Jump to content

ATP synthase: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Reverted 2 edits by 128.243.171.194 (talk) to last revision by Samuel.P. Berry. (TW)
No edit summary
Tags: references removed Mobile edit Mobile web edit
Line 28: Line 28:
Located within the [[thylakoid membrane]] and the [[inner mitochondrial membrane]], ATP synthase consists of two regions F<sub>O</sub> and F<sub>1</sub>. F<sub>O</sub> causes rotation of F<sub>1</sub> and is made of c-ring and subunits a, b, d, F6. F<sub>1</sub> is made of <math>\alpha, \beta, \gamma, \delta </math> subunits. F<sub>1</sub> has a water-soluble part that can hydrolyze ATP. F<sub>O</sub> on the other hand has mainly hydrophobic regions. F<sub>O</sub> F<sub>1</sub> creates a pathway for protons movement across the membrane.<ref name="Velours_2000">{{cite journal | vauthors = Velours J, Paumard P, Soubannier V, Spannagel C, Vaillier J, Arselin G, Graves PV | title = Organisation of the yeast ATP synthase F(0):a study based on cysteine mutants, thiol modification and cross-linking reagents | journal = Biochimica et Biophysica Acta | volume = 1458 | issue = 2–3 | pages = 443–56 | date = May 2000 | pmid = 10838057 | doi = 10.1016/S0005-2728(00)00093-1 }}</ref>
Located within the [[thylakoid membrane]] and the [[inner mitochondrial membrane]], ATP synthase consists of two regions F<sub>O</sub> and F<sub>1</sub>. F<sub>O</sub> causes rotation of F<sub>1</sub> and is made of c-ring and subunits a, b, d, F6. F<sub>1</sub> is made of <math>\alpha, \beta, \gamma, \delta </math> subunits. F<sub>1</sub> has a water-soluble part that can hydrolyze ATP. F<sub>O</sub> on the other hand has mainly hydrophobic regions. F<sub>O</sub> F<sub>1</sub> creates a pathway for protons movement across the membrane.<ref name="Velours_2000">{{cite journal | vauthors = Velours J, Paumard P, Soubannier V, Spannagel C, Vaillier J, Arselin G, Graves PV | title = Organisation of the yeast ATP synthase F(0):a study based on cysteine mutants, thiol modification and cross-linking reagents | journal = Biochimica et Biophysica Acta | volume = 1458 | issue = 2–3 | pages = 443–56 | date = May 2000 | pmid = 10838057 | doi = 10.1016/S0005-2728(00)00093-1 }}</ref>


=== F<sub>1</sub> region ===
The Structure of ATP Synthase

Although the F1 sphere is the catalytic portion of the enzyme
The F<sub>1</sub> portion of ATP synthase is hydrophilic and responsible for hydrolyzing ATP. This portion is located through the intermembrane space between the inter membrane space of the mitochondria. Subunits <math>\alpha</math> and <math>\beta</math> make a hexamer with 6 binding sites. Three of them are catalytically inactive and they bind ADP.
that manufactures ATP in the mitochondrion, it is not the

whole story. The ATP-synthesizing enzyme, which is called
Other three subunits catalyze the ATP synthesis. The other F<sub>1</sub> subunits <math>\gamma,\delta,\epsilon</math> are a part of a rotational motor mechanism. <math>\gamma</math> subunit allows <math>\beta</math> to go through conformational changes, i.e. closed, half open and open states allows for ATP to be bound and released once synthesized. The F<sub>1</sub> particle is large and can be seen in the transmission electron microscope by negative staining.<ref>{{cite journal | vauthors = Fernandez Moran H, Oda T, Blair PV, Green DE | title = A macromolecular repeating unit of mitochondrial structure and function. Correlated electron microscopic and biochemical studies of isolated mitochondria and submitochondrial particles of beef heart muscle | journal = The Journal of Cell Biology | volume = 22 | issue = 1 | pages = 63–100 | date = July 1964 | pmid = 14195622 | pmc = 2106494 | doi = 10.1083/jcb.22.1.63 }}</ref> These are particles of 9&nbsp;nm diameter that pepper the inner mitochondrial membrane.
ATP synthase, is a mushroom-shaped protein complex

(Figure 5.23a) composed of two principal components: a
{| class="wikitable" style="text-align:center"
spherical F1 head (about 90 Å diameter) and a basal section,
|+ F<sub>1</sub> – Subunits
called F0, embedded in the inner membrane. High-resolution

electron micrographs indicate that the two portions are con-
|-
nected by both a central and a peripheral stalk as shown in
! Subunit !! Human Gene
Figure 5.23b. A typical mammalian liver mitochondrion has
|-
roughly 15,000 copies of the ATP synthase. Homologous ver-
| [[ATP synthase alpha/beta subunits|alpha]] || [[ATP5A1]], [[ATPAF2]]
sions of the ATP synthase are found in the plasma membrane
|-
of bacteria, the thylakoid membrane of plant chloroplasts, and
| [[ATP synthase alpha/beta subunits|beta]] || [[ATP5B]], [[ATPAF1]], [[C16orf7]]
the inner membrane of mitochondria.
|-
The F1 portions of the bacterial and mitochondrial ATP
| [[ATP synthase gamma subunit|gamma]] || [[ATP5C1]]
synthases are highly conserved; both contain five different
|-
polypeptides with a composition of �3�3���. The � and
| [[ATP synthase delta subunit|delta]] || [[ATP5D]]
� subunits are arranged alternately within the F1 head in a
|-
manner resembling the segments of an orange (Figure 5.23b;
| epsilon || [[ATP5E]]
see also 5.26b). Two aspects can be noted for later discussion:
|-
(1) each F1 contains three catalytic sites for ATP synthesis,
|}
one on each � subunit, and (2) the � subunit runs from the
outer tip of the F1 head through the central stalk and makes
contact with the F0 basepiece. In the mitochondrial enzyme,
all five polypeptides of F1 are encoded by the nuclear
DNA, synthesized in the cytosol, and then imported (see
Figure 8.47).
The F0 portion of the ATP synthase resides within the
membrane and consists of three different polypeptides with a
stoichiometry of ab2c10–14 (Figure 5.23b). The number of sub-
units in the c ring is written as 10–14 because structural stud-
ies have revealed that this number can vary depending on the
source of the enzyme. Both the yeast mitochondrial and E. coli
ATP synthase, for example, have 10 c subunits, whereas a
chloroplast enzyme has 14 c subunits (Figure 5.24). The F0
base contains a channel through which protons are conducted
from the intermembrane space to the matrix. The presence of
a transmembrane channel was first demonstrated by experi


=== F<sub>O</sub> region ===
=== F<sub>O</sub> region ===

Revision as of 16:21, 20 January 2019

ATP Synthase
Molecular model of ATP synthase determined by X-ray crystallography. Stator is not shown here.
Identifiers
EC no.3.6.3.14
CAS no.9000-83-3
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO
Search
PMCarticles
PubMedarticles
NCBIproteins

ATP synthase is an enzyme that creates the energy storage molecule adenosine triphosphate (ATP). ATP is the most commonly used "energy currency" of cells for all organisms. It is formed from adenosine diphosphate (ADP) and inorganic phosphate (Pi). The overall reaction catalyzed by ATP synthase is:

  • ADP + Pi + H+out ⇌ ATP + H2O + H+in

The formation of ATP from ADP and Pi is energetically unfavorable and would normally proceed in the reverse direction. In order to drive this reaction forward, ATP synthase couples ATP synthesis during cellular respiration to an electrochemical gradient created by the difference in proton (H+) concentration across the mitochondrial membrane in eukaryotes or the plasma membrane in bacteria. During photosynthesis in plants, ATP is synthesized by ATP synthase using a proton gradient created in the thylakoid lumen through the thylakoid membrane and into the chloroplast stroma.

ATP synthase consists of two main subunits, FO and F1, which has a rotational motor mechanism allowing for ATP production.[1][2] Because of its rotating subunit, ATP synthase is a molecular machine.

Nomenclature

The F1 fraction derives its name from the term "Fraction 1" and FO (written as a subscript letter "o", not "zero") derives its name from being the binding fraction for oligomycin, a type of naturally-derived antibiotic that is able to inhibit the FO unit of ATP synthase.[3][4] These functional regions consist of different protein subunits — refer to tables. This enzyme is used in synthesis of ATP through aerobic respiration.

Structure and function

Bovine mitochondrial ATP synthase. The FO, F1, axle, and stator regions are color coded magenta, green, orange, and cyan respectively.[5][6]
Simplified model of FOF1-ATPase alias ATP synthase of E. coli. Subunits of the enzyme are labeled accordingly.
Rotation engine of ATP synthase.

Located within the thylakoid membrane and the inner mitochondrial membrane, ATP synthase consists of two regions FO and F1. FO causes rotation of F1 and is made of c-ring and subunits a, b, d, F6. F1 is made of subunits. F1 has a water-soluble part that can hydrolyze ATP. FO on the other hand has mainly hydrophobic regions. FO F1 creates a pathway for protons movement across the membrane.[7]


The Structure of ATP Synthase Although the F1 sphere is the catalytic portion of the enzyme that manufactures ATP in the mitochondrion, it is not the whole story. The ATP-synthesizing enzyme, which is called ATP synthase, is a mushroom-shaped protein complex (Figure 5.23a) composed of two principal components: a spherical F1 head (about 90 Å diameter) and a basal section, called F0, embedded in the inner membrane. High-resolution electron micrographs indicate that the two portions are con- nected by both a central and a peripheral stalk as shown in Figure 5.23b. A typical mammalian liver mitochondrion has roughly 15,000 copies of the ATP synthase. Homologous ver- sions of the ATP synthase are found in the plasma membrane of bacteria, the thylakoid membrane of plant chloroplasts, and the inner membrane of mitochondria. The F1 portions of the bacterial and mitochondrial ATP synthases are highly conserved; both contain five different polypeptides with a composition of �3�3���. The � and � subunits are arranged alternately within the F1 head in a manner resembling the segments of an orange (Figure 5.23b; see also 5.26b). Two aspects can be noted for later discussion: (1) each F1 contains three catalytic sites for ATP synthesis, one on each � subunit, and (2) the � subunit runs from the outer tip of the F1 head through the central stalk and makes contact with the F0 basepiece. In the mitochondrial enzyme, all five polypeptides of F1 are encoded by the nuclear DNA, synthesized in the cytosol, and then imported (see Figure 8.47). The F0 portion of the ATP synthase resides within the membrane and consists of three different polypeptides with a stoichiometry of ab2c10–14 (Figure 5.23b). The number of sub- units in the c ring is written as 10–14 because structural stud- ies have revealed that this number can vary depending on the source of the enzyme. Both the yeast mitochondrial and E. coli ATP synthase, for example, have 10 c subunits, whereas a chloroplast enzyme has 14 c subunits (Figure 5.24). The F0 base contains a channel through which protons are conducted from the intermembrane space to the matrix. The presence of a transmembrane channel was first demonstrated by experi

FO region

FO subunit F6 from the peripheral stalk region of ATP synthase.[8]

FO is a water insoluble protein with eight subunits and a transmembrane ring. The ring has a tetramer shape with a helix loop helix protein that goes though conformational changes when protonated and deprotonated, pushing neighboring subunits to rotate, causing the spinning of FO which then also affects conformation of F1, resulting in switching of states of alpha and beta subunits. The FO region of ATP synthase is a proton pore that is embedded in the mitochondrial membrane. It consists of three main subunits, a, b, and c, and (in humans) six additional subunits, d, e, f, g, F6, and 8 (or A6L). An atomic model for the dimeric yeast FO region was determined by cryo-EM at an overall resolution of 3.6 Å.[9] This part of the enzyme is located in the mitochondrial inner membrane and couples proton translocation to the rotation the causes ATP synthesis in the F1 region.

FO-Main subunits
Subunit Human Gene
a MT-ATP6, MT-ATP8
b ATP5F1
c ATP5G1, ATP5G2, ATP5G3

Binding model

Mechanism of ATP synthase. ADP and Pi (pink) shown being combined into ATP (red), and the rotating γ (gamma) subunit in black causing conformation.
Depiction of ATP synthase using the chemiosmotic proton gradient to power ATP synthesis through oxidative phosphorylation.

In the 1960s through the 1970s, Paul Boyer, a UCLA Professor, developed the binding change, or flip-flop, mechanism theory, which postulated that ATP synthesis is dependent on a conformational change in ATP synthase generated by rotation of the gamma subunit. The research group of John E. Walker, then at the MRC Laboratory of Molecular Biology in Cambridge, crystallized the F1 catalytic-domain of ATP synthase. The structure, at the time the largest asymmetric protein structure known, indicated that Boyer's rotary-catalysis model was, in essence, correct. For elucidating this, Boyer and Walker shared half of the 1997 Nobel Prize in Chemistry.

The crystal structure of the F1 showed alternating alpha and beta subunits (3 of each), arranged like segments of an orange around a rotating asymmetrical gamma subunit. According to the current model of ATP synthesis (known as the alternating catalytic model), the transmembrane potential created by (H+) proton cations supplied by the electron transport chain, drives the (H+) proton cations from the intermembrane space through the membrane via the FO region of ATP synthase. A portion of the FO (the ring of c-subunits) rotates as the protons pass through the membrane. The c-ring is tightly attached to the asymmetric central stalk (consisting primarily of the gamma subunit), causing it to rotate within the alpha3beta3 of F1 causing the 3 catalytic nucleotide binding sites to go through a series of conformational changes that lead to ATP synthesis. The major F1 subunits are prevented from rotating in sympathy with the central stalk rotor by a peripheral stalk that joins the alpha3beta3 to the non-rotating portion of FO. The structure of the intact ATP synthase is currently known at low-resolution from electron cryo-microscopy (cryo-EM) studies of the complex. The cryo-EM model of ATP synthase suggests that the peripheral stalk is a flexible structure that wraps around the complex as it joins F1 to FO. Under the right conditions, the enzyme reaction can also be carried out in reverse, with ATP hydrolysis driving proton pumping across the membrane.

The binding change mechanism involves the active site of a β subunit's cycling between three states.[10] In the "loose" state, ADP and phosphate enter the active site; in the adjacent diagram, this is shown in pink. The enzyme then undergoes a change in shape and forces these molecules together, with the active site in the resulting "tight" state (shown in red) binding the newly produced ATP molecule with very high affinity. Finally, the active site cycles back to the open state (orange), releasing ATP and binding more ADP and phosphate, ready for the next cycle of ATP production.[11]

Physiological role

Like other enzymes, the activity of F1FO ATP synthase is reversible. Large-enough quantities of ATP cause it to create a transmembrane proton gradient, this is used by fermenting bacteria that do not have an electron transport chain, but rather hydrolyze ATP to make a proton gradient, which they use to drive flagella and the transport of nutrients into the cell.

In respiring bacteria under physiological conditions, ATP synthase, in general, runs in the opposite direction, creating ATP while using the proton motive force created by the electron transport chain as a source of energy. The overall process of creating energy in this fashion is termed oxidative phosphorylation. The same process takes place in the mitochondria, where ATP synthase is located in the inner mitochondrial membrane and the F1-part projects into the mitochondrial matrix. The consumption of ATP by ATP-synthase pumps proton cations into the matrix.

Evolution

The evolution of ATP synthase is thought to have been modular whereby two functionally independent subunits became associated and gained new functionality.[12][13] This association appears to have occurred early in evolutionary history, because essentially the same structure and activity of ATP synthase enzymes are present in all kingdoms of life.[12] The F-ATP synthase displays high functional and mechanistic similarity to the V-ATPase.[14] However, whereas the F-ATP synthase generates ATP by utilising a proton gradient, the V-ATPase generates a proton gradient at the expense of ATP, generating pH values of as low as 1.[15]

The F1 region also shows significant similarity to hexameric DNA helicases, and the FO region shows some similarity to H+
-powered flagellar motor complexes.[14] The α3β3 hexamer of the F1 region shows significant structural similarity to hexameric DNA helicases; both form a ring with 3-fold rotational symmetry with a central pore. Both have roles dependent on the relative rotation of a macromolecule within the pore; the DNA helicases use the helical shape of DNA to drive their motion along the DNA molecule and to detect supercoiling, whereas the α3β3 hexamer uses the conformational changes through the rotation of the γ subunit to drive an enzymatic reaction.[16]

The H+
motor of the FO particle shows great functional similarity to the H+
motors that drive flagella.[14] Both feature a ring of many small alpha-helical proteins that rotate relative to nearby stationary proteins, using a H+
potential gradient as an energy source. This link is tenuous, however, as the overall structure of flagellar motors is far more complex than that of the FO particle and the ring with about 30 rotating proteins is far larger than the 10, 11, or 14 helical proteins in the FO complex.

The modular evolution theory for the origin of ATP synthase suggests that two subunits with independent function, a DNA helicase with ATPase activity and a H+
motor, were able to bind, and the rotation of the motor drove the ATPase activity of the helicase in reverse.[12][16] This complex then evolved greater efficiency and eventually developed into today's intricate ATP synthases. Alternatively, the DNA helicase/H+
motor complex may have had H+
pump activity with the ATPase activity of the helicase driving the H+
motor in reverse.[12] This may have evolved to carry out the reverse reaction and act as an ATP synthase.[13][17][18]

In different species

E. coli

E. coli ATP synthase is the simplest known form of ATP synthase, with 8 different subunit types.[19]

Yeast

Yeast ATP synthase is one of the best-studied eukaryotic ATP synthases; and five F1, eight FO subunits, and seven associated proteins have been identified.[7] Most of these proteins have homologues in other eukaryotes.[20][21][22][23]

Plant

In plants, ATP synthase is also present in chloroplasts (CF1FO-ATP synthase). The enzyme is integrated into thylakoid membrane; the CF1-part sticks into stroma, where dark reactions of photosynthesis (also called the light-independent reactions or the Calvin cycle) and ATP synthesis take place. The overall structure and the catalytic mechanism of the chloroplast ATP synthase are almost the same as those of the bacterial enzyme. However, in chloroplasts, the proton motive force is generated not by respiratory electron transport chain but by primary photosynthetic proteins.

Bovine

The ATP synthase isolated from bovine (Bos taurus) heart mitochondria is, in terms of biochemistry and structure, the best-characterized ATP synthase. Beef heart is used as a source for the enzyme because of the high concentration of mitochondria in cardiac muscle.[24][25][26]

Human

The following is a list of humans genes that encode components of ATP synthases:

See also

References

  1. ^ Okuno D, Iino R, Noji H (April 2011). "Rotation and structure of FOF1-ATP synthase". Journal of Biochemistry. 149 (6): 655–64. doi:10.1093/jb/mvr049. PMID 21524994.
  2. ^ Junge W, Nelson N (June 2015). "ATP synthase". Annual Review of Biochemistry. 84: 631–57. doi:10.1146/annurev-biochem-060614-034124. PMID 25839341.
  3. ^ Kagawa Y, Racker E (May 1966). "Partial resolution of the enzymes catalyzing oxidative phosphorylation. 8. Properties of a factor conferring oligomycin sensitivity on mitochondrial adenosine triphosphatase". The Journal of Biological Chemistry. 241 (10): 2461–6. PMID 4223640.
  4. ^ Mccarty RE (November 1992). "A plant biochemist's view of H+
    -ATPases and ATP synthases"
    . The Journal of Experimental Biology. 172 (Pt 1): 431–441. PMID 9874753.
  5. ^ PDB: 5ARA​; Zhou A, Rohou A, Schep DG, Bason JV, Montgomery MG, Walker JE, Grigorieff N, Rubinstein JL (October 2015). "Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM". eLife. 4: e10180. doi:10.7554/eLife.10180. PMC 4718723. PMID 26439008.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  6. ^ Goodsell, David (December 2005). "ATP Synthase". Molecule of the Month. RCSB PDB. doi:10.2210/rcsb_pdb/mom_2005_12. {{cite web}}: Unknown parameter |name-list-format= ignored (|name-list-style= suggested) (help)
  7. ^ a b Velours J, Paumard P, Soubannier V, Spannagel C, Vaillier J, Arselin G, Graves PV (May 2000). "Organisation of the yeast ATP synthase F(0):a study based on cysteine mutants, thiol modification and cross-linking reagents". Biochimica et Biophysica Acta. 1458 (2–3): 443–56. doi:10.1016/S0005-2728(00)00093-1. PMID 10838057.
  8. ^ PDB: 1VZS​; Carbajo RJ, Silvester JA, Runswick MJ, Walker JE, Neuhaus D (2004). "Solution structure of subunit F(6) from the peripheral stalk region of ATP synthase from bovine heart mitochondria". Journal of Molecular Biology. 342 (2): 593–603. doi:10.1016/j.jmb.2004.07.013. PMID 15327958.
  9. ^ Guo H, Bueler SA, Rubinstein JL (Nov 2017). "Atomic model for the dimeric FO region of mitochondrial ATP synthase". Science. 358 (6365): 936–40. Bibcode:2017Sci...358..936G. doi:10.1126/science.aao4815. PMID 29074581.
  10. ^ Gresser MJ, Myers JA, Boyer PD (October 1982). "Catalytic site cooperativity of beef heart mitochondrial F1 adenosine triphosphatase. Correlations of initial velocity, bound intermediate, and oxygen exchange measurements with an alternating three-site model". The Journal of Biological Chemistry. 257 (20): 12030–8. PMID 6214554.
  11. ^ Nakamoto RK, Baylis Scanlon JA, Al-Shawi MK (August 2008). "The rotary mechanism of the ATP synthase". Archives of Biochemistry and Biophysics. 476 (1): 43–50. doi:10.1016/j.abb.2008.05.004. PMC 2581510. PMID 18515057.
  12. ^ a b c d Doering C, Ermentrout B, Oster G (December 1995). "Rotary DNA motors". Biophysical Journal. 69 (6): 2256–67. Bibcode:1995BpJ....69.2256D. doi:10.1016/S0006-3495(95)80096-2. PMC 1236464. PMID 8599633.
  13. ^ a b Crofts, Antony. "Lecture 10:ATP synthase". Life Sciences at the University of Illinois at Urbana–Champaign. {{cite web}}: Unknown parameter |name-list-format= ignored (|name-list-style= suggested) (help)
  14. ^ a b c "ATP Synthase". InterPro Database.
  15. ^ Beyenbach, KW; Wieczorek, H (Feb 2006). "The V-type H+ ATPase: molecular structure and function, physiological roles and regulation". J Exp Biol. 209 (4): 577–89. PMID 16449553.
  16. ^ a b Martinez LO, Jacquet S, Esteve JP, Rolland C, Cabezón E, Champagne E, Pineau T, Georgeaud V, Walker JE, Tercé F, Collet X, Perret B, Barbaras R (January 2003). "Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis". Nature. 421 (6918): 75–79. Bibcode:2003Natur.421...75M. doi:10.1038/nature01250. PMID 12511957.
  17. ^ Cross RL, Taiz L (January 1990). "Gene duplication as a means for altering H+/ATP ratios during the evolution of FOF1 ATPases and synthases". FEBS Letters. 259 (2): 227–9. doi:10.1016/0014-5793(90)80014-a. PMID 2136729.
  18. ^ Cross RL, Müller V (October 2004). "The evolution of A-, F-, and V-type ATP synthases and ATPases: reversals in function and changes in the H+/ATP coupling ratio". FEBS Letters. 576 (1–2): 1–4. doi:10.1016/j.febslet.2004.08.065. PMID 15473999.
  19. ^ Ahmad Z, Okafor F, Laughlin TF (2011). "Role of Charged Residues in the Catalytic Sites of Escherichia coli ATP Synthase". Journal of Amino Acids. 2011: 785741. doi:10.4061/2011/785741. PMC 3268026. PMID 22312470.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  20. ^ Devenish RJ, Prescott M, Roucou X, Nagley P (May 2000). "Insights into ATP synthase assembly and function through the molecular genetic manipulation of subunits of the yeast mitochondrial enzyme complex". Biochimica et Biophysica Acta. 1458 (2–3): 428–42. doi:10.1016/S0005-2728(00)00092-X. PMID 10838056.
  21. ^ Kabaleeswaran V, Puri N, Walker JE, Leslie AG, Mueller DM (November 2006). "Novel features of the rotary catalytic mechanism revealed in the structure of yeast F1 ATPase". The EMBO Journal. 25 (22): 5433–42. doi:10.1038/sj.emboj.7601410. PMC 1636620. PMID 17082766.
  22. ^ Stock D, Leslie AG, Walker JE (November 1999). "Molecular architecture of the rotary motor in ATP synthase". Science. 286 (5445): 1700–5. doi:10.1126/science.286.5445.1700. PMID 10576729.
  23. ^ Liu S, Charlesworth TJ, Bason JV, Montgomery MG, Harbour ME, Fearnley IM, Walker JE (May 2015). "The purification and characterization of ATP synthase complexes from the mitochondria of four fungal species". Biochemical Journal. 468 (1): 167–175. doi:10.1042/BJ20150197. PMID 25759169.
  24. ^ Abrahams JP, Leslie AG, Lutter R, Walker JE (August 1994). "Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria". Nature. 370 (6491): 621–8. Bibcode:1994Natur.370..621A. doi:10.1038/370621a0. PMID 8065448.
  25. ^ Gibbons C, Montgomery MG, Leslie AG, Walker JE (November 2000). "The structure of the central stalk in bovine F(1)-ATPase at 2.4 A resolution". Nature Structural Biology. 7 (11): 1055–61. doi:10.1038/80981. PMID 11062563.
  26. ^ Menz RI, Walker JE, Leslie AG (August 2001). "Structure of bovine mitochondrial F(1)-ATPase with nucleotide bound to all three catalytic sites: implications for the mechanism of rotary catalysis". Cell. 106 (3): 331–41. doi:10.1016/s0092-8674(01)00452-4. PMID 11509182.

Further reading