a translesion pathway, which is carried out by specialised DNA polymerases that are able to incorporate damaged DNA bases into their active sites (unlike the normal replicative polymerase, which stall), and hence bypass the damage, and (2) a proposed "template switch" pathway that is thought to involve damage bypass by recruitment of the homologous recombination machinery. PCNA is pivotal to the activation of these pathways and the choice as to which pathway is utilised by the cell. PCNA becomes post-translationally modified by ubiquitin.[14] Mono-ubiquitin of lysine number 164 on PCNA activates the translesion synthesis pathway. Extension of this mono-ubiquitin by a non-canonical lysine-63-linked poly-ubiquitin chain on PCNA[14] is thought to activate the template switch pathway. Furthermore, sumoylation (by small ubiquitin-like modifier, SUMO) of PCNA lysine-164 (and to a lesser extent, lysine-127) inhibits the template switch pathway.[14] This antagonistic effect occurs because sumoylated PCNA recruits a DNA helicase called Srs2,[15] which has a role in disrupting Rad51 nucleoprotein filaments fundamental for initiation of homologous recombination.

PCNA-binding proteins

 • TCP protein domain  • NKp44 Receptor  • procaspases [16]  • DNA polymerases  • Clamp loader  • Flap endonuclease  • DNA ligase  • Topoisomerase  • Replication licensing factor  • E3 ubiquitin ligases  • E2 SUMO-conjugating enzyme  • Helicases, ATPases  • Mismatch repair enzymes  • Base excision repair enzymes  • Nucleotide excision repair enzyme  • Poly ADP ribose polymerase  • Histone chaperone  • Chromatin remodeling factor  • Histone acetyltransferase  • Histone deacetyltransferase  • DNA methyltransferase  • Sister-chromatid cohesion factors  • Protein kinases  • Cell-cycle regulators  • Apoptotic factors

for details see[17]

Interactions

PCNA has been shown to interact with:

Proteins interacting with PCNA via APIM include human AlkB homologue 2, TFIIS-L, TFII-I, Rad51B,[3] XPA,[78] ZRANB3,[79] and FBH1.[80]

Uses

Antibodies against proliferating cell nuclear antigen (PCNA) or monoclonal antibody termed Ki-67 can be used for grading of different neoplasms, e.g. astrocytoma. They can be of diagnostic and prognostic value. Imaging of the nuclear distribution of PCNA (via antibody labeling) can be used to distinguish between early, mid and late S phase of the cell cycle.[81] However, an important limitation of antibodies is that cells need to be fixed leading to potential artifacts.

On the other hand, the study of the dynamics of replication and repair in living cells can be done introducing translational fusions of PCNA. To obviate the need for transfection and bypass the problem of difficult to transfect and/or short lived cells, cell permeable replication and/or repair markers can be used. These peptides offer the distinct advantage that can be used in situ in living tissue and even distinguish cells undergoing replication from cells undergoing repair.[82]

PCNA is a potential therapeutic target in cancer therapy.[83]

See also

  • PCNA at the U.S. National Library of Medicine Medical Subject Headings (MeSH)
  • "ANA: Cell cycle related (Mitotic): PCNA type 1 and type 2 Antibody Patterns". Antibody Patterns.com. Retrieved 2008-04-15.
  • Dan Krotz. "Structure of a clamp–loader complex". Advanced Light Source News. Lawrence Berkeley National Laboratory. Retrieved 2008-04-15.[8]
  • "Movie showing a model of clamp loading of PCNA onto DNA". Pubmed Central.[84]

References

  1. ^ Moldovan GL, Pfander B, Jentsch S (May 18, 2007). "PCNA, the maestro of the replication fork". Cell. 129 (4): 665–79. doi:10.1016/j.cell.2007.05.003. PMID 17512402.
  2. ^ Warbrick E (Mar 1998). "PCNA binding through a conserved motif". BioEssays : news and reviews in molecular, cellular and developmental biology. 20 (3): 195–9. doi:10.1002/(sici)1521-1878(199803)20:3<195::aid-bies2>3.0.co;2-r. PMID 9631646.
  3. ^ a b Gilljam KM, Feyzi E, Aas PA, Sousa MM, Müller R, Vågbø CB, Catterall TC, Liabakk NB, Slupphaug G, Drabløs F, Krokan HE, Otterlei M (Sep 7, 2009). "Identification of a novel, widespread, and functionally important PCNA-binding motif". The Journal of Cell Biology. 186 (5): 645–54. doi:10.1083/jcb.200903138. PMC 2742182. PMID 19736315.
  4. ^ Mailand N, Gibbs-Seymour I, Bekker-Jensen S (May 2013). "Regulation of PCNA-protein interactions for genome stability". Nature reviews. Molecular cell biology. 14 (5): 269–82. doi:10.1038/nrm3562. PMID 23594953.
  5. ^ "Entrez Gene: PCNA proliferating cell nuclear antigen".
  6. ^ Leonardi E, Girlando S, Serio G, Mauri FA, Perrone G, Scampini S, Dalla Palma P, Barbareschi M (1992). "PCNA and Ki67 expression in breast carcinoma: correlations with clinical and biological variables". J. Clin. Pathol. 45 (5): 416–419. doi:10.1136/jcp.45.5.416. PMC 495304. PMID 1350788.
  7. ^ Matsumoto K, Moriuchi T, Koji T, Nakane PK (1987). "Molecular cloning of cDNA coding for rat proliferating cell nuclear antigen (PCNA)/cyclin". EMBO J. 6 (3): 637–42. PMC 553445. PMID 2884104.
  8. ^ a b Bowman GD, O'Donnell M, Kuriyan J (2004). "Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex". Nature. 429 (6993): 724–730. doi:10.1038/nature02585. PMID 15201901.
  9. ^ Zhang G, Gibbs E, Kelman Z, O'Donnell M, Hurwitz J (1999). "Studies on the interactions between human replication factor C and human proliferating cell nuclear antigen". Proc. Natl. Acad. Sci. U.S.A. 96 (5): 1869–1874. doi:10.1073/pnas.96.5.1869. PMC 26703. PMID 10051561.
  10. ^ Egelkrout EM, Mariconti L, Settlage SB, Cella R, Robertson D, Hanley-Bowdoin L (2002). "Two E2F elements regulate the proliferating cell nuclear antigen promoter differently during leaf development". Plant Cell. 14 (12): 3225–3236. doi:10.1105/tpc.006403. PMC 151214. PMID 12468739.
  11. ^ Shivji KK, Kenny MK, Wood RD (April 1992). "Proliferating cell nuclear antigen is required for DNA excision repair". Cell. 69 (2): 367–74. doi:10.1016/0092-8674(92)90416-A. PMID 1348971.
  12. ^ Essers J, Theil AF, Baldeyron C, van Cappellen WA, Houtsmuller AB, Kanaar R, Vermeulen W (2005). "Nuclear dynamics of PCNA in DNA replication and repair". Mol. Cell. Biol. 25 (21): 9350–9359. doi:10.1128/MCB.25.21.9350-9359.2005. PMC 1265825. PMID 16227586.
  13. ^ Lehmann AR, Fuchs RP (December 2006). "Gaps and forks in DNA replication: Rediscovering old models". DNA Repair (Amst.). 5 (12): 1495–1498. doi:10.1016/j.dnarep.2006.07.002. PMID 16956796.
  14. ^ a b c Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (September 2002). "RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO". Nature. 419 (6903): 135–141. doi:10.1038/nature00991. PMID 12226657.
  15. ^ Pfander B, Moldovan GL, Sacher M, Hoege C, Jentsch S (July 2005). "SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase". Nature. 436 (7049): 428–33. doi:10.1038/nature03665. PMID 15931174.
  16. ^ Witko-Sarsat V, Mocek J, Bouayad D, Tamassia N, Ribeil JA, Candalh C, Davezac N, Reuter N, Mouthon L, Hermine O, Pederzoli-Ribeil M, Cassatella MA (Nov 22, 2010). "Proliferating cell nuclear antigen acts as a cytoplasmic platform controlling human neutrophil survival". The Journal of experimental medicine. 207 (12): 2631–45. doi:10.1084/jem.20092241. PMC 2989777. PMID 20975039.
  17. ^ Moldovan GL, Pfander B, Jentsch S (2007). "PCNA, the maestro of the replication fork". Cell. 129 (4): 665–679. doi:10.1016/j.cell.2007.05.003. PMID 17512402.
  18. ^ a b c d e f g h i j k l m Ohta S, Shiomi Y, Sugimoto K, Obuse C, Tsurimoto T (October 2002). "A proteomics approach to identify proliferating cell nuclear antigen (PCNA)-binding proteins in human cell lysates. Identification of the human CHL12/RFCs2-5 complex as a novel PCNA-binding protein". J. Biol. Chem. 277 (43): 40362–7. doi:10.1074/jbc.M206194200. PMID 12171929.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  19. ^ Kawabe T, Suganuma M, Ando T, Kimura M, Hori H, Okamoto T (March 2002). "Cdc25C interacts with PCNA at G2/M transition". Oncogene. 21 (11): 1717–26. doi:10.1038/sj.onc.1205229. PMID 11896603.
  20. ^ Matsuoka S, Yamaguchi M, Matsukage A (April 1994). "D-type cyclin-binding regions of proliferating cell nuclear antigen". J. Biol. Chem. 269 (15): 11030–6. PMID 7908906.
  21. ^ a b Xiong Y, Zhang H, Beach D (August 1993). "Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation". Genes Dev. 7 (8): 1572–83. doi:10.1101/gad.7.8.1572. PMID 8101826.
  22. ^ Otterlei M, Warbrick E, Nagelhus TA, Haug T, Slupphaug G, Akbari M, Aas PA, Steinsbekk K, Bakke O, Krokan HE (July 1999). "Post-replicative base excision repair in replication foci". EMBO J. 18 (13): 3834–44. doi:10.1093/emboj/18.13.3834. PMC 1171460. PMID 10393198.
  23. ^ Serrano M, Hannon GJ, Beach D (December 1993). "A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4". Nature. 366 (6456): 704–7. doi:10.1038/366704a0. PMID 8259215.
  24. ^ a b Watanabe H, Pan ZQ, Schreiber-Agus N, DePinho RA, Hurwitz J, Xiong Y (February 1998). "Suppression of cell transformation by the cyclin-dependent kinase inhibitor p57KIP2 requires binding to proliferating cell nuclear antigen". Proc. Natl. Acad. Sci. U.S.A. 95 (4): 1392–7. doi:10.1073/pnas.95.4.1392. PMC 19016. PMID 9465025.
  25. ^ Rountree MR, Bachman KE, Baylin SB (July 2000). "DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci". Nat. Genet. 25 (3): 269–77. doi:10.1038/77023. PMID 10888872.
  26. ^ Iida T, Suetake I, Tajima S, Morioka H, Ohta S, Obuse C, Tsurimoto T (October 2002). "PCNA clamp facilitates action of DNA cytosine methyltransferase 1 on hemimethylated DNA". Genes Cells. 7 (10): 997–1007. doi:10.1046/j.1365-2443.2002.00584.x. PMID 12354094.
  27. ^ Chuang LS, Ian HI, Koh TW, Ng HH, Xu G, Li BF (September 1997). "Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1". Science. 277 (5334): 1996–2000. doi:10.1126/science.277.5334.1996. PMID 9302295.
  28. ^ Hasan S, Hassa PO, Imhof R, Hottiger MO (March 2001). "Transcription coactivator p300 binds PCNA and may have a role in DNA repair synthesis". Nature. 410 (6826): 387–91. doi:10.1038/35066610. PMID 11268218.
  29. ^ Henneke G, Koundrioukoff S, Hübscher U (July 2003). "Phosphorylation of human Fen1 by cyclin-dependent kinase modulates its role in replication fork regulation". Oncogene. 22 (28): 4301–13. doi:10.1038/sj.onc.1206606. PMID 12853968.
  30. ^ Hasan S, Stucki M, Hassa PO, Imhof R, Gehrig P, Hunziker P, Hübscher U, Hottiger MO (June 2001). "Regulation of human flap endonuclease-1 activity by acetylation through the transcriptional coactivator p300". Mol. Cell. 7 (6): 1221–31. doi:10.1016/s1097-2765(01)00272-6. PMID 11430825.
  31. ^ a b Jónsson ZO, Hindges R, Hübscher U (April 1998). "Regulation of DNA replication and repair proteins through interaction with the front side of proliferating cell nuclear antigen". EMBO J. 17 (8): 2412–25. doi:10.1093/emboj/17.8.2412. PMC 1170584. PMID 9545252.
  32. ^ Gary R, Ludwig DL, Cornelius HL, MacInnes MA, Park MS (September 1997). "The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor p21". J. Biol. Chem. 272 (39): 24522–9. doi:10.1074/jbc.272.39.24522. PMID 9305916.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  33. ^ Chen U, Chen S, Saha P, Dutta A (October 1996). "p21Cip1/Waf1 disrupts the recruitment of human Fen1 by proliferating-cell nuclear antigen into the DNA replication complex". Proc. Natl. Acad. Sci. U.S.A. 93 (21): 11597–602. doi:10.1073/pnas.93.21.11597. PMC 38103. PMID 8876181.
  34. ^ Dianova II, Bohr VA, Dianov GL (October 2001). "Interaction of human AP endonuclease 1 with flap endonuclease 1 and proliferating cell nuclear antigen involved in long-patch base excision repair". Biochemistry. 40 (42): 12639–44. doi:10.1021/bi011117i. PMID 11601988.
  35. ^ a b c Yu P, Huang B, Shen M, Lau C, Chan E, Michel J, Xiong Y, Payan DG, Luo Y (January 2001). "p15(PAF), a novel PCNA associated factor with increased expression in tumor tissues". Oncogene. 20 (4): 484–9. doi:10.1038/sj.onc.1204113. PMID 11313979.
  36. ^ Smith ML, Chen IT, Zhan Q, Bae I, Chen CY, Gilmer TM, Kastan MB, O'Connor PM, Fornace AJ (November 1994). "Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen". Science. 266 (5189): 1376–80. doi:10.1126/science.7973727. PMID 7973727.
  37. ^ Chen IT, Smith ML, O'Connor PM, Fornace AJ (November 1995). "Direct interaction of Gadd45 with PCNA and evidence for competitive interaction of Gadd45 and p21Waf1/Cip1 with PCNA". Oncogene. 11 (10): 1931–7. PMID 7478510.
  38. ^ Vairapandi M, Azam N, Balliet AG, Hoffman B, Liebermann DA (June 2000). "Characterization of MyD118, Gadd45, and proliferating cell nuclear antigen (PCNA) interacting domains. PCNA impedes MyD118 AND Gadd45-mediated negative growth control". J. Biol. Chem. 275 (22): 16810–9. doi:10.1074/jbc.275.22.16810. PMID 10828065.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  39. ^ Hall PA, Kearsey JM, Coates PJ, Norman DG, Warbrick E, Cox LS (June 1995). "Characterisation of the interaction between PCNA and Gadd45". Oncogene. 10 (12): 2427–33. PMID 7784094.
  40. ^ Yang Q, Manicone A, Coursen JD, Linke SP, Nagashima M, Forgues M, Wang XW (November 2000). "Identification of a functional domain in a GADD45-mediated G2/M checkpoint". J. Biol. Chem. 275 (47): 36892–8. doi:10.1074/jbc.M005319200. PMID 10973963.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  41. ^ Azam N, Vairapandi M, Zhang W, Hoffman B, Liebermann DA (January 2001). "Interaction of CR6 (GADD45gamma ) with proliferating cell nuclear antigen impedes negative growth control". J. Biol. Chem. 276 (4): 2766–74. doi:10.1074/jbc.M005626200. PMID 11022036.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  42. ^ Nakayama K, Hara T, Hibi M, Hirano T, Miyajima A (August 1999). "A novel oncostatin M-inducible gene OIG37 forms a gene family with MyD118 and GADD45 and negatively regulates cell growth". J. Biol. Chem. 274 (35): 24766–72. doi:10.1074/jbc.274.35.24766. PMID 10455148.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  43. ^ Milutinovic S, Zhuang Q, Szyf M (June 2002). "Proliferating cell nuclear antigen associates with histone deacetylase activity, integrating DNA replication and chromatin modification". J. Biol. Chem. 277 (23): 20974–8. doi:10.1074/jbc.M202504200. PMID 11929879.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  44. ^ Komatsu K, Wharton W, Hang H, Wu C, Singh S, Lieberman HB, Pledger WJ, Wang HG (November 2000). "PCNA interacts with hHus1/hRad9 in response to DNA damage and replication inhibition". Oncogene. 19 (46): 5291–7. doi:10.1038/sj.onc.1203901. PMID 11077446.
  45. ^ Scott M, Bonnefin P, Vieyra D, Boisvert FM, Young D, Bazett-Jones DP, Riabowol K (October 2001). "UV-induced binding of ING1 to PCNA regulates the induction of apoptosis". J. Cell. Sci. 114 (Pt 19): 3455–62. PMID 11682605.
  46. ^ He H, Tan CK, Downey KM, So AG (October 2001). "A tumor necrosis factor alpha- and interleukin 6-inducible protein that interacts with the small subunit of DNA polymerase delta and proliferating cell nuclear antigen". Proc. Natl. Acad. Sci. U.S.A. 98 (21): 11979–84. doi:10.1073/pnas.221452098. PMC 59753. PMID 11593007.
  47. ^ a b Balajee AS, Geard CR (March 2001). "Chromatin-bound PCNA complex formation triggered by DNA damage occurs independent of the ATM gene product in human cells". Nucleic Acids Res. 29 (6): 1341–51. doi:10.1093/nar/29.6.1341. PMC 29758. PMID 11239001.
  48. ^ Matheos D, Ruiz MT, Price GB, Zannis-Hadjopoulos M (October 2002). "Ku antigen, an origin-specific binding protein that associates with replication proteins, is required for mammalian DNA replication". Biochim. Biophys. Acta. 1578 (1–3): 59–72. doi:10.1016/s0167-4781(02)00497-9. PMID 12393188.
  49. ^ Fujise K, Zhang D, Liu J, Yeh ET (December 2000). "Regulation of apoptosis and cell cycle progression by MCL1. Differential role of proliferating cell nuclear antigen". J. Biol. Chem. 275 (50): 39458–65. doi:10.1074/jbc.M006626200. PMID 10978339.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  50. ^ a b Kleczkowska HE, Marra G, Lettieri T, Jiricny J (March 2001). "hMSH3 and hMSH6 interact with PCNA and colocalize with it to replication foci". Genes Dev. 15 (6): 724–36. doi:10.1101/gad.191201. PMC 312660. PMID 11274057.
  51. ^ a b Clark AB, Valle F, Drotschmann K, Gary RK, Kunkel TA (November 2000). "Functional interaction of proliferating cell nuclear antigen with MSH2-MSH6 and MSH2-MSH3 complexes". J. Biol. Chem. 275 (47): 36498–501. doi:10.1074/jbc.C000513200. PMID 11005803.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  52. ^ Parker A, Gu Y, Mahoney W, Lee SH, Singh KK, Lu AL (February 2001). "Human homolog of the MutY repair protein (hMYH) physically interacts with proteins involved in long patch DNA base excision repair". J. Biol. Chem. 276 (8): 5547–55. doi:10.1074/jbc.M008463200. PMID 11092888.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  53. ^ a b Fotedar R, Mossi R, Fitzgerald P, Rousselle T, Maga G, Brickner H, Messier H, Kasibhatla S, Hübscher U, Fotedar A (August 1996). "A conserved domain of the large subunit of replication factor C binds PCNA and acts like a dominant negative inhibitor of DNA replication in mammalian cells". EMBO J. 15 (16): 4423–33. PMC 452166. PMID 8861969.
  54. ^ Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (October 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. doi:10.1038/nature04209. PMID 16189514.
  55. ^ Frouin I, Maga G, Denegri M, Riva F, Savio M, Spadari S, Prosperi E, Scovassi AI (October 2003). "Human proliferating cell nuclear antigen, poly(ADP-ribose) polymerase-1, and p21waf1/cip1. A dynamic exchange of partners". J. Biol. Chem. 278 (41): 39265–8. doi:10.1074/jbc.C300098200. PMID 12930846.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  56. ^ Gulbis JM, Kelman Z, Hurwitz J, O'Donnell M, Kuriyan J (October 1996). "Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA". Cell. 87 (2): 297–306. doi:10.1016/s0092-8674(00)81347-1. PMID 8861913.
  57. ^ Touitou R, Richardson J, Bose S, Nakanishi M, Rivett J, Allday MJ (May 2001). "A degradation signal located in the C-terminus of p21WAF1/CIP1 is a binding site for the C8 alpha-subunit of the 20S proteasome". EMBO J. 20 (10): 2367–75. doi:10.1093/emboj/20.10.2367. PMC 125454. PMID 11350925.
  58. ^ Lu X, Tan CK, Zhou JQ, You M, Carastro LM, Downey KM, So AG (July 2002). "Direct interaction of proliferating cell nuclear antigen with the small subunit of DNA polymerase delta". J. Biol. Chem. 277 (27): 24340–5. doi:10.1074/jbc.M200065200. PMID 11986310.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  59. ^ Ducoux M, Urbach S, Baldacci G, Hübscher U, Koundrioukoff S, Christensen J, Hughes P (December 2001). "Mediation of proliferating cell nuclear antigen (PCNA)-dependent DNA replication through a conserved p21(Cip1)-like PCNA-binding motif present in the third subunit of human DNA polymerase delta". J. Biol. Chem. 276 (52): 49258–66. doi:10.1074/jbc.M106990200. PMID 11595739.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  60. ^ Liu L, Rodriguez-Belmonte EM, Mazloum N, Xie B, Lee MY (March 2003). "Identification of a novel protein, PDIP38, that interacts with the p50 subunit of DNA polymerase delta and proliferating cell nuclear antigen". J. Biol. Chem. 278 (12): 10041–7. doi:10.1074/jbc.M208694200. PMID 12522211.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  61. ^ Haracska L, Johnson RE, Unk I, Phillips B, Hurwitz J, Prakash L, Prakash S (November 2001). "Physical and functional interactions of human DNA polymerase eta with PCNA". Mol. Cell. Biol. 21 (21): 7199–206. doi:10.1128/MCB.21.21.7199-7206.2001. PMC 99895. PMID 11585903.
  62. ^ Haracska L, Unk I, Johnson RE, Phillips BB, Hurwitz J, Prakash L, Prakash S (February 2002). "Stimulation of DNA synthesis activity of human DNA polymerase kappa by PCNA". Mol. Cell. Biol. 22 (3): 784–91. doi:10.1128/mcb.22.3.784-791.2002. PMC 133560. PMID 11784855.
  63. ^ Maga G, Villani G, Ramadan K, Shevelev I, Tanguy Le Gac N, Blanco L, Blanca G, Spadari S, Hübscher U (December 2002). "Human DNA polymerase lambda functionally and physically interacts with proliferating cell nuclear antigen in normal and translesion DNA synthesis". J. Biol. Chem. 277 (50): 48434–40. doi:10.1074/jbc.M206889200. PMID 12368291.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  64. ^ Shimazaki N, Yoshida K, Kobayashi T, Toji S, Tamai K, Koiwai O (July 2002). "Over-expression of human DNA polymerase lambda in E. coli and characterization of the recombinant enzyme". Genes Cells. 7 (7): 639–51. doi:10.1046/j.1365-2443.2002.00547.x. PMID 12081642.
  65. ^ Maruyama T, Farina A, Dey A, Cheong J, Bermudez VP, Tamura T, Sciortino S, Shuman J, Hurwitz J, Ozato K (September 2002). "A Mammalian bromodomain protein, brd4, interacts with replication factor C and inhibits progression to S phase". Mol. Cell. Biol. 22 (18): 6509–20. doi:10.1128/mcb.22.18.6509-6520.2002. PMC 135621. PMID 12192049.
  66. ^ a b Mossi R, Jónsson ZO, Allen BL, Hardin SH, Hübscher U (January 1997). "Replication factor C interacts with the C-terminal side of proliferating cell nuclear antigen". J. Biol. Chem. 272 (3): 1769–76. doi:10.1074/jbc.272.3.1769. PMID 8999859.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  67. ^ van der Kuip H, Carius B, Haque SJ, Williams BR, Huber C, Fischer T (April 1999). "The DNA-binding subunit p140 of replication factor C is upregulated in cycling cells and associates with G1 phase cell cycle regulatory proteins". J. Mol. Med. 77 (4): 386–92. doi:10.1007/s001090050365. PMID 10353443.
  68. ^ a b c Cai J, Gibbs E, Uhlmann F, Phillips B, Yao N, O'Donnell M, Hurwitz J (July 1997). "A complex consisting of human replication factor C p40, p37, and p36 subunits is a DNA-dependent ATPase and an intermediate in the assembly of the holoenzyme". J. Biol. Chem. 272 (30): 18974–81. doi:10.1074/jbc.272.30.18974. PMID 9228079.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  69. ^ Pan ZQ, Chen M, Hurwitz J (January 1993). "The subunits of activator 1 (replication factor C) carry out multiple functions essential for proliferating-cell nuclear antigen-dependent DNA synthesis". Proc. Natl. Acad. Sci. U.S.A. 90 (1): 6–10. doi:10.1073/pnas.90.1.6. PMC 45588. PMID 8093561.
  70. ^ Merkle CJ, Karnitz LM, Henry-Sánchez JT, Chen J (August 2003). "Cloning and characterization of hCTF18, hCTF8, and hDCC1. Human homologs of a Saccharomyces cerevisiae complex involved in sister chromatid cohesion establishment". J. Biol. Chem. 278 (32): 30051–6. doi:10.1074/jbc.M211591200. PMID 12766176.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  71. ^ Motegi A, Liaw HJ, Lee KY, Roest HP, Maas A, Wu X, Moinova H, Markowitz SD, Ding H, Hoeijmakers JH, Myung K (August 2008). "Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks". Proc. Natl. Acad. Sci. U.S.A. 105 (34): 12411–6. doi:10.1073/pnas.0805685105. PMC 2518831. PMID 18719106.
  72. ^ Unk I, Hajdú I, Fátyol K, Hurwitz J, Yoon JH, Prakash L, Prakash S, Haracska L (March 2008). "Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination". Proc. Natl. Acad. Sci. U.S.A. 105 (10): 3768–73. doi:10.1073/pnas.0800563105. PMC 2268824. PMID 18316726.
  73. ^ Brun J, Chiu R, Lockhart K, Xiao W, Wouters BG, Gray DA. "hMMS2 serves a redundant role in human PCNA polyubiquitination". BMC Mol. Biol. 9: 24. doi:10.1186/1471-2199-9-24. PMC 2263069. PMID 18284681.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  74. ^ Rodríguez-López AM, Jackson DA, Nehlin JO, Iborra F, Warren AV, Cox LS (February 2003). "Characterisation of the interaction between WRN, the helicase/exonuclease defective in progeroid Werner's syndrome, and an essential replication factor, PCNA". Mech. Ageing Dev. 124 (2): 167–74. doi:10.1016/s0047-6374(02)00131-8. PMID 12633936.
  75. ^ Huang S, Beresten S, Li B, Oshima J, Ellis NA, Campisi J (June 2000). "Characterization of the human and mouse WRN 3'-->5' exonuclease". Nucleic Acids Res. 28 (12): 2396–405. doi:10.1093/nar/28.12.2396. PMC 102739. PMID 10871373.
  76. ^ Fan J, Otterlei M, Wong HK, Tomkinson AE, Wilson DM. "XRCC1 co-localizes and physically interacts with PCNA". Nucleic Acids Res. 32 (7): 2193–201. doi:10.1093/nar/gkh556. PMC 407833. PMID 15107487.
  77. ^ Ise T, Nagatani G, Imamura T, Kato K, Takano H, Nomoto M, Izumi H, Ohmori H, Okamoto T, Ohga T, Uchiumi T, Kuwano M, Kohno K (January 1999). "Transcription factor Y-box binding protein 1 binds preferentially to cisplatin-modified DNA and interacts with proliferating cell nuclear antigen". Cancer Res. 59 (2): 342–6. PMID 9927044.
  78. ^ Gilljam KM, Müller R, Liabakk NB, Otterlei M (2012). "Nucleotide excision repair is associated with the replisome and its efficiency depends on a direct interaction between XPA and PCNA". PLoS ONE. 7 (11): e49199. doi:10.1371/journal.pone.0049199. PMC 3496702. PMID 23152873.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  79. ^ Ciccia A, Nimonkar AV, Hu Y, Hajdu I, Achar YJ, Izhar L, Petit SA, Adamson B, Yoon JC, Kowalczykowski SC, Livingston DM, Haracska L, Elledge SJ (Aug 10, 2012). "Polyubiquitinated PCNA recruits the ZRANB3 translocase to maintain genomic integrity after replication stress". Molecular Cell. 47 (3): 396–409. doi:10.1016/j.molcel.2012.05.024. PMC 3613862. PMID 22704558.
  80. ^ Bacquin A, Pouvelle C, Siaud N, Perderiset M, Salomé-Desnoulez S, Tellier-Lebegue C, Lopez B, Charbonnier JB, Kannouche PL (Jul 2013). "The helicase FBH1 is tightly regulated by PCNA via CRL4(Cdt2)-mediated proteolysis in human cells". Nucleic Acids Research. 41 (13): 6501–13. doi:10.1093/nar/gkt397. PMC 3711418. PMID 23677613.
  81. ^ Schönenberger F, Deutzmann A, Ferrando-May E, Merhof D (29 May 2015). "Discrimination of cell cycle phases in PCNA-immunolabeled cells". BMC Bioinform. 16 (180). doi:10.1186/s12859-015-0618-9. PMID 26022740.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  82. ^ Herce HD, Rajan M, Lättig-Tünnemann G, Fillies M, Cardoso MC (3 September 2014). "A novel cell permeable DNA replication and repair marker". Nucleus (Austin, Tex.). 5 (6). doi:10.4161/nucl.36290. PMID 25184478.
  83. ^ Wang SC (Apr 2014). "PCNA: a silent housekeeper or a potential therapeutic target?". Trends in pharmacological sciences. 35 (4): 178–186. doi:10.1016/j.tips.2014.02.004. PMID 24655521.
  84. ^ Miyata T, Suzuki H, Oyama T, Mayanagi K, Ishino Y, Morikawa K (2005). "Open clamp structure in the clamp-loading complex visualized by electron microscopic image analysis". Proc. Natl. Acad. Sci. U.S.A. 102 (39): 13795–13800. doi:10.1073/pnas.0506447102. PMC 1236569. PMID 16169902.

Further reading